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Abstract

Cardio-renal-metabolic (CaReMe) conditions are common and the leading cause of
mortality around the world. Genome-wide association studies have shown that these diseases are
polygenic and share many genetic risk factors. Identifying individuals at high genetic risk will
allow usto target prevention and treatment strategies. Polygenic risk scores (PRS) are aggregate
weighted counts that can demonstrate an individual’s genetic liability for disease. However,
current PRS are often based on European ancestry individuals, limiting the implementation of
precision medicine efforts in diverse populations. In this study, we develop PRS for six diseases
and traits related to cardio-renal-metabolic disease in the Penn Medicine Biobank. We
investigate their performance in both European and African ancestry individuals, and identify
genetic and phenotypic overlap within these conditions. We find that genetic risk is associated
with the primary phenotype in both ancestries, but this does not translate into a model of
predictive value in African ancestry individuals. We conclude that future research should

prioritize genetic studiesin diverse ancestries in order to address this disparity.
| ntroduction

In this era of precision medicine, there are significant efforts to identify the genetic,
environmental, family history, and clinical factors that influence the risk of disease aswell asthe
influence of these factors on disease prognosis and treatment. Knowing in advance the factors
that can lead to increased risk of disease can provide a major health benefit to individuals, as
treatment and support strategies can be targeted towards individuals at higher risk. Identification
of alarge number of loci with small genetic effects in genome-wide association studies (GWAYS)
have highlighted the polygenic behavior of most common, complex diseases™?. An emerging
technology in the field of disease risk prediction is the polygenic risk score (PRS). PRSisthe
cumulative, mathematical aggregation of risk derived from the contributions of many DNA

variants across the genome®.
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Recent studies show high prevalence of cardio-renal-metabolic conditions among adults in the
USA* and together they are the leading cause of mortality around the world>®. GWAS have
identified more than 100 loci associated with common diseases such as coronary artery disease
(CAD), body mass index (BMI), hypertension, renal failure and type 2 diabetes (T2D). This
group of cardio, renal, and metabolic conditions are collectively referred to as CaReMe
conditions. Among the individuals that are diagnosed with one disease (for example T2D), the
prevalence of comorbidities such as hypertension, CAD, heart failure (HF), and chronic kidney
disease (CKD) also increases. To evaluate disease risk in an individual, it is essential to also
consider comorbid or secondary conditions related to the primary disease. There are several
GWA-studies that have identified shared genetic associations between CaReMe conditions,
demonstrating similarity in the underlying genetic architecture’®. Pathophysiology of these
conditions also show the cross-talk between organ systems and its effect on disease
progression such as hemodynamic interaction between heart and kidney in heart failure®. With
PRS, we can derive individuals’ disease risk for each CaReMe condition using GWAS summary
statistics. More importantly, PRS is derived from the effect of millions of genetic variants on a
disease; so it accounts for an individual’'s genetic background. Therefore, PRS can evaluate the
genetic overlap among coexisting or comorbid conditions. Phenome-wide Association Studies
(PheWAS) can be used to identify links between disease risk and other conditions*®*2. Using
these strategies, we investigated whether cross-phenotype associations can provide insights
into the contribution of risk for one disease risk on other conditions. Lastly, we also evaluated

the effect of age, sex, and ancestry on CaReMe PRS predictions.

There are several strategiesto derive PRS for a disease of interest. Traditionally, genetic
risk scores (GRS) were derived using the genome-wide significant SNPs from a genome-wide
association study; however, recent studies show that using association results with much lower p-
value significance (p<0.05) segregate individuals risk with better accuracy®. The devel opment
and clinical utility of PRS isunder active investigation, especially in racial and ethnic minority
populations™*>. Most large-scale GWAS have been conducted in individuals from European
descent populations and most PRS are derived from these studies. Subsequently, the mgority of
PRS investigations published to date have been conducted in populations of European
ancestry’®. There can be severa differences such as linkage disequilibrium (LD) structure and
allele frequency of the variants, which can lead to inaccurate PRS for non-European

populations'®. Thisis not unique to PRS studies, but the majority of human genetic research
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suffers from this same phenomenon®. In this study, we investigated the implementation of PRS
for cardio-renal-metabolic conditionsin European (EUR) and African (AFR) ancestry
individualsin the Penn Medicine Biobank (PMBB). PMBB is acohort of 52,853 individuals
established for genomic and precision medicine research. Approximately 20,000 of the
individualsin the study have genetic data from a genotyping array which has been imputed to the
1000Genomes phase |11 using the Michigan Imputation Server'®. Approximately 25% of the
PMBB study population is African ancestry. We calculated PRS in the PMBB genetic datato
evaluate 1) risk prediction accuracy among EUR and AFR based on GWAS summary statistics
generated in EUR data; and 2) the utility of PRS in determining genetic overlap among CaReMe

