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Abstract 

 

Cardio-renal-metabolic (CaReMe) conditions are common and the leading cause of 

mortality around the world. Genome-wide association studies have shown that these diseases are 

polygenic and share many genetic risk factors. Identifying individuals at high genetic risk will 

allow us to target prevention and treatment strategies. Polygenic risk scores (PRS) are aggregate 

weighted counts that can demonstrate an individual’s genetic liability for disease. However, 

current PRS are often based on European ancestry individuals, limiting the implementation of 

precision medicine efforts in diverse populations. In this study, we develop PRS for six diseases 

and traits related to cardio-renal-metabolic disease in the Penn Medicine Biobank. We 

investigate their performance in both European and African ancestry individuals, and identify 

genetic and phenotypic overlap within these conditions. We find that genetic risk is associated 

with the primary phenotype in both ancestries, but this does not translate into a model of 

predictive value in African ancestry individuals. We conclude that future research should 

prioritize genetic studies in diverse ancestries in order to address this disparity.  

 

Introduction 

 

In this era of precision medicine, there are significant efforts to identify the genetic, 

environmental, family history, and clinical factors that influence the risk of disease as well as the 

influence of these factors on disease prognosis and treatment. Knowing in advance the factors 

that can lead to increased risk of disease can provide a major health benefit to individuals, as 

treatment and support strategies can be targeted towards individuals at higher risk. Identification 

of a large number of loci with small genetic effects in genome-wide association studies (GWAS) 

have highlighted the polygenic behavior of most common, complex diseases1,2. An emerging 

technology in the field of disease risk prediction is the polygenic risk score (PRS). PRS is the 

cumulative, mathematical aggregation of risk derived from the contributions of many DNA 

variants across the genome3. 
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Recent studies show high prevalence of cardio-renal-metabolic conditions among adults in the 

USA4 and together they are the leading cause of mortality around the world5,6. GWAS have 

identified more than 100 loci associated with common diseases such as coronary artery disease 

(CAD), body mass index (BMI), hypertension, renal failure and type 2 diabetes (T2D). This 

group of cardio, renal, and metabolic conditions are collectively referred to as CaReMe 

conditions. Among the individuals that are diagnosed with one disease (for example T2D), the 

prevalence of comorbidities such as hypertension, CAD, heart failure (HF), and chronic kidney 

disease (CKD) also increases. To evaluate disease risk in an individual, it is essential to also 

consider comorbid or secondary conditions related to the primary disease. There are several 

GWA-studies that have identified shared genetic associations between CaReMe conditions, 

demonstrating similarity in the underlying genetic architecture7,8. Pathophysiology of these 

conditions also show the cross-talk between organ systems and its effect on disease 

progression such as hemodynamic interaction between heart and kidney in heart failure9. With 

PRS, we can derive individuals’ disease risk for each CaReMe condition using GWAS summary 

statistics. More importantly, PRS is derived from the effect of millions of genetic variants on a 

disease; so it accounts for an individual’s genetic background. Therefore, PRS can evaluate the 

genetic overlap among coexisting or comorbid conditions. Phenome-wide Association Studies 

(PheWAS) can be used to identify links between disease risk and other conditions10–12. Using 

these strategies, we investigated whether cross-phenotype associations can provide insights 

into the contribution of risk for one disease risk on other conditions. Lastly, we also evaluated 

the effect of age, sex, and ancestry on CaReMe PRS predictions. 

 

There are several strategies to derive PRS for a disease of interest. Traditionally, genetic 

risk scores (GRS) were derived using the genome-wide significant SNPs from a genome-wide 

association study; however, recent studies show that using association results with much lower p-

value significance (p<0.05) segregate individuals risk with better accuracy1. The development 

and clinical utility of PRS is under active investigation, especially in racial and ethnic minority 

populations13–15. Most large-scale GWAS have been conducted in individuals from European 

descent populations and most PRS are derived from these studies. Subsequently, the majority of 

PRS investigations published to date have been conducted in populations of European 

ancestry16.  There can be several differences such as linkage disequilibrium (LD) structure and 

allele frequency of the variants, which can lead to inaccurate PRS for non-European 

populations16. This is not unique to PRS studies, but the majority of human genetic research 
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suffers from this same phenomenon17. In this study, we investigated the implementation of PRS 

for cardio-renal-metabolic conditions in European (EUR) and African (AFR) ancestry 

individuals in the Penn Medicine Biobank (PMBB). PMBB is a cohort of 52,853 individuals 

established for genomic and precision medicine research. Approximately 20,000 of the 

individuals in the study have genetic data from a genotyping array which has been imputed to the 

1000Genomes phase III using the Michigan Imputation Server18. Approximately 25% of the 

PMBB study population is African ancestry. We calculated PRS in the PMBB genetic data to 

evaluate 1) risk prediction accuracy among EUR and AFR based on GWAS summary statistics 

generated in EUR data; and 2) the utility of PRS in determining genetic overlap among CaReMe 

conditions. 

