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Abstract

Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation
that safely modulates brain excitability and has therapeutic potential for many conditions.
Several studies have shown that anodal tDCS of the primary motor cortex (M1) facilitates motor
learning and plasticity, but there is little information about the underlying mechanisms. Using
magnetic resonance spectroscopy (MRS) it has been shown that tDCS can affect local levels of
y-aminobutyric acid (GABA) and Glx (a measure of glutamate and glutamine combined) in
adults, both of which are known to be associated with skill acquisition and plasticity; however
this has yet to be studied in children and adolescents. This study examined GABA and GIx in
response to conventional anodal tDCS (a-tDCS) and high definition tDCS (HD-tDCS) targeting
the M1 in a pediatric population. Twenty-four typically developing, right handed children ages
12—18 years participated in five consecutive days of tDCS intervention (sham, a-tDCS or HD-
tDCS) targeting the right M1 while training in a fine motor task (Purdue Pegboard Task) with
their left hand. Glutamate and GABA were measured before and after the protocol (at day 5 and
6 weeks) using conventional MRS and GABA-edited MRS in the sensorimotor cortices.
Glutamate measured in the left sensorimotor cortex was higher in the HD-tDCS group compared
to a-tDCS and sham at 6 weeks (p = 0.001). No changes in GABA were observed in either
sensorimotor cortex at any time. These results suggest that neither a-tDCS or HD-tDCS locally
affect GABA and glutamate in the developing brain and therefore it may demonstrate different

responses in adults.


https://doi.org/10.1101/759290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/759290; this version posted September 5, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Introduction

Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation
in which a weak electrical current is passed between two electrodes placed on the scalp. Using
various tDCS montages, cortical excitability can shift to a state of excitation (anodal tDCS) or
inhibitory (cathodal tDCS). Placing the anode electrode over M1 for instance typically increases
cortical excitability in M1 (1-3). Previous research suggests that changes in excitability outlasts
the stimulation session by up to 90 minutes (2,4). The prolonged and promising changes in both
cortical excitability and promising changes in behavioral outcomes combined with its simple
application and low cost makes tDCS an attractive as a possible therapeutic tool for a range of
clinical conditions (5). For example, tDCS has been suggested to improve symptoms and/or
assist in rehabilitation for many neurological disorders with minimal side effects (6), including
migraine (7), stroke (8), Parkinson’s disease (9), pain disorders (10) and neurodegenerative
disorders (11), as well as psychiatric disorders including depression (12).

High definition tDCS (HD-tDCS) is a newer, more focal form in tDCS that uses arrays of
smaller electrodes to improve stimulation localization (13). Most typically used is the 4 x 1
configuration where a central electrode, which determines montage polarity, is placed over the
target cortical region, and four outer electrodes (arranged as a ring), act as the reference
electrodes. The radii of the surrounding reference electrodes define the region undergoing
modulation (14). This configuration has been shown to modulate excitability in a smaller, more
specific region compared to conventional tDCS (14,15). In addition to a more focussed current,
its effects on patterns of cortical excitability in the M1 outlast those induced by conventional

tDCS, as quantified by motor evoked potentials in response to stimulation (16). Studies support
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its tolerability in both healthy subjects and patients at intensities up to 2 mA for up to 20 minutes
(15-17).

Few studies have investigated tDCS in children, despite its potential (18-21). tDCS
administered in a multiday paradigm to the M1 of healthy children while performing a motor
task demonstrated greater increases in motor skill compared to sham and improvements are
retained 6 weeks later (22,23). These findings suggest the potential utility of tDCS as a
therapeutic tool in children with motor impairments but the biological mechanisms behind these
effects remain unknown (24).

Adult studies using magnetic resonance spectroscopy (MRS) to measure regional brain
metabolites typically show a decrease in GABA (4,25,26) and an increase in GIx (glutamate and
glutamine in combination) (4,26,27) in the sensorimotor cortex following M1 anodal stimulation.
Both GABA, a major inhibitory neurotransmitter, and glutamate, a major excitatory
neurotransmitter, are mediators in long-term potentiation (28,29) and have been associated with
behavioral changes following anodal tDCS, quantified as changes in task performance (4,25,30).
However, it is unknown if these finding translate to a pediatric population and how long these
changes in metabolites persist.