conditions.
M ethods
Penn Medicine Biobank

The Penn Medicine BioBank (PMBB) recruits participants through the University of
Pennsylvania Health System by enrolling at the time of appointment. Patients participate by
donating either blood or atissue sample and allowing researchers access to their electronic health
record (EHR) information. This academic biobank provides researchers with centralized access
to alarge number of blood and tissue samples with attached health information. The facility
banks both blood specimens (i.e., whole blood, plasma, serum, buffy coat, and DNA isolated
from leukocytes) and tissues (i.e., formalin-fixed paraffin-embedded, fresh and flash frozen).
PMBB currently consists of 52,853 consented samples. Approximately one third (N=19,515) of
these participants have been genotyped to date. PMBB is adiverse cohort, with 70% European
ancestry, 25% African ancestry, and 5% Asian or Latino ancestry. See Table 1 for characteristics

of all participants.

Table 1. Participant Characteristics

PM BB consented patients PM BB genotyped patients

Total Patients 52,853 19,515
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Female, (%) 25,926 (49%) 7856 (41%)
Age (average) 18 —99 (60) 20—99 (66)
Body mass index 29.36 (13 - 83) 30.02 (13 - 83)
Race

American Indian or Alaska 34 1

Native

Asian 1,201 158

Black or African American 11,173 6159
Native Hawaiian or other 30 7

Pacific Islander

Other 1,577 459
Unknown 1,775 533

White 36,707 10,563
Ethnicity

Hispanic or Latino 1,381 350

Not Hispanic or Latino 50,994 17,517
Unknown 122 13

Genotyping and Quality Control and Imputation

DNA extracted from the blood plasma of 19,515 samples were genotyped in three
batches: 10,867 samples on the Illumina QuadOmni chip at the Regeneron Genetics Center;
5,676 samples on the [llumina GSA V1 chip and 2,972 samples on the [llumina GSA V2 chip by
the Center for Applied Genomics at the Children’s Hospital of Philadelphia. Due to the low
overlap among genetic variants on the different genotyping arrays, we used an imputation
strategy to combine these datasets'™®*°. Prior to imputation, we applied a quality control

pipeline™ to each dataset, removing individuals with sex errors or had a sample call rate <90%;
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and removing variants which were palindromic or had a call rate <95%. Table 2 summarizes
each dataset before and after QC.

Table 2: Summary of genotype data before and after QC.

Pre-QC Post-QC
Dataset
#Samples #SNPs #Samples #SNPs
[llumina Infinium OMNI 10,867 713,599 10,506 651,366
[llumina GSA V1 5,676 700,078 5,660 666,032
[llumina GSA V2 2,972 759,993 2,965 700,984

Genotypes for each of the three PMBB datasets were phased (Eagle v2.3) and imputed to
the 1000Genomes reference panel (1000G Phase3 v5) using the Michigan Imputation Server®,
Accuracy of the imputed variants was assessed via comparison of the expected vs actual allele
frequency of variants (R*=0.3). Following imputation, the datasets were merged, with each
position matched based on alleles. In the merged dataset, the average R? of variants = 0.75.
Genetic ancestry was calculated from common, high-quality SNPs (MAF > 0.05, missingness <
0.1) using SMARTPCA? module of the Eigensoft package. We split the merged fileinto
individuals with European ancestry (N=11,524) and individuals with African ancestry
(N=5,994). All subsequent QC and analysis steps were performed independently within each
population.

We retained high quality, common SNPs with imputation marker R2 > 0.7 and minor
allele frequencies> 0.01. We identified and removed related individuals using akinship
coefficient of 0.25. Using a graph-based algorithm, we selected and removed the sample that is
closdly related to the most samples within the set of related samples. Following QC, we retained
10,351 European ancestry individuals and 5,553 African ancestry individuals. Ancestry specific
principal components were generated within each ancestral group following ancestry assignment,
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and these were used as covariates for subsequent analyses. Genetic ancestry of individuals was
determined by performing quantitative discriminate analyses on PCs.