 

Methods 

 

Penn Medicine Biobank 

 

The Penn Medicine BioBank (PMBB) recruits participants through the University of 

Pennsylvania Health System by enrolling at the time of appointment. Patients participate by 

donating either blood or a tissue sample and allowing researchers access to their electronic health 

record (EHR) information. This academic biobank provides researchers with centralized access 

to a large number of blood and tissue samples with attached health information. The facility 

banks both blood specimens (i.e., whole blood, plasma, serum, buffy coat, and DNA isolated 

from leukocytes) and tissues (i.e., formalin-fixed paraffin-embedded, fresh and flash frozen). 

PMBB currently consists of 52,853 consented samples. Approximately one third (N=19,515) of 

these participants have been genotyped to date. PMBB is a diverse cohort, with 70% European 

ancestry, 25% African ancestry, and 5% Asian or Latino ancestry. See Table 1 for characteristics 

of all participants. 

 

Table 1. Participant Characteristics 

 PMBB consented patients PMBB genotyped patients 

Total Patients 52,853 19,515 
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Female, (%) 25,926 (49%) 7856 (41%) 

Age (average)  18 – 99 (60) 20 – 99 (66) 

Body mass index 29.36 (13 - 83) 30.02 (13 - 83)  

Race   

American Indian or Alaska 
Native 

34 1 

Asian 1,201 158 

Black or African American 11,173 6159 

Native Hawaiian or other 
Pacific Islander 

30 7 

Other 1,577 459 

Unknown 1,775 533 

White 36,707 10,563 

Ethnicity   

Hispanic or Latino 1,381 350 

Not Hispanic or Latino 50,994 17,517 

Unknown 122 13 

 

 

Genotyping and Quality Control and Imputation 

 

DNA extracted from the blood plasma of 19,515 samples were genotyped in three 

batches: 10,867 samples on the Illumina QuadOmni chip at the Regeneron Genetics Center; 

5,676 samples on the Illumina GSA V1 chip and 2,972 samples on the Illumina GSA V2 chip by 

the Center for Applied Genomics at the Children’s Hospital of Philadelphia.  Due to the low 

overlap among genetic variants on the different genotyping arrays, we used an imputation 

strategy to combine these datasets18,19. Prior to imputation, we applied a quality control 

pipeline19 to each dataset, removing individuals with sex errors or had a sample call rate <90%; 
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and removing variants which were palindromic or had a call rate <95%. Table 2 summarizes 

each dataset before and after QC. 

 

Table 2: Summary of genotype data before and after QC. 

Dataset 

Pre-QC Post-QC 

#Samples #SNPs #Samples #SNPs 

Illumina Infinium OMNI 10,867 713,599 10,506 651,366 

Illumina GSA V1 5,676 700,078 5,660 666,032 

Illumina GSA V2 2,972 759,993 2,965 700,984 

 

Genotypes for each of the three PMBB datasets were phased (Eagle v2.3) and imputed to 

the 1000Genomes reference panel (1000G Phase3 v5) using the Michigan Imputation Server18. 

Accuracy of the imputed variants was assessed via comparison of the expected vs actual allele 

frequency of variants (R2=0.3). Following imputation, the datasets were merged, with each 

position matched based on alleles. In the merged dataset, the average R2 of variants = 0.75. 

Genetic ancestry was calculated from common, high-quality SNPs (MAF > 0.05, missingness < 

0.1) using SMARTPCA20 module of the Eigensoft package. We split the merged file into 

individuals with European ancestry (N=11,524) and individuals with African ancestry 

(N=5,994). All subsequent QC and analysis steps were performed independently within each 

population. 

 

We retained high quality, common SNPs with imputation marker R2 ≥ 0.7 and minor 

allele frequencies ≥ 0.01. We identified and removed related individuals using a kinship 

coefficient of 0.25. Using a graph-based algorithm, we selected and removed the sample that is 

closely related to the most samples within the set of related samples. Following QC, we retained 

10,351 European ancestry individuals and 5,553 African ancestry individuals. Ancestry specific 

principal components were generated within each ancestral group following ancestry assignment, 
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and these were used as covariates for subsequent analyses. Genetic ancestry of individuals was 

determined by performing quantitative discriminate analyses on PCs. 