Conventional MRS at 3T measures glutamate, though it is often reported as Glx,
representing the combination of glutamate and glutamine as their spectra are highly overlapped,
making it difficult to reliably resolve these two signals. GABA, on the other hand, is at low
concentration and its signal is overlapped by more abundant metabolites and therefore requires
editing for accurate measurement (31). GABA-edited MEGA-PRESS, selectively manipulates
the GABA signal at 3 ppm by applying an editing pulse to the coupled GABA signal at 1.9 ppm

in half of the averages (ON), which are interleaved with averages in which the editing pulse is
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applied elsewhere not coupled to GABA (OFF). The difference spectrum is acquired by
subtracting the ON from the OFF, which removes all peaks not affected by the 1.9 ppm editing

pulse (specifically the 3 ppm creatine peak), revealing the GABA signal at 3 ppm.

In this study, GABA-edited and conventional MRS were used to investigate changes in
GABA and GIx in response to anodal tDCS (a-tDCS) and anodal HD-tDCS in a pediatric
population. By observing metabolite changes in the targeted right sensorimotor cortex and the
contralateral left sensorimotor cortex, we aimed to gain insight into the metabolite changes
induced by tDCS both after stimulation has concluded and at 6 weeks follow up, with the overall
goal of better understanding the mechanism by which tDCS modulates motor learning in the
developing brain. Based on the adult literature, we expected GABA to decrease following tDCS
and at 6-weeks follow up we expect metabolites to return towards baseline with similar results

observed for both anodal and high definition tDCS groups.

Materials and Methods

This study was a component of the Accelerated Motor Learning in Pediatrics (AMPED)
study, a randomized, double-blind, single-center, sham-controlled intervention trial registered at

clinicaltrials.gov (NCT03193580) with ethics approval from the University of Calgary Research

Ethics Board (REB16-2474). Upon enrolment, participants and guardians provided written,
informed consent or assent and were screened to ensure they met safety criteria for non-invasive
brain stimulation and MRI scanning. Participants were blinded to the experimental group to
which they were assigned and only the investigator administering stimulation was aware of the

group until all data was collected. Group assignment was only revealed for data analysis after the
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study was completed. Additional details regarding the parent study design, recruitment and

primary motor learning outcomes can be found in Cole and Giuffre et al (23).

Experimental Design

Twenty-four typically developing right-handed participants ages 12 to 18 were recruited
through the Healthy Infants and Children Clinical Research (HICCUP) Database. The Edinburgh
Handedness Inventory was used to confirm right hand dominance with a laterality index > -28.
Participants were excluded for MRI contraindications, neuropsychiatric or developmental
disorder diagnoses, medications or pregnancy. All participants received a baseline MR scan and
motor assessments prior to tDCS. Participants were then computer randomized to a single tDCS
condition (n = 8 for each intervention group) with the anode targeting right M1: a-tDCS (ImA
conventional anodal tDCS), HD-tDCS (1mA high definition anodal tDCS) and sham tDCS.
Participants took part in a 5-day protocol in which they received stimulation each day whilst
training in the Purdue Pegboard Task (PPT) using their non-dominant left hand. After
stimulation had concluded on Day 5, they received a post-simulation MR scan and completed all
motor assessments. Participants returned 6 weeks ( + 1 week) later for a follow-up MR scan and

motor assessments. The experimental design for this study is shown in Fig 1a.

Fig 1. Layout of experimental procedure. a) On Day 1, spectroscopy measurements were
collected followed by the Purdue Pegboard Task. Participants then underwent five consecutive
days of right M1 targeted anodal tDCS paired with left hand motor training. Participants repeated
Day 1 assessments after intervention on Day 5 and at 6 week follow up. b) Anodal tDCS
electrode montages shown for a-tDCS (left) and HD-tDCS (right) intervention groups where the
anode is red, the cathode is blue and current flow is illustrated with black arrows. MRS,
magnetic resonance spectroscopy; PPT, Purdue pegboard task, tDCS, transcranial direct current
stimulation; HD-tDCS, high definition tDCS.