Polygenic Risk Scores

To derive PRS, we used the summary statistics from the largest and/or most recent
GWAS studies for each trait (See Table 3). To reduce our total SNP set to a size amenable for
PRS analysis, we first extracted SNPs present in the HapMap reference panel (N SNPs
=1,437,731 in HapMap panel; retained 1,320,405 SNPs in EUR and AFR datasets). LDPred
(v1.0) was used to generate the posterior mean effect of each SNP based on the LD information
from either the PM BB European dataset or the PMBB African dataset?’. PRS on each population
were calculated using PLINK v1.9%. We tested several values for LDPred’ s tuning parameter

“fraction of causal variants’ (»=0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1) for deriving SNP weights.

Table 3: Source of GWAS used for PRS creation

Disease GWAS source Samplesizein GWAS Reference
Type 2 Diabetes DIAGRAM 26,488 cases PMID: 24509480
Body Mass Index GIANT 339,224 PMID: 25673413

Hypertension UK Biobank 144,793 PMID: 30940143

Myocardial CARDIOGRAMplus 43,154 cases PMID: 26343387
Infarction C4D consortium

Coronary Artery CARDIoGRAMplus 60,801 cases PMID: 26343387

Disease C4D consortium
Chronic Kidney CKD Genetics 41,395 cases PMID: 31152163

Disease consortium

Phenotypes
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We derived phenotypes using ICD-9 and ICD-10 data for 52,853 individuals from the
electronic health record (EHR), consisting of 11.8 million records. We filtered on encounter type
to identify records representing encounters with a physician (see Supplemental Table 1 for
encounters selected). ICD-9 codes were aggregated to phecodes using the phecode ICD9 map
1.2'92% 1CD-10 codes were aggregated to phecodes using the phecode ICD-10cm map 1.2
(beta)**. Individuals are considered cases for the phenotype if they have at least 2 instances of the
phecode on unique dates, controlsif they have no instance of the phecode, and ‘ other/missing’ if
they have one instance or arelated phecode. By the following criteria, there were atotal of 1,812
phecodes included in the analysis.

Satistical Analysis

PRS were standardized with mean = 0 and SD = 1. Logistic regression models accounting
for age, sex, and the first 10 within-ancestry principal components (PCs) were used to test for
association of PRS with the primary phenotype. Area under the receiver operator curve (AUC)
was determined using the R package pROC, using the same logistic regression model as above.
AUC was also calculated for covariates alone.

A Phenome-wide Association Study (PheWAS) was performed for the optimal PRS
identified in the above analysis for each primary condition. Logistic regression models with each
PRS as the independent variable, phecodes as the dependent variables, and age, sex, and the first
10 PCs as covariates were used to identify secondary phenotypic associations. A phenome-wide

bonferroni significance threshold of 2.7 x 10™ was applied to account for multiple testing.
Results
Demographics of PMBB dataset

Using phecodes, we identified 7,476 EUR ancestry individuals (73.4%) and 4,177 AFR
ancestry individuals (76.4%) with either type 2 diabetes, obesity, hypertension, myocardial
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infarction, coronary atherosclerosis, or renal failure (Table 4). In EUR ancestry individuals,
24.7% had been diagnosed with one instance of disease, 35.2% had 2-3 diseases, 12.5% had 4-5
diseases, and 1.0% had all six diseases. In AFR ancestry individuals, 20.8% had been diagnosed
with one instance of disease, 39.1% had 2-3 diseases, 14.6% had 4-5 diseases, and 1.9% had all
six diseases.

Table 4: Countsfor phecodes in the Penn Medicine Biobank

Phecode Description #EUR # AFR (total=5,465)
(total=10,182)
250.2 Type 2 diabetes 2,119 1,804
2781 Obesity 1,720 2,107
401 Hypertension 5,980 3,455
411.2 Myocardial Infarction 1,193 469
411.4 Coronary atherosclerosis 3,996 975
585 Renal failure 2,191 1,635

Determining the PRS with the best discriminative capacity

We generated a PRS for each phenotype of interest: type 2 diabetes, body mass index,
hypertension, myocardial infarction, coronary artery disease, and chronic kidney disease (see
methods, Table 3). Candidate PRS were generated for 7 parameters, and their association with
the primary phenotype tested. All PRS had at least one parameter that was significantly
associated with their primary phenotype (Figure 1, Supplemental Table 2). We selected the best
performing PRS based on the maximum area under the receiver operator curve (AUC;
Supplemental Table 3). Type 2 diabetes PRS was significantly associated with type 2 diabetes