 

Polygenic Risk Scores 

 

To derive PRS, we used the summary statistics from the largest and/or most recent 

GWAS studies for each trait (See Table 3). To reduce our total SNP set to a size amenable for 

PRS analysis, we first extracted SNPs present in the HapMap reference panel (N SNPs 

=1,437,731 in HapMap panel; retained 1,320,405 SNPs in EUR and AFR datasets). LDPred 

(v1.0) was used to generate the posterior mean effect of each SNP based on the LD information 

from either the PMBB European dataset or the PMBB African dataset21. PRS on each population 

were calculated using PLINK v1.922. We tested several values for LDPred’s tuning parameter 

“fraction of causal variants” (⍴=0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1) for deriving SNP weights.  

 

Table 3: Source of GWAS used for PRS creation 

Disease GWAS source Sample size in GWAS Reference 

Type 2 Diabetes DIAGRAM 26,488 cases PMID: 24509480 

Body Mass Index GIANT 339,224 PMID: 25673413 

Hypertension UK Biobank 144,793 PMID: 30940143 

Myocardial 

Infarction 

CARDIoGRAMplus

C4D consortium 

43,154 cases PMID: 26343387 

Coronary Artery 

Disease 

CARDIoGRAMplus

C4D consortium 

60,801 cases PMID: 26343387 

Chronic Kidney 

Disease 

CKD Genetics 

consortium 

41,395 cases PMID: 31152163 

 

Phenotypes 
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We derived phenotypes using ICD-9 and ICD-10 data for 52,853 individuals from the 

electronic health record (EHR), consisting of 11.8 million records. We filtered on encounter type 

to identify records representing encounters with a physician (see Supplemental Table 1 for 

encounters selected). ICD-9 codes were aggregated to phecodes using the phecode ICD9 map 

1.210,23; ICD-10 codes were aggregated to phecodes using the phecode ICD-10cm map 1.2 

(beta)24. Individuals are considered cases for the phenotype if they have at least 2 instances of the 

phecode on unique dates, controls if they have no instance of the phecode, and ‘other/missing’ if 

they have one instance or a related phecode. By the following criteria, there were a total of 1,812 

phecodes included in the analysis.  

 

Statistical Analysis 

 

PRS were standardized with mean = 0 and SD = 1. Logistic regression models accounting 

for age, sex, and the first 10 within-ancestry principal components (PCs) were used to test for 

association of PRS with the primary phenotype. Area under the receiver operator curve (AUC) 

was determined using the R package pROC, using the same logistic regression model as above. 

AUC was also calculated for covariates alone. 

 

A Phenome-wide Association Study (PheWAS) was performed for the optimal PRS 

identified in the above analysis for each primary condition. Logistic regression models with each 

PRS as the independent variable, phecodes as the dependent variables, and age, sex, and the first 

10 PCs as covariates were used to identify secondary phenotypic associations. A phenome-wide 

bonferroni significance threshold of 2.7 × 10-5 was applied to account for multiple testing. 

 

Results 

 

Demographics of PMBB dataset  

 

Using phecodes, we identified 7,476 EUR ancestry individuals (73.4%) and 4,177 AFR 

ancestry individuals (76.4%) with either type 2 diabetes, obesity, hypertension, myocardial 
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infarction, coronary atherosclerosis, or renal failure (Table 4). In EUR ancestry individuals, 

24.7% had been diagnosed with one instance of disease, 35.2% had 2-3 diseases, 12.5% had 4-5 

diseases, and 1.0% had all six diseases. In AFR ancestry individuals, 20.8% had been diagnosed 

with one instance of disease, 39.1% had 2-3 diseases, 14.6% had 4-5 diseases, and 1.9% had all 

six diseases. 

 

Table 4: Counts for phecodes in the Penn Medicine Biobank 

Phecode Description # EUR 

(total=10,182) 

# AFR (total=5,465) 

250.2 Type 2 diabetes 2,119 1,804 

278.1 Obesity 1,720 2,107 

401 Hypertension 5,980 3,455 

411.2 Myocardial Infarction 1,193 469 

411.4 Coronary atherosclerosis 3,996 975 

585 Renal failure 2,191 1,635 

 

Determining the PRS with the best discriminative capacity 

 

We generated a PRS for each phenotype of interest: type 2 diabetes, body mass index, 

hypertension, myocardial infarction, coronary artery disease, and chronic kidney disease (see 

methods, Table 3). Candidate PRS were generated for 7 parameters, and their association with 

the primary phenotype tested. All PRS had at least one parameter that was significantly 

associated with their primary phenotype (Figure 1, Supplemental Table 2). We selected the best 

performing PRS based on the maximum area under the receiver operator curve (AUC; 

Supplemental Table 3). Type 2 diabetes PRS was significantly associated with type 2 diabetes 

(best parameter for EUR ⍴=0.01, OR=1.52, p=6.62x10-43, best parameter for AFR ⍴=0.01, 

OR=1.3, p=2.19x10-13). BMI PRS was significantly associated with obesity (best parameter for 
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EUR ⍴=0.3, OR=1.7, p=8.97x10-65, best parameter for AFR ⍴=0.1, OR=1.2, p=5.55x10-10). 