Transcranial Direct Current Stimulation
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Participants received 20 minutes of 1mA anodal tDCS in a montage dependent on the
assigned stimulation condition. tDCS was administered using a conventional 1 x 1 tDCS or a 4 x
1 HD-tDCS system (Soterix Medical Inc., New York, USA) (Fig 1b). For participants in the a-
tDCS or sham group, two 25 cm? saline-soaked sponge electrodes were held on the scalp using a
light plastic headband (SN APstrap, Soterix Medical Inc., New York, USA). The active (anodal)
electrode was centred on the right M1 (identified using robotic single pulse transcranial magnetic
stimulation; TMS) and the cathodal electrode was placed on the contralateral supraorbital notch.
The electrodes were connected to a 1 x 1 DC SMARTSscan Stimulator (Soterix). This montage
demonstrated in Fig 1b has been used extensively in tDCS studies for motor training in the non-

dominant left hand (4,22,23,25,32,33).

For the HD-tDCS group, a 10:20 EEG cap was used to center the anodal electrode on the
right M1, after identifying the location with single pulse TMS as above. The four cathodes were
placed ~5 cm away in a 4 x 1 configuration (Fig 1b) using a 4 x 1 HD-tDCS Adaptor and a

SMARTSscan Stimulator (Soterix) as described previously (15,34,35).

For the active stimulation conditions (a-tDCS and HD-tDCS), current was ramped up to 1
mA over 30 seconds and remained at ImA for 20 minutes. The current was then ramped back
down to 0 mA over 30 seconds. For the sham stimulation condition, current was ramped up to 1
mA over 30 seconds and then immediately ramped back down to 0 mA over 30 seconds. After
20 minutes, current was ramped up to 1 mA and then back down to 0 mA over 30 seconds. This

procedure is used to mimic the sensations associated with active stimulation and has been
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previously validated (36). During the 20 mins of stimulation (or sham) participants performed

the Purdue Pegboard Task with their left hand (PPTy) three every 5 minutes.

Motor Assessments

The motor assessment was the Purdue Pegboard Task (PPT) (37). This test uses a
rectangular board with two sets of 25 holes running vertically down the board and four concave
cups at the top of the board that contain small metal pegs. Subjects are asked to remove pegs
form the cups and place them in the holes one-at-a-time, as quickly as possible. This task
challenges hand dexterity and coordination. A score is given as the number of pegs successfully
placed in the holes in 30 seconds with the left hand (PPT}). Secondary assessments were the
performance of this task with the right hand (PPTg) or bimanually (PPT; ). Changes in score is

reported as APPT.

MRS Acquisition

Spectroscopy data was collected before the tDCS intervention (baseline), after 5 days of
tDCS paired with motor training, and at 6-weeks after tDCS in all 24 subjects on a 3T GE MRI
scanner equipped with a 32-channel head coil. Axial T1-weighted fast spoiled gradient recalled
echo (FSPGR) brain volume images (BRAVO) were acquired (TR = 7.4 ms, TE = 2.8 ms with 1
mm?3 voxels) for voxel placement and tissue segmentation. Metabolites were measured in 30 X
30 x 30 mm? voxels located on the right and left sensorimotor cortices. The sensorimotor cortex
was identified by Yousry’s hand-knob (38) and the voxel was rotated to align with the cortical
surface (Fig 2). GABA data were acquired using a MEGA-PRESS sequence with the following

parameters: TR/TE=1800/68 ms, 256 averages; 14 ms editing pulses applied at 1.9 ppm and 7.46
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ppm alternating every two averages, and 16 unsuppressed water scans. A conventional PRESS
sequence was used to acquire MRS data from which glutamate (as Glx) was quantified with the
following parameters: TR/TE=1800/35 ms, 64 averages and 8 unsuppressed water scans. In order
to perform symmetrical assessment of the left and right sensorimotor cortices, the water-fat shift
directions were mirrored for the sensorimotor voxels for both the GABA-edited MRS and the

PRESS acquisitions.