(best parameter for EUR p=0.01, OR=1.52, p=6.62x10"*, best parameter for AFR p=0.01,

OR=1.3, p=2.19x10*%). BM| PRS was significantly associated with obesity (best parameter for
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EUR p=0.3, OR=1.7, p=8.97x10"®, best parameter for AFR p=0.1, OR=1.2, p=5.55x10""").
Hypertension PRS was significantly associated with hypertension (best parameter for EUR p=1,

OR=1.4, p=4.50x10", best parameter for AFR p=0.3, OR=1.27, p=4.31x10"°). Myocardial
infarction PRS was significantly associated with myocardial infarction (best parameter for EUR
p=0.01, OR=1.8, p=3.74x10™", best parameter for AFR p=0.1, OR=1.3, p=5.01x10 ). Coronary
artery disease PRS was significantly associated with coronary atherosclerosis (best parameter for
EUR p=0.01, OR=1.66, p=1.54x10""", best parameter for AFR p=0.03, OR=1.27, p=2.53x10'®).
Chronic kidney disease PRS was significantly associated with renal failure (best parameter for

EUR p=0.01, OR=1.2, p=2.60x10"®, best parameter for AFR p=0.001, OR=1.1, p=0.024).
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Figure 1. Association of PRS with primary phenotype for EUR and AFR ancestry. Square
denotes p<0.05.

Performance of PRSin EUR vs. AFR ancestry
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We selected the parameter that produced the strongest associated candidate PRS for each
PRS-phenotype grouping within each ancestry for further analysis. In all cases, PRS performance
was best in European ancestry individuals. The distribution of PRS in cases and controls in both
populationsisillustrated in Figure 2. In European ancestry, the mean distribution of PRS in cases
is consistently higher than controls. In African ancestry individuals this difference is much
smaller, with substantial overlap between the PRS distribution in cases and controls. Thisis
reflected in the comparison between the AUC for the full model and the AUC for covariates
alone (Supplemental Table 3). Although the AUC in the full modéd is high in both ancestries
(0.57-0.84), showing ability to distinguish between cases and controls, in AFR the full model
offerslittle improvement over the model based on covariates alone (average improvement in
AUC for best PRS=0.007). In contrast, in EUR the covariate model isimproved when the PRSis
added (average improvement in AUC for best PRS=0.032). Further, to evaluate the significance
of variablesin the full model (PRS and covariates), we performed a step-wise regression. In

AFR, weidentified that PRS was not selected in the best model in CAD but was selected in other
phenotypes. CAD step-wide regression model further support our argument that PRS derived

from EUR GWAS studies might not add any risk prediction in AFR individuals (Supplementary
Table 4).
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Figure 2. Density plot of polygenic risk scoresin cases (red) and controls (blue) in both
European and African ancestry individuals.
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Correlation of PRS

We next tested for correlations between the polygenic risk scores for the six selected
diseases in each ancestry (Figure 3, Supplemental Table 5). In European ancestry individuals, we
identified significant positive correlations between CKD/T2D, CKD/BMI, CAD/BMI,
CAD/Hypertension, CAD/MI, M1/BMI, MI/Hypertension, Hypertension/T2D,
Hypertension/BMI, and BMI/T2D. CKD PRS was aso negatively correlated with PRS for M1
and CAD. In African ancestry individuals, we identified significant positive correlations between
CKD/BMI, CAD/T2D, CAD/BMI, CAD/Hypertension, CAD/MI, MI/T2D, MI/BMI,
MI/Hypertension, Hypertension/T2D, Hypertension/BMI, and BMI/T2D. Overall, the
correlations identified in PRS in African ancestry individuals were weaker than those identified
in PRS in European ancestry individuals.
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Figure 3. Correlation between polygenic risk scores for six diseasesin European and African
ancestry individuals. The size of the circle denotes the size of the correlation. The color denotes
the direction of correlation (red=positive, blue=negative). White circles denote a non-significant
association. Correlation of European PRS are shown in the upper |eft, correlation of African PRS

are shown in the lower right.
Association of PRSwith disease burden in cases

Using linear regression in cases only, we tested whether increased PRS is associated with
increased burden of cardio-renal-metabolic disease. All PRS, except for CKD PRS, were
significantly associated with increased disease burden in both European and African ancestry
individuals (Table 5). In Europeans, BMI PRS was the strongest association with occurrence of
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multiple diseases (beta=0.14, p=6.6x10""), in contrast to in African ancestry individuals, where
the association remained significant but was reduced in effect size (beta=0.05, p=0.02). In
African ancestry individuals, Ml PRS was the strongest association with increased disease
burden (beta=0.09, p=8.3x10").