Hypertension PRS was significantly associated with hypertension (best parameter for EUR ⍴=1, 

OR=1.4, p=4.50x10-40, best parameter for AFR ⍴=0.3, OR=1.27, p=4.31x10-10). Myocardial 

infarction PRS was significantly associated with myocardial infarction (best parameter for EUR 

⍴=0.01, OR=1.8, p=3.74x10-51, best parameter for AFR ⍴=0.1, OR=1.3, p=5.01x10-7). Coronary 

artery disease PRS was significantly associated with coronary atherosclerosis (best parameter for 

EUR ⍴=0.01, OR=1.66, p=1.54x10-77, best parameter for AFR ⍴=0.03, OR=1.27, p=2.53x10-8). 

Chronic kidney disease PRS was significantly associated with renal failure (best parameter for 

EUR ⍴=0.01, OR=1.2, p=2.60x10-6, best parameter for AFR ⍴=0.001, OR=1.1, p=0.024). 

 

 

Figure 1. Association of PRS with primary phenotype for EUR and AFR ancestry. Square 

denotes p<0.05. 

 

Performance of PRS in EUR vs. AFR ancestry 
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We selected the parameter that produced the strongest associated candidate PRS for each 

PRS-phenotype grouping within each ancestry for further analysis. In all cases, PRS performance 

was best in European ancestry individuals. The distribution of PRS in cases and controls in both 

populations is illustrated in Figure 2. In European ancestry, the mean distribution of PRS in cases 

is consistently higher than controls. In African ancestry individuals this difference is much 

smaller, with substantial overlap between the PRS distribution in cases and controls. This is 

reflected in the comparison between the AUC for the full model and the AUC for covariates 

alone (Supplemental Table 3). Although the AUC in the full model is high in both ancestries 

(0.57-0.84), showing ability to distinguish between cases and controls, in AFR the full model 

offers little improvement over the model based on covariates alone (average improvement in 

AUC for best PRS=0.007). In contrast, in EUR the covariate model is improved when the PRS is 

added (average improvement in AUC for best PRS=0.032).  Further, to evaluate the significance 

of variables in the full model (PRS and covariates), we performed a step-wise regression. In 

AFR, we identified that PRS was not selected in the best model in CAD but was selected in other 

phenotypes. CAD step-wide regression model further support our argument that PRS derived 

from EUR GWAS studies might not add any risk prediction in AFR individuals (Supplementary 

Table 4).  

   

 

Figure 2. Density plot of polygenic risk scores in cases (red) and controls (blue) in both 

European and African ancestry individuals. 
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Correlation of PRS 

 

We next tested for correlations between the polygenic risk scores for the six selected 

diseases in each ancestry (Figure 3, Supplemental Table 5). In European ancestry individuals, we 

identified significant positive correlations between CKD/T2D, CKD/BMI, CAD/BMI, 

CAD/Hypertension, CAD/MI, MI/BMI, MI/Hypertension, Hypertension/T2D, 

Hypertension/BMI, and BMI/T2D. CKD PRS was also negatively correlated with PRS for MI 

and CAD. In African ancestry individuals, we identified significant positive correlations between 

CKD/BMI, CAD/T2D, CAD/BMI, CAD/Hypertension, CAD/MI, MI/T2D, MI/BMI, 

MI/Hypertension, Hypertension/T2D, Hypertension/BMI, and BMI/T2D. Overall, the 

correlations identified in PRS in African ancestry individuals were weaker than those identified 

in PRS in European ancestry individuals. 
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Figure 3. Correlation between polygenic risk scores for six diseases in European and African 

ancestry individuals. The size of the circle denotes the size of the correlation. The color denotes 

the direction of correlation (red=positive, blue=negative). White circles denote a non-significant 

association. Correlation of European PRS are shown in the upper left, correlation of African PRS 

are shown in the lower right. 

 

Association of PRS with disease burden in cases 

 

Using linear regression in cases only, we tested whether increased PRS is associated with 

increased burden of cardio-renal-metabolic disease. All PRS, except for CKD PRS, were 

significantly associated with increased disease burden in both European and African ancestry 

individuals (Table 5). In Europeans, BMI PRS was the strongest association with occurrence of 

S 

th 
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multiple diseases (beta=0.14, p=6.6x10-19), in contrast to in African ancestry individuals, where 

the association remained significant but was reduced in effect size (beta=0.05, p=0.02). In 

African ancestry individuals, MI PRS was the strongest association with increased disease 

burden (beta=0.09, p=8.3x10-7). 

 

Table 5. Association of PRS with the burden of disease in European and African ancestry 

individuals. 