Fig 2. Voxel Placement and Data Quality. Example of voxel placement in the sensorimotor cortex
on a participant T1-weighted image. b) MEGA-PRESS spectra acquired in each location. The black
line depicts the average fit line and the grey area shows +1 standard deviation in the right and left
sensorimotor cortex.

MRS data analysis

GABA data were analyzed using GANNET 3.0 (39) software in MATLAB R2014a (The
Mathworks, Natick, MA, USA), including retrospective frequency and phase correction and
correction for voxel tissue content, assuming grey matter contains twice as much GABA as white
matter (i.e., o = 0.5 as per literature) (40). In this experiment, we assumed sensorimotor voxels
were composed of 40% grey matter and 60% white matter in the GABA tissue correction (41).
Conventional PRESS data was corrected for frequency and phase drift using the FID-A toolkit
(42) and then analyzed using LCModel (43) with basis sets developed from LCModel.
Metabolite levels from LCModel were tissue-corrected using the Gasparovic approach (44) and
the CSF voxel fraction, accounting for the negligible metabolites present in CSF. As a

confirmatory analysis, metabolite levels referenced to creatine were also examined.
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Statistical Analysis

All statistical analyses were performed using SPSS Statistics 25 (IBM, Armonk, NY,
USA). Demographic data of the three groups (a-tDCS, HD-tDCS and sham) were compared with
an ANOVA model and Chi-squared for sex data. Changes in GABA and glutamate between
tDCS conditions and over time were assessed using a linear mixed model analysis with fixed
effects for intervention and experimental day, the interaction of intervention and experimental
day, and covariates for age and sex for each voxel. Post-hoc pair-wise analyses with Bonferroni
correction for multiple comparisons were performed to specifically examine effects of

intervention and experimental day.

Partial correlations controlling for intervention were used to examine the relationship
between changes in metabolites and changes in motor assessment performance before and after
stimulation, and 6 weeks after stimulation had concluded. Initially these correlations were pooled

across all groups and follow-up analyses were performed in each group as appropriate.

Results

Population Characteristics

Twenty-four typically developing children (mean 15.5 + 1.7 years, 13 females and 11
males) completed all phases of the study with no drop outs. Due to technical difficulties, one
participant did not have GABA or Glx data available in both sensorimotor cortices in the post
intervention timepoint. Population demographics are shown in Table 1. Age, sex and laterality

index did not differ significantly between groups (p > 0.3 for all parameters).
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SHAM A-TDCS HD-TDCS MEAN BETWEEN
(+ SD) (+ SD) (= SD) (£ SD) GROUPS
AGE 15.81 15.94 14.77 15.51 p=10.324
(£ 1.3) (x L.5) (x 2.0 (£ 1.7)
LATERALITY 81.9 82.5 81.3 81.9 p=0.879
INDEX (£ 22.8) (£ 13.1) (+ 14.7) (£ 16.6)
SEX (F:M) 6:2 3:5 4:4 13:11 p=0.309

Table 1. Mean participant demographics + 1 standard deviation for all stimulation intervention
groups. No significant difference between groups was identified.

Data Quality

The GABA-edited spectra from the right and left sensorimotor cortices from all time
points are show in Fig 2b; the grey shows a single standard deviation range across all data and
the black line is the average of all data. All data, both GABA-edited and conventional PRESS,
were assessed for quality by visual inspection as well as a CRLB threshold of 20%. One PRESS
dataset was excluded due to poor data quality, the remaining spectra were of high quality with a
mean SNR of 41.4 + 6.3, all FWHM water <15 Hz, mean FWHM water 6.01 + 1.92 Hz.
MEGA-PRESS GABA data was also of high quality across all data sets: all fit errors < 10%,
mean fit error 4.59 + 1.21, all FWHM Cr <10%, mean FWHM Cr: 9.57 + 0.92 Hz. Generally,

spectra with fit errors below 12% are deemed to be of sufficient quality (39).