Table 5. Association of PRS with the burden of disease in European and African ancestry
individuals.

PRS EUR AFR
Beta SE P Beta SE P

T2D 0.117 0.017 5.47x10™" 0.090 0.020 7.18x10°
BMI 0.135 0.015 6.56x10™" 0.046 0.020 0.020
Hypertension | 0.112 0.015 2.40x10™* 0.037 0.019 0.048

Ml 0.115 0.015 3.85x10™ 0.093 0.019 8.28x10”

CAD 0.131 0.015 6.31x10™"° 0.092 0.019 1.10x10°
CKD 0.027 0.019 0.146 0.020 0.019 0.300

PheWAS of polygenic risk scores reveals secondary associations

We performed a PheWAS of each PRS in both European and African ancestry
individuals to identify secondary phenotypes associated with genetic risk (Figure 4,
Supplemental Tables 6-11). In all PRS, associations with secondary phenotypesin AFR
individuals were reduced. All PRS except CKD PRS were associated with secondary
phenotypes. T2D PRS was associated with hypertension (OR=1.13, p=9.4x10®) in EUR, and
with Type 1 diabetes (OR=1.45, p=4.8x10"°) in AFR. BM| PRS was associated with multiple
circulatory system phenotypesin EUR, including hypertension (OR=1.17, p=1.4x10"®), heart
failure (OR=1.13, p=1.1x10®), and coronary atherosclerosis (OR=1.12, p=5.3x10°). BMI PRS
was also associated with type 2 diabetes (OR=1.23, p=1.2x10™"), renal failure (OR=1.13,
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p=3.1x10®), osteoporosis (OR=0.81, p=5.3x10"°), and sleep apnea (OR=1.26, p=4.3x10™") in
EUR. In AFR, the only additional phenotypes associated with BM| PRS were sleep apnea
(OR=1.20, p=1.1x10°) and use of an insulin pump (OR=1.28, p=8.6x10°). Hypertension PRS
was associated with circulatory system phenotypes in EUR, as well astype 2 diabetes (OR=1.29,
p=6.8x10"%), disorders of lipoid metabolism (OR=1.16, p=2.6x10""), renal failure (OR=1.13,
p=3.2x10"°), and sleep apnea (OR=1.15, p=3.7x10°"). In AFR, hypertension PRS was not
significantly associated with additional phenotypes. Ml PRS was associated with hyperlipidemia
(OR=1.22, p=1.8x10°), hypertensive chronic kidney disease (OR=1.26, p=5.2x10"°) and type 2
diabetes (OR=1.12, p=9.4x10®) in EUR, but no additional phenotypesin AFR. CAD PRSis
associated with hyperlipidemia (OR=1.29, p=3.1x10"%*), hypertensive chronic kidney disease
(OR=1.28, p=1.4x10"®), hypertension (OR=1.16, p=6.3x10"°), type 2 diabetes (OR=1.14,
p=9.6x10"), and disorders of eye (OR=0.77, p=8.1x10") in EUR. In AFR, CAD PRSis
associated with eye inflammation (OR=0.76, p=6.6x10").
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Figure 4. Secondary associations of polygenic risk for T2D, BMI, Hypertension, M1, CAD and
CKD in EUR (top panels) and AFR (bottom panels) individuals.
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Discussion

We generated six polygenic risk scores representing genetic liability for cardio-renal-
metabolic diseases, and investigated their performance in both European and African ancestry
individualsin the Penn Medicine BioBank (PMBB), a biobank linked with el ectronic health
records. For all phenotypes tested, we identified a significant association between the PRS and
the primary phenotype in both ancestry groups. However, the ability of the PRS to discriminate
between cases and controls varied among phenotypes. Furthermore, none of the PRSin AFR

were sufficient to stratify individuals according to risk.

In European ancestry individuals, the PRS with the largest effect size was myocardial
infarction, followed by coronary artery disease. The two GWAS that were used to generate these
PRS also had the largest number of cases, and the PM BB dataset also contained a large number
of cases for both of these diseases. However, the CKD PRS was the weakest performer in terms
of effect size, despiteit being based on the next largest GWAS and the PMBB containing alarge
number of individuals with renal failure. Therefore, while case number in both the GWAS and
the target sample are clearly important, we believe that other factors such as disease
heterogeneity, prevalence, penetrance, and non-additive effects among others must also play a
rolein the ability of PRS to associate with disease.