PRS EUR AFR 

Beta SE P Beta SE P 

T2D 0.117 0.017 5.47x10-12 0.090 0.020 7.18x10-6 

BMI 0.135 0.015 6.56x10-19 0.046 0.020 0.020 

Hypertension 0.112 0.015 2.40x10-14 0.037 0.019 0.048 

MI 0.115 0.015 3.85x10-15 0.093 0.019 8.28x10-7 

CAD 0.131 0.015 6.31x10-18 0.092 0.019 1.10x10-6 

CKD 0.027 0.019 0.146 0.020 0.019 0.300 

 

PheWAS of polygenic risk scores reveals secondary associations 

 

We performed a PheWAS of each PRS in both European and African ancestry 

individuals to identify secondary phenotypes associated with genetic risk (Figure 4, 

Supplemental Tables 6-11). In all PRS, associations with secondary phenotypes in AFR 

individuals were reduced. All PRS except CKD PRS were associated with secondary 

phenotypes. T2D PRS was associated with hypertension (OR=1.13, p=9.4x10-6) in EUR, and 

with Type 1 diabetes (OR=1.45, p=4.8x10-6) in AFR. BMI PRS was associated with multiple 

circulatory system phenotypes in EUR, including hypertension (OR=1.17, p=1.4x10-9), heart 

failure (OR=1.13, p=1.1x10-6), and coronary atherosclerosis (OR=1.12, p=5.3x10-6). BMI PRS 

was also associated with type 2 diabetes (OR=1.23, p=1.2x10-14), renal failure (OR=1.13, 
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p=3.1x10-6), osteoporosis (OR=0.81, p=5.3x10-5), and sleep apnea (OR=1.26, p=4.3x10-15) in 

EUR. In AFR, the only additional phenotypes associated with BMI PRS were sleep apnea 

(OR=1.20, p=1.1x10-6) and use of an insulin pump (OR=1.28, p=8.6x10-6). Hypertension PRS 

was associated with circulatory system phenotypes in EUR, as well as type 2 diabetes (OR=1.29, 

p=6.8x10-23), disorders of lipoid metabolism (OR=1.16, p=2.6x10-10), renal failure (OR=1.13, 

p=3.2x10-6), and sleep apnea (OR=1.15, p=3.7x10-7). In AFR, hypertension PRS was not 

significantly associated with additional phenotypes. MI PRS was associated with hyperlipidemia 

(OR=1.22, p=1.8x10-16), hypertensive chronic kidney disease (OR=1.26, p=5.2x10-9) and type 2 

diabetes (OR=1.12, p=9.4x10-6) in EUR, but no additional phenotypes in AFR. CAD PRS is 

associated with hyperlipidemia (OR=1.29, p=3.1x10-24), hypertensive chronic kidney disease 

(OR=1.28, p=1.4x10-9), hypertension (OR=1.16, p=6.3x10-9), type 2 diabetes (OR=1.14, 

p=9.6x10-7), and disorders of eye (OR=0.77, p=8.1x10-5) in EUR. In AFR, CAD PRS is 

associated with eye inflammation (OR=0.76, p=6.6x10-5). 
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Figure 4. Secondary associations of polygenic risk for T2D, BMI, Hypertension, MI, CAD and 

CKD in EUR (top panels) and AFR (bottom panels) individuals. 
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Discussion 

 

We generated six polygenic risk scores representing genetic liability for cardio-renal-

metabolic diseases, and investigated their performance in both European and African ancestry 

individuals in the Penn Medicine BioBank (PMBB), a biobank linked with electronic health 

records. For all phenotypes tested, we identified a significant association between the PRS and 

the primary phenotype in both ancestry groups. However, the ability of the PRS to discriminate 

between cases and controls varied among phenotypes. Furthermore, none of the PRS in AFR 

were sufficient to stratify individuals according to risk.  

 

In European ancestry individuals, the PRS with the largest effect size was myocardial 

infarction, followed by coronary artery disease. The two GWAS that were used to generate these 

PRS also had the largest number of cases, and the PMBB dataset also contained a large number 

of cases for both of these diseases. However, the CKD PRS was the weakest performer in terms 

of effect size, despite it being based on the next largest GWAS and the PMBB containing a large 

number of individuals with renal failure. Therefore, while case number in both the GWAS and 

the target sample are clearly important, we believe that other factors such as disease 

heterogeneity, prevalence, penetrance, and non-additive effects among others must also play a 

role in the ability of PRS to associate with disease. 