GIx and GABA Group Changes

Linear mixed model analyses showed a significant fixed effect of tDCS intervention over
time on GIx levels in the left sensorimotor cortex (p = 0.010). Post-hoc Bonferroni corrected
pairwise analyses showed at the 6 week follow up, Glx was significantly higher in the HD-tDCS

group compared to the sham group (p = 0.001; Fig 3). In the HD-tDCS group, GIx in the left
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sensorimotor cortex increased between post-intervention and the 6 week follow up time points (p
= (0.042), however, this did not withstand correction for multiple comparisons (Fig 3). No
significant fixed effect of tDCS intervention over time for Glx was detected in the right
sensorimotor cortex (p = 0.221). No significant fixed effect was observed in either sensorimotor
cortex (left: p = 0.248; right: p = 0.724) for GABA. Metabolite data referenced to creatine
showed the same results. No significant metabolite change difference were detected between that

a-tDCS and sham groups in both left and right sensorimotor cortices.

Fig 3. Metabolite Changes Over Time. Changes in metabolite levels for all intervention groups (sham in
black, tDCS in red and HD-tDCS in blue) over the duration of the experiment given as a percentage change
from baseline values (mean + 1 SD). * p > 0.05, those in bold withstand Bonferroni correction for multiple
comparisons while those that are transparent lose significance following multiple comparisons correction.

Relationship between metabolite changes and motor performance

Partial correlation analysis comparing changes in GABA and Glx, pooled across the three
intervention groups, showed a significant positive relationship between the change in left
sensorimotor GABA (%GABA) and change in PPT| score (APPTy ) (r=0.538, p =0.018; Fig
4d), participants with a greater positive change in GABA showed a greater improvement in PPT.
Post-hoc assessments by intervention groups showed this relationship was maintained in the

anodal tDCS group only (r = 0.864, p = 0.006; Fig 4d).

Fig 4. Relationship between changes in metabolite concentration and motor performance.
Correlationn between change in metabolite concentration (% Glx and %GABA) and change in
Purdue Pegboard Task post intervention (APPTL) controlling for intervention group and age.
Left sensorimotor cortex GABA is significantly correlated with PPTL for the pooled
intervention groups (grey line). This relationship is also observed in the anodal tDCS
intervention group (red).
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No significant relationship was observed between APPT| and changes in GABA in the
right sensorimotor cortex (r = -0.065, p = 0.784; Fig 4c). Additionally, no significant relationship
was seen between changes in PPT score and changes in Glx in the right (Fig 4a) or left (Fig 4b)

sensorimotor cortex (p > 0.05).

Discussion

Several adult studies have shown that single (43,44) or multiple session (30,45) tDCS
paired with training in a motor task is associated with improvements in said task and
improvements in performance are greater than motor training alone (i.e., sham-tDCS). The same
is observed in pediatric studies (22,23), however results may differ slightly in terms of the phase
of learning affected by stimulation. Results in children suggest that tDCS facilitates online
learning (22) while in adults evidence suggests tDCS enhances learning primarily through offline
effects (30). GABA and glutamate are involved in learning (24,28,46) and have both been
observed to change in response to anodal tDCS in adults (4,24-26,46,47). This study examined
changes in GABA and Glx in response to right M1 anodal tDCS and HD-tDCS in a pediatric
population. Metabolites were measured at baseline, after a 5-day tDCS and motor learning

intervention (post-intervention) and at 6 weeks follow-up.

To our knowledge, this is the first investigation of metabolite changes in response to
tDCS in a typically developing pediatric population. Additionally, this is the first-time
metabolites have been measured in a control population after a multiday protocol with a follow-
up assessment. Previous studies in adults have illustrated that GABA decreases (33,46) and

glutamate increases (47), with skill acquisition and improved function in the region responsible
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for the skill execution, the M1. It has been suggested that tDCS facilitates changes in GABA and
glutamate to augment learning. Studies conducted in adults have shown anodal tDCS increases
sensorimotor glutamate (4,26,27) and decreases GABA (4,25,26,48); however, others have failed
to replicate these findings. Similarly, we did not see decreased GABA and increased Glx at the
site of stimulation, though we did see contralateral changes. Our results potentially indicate the

developing brain responds differently to tDCS compared to the adult brain.