We conducted a number of analyses to explore secondary phenotypes associated with
each PRS. First, we show that the PRS generated for the six diseases are correlated with each
other, a finding supported by prior studies showing genetic correlations between CaReMe
conditions®. We next show that increased PRS is associated with increased burden of disease,
suggesting that a higher PRS burden may contribute in a non-discriminating fashion to disease
outcome. Finaly, we perform PheWAS analysis to identify secondary phenotypes associated
with genetic liability for CaReMe diseases. Many of the secondary phenotypes identified could
be attributed to the broader effects of disease risk factors and known comorbidities. For instance,
risk for Type 2 diabetes was associated with hypertension, a known commonly co-occurring
trait”®. The BMI PRS was associated with sleep apnea, diabetes, hypertension and osteoporosis;
all traits known to increase in individuals with higher BM1?°%. The extent to which these
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secondary phenotypes reflect causal associations between genetic risk and disease is unclear due
to the commonality of co-morbidity of these traits.

Our findings highlight a mgjor issue in the future implementation of PRSin clinical care.
While GWAS conducted in EUR populations can be used to generate PRS that are associated
with phenotype in AFR individuals, the scores generated are not sufficient to differentiate
between cases and controls in a predictive model. This was an expected finding, and has been
discussed widely in recent years as being a critical source of disparity in genetic research'*°.
Dueto differencesin linkage disequilibrium patterns, effect sizes, and causa variants
themselves, conducting GWAS in populations that are reflective of the patient population are

necessary and will need to be prioritized in the coming years.

Finally, while there is much excitement and enthusiasm about PRS for clinical care, there
is still significant research to be conducted to determine its optimal implementation. One of the
most essential needsisto investigate how PRS can be incorporated alongside information
commonly used to predict patients' risk, such as family history, clinical comorbidities, and
environmental/lifestyle factors. Many chronic diseases have published clinical guidelines with
risk reduction recommendations (for example CVD®). The ultimate clinical utility of PRS will
come to fruition when we understand how to integrate PRS with these published guidelines.
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Supplemental Table 2: Association of parameters of each PRS with their primary phenotypein

EUR and AFR ancestry.
Disease/PRS | Parameter EUR AFR
OR (95% CI) P-value OR (95% CI) P-value
Type2diabetes/ | ,—gop1 | 1.09(1.04-1.15) 4.73x10* | 1.13(1.06-1.21) | 1.57x10*
Type 2 diabetes
p=0003 | 11(1.04-1.15) 2.33x10* | 1.19 (1.11-1.27) | 2.85x10"
=001 | 152(1.43-161) 6.62x10*% | 1.3(1.21-1.39) | 2.19x10™
=003 | 148(1.39-157) 2.76x10* | 1.26 (1.18-1.36) | 1.94x10™°
p=0.1 1.43(1.34-1.52) | 5.69x10* | 1.23(1.14-1.32) | 6.25x10°
=03 1.4 (131-1.49) | 1.37x10% | 1.2(1.12-1.29) | 1.30x10°
=1 1.38(1.3-1.48) | 2.02x10% | 1.19 (1.11-1.28) | 3.83x10°
Obesity/ p=0001 | 118(1.11-1.24) 2.81x10° | 1.07 (1.01-1.13) | 0.022
BMI
p=0003 | 117(111-124) 5.22x10° | 1.04(0.98-1.1) 0.222
=001 | 155(1.47-164) 6.85x10> | 1.06 (1-1.12) 0.059
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0=0.03

=003 | 162(153-171) 6.77x10% | 1.21(1.14-1.29) | 3.58x10™

p=0.1 1.65(1.56-1.75) | 2.95x10* | 1.22 (1.14-1.29) | 5.55x10™%°

=03 1.67 (1.57-1.77) | 897x10% | 1.21(1.14-1.29) | 1.53x10”

=1 1.66 (1.57-1.76) | 2.76x10% | 1.21(1.13-1.29) | 5.17x107

Hypertension/ | -9 o1 | 1.11(1.06-1.16) 2.21x10° | 1.18(1.1-1.27) | 1.08x10°

Hypertension

p=0003 | 1.09(1.04-114) 6.03x10* | 1.17 (1.09-1.26) | 3.45x10°

=001 | 110(1.05-1.16) 8.96x10° | 1.20 (1.11-1.29) | 1.93x10°

=003 | 113(1.07-1.18) 1.27x10° | 1.26 (1.17-1.36) | 7.27x10"°

p=0.1 1.22 (1.16-1.28) | 6.43x10™° | 1.22(1.13-1.31) | 1.21x10”

p=0.3 1.32 (1.26-1.39) | 2.85x10%° | 1.27 (1.18-1.36) | 4.31x10™"