 

We conducted a number of analyses to explore secondary phenotypes associated with 

each PRS. First, we show that the PRS generated for the six diseases are correlated with each 

other, a finding supported by prior studies showing genetic correlations between CaReMe 

conditions4. We next show that increased PRS is associated with increased burden of disease, 

suggesting that a higher PRS burden may contribute in a non-discriminating fashion to disease 

outcome. Finally, we perform PheWAS analysis to identify secondary phenotypes associated 

with genetic liability for CaReMe diseases. Many of the secondary phenotypes identified could 

be attributed to the broader effects of disease risk factors and known comorbidities. For instance, 

risk for Type 2 diabetes was associated with hypertension, a known commonly co-occurring 

trait25. The BMI PRS was associated with sleep apnea, diabetes, hypertension and osteoporosis; 

all traits known to increase in individuals with higher BMI26–29. The extent to which these 
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secondary phenotypes reflect causal associations between genetic risk and disease is unclear due 

to the commonality of co-morbidity of these traits.  

 

Our findings highlight a major issue in the future implementation of PRS in clinical care. 

While GWAS conducted in EUR populations can be used to generate PRS that are associated 

with phenotype in AFR individuals, the scores generated are not sufficient to differentiate 

between cases and controls in a predictive model. This was an expected finding, and has been 

discussed widely in recent years as being a critical source of disparity in genetic research14,16. 

Due to differences in linkage disequilibrium patterns, effect sizes, and causal variants 

themselves, conducting GWAS in populations that are reflective of the patient population are 

necessary and will need to be prioritized in the coming years.  

 

Finally, while there is much excitement and enthusiasm about PRS for clinical care, there 

is still significant research to be conducted to determine its optimal implementation.  One of the 

most essential needs is to investigate how PRS can be incorporated alongside information 

commonly used to predict patients’ risk, such as family history, clinical comorbidities, and 

environmental/lifestyle factors.  Many chronic diseases have published clinical guidelines with 

risk reduction recommendations (for example CVD30). The ultimate clinical utility of PRS will 

come to fruition when we understand how to integrate PRS with these published guidelines.   

 

 

   

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/759381doi: bioRxiv preprint 

https://doi.org/10.1101/759381
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplemental Information 

 

Supplemental Table 1: Encounter Type (see excel file) 

 

Supplemental Table 2: Association of parameters of each PRS with their primary phenotype in 

EUR and AFR ancestry. 

Disease/PRS Parameter EUR AFR 

OR (95% CI) P-value OR (95% CI) P-value 

Type 2 diabetes/ 

Type 2 diabetes 
⍴=0.001 1.09 (1.04-1.15) 4.73x10-4 1.13 (1.06-1.21) 1.57x10-4 

⍴=0.003 1.1 (1.04-1.15) 2.33x10-4 1.19 (1.11-1.27) 2.85x10-7 

⍴=0.01 1.52 (1.43-1.61) 6.62x10-43 1.3 (1.21-1.39) 2.19x10-13 

⍴=0.03 1.48 (1.39-1.57) 2.76x10-34 1.26 (1.18-1.36) 1.94x10-10 

⍴=0.1 1.43 (1.34-1.52) 5.69x10-27 1.23 (1.14-1.32) 6.25x10-8 

⍴=0.3 1.4 (1.31-1.49) 1.37x10-23 1.2 (1.12-1.29) 1.30x10-6 

⍴=1 1.38 (1.3-1.48) 2.02x10-22 1.19 (1.11-1.28) 3.83x10-6 

Obesity/ 

BMI 
⍴=0.001 1.18 (1.11-1.24) 2.81x10-9 1.07 (1.01-1.13) 0.022 

⍴=0.003 1.17 (1.11-1.24) 5.22x10-9 1.04 (0.98-1.1) 0.222 

⍴=0.01 1.55 (1.47-1.64) 6.85x10-55 1.06 (1-1.12) 0.059 
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⍴=0.03 1.62 (1.53-1.71) 6.77x10-62 1.21 (1.14-1.29) 3.58x10-10 