Post-Intervention Changes in GABA and Glx

Following five days of tDCS and motor training there were no significant changes in
metabolite levels in either the right or left sensorimotor cortex, though trends toward decreased
left sensorimotor GABA (contralateral to the tDCS target) in the a-tDCS group were seen. Adult
literature using healthy controls suggests acute decrease in GABA local to the tDCS target
(4,25,26,48). Similarly, participants with a neurodegenerative condition who followed a protocol
of 15 a-tDCS sessions also showed decreased GABA in the tissue targeted with a-tDCS (11).
Given the contrast of our results and those in the literature, we suggest that the pediatric brain

responds differently to tDCS.

In healthy adults, GABA and glutamate in the motor cortex work together to maintain an
excitation-inhibition balance that is crucial for plasticity (49). It has been suggested that this
balance of GABA and glutamate can be shifted to a relative optimum level that is thought to
mediate behavioral outcomes (50). It is possible that in the developing brain, this
excitation/inhibition balance is more dynamic while in the adult brain it is relatively static. When

an external stimulus is introduced, like tDCS or a foreign motor task, the adult brain shows a
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shift to facilitate plasticity while the pediatric brain was already in its “plastic state”. There is
also evidence describing the pediatric brain as being hyperexcitable (19) which may suggest it
has a lower concentration of GABA (51,52), and therefore less dynamic range to reduce GABA
compared to the adult brain where increased GABAergic inhibition is necessary to refine already

acquired skills.

Secondly, transcallosal inhibitory processes (53) may have a more pronounced effect in
the pediatric brain. Here we show trends towards decreased GABA in the left sensorimotor
cortex, contralateral to the site of stimulation, as opposed to changes in the site of stimulation
(right cortex). This suggests lateralization of motor learning in the left dominant cortex as
previously described by Schambra et al (54). The impact of transcallosal inhibition is also seen in
pediatric studies applying tDCS contralateral to stroke lesions in an effort to augment motor
learning of the affected hemisphere (55,56). According to pediatric models of anodal tDCS, the
current appears to travel through the motor fibers of the corpus callosum into the contralateral
hemisphere (56). However, the same mechanism is not expected to be true for HD-tDCS which

has a more focal current.

Finally, as mentioned above, tDCS may act on different phases of learning in children
compared to adults, therefore the paradigm in which we expect GABA and glutamate changes to
appear shortly after stimulation is not the appropriate time window to detect changes. Similarly,
it is possible that the metabolic response to stimulation changes with applications over
consecutive days. In this study, we suspect participants may have transitioned into a phase of

learning that requires less plasticity and the cortex is no longer responding to tDCS with the
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predicted GABA and GIx changes at five days when our measures were taken. Adult literature
suggests the changes in GABA and glutamate measured by MRS in response to learning vary
with time (46,57) and it is possible that a ceiling of PPT skill, and also of metabolite change, was

reached before our MRS measurements were taken.

Although no significant changes in GABA concentration were detected between MRS
measurements, this does not conclusively rule out GABAergic changes in response to motor
learning. It is possible that subtle biphasic changes in GABA are taking place during motor
learning that we are unable to detect. While this cannot be confirmed in our investigation, there
is literature suggesting changes in GABA concentration are time sensitive with fluctuation in
GABA concentration occurring in the 90 minute window following stimulation (4,46,57). The
time sensitivity of metabolite measurements is further supported by seemingly discrepant

findings in the literature in which GABA and GlIx changes are not seen during tDCS (58-60).

Changes in GIx in response to stimulation in the literature are inconsistent. Clark et al.
reports GIx increases after anodal tDCS and suggest that tDCS may involve the NMDA pathway
(27). Stagg et al. also reports changes in GIx in response to cathodal tDCS (4). They propose
MRS measures of Glx lack sensitivity to consistently detect Glx changes following tDCS (4,25).
Several other studies report an absence of significant changes in Glx in response to a-tDCS with

little speculation as to why (4,26,58,59,61).