=1 1.40 (1.33-1.47) | 4.50x10% | 1.25(1.16-1.35) | 1.94x107

Myocardial p=0001 | 164(153-177) 2.22x10* | 1.23(1.1-1.37) | 1.39x10™
Infarction/

Myocardial p=0003 | 1.74(162-188) | 202x10® | 1.26(1.13-14) | 2.13x10°
Infarction

=001 | 178(165-1.91) 3.74x10°" | 1.27 (1.14-1.41) | 9.88x10°

1.73(1.6-1.86) | 1.05x10* | 1.3(1.17-1.45) | 8.88x10"
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p=0.1 1.67 (1.55-1.8) | 4.29x10* | 1.32(1.18-1.47) | 5.01x107
=03 1.63(1.51-1.76) | 7.15x10°% | 1.32(1.18-1.47) | 7.38x10"
=1 1.62 (1.5-1.74) | 1.77x10% | 1.31(1.18-1.46) | 9.68x10"’
Coronary p=0001 | 152(14516) 1.44x10% | 1.17 (1.08-1.27) | 2.59x10™
atherosclerosis/
coronary artery | _qno3 | 1.59 (151-1.68) 6.12x107* | 1.14 (1.05-1.24) |  0.003
disease
p=001 | 166(157-1.75) 1.54x107" | 1.27 (1.17-1.38) | 2.87x10°
=003 | 162(154-1.72) 453x10% | 1.27(1.17-1.38) | 2.53x10°
=01 1.57(1.49-1.66) | 8.72x10*° | 1.25(1.15-1.36) | 1.89x10”
p=0.3 1.55(1.46-1.63) | 6.01x10™ | 1.24 (1.14-1.34) | 5.25x10”
=1 153 (1.45-1.62) | 1.04x10™" | 1.23(1.13-1.34) | 9.05x10”
Renal failure/ | 0001 1 (0.95-1.05) 0.935 1.08 (1.01-1.16) | 0.024
chronic kidney
disease p=0003 | 102(0.97-1.07) 0.408 1.06 (0.99-1.13) | 0.106
=001 | 1.16(1.09-1.24) 2.60x10° 1(0.93-1.07) 0.908
=003 | 116(1.08-1.24) 1.91x10° | 1.05(0.97-1.14) | 0.216
1.14 (1.07-1.23) | 1.48x10* | 1.05(0.96-1.14) | 0.285
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1.13(1.06-1.22) | 3.99x10* | 1.04(0.96-1.13) | 0.356

p=0.3

1.13(1.05-1.21) | 5.61x10* | 1.04(0.95113) | 0.379

p=1

Supplemental Table 3: AUC of parameters of each PRS with their primary phenotype in EUR

and AFR ancestry.
Disease/PRS Parameter EUR AFR
AUC AUC AUC AUC (full AUC AUC
(full (covariates difference model) (covariates difference
model) only) only)
Type2 p=0.001 | 0.5764 0.0048 | 0.7046 0.0028
diabetes/
Type2 | ,-0003 | 05769 0.0053 | 0.7067 0.0049
diabetes
=001 | 0.6218 0.0502 | 0.7116 0.0098
p=0.03 |[0.6133| 0.5716 0.0417 0.709 0.7018 0.0072
p=0.1 0.6063 0.0347 | 0.7071 0.0053
=03 0.6028 0.0312 0.706 0.0042
p=1 0.6015 0.0299 | 0.7056 0.0038
Obesity/ | ,=0.001 | 0.6006 0.0075 | 0.5976 0.0027
BMI 0.5931 0.5949
p=0.003 | 0.5991 0.006 0.5959 0.001
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p=0.01 | 06453 0.0522 | 0.5981 0.0032
p=0.03 | 06515 0.0584 | 0.6119 0.017
=01 | 06539 0.0608 | 0.6119 0.017
p=03 | 06543 0.0612 | 0611 0.0161
p=1 | 06529 0.0598 | 0.6099 0.015