⍴=0.1 1.65 (1.56-1.75) 2.95x10-64 1.22 (1.14-1.29) 5.55x10-10 

⍴=0.3 1.67 (1.57-1.77) 8.97x10-65 1.21 (1.14-1.29) 1.53x10-9 

⍴=1 1.66 (1.57-1.76) 2.76x10-63 1.21 (1.13-1.29) 5.17x10-9 

Hypertension/ 

Hypertension 
⍴=0.001 1.11 (1.06-1.16) 2.21x10-5 1.18 (1.1-1.27) 1.08x10-5 

⍴=0.003 1.09 (1.04-1.14) 6.03x10-4 1.17 (1.09-1.26) 3.45x10-5 

⍴=0.01 1.10 (1.05-1.16) 8.96x10-5 1.20 (1.11-1.29) 1.93x10-6 

⍴=0.03 1.13 (1.07-1.18) 1.27x10-6 1.26 (1.17-1.36) 7.27x10-10 

⍴=0.1 1.22 (1.16-1.28) 6.43x10-16 1.22 (1.13-1.31) 1.21x10-7 

⍴=0.3 1.32 (1.26-1.39) 2.85x10-29 1.27 (1.18-1.36) 4.31x10-10 

⍴=1 1.40 (1.33-1.47) 4.50x10-40 1.25 (1.16-1.35) 1.94x10-9 

Myocardial 

Infarction/ 

Myocardial 

Infarction 

⍴=0.001 1.64 (1.53-1.77) 2.22x10-41 1.23 (1.1-1.37) 1.39x10-4 

⍴=0.003 1.74 (1.62-1.88) 2.02x10-49 1.26 (1.13-1.4) 2.13x10-5 

⍴=0.01 1.78 (1.65-1.91) 3.74x10-51 1.27 (1.14-1.41) 9.88x10-6 

⍴=0.03 1.73 (1.6-1.86) 1.05x10-45 1.3 (1.17-1.45) 8.88x10-7 
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⍴=0.1 1.67 (1.55-1.8) 4.29x10-40 1.32 (1.18-1.47) 5.01x10-7 

⍴=0.3 1.63 (1.51-1.76) 7.15x10-37 1.32 (1.18-1.47) 7.38x10-7 

⍴=1 1.62 (1.5-1.74) 1.77x10-35 1.31 (1.18-1.46) 9.68x10-7 

Coronary 

atherosclerosis/ 

coronary artery 

disease 

⍴=0.001 1.52 (1.45-1.6) 1.44x10-60 1.17 (1.08-1.27) 2.59x10-4 

⍴=0.003 1.59 (1.51-1.68) 6.12x10-71 1.14 (1.05-1.24) 0.003 

⍴=0.01 1.66 (1.57-1.75) 1.54x10-77 1.27 (1.17-1.38) 2.87x10-8 

⍴=0.03 1.62 (1.54-1.72) 4.53x10-69 1.27 (1.17-1.38) 2.53x10-8 

⍴=0.1 1.57 (1.49-1.66) 8.72x10-59 1.25 (1.15-1.36) 1.89x10-7 

⍴=0.3 1.55 (1.46-1.63) 6.01x10-54 1.24 (1.14-1.34) 5.25x10-7 

⍴=1 1.53 (1.45-1.62) 1.04x10-51 1.23 (1.13-1.34) 9.05x10-7 

Renal failure/ 

chronic kidney 

disease 

⍴=0.001 1 (0.95-1.05) 0.935 1.08 (1.01-1.16) 0.024 

⍴=0.003 1.02 (0.97-1.07) 0.408 1.06 (0.99-1.13) 0.106 

⍴=0.01 1.16 (1.09-1.24) 2.60x10-6 1 (0.93-1.07) 0.908 

⍴=0.03 1.16 (1.08-1.24) 1.91x10-5 1.05 (0.97-1.14) 0.216 

⍴=0.1 1.14 (1.07-1.23) 1.48x10-4 1.05 (0.96-1.14) 0.285 
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⍴=0.3 1.13 (1.06-1.22) 3.99x10-4 1.04 (0.96-1.13) 0.356 

⍴=1 1.13 (1.05-1.21) 5.61x10-4 1.04 (0.95-1.13) 0.379 

  

Supplemental Table 3: AUC of parameters of each PRS with their primary phenotype in EUR 

and AFR ancestry. 

Disease/PRS Parameter EUR AFR 

AUC 

(full 

model) 

AUC 

(covariates 

only) 

AUC 

difference 

AUC (full 

model) 

AUC 

(covariates 

only) 

AUC 

difference 

Type 2 

diabetes/ 

Type 2 

diabetes 

⍴=0.001 0.5764 

0.5716 

0.0048 0.7046 

0.7018 

0.0028 

⍴=0.003 0.5769 0.0053 0.7067 0.0049 

⍴=0.01 0.6218 0.0502 0.7116 0.0098 

⍴=0.03 0.6133 0.0417 0.709 0.0072 

⍴=0.1 0.6063 0.0347 0.7071 0.0053 

⍴=0.3 0.6028 0.0312 0.706 0.0042 

⍴=1 0.6015 0.0299 0.7056 0.0038 

Obesity/ 

BMI 
⍴=0.001 0.6006 

0.5931 

0.0075 0.5976 

0.5949 

0.0027 

⍴=0.003 0.5991 0.006 0.5959 0.001 
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⍴=0.01 0.6453 0.0522 0.5981 0.0032 