6 Week Follow Up in GABA and Glx
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At 6 weeks follow up, it was expected that metabolites would return to baseline to
maintain homeostatic balance in the brain after the initial phases of skill acquisition had
concluded, while retaining motor skill improvements. However, we observed a significant
increase in the left sensorimotor Glx at 6 weeks follow up in the HD-tDCS group compared to
the sham group (p = 0.001) and compared to HD-tDCS baseline level. We also see a trend of
increased Glx in the HD-tDCS group between post intervention and 6-week follow up in the left
sensorimotor cortex (23). This suggests that in the hemisphere contralateral to stimulation, HD-
tDCS has a longer-term modulation of glutamatergic pathways. When examined in conjunction
with the secondary motor data collected, the change in left sensorimotor Glx in the HD-tDCS
group is accompanied by an improvement in the right hand PPT at 6 weeks follow up. These
results can be explained by the motor overflow mechanism. Motor overflow is a phenomena that
typically disappears in late childhood and describes unintentional movement that mirror
voluntary movements typically in homologous muscle on the opposite side of the body (62).
Similarly, the decrease in GABA in the left sensorimotor cortex in the a-tDCS group persisted.
Persistent decreases in GABA several weeks after tDCS intervention have been seen in primary
progressive aphasia (11); though those changes were seen at the site of stimulation. Several
studies have shown improvement in motor learning in the contralateral hand following tDCS of
either the right or left M1 (63—65). The “callosal access” hypothesis dictates that performance
can be facilitated in the untrained limb due to motor engrams developed in the dominant
hemisphere. These engrams underlie performance of the trained hand located in homologous

regions that the opposite motor cortex can access via the corpus callosum (55,66,67).
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Relationship Between Changes in Metabolites and Changes in Motor

Performance

We found a significant, positive relationship between change in left sensorimotor GABA
(cortex contralateral to stimulation) and improvement in the task performance by the left hand
post tDCS intervention and training, further supporting the above mentioned callosal hypothesis.
Those participants who experience a greater positive change in GABA concentration in the
hemisphere contralateral to stimulation (left motor cortex) present a greater improvement in PPT
score over the 5-day stimulation and training period. This relationship is specifically seen in the
a-tDCS group only, suggesting that anodal stimulation induces a contralateral inhibition that
does not occur with HD-tDCS or in normal (sham group) learning, driving an enhanced

improvement in PPT score.

No relationship between changes in Glx and task performance post-intervention nor
between GABA or Glx and change in PPT score 6 weeks after stimulation and training was
observed. These results are in accordance with adult studies that report no significant relationship
between change in motor skill and concentration of Glx in the motor cortex contralateral to the
hand executing the task (33). However, adult studies have reported a relationship between task
improvement and GABA changes in the tDCS targeted cortex (i.e. right sensorimotor GABA
changes and left hand training and task performance) (25,33). This dissimilarity suggests that
neurochemistry in the pediatric and adult brain respond in different ways during motor learning,

warranting further investigation.
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Conclusions

Non-invasive stimulation is an expanding area of research with investigations into the use
of modalities similar to tDCS being investigated as a therapy for a range of disorders including
migraine, pain and stroke (6,7,9,11,12,18,67). While these studies have suggested that non-
invasive brain stimulation can improve outcomes, there is little analysis into the underlying
physiological changes behind these responses are not well understood, particularly in the
developing brain. This study aimed to shed light on the metabolite changes induced by M1

anodal tDCS in conjunction with a motor training paradigm.

We investigated changes, in GABA and glutamate concentrations following 5
consecutive days tDCS comparing conventional anodal tDCS, HD-tDCS and sham.
Unexpectedly, Transcranial direct current stimulation (tDCS) produces localized and specific
alterations in neurochemistry: A 1H magnetic resonance spectroscopy study significant changes
in metabolites at the site of stimulation post 5-day tDCS intervention or 6 weeks after the
intervention. It is possible that changes in metabolites occur immediately after stimulation and
learning and this effect is diminished over the 5 days stimulation as skill level improves.
However, we suggest the pediatric brain responds differently to tDCS compared to adults. In
particular, we suggest contralateral modulation of learning and metabolites has a greater role in
the pediatric brain, highlighting the need for further study of the effects of non-invasive
stimulation on the pediatric brain specifically. Furthermore, we also show the response to HD-
tDCS is different compared to a-tDCS based on the observation of increased glutamate in the left
sensorimotor cortex 6 weeks after stimulation specifically in response to HD-tDCS. Further

investigation into the effects of HD-tDCS is needed to determine its efficacy on motor learning.
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