Hypertension | ,—0001 | 0.6979 0.0017 | 0.8418 0.0015

/

Hypertension | -5 003 | 0.6978 0.0016 | 0.8416 0.0013
p=0.01 | 06978 0.0016 | 0.8421 0.0018
p=0.03 | 0698 | 06962 | 0.0018 | 0.8434 | 08403 | 0.0031
p=01 | 07031 0.0069 | 0.8425 0.0022
=03 | 0709 0.0134 | 0.8435 0.0032
p=1 | 07143 0.0181 | 0.8434 0.0031

Myocardia | ,—0001 | 0.7686 0.0279 | 0.8355 0.0029

Infarction/

Myocardial | -0003 | 07738 | 07407 | 0.0331 | 0.8359 | 08326 | 0.0033

Infarction
p=001 |0.7753 0.0346 | 0.8361 0.0035
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p=003 | 07721 0.0314 | 0.8369 0.0043

p=01 | 07684 0.0277 | 0.8372 0.0046

=03 | 0.7662 0.0255 | 0.8371 0.0045

p=1 | 07652 0.0245 | 0.8369 0.0043

Coronary | ,=0.001 | 0.7756 0.018 | 0.8425 0.0013

atheroscleros

g p=0.003 | 0.7793 0.0217 | 0.8424 0.0012

coronary

aterydisease | 531 | 7818 0.0242 | 0.8448 0.0036

p=0.03 | 0.7794 | 0.7576 0.0218 | 0.8448 0.8412 0.0036

=01 |0.7764 0.0188 | 0.8443 0.0031
=03 | 0.7749 0.0173 | 08441 0.0029
p=1 | 07742 0.0166 | 0.8439 0.0027
Renal failure/ | ;0001 | 0.6271 0 0.7663 0.0006
chronic
kidney p=0.003 | 0.6273 0.0002 | 0.766 0.0003
disease 0.6271 0.7657
=001 | 06304 0.0033 | 0.7657 0

p=0.03 | 0.6299 0.0028 | 0.766 0.0003
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p=0.1 0.6294 0.0023 | 0.7659 0.0002

p=0.3 0.6291 0.002 0.7658 0.0001

p=1 0.629 0.0019 | 0.7658 0.0001
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Supplemental Table 4: Step-wise regression for mode selection. Using the step-wise regression

we added each covariate to the null model and colored céells in the table below show covariates

selected in best performing regression model. Best model was selected using akaike information

criterion (AIC).

Disease/PRS Race | PRS | AGE | SEX | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10
Type?2 EUR
diabetes/Type 2
diabetes AFR
EUR
Obesity/BM|
AFR
Hypertension/ EUR
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Hypertension AFR
Myocardial EUR
Infarction/
Myocardial AFR
Infarction
Coronary EUR

atherosclerosis/

coronary artery AFR

disease
Renal failure/ EUR
chronic kidney
i AFR
disease

Supplemental Table 5: Correlations between PRS.

EUR AFR

Disease 1 Disease 2 cor D cor D
T2D BMI 0.216 <2.2x10*¢ 0.170 <2.2x10"¢
T2D Hypertension 0.049 7.39x10” 0.057 2.40x107
BMI Hypertension 0.143 <2.2x10% 0.129 <2.2x10*
T2D MI 0.018 0.063 0.095 1.57x10™
BMI MI 0.044 9.36x10° 0.110 4.44x10™"°
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Hypertension MI 0.155 <2.2x10™"° 0.135 <2.2x10"°
T2D CAD -0.011 0.270 0.033 0.013
BMI CAD 0.055 1.85x10°® 0.055 4.91x10°

Hypertension CAD 0.179 <2.2x10%° 0.136 <2.2x10%°

Ml CAD 0.880 <2.2x10" 0.805 <2.2x10"°
T2D CKD 0.315 <2.2x10" -0.003 0.829
BMI CKD 0.157 <2.2x10" 0.069 3.29x10”
Hypertension CKD -0.022 0.029 -0.006 0.656
Ml CKD -0.083 <2.2x10" -0.009 0.489
CAD CKD -0.153 <2.2x10" -0.010 0.451

Supplemental Table 6: PheWAS of T2D PRS (see excdl file)
Supplemental Table 7: PheWAS of BMI PRS (see excel file)
Supplemental Table 8: PheWAS of Hypertension PRS (see excel file)
Supplemental Table 9: PheWAS of M1 PRS (see excel file)
Supplemental Table 10: PheWAS of CAD PRS (see excd file)
Supplemental Table 11: Phe WAS of CKD PRS (see excdl file)
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