⍴=0.03 0.6515 0.0584 0.6119 0.017 

⍴=0.1 0.6539 0.0608 0.6119 0.017 

⍴=0.3 0.6543 0.0612 0.611 0.0161 

⍴=1 0.6529 0.0598 0.6099 0.015 

Hypertension

/ 

Hypertension 

⍴=0.001 0.6979 

0.6962 

0.0017 0.8418 

0.8403 

0.0015 

⍴=0.003 0.6978 0.0016 0.8416 0.0013 

⍴=0.01 0.6978 0.0016 0.8421 0.0018 

⍴=0.03 0.698 0.0018 0.8434 0.0031 

⍴=0.1 0.7031 0.0069 0.8425 0.0022 

⍴=0.3 0.7096 0.0134 0.8435 0.0032 

⍴=1 0.7143 0.0181 0.8434 0.0031 

Myocardial 

Infarction/ 

Myocardial 

Infarction 

⍴=0.001 0.7686 

0.7407 

0.0279 0.8355 

0.8326 

0.0029 

⍴=0.003 0.7738 0.0331 0.8359 0.0033 

⍴=0.01 0.7753 0.0346 0.8361 0.0035 
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⍴=0.03 0.7721 0.0314 0.8369 0.0043 

⍴=0.1 0.7684 0.0277 0.8372 0.0046 

⍴=0.3 0.7662 0.0255 0.8371 0.0045 

⍴=1 0.7652 0.0245 0.8369 0.0043 

Coronary 

atherosclerosi

s/ 

coronary 

artery disease 

⍴=0.001 0.7756 

0.7576 

0.018 0.8425 

0.8412 

0.0013 

⍴=0.003 0.7793 0.0217 0.8424 0.0012 

⍴=0.01 0.7818 0.0242 0.8448 0.0036 

⍴=0.03 0.7794 0.0218 0.8448 0.0036 

⍴=0.1 0.7764 0.0188 0.8443 0.0031 

⍴=0.3 0.7749 0.0173 0.8441 0.0029 

⍴=1 0.7742 0.0166 0.8439 0.0027 

Renal failure/ 

chronic 

kidney 

disease 

⍴=0.001 0.6271 

0.6271 

0 0.7663 

0.7657 

0.0006 

⍴=0.003 0.6273 0.0002 0.766 0.0003 

⍴=0.01 0.6304 0.0033 0.7657 0 

⍴=0.03 0.6299 0.0028 0.766 0.0003 
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⍴=0.1 0.6294 0.0023 0.7659 0.0002 

⍴=0.3 0.6291 0.002 0.7658 0.0001 

⍴=1 0.629 0.0019 0.7658 0.0001 
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Supplemental Table 4: Step-wise regression for model selection. Using the step-wise regression 

we added each covariate to the null model and colored cells in the table below show covariates 

selected in best performing regression model. Best model was selected using akaike information 

criterion (AIC). 

  

 

Disease/PRS Race PRS AGE SEX PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Type 2 

diabetes/Type 2 

diabetes 

EUR 
         

 
   

AFR              

Obesity/BMI 
EUR              

AFR              

Hypertension/ EUR              
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Supplemental Table 5: Correlations between PRS. 

 

Disease 1 

 

Disease 2 

EUR AFR 

cor p cor p 

T2D BMI 0.216 <2.2x10-16 0.170 <2.2x10-16 

T2D Hypertension 0.049 7.39x10-7 0.057 2.40x10-5 

BMI Hypertension 0.143 <2.2x10-16 0.129 <2.2x10-16 

T2D MI 0.018 0.063 0.095 1.57x10-12 

BMI MI 0.044 9.36x10-6 0.110 4.44x10-16 

Hypertension AFR              

Myocardial 

Infarction/ 

Myocardial 

Infarction 

EUR              

AFR              

Coronary 

atherosclerosis/ 

coronary artery 

disease 

EUR              

AFR              

Renal failure/ 

chronic kidney 

disease 

EUR              

AFR              
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Hypertension MI 0.155 <2.2x10-16 0.135 <2.2x10-16 

T2D CAD -0.011 0.270 0.033 0.013 

BMI CAD 0.055 1.85x10-8 0.055 4.91x10-5 

Hypertension CAD 0.179 <2.2x10-16 0.136 <2.2x10-16 

MI CAD 0.880 <2.2x10-16 0.805 <2.2x10-16 

T2D CKD 0.315 <2.2x10-16 -0.003 0.829 

BMI CKD 0.157 <2.2x10-16 0.069 3.29x10-7 

Hypertension CKD -0.022 0.029 -0.006 0.656 

MI CKD -0.083 <2.2x10-16 -0.009 0.489 

CAD CKD -0.153 <2.2x10-16 -0.010 0.451 

 

Supplemental Table 6: PheWAS of T2D PRS (see excel file) 

Supplemental Table 7: PheWAS of BMI PRS (see excel file) 

Supplemental Table 8: PheWAS of Hypertension PRS (see excel file) 

Supplemental Table 9: PheWAS of MI PRS (see excel file) 

Supplemental Table 10: PheWAS of CAD PRS (see excel file) 

Supplemental Table 11: PheWAS of CKD PRS (see excel file) 
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