

1 **CONDITIONAL KCa3.1-TRANSGENE INDUCTION IN MURINE SKIN**
2 **PRODUCES PRURITIC ECZEMATOUS DERMATITIS WITH SEVERE**
3 **EPIDERMAL HYPERPLASIA AND HYPERKERATOSIS**

4

5 **Short title: *KCa3.1 and skin disease***

6

7 Javier Lozano-Gerona¹, Aida Oliván-Viguera², Pablo Delgado-Wicke³, Vikrant
8 Singh⁴, Brandon M. Brown⁴, Elena Tapia-Casellas⁵, Esther Pueyo², Marta Sofía
9 Valero⁶, Ángel-Luis García-Otín¹, Pilar Giraldo⁷, Edgar Abarca-Lachen⁸, Joaquín C.
10 Surra⁹, Jesús Osada¹⁰, Kirk L. Hamilton¹¹, Siba P. Raychaudhuri¹², Miguel Marigil¹³,
11 Ángeles Juarranz^{3,14}, Heike Wulff⁴, Hiroto Miura¹⁵, Yolanda Gilaberte¹⁶, Ralf
12 Köhler^{1,17}.

13

14 1. Instituto Aragonés de Ciencias de la Salud (IACS) y Instituto de Investigación
15 Sanitaria (IIS) Aragón, 50009-Zaragoza, Spain.
16 2. Biosignal Interpretation and Computational Simulation (BSICoS), Aragón
17 Institute of Engineering Research (I3A), Univ. of Zaragoza, 50018-Zaragoza, Spain.
18 3. Departamento de Biología, Facultad de Ciencias, UAM, 28049-Madrid, Spain.
19 4. Dept. of Pharmacology, University of California, Davis, CA 95616; USA.
20 5. Scientific and Technical Service, Aragónese Center for Biomedical Research,
21 Univ. of Zaragoza, 50009 Zaragoza, Spain.
22 6. Dept. of Pharmacology and Physiology, Univ. of Zaragoza, 22002-Huesca, Spain.
23 7. Spanish Foundation for the Study and Treatment of Gaucher Disease and other
24 Lysosomal Disorders (FEETEG), 50008-Zaragoza, Spain.
25 8. Universidad San Jorge, Faculty of Health Sciences, 50830-Villanueva de Gállego,
26 Spain.
27 9. Departamento de Producción Animal y Ciencia de los Alimentos, CIBER-obn,
28 Univ. of Zaragoza, 50009-Zaragoza, Spain.

29 10. Departamento Bioquímica y Biología Molecular y Celular (CIBEROBN),
30 Facultad de Veterinaria, Univ. of Zaragoza, 50009-Zaragoza, Spain.
31 11. Dept. of Physiology, School of Biomedical Sciences, Univ. of Otago,
32 9016-Dunedin, New Zealand.
33 12. Department of Medicine and Dermatology, School of Medicine UC Davis and VA
34 Sacramento Medical Center University of California, 95655-Mather, USA
35 13. Dept. of Pathology, Hospital San Jorge, 22004-Huesca, Spain.
36 14. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034-Madrid,
37 Spain;
38 15. Dept. of Physiology and Cell Biology, University of Nevada School of Medicine,
39 Reno, NV 89557, USA.
40 16. Dept. of Dermatology, Univ. Hospital Miguel Servet, IIS Aragón, 50009-
41 Zaragoza, Spain.
42 17. Aragón Agency for Research and Development (ARAID), 50009-Zaragoza, Spain
43 Spain.
44

45 **Corresponding author:** Ralf Köhler, PhD, Unit for translational Research, ORCID
46 ID 0000-0001-9563-2913. University Hospital Miguel Servet, 50009, Zaragoza,
47 Spain. Phone: +34+34 630 306 356 145 372. E-mail: kohler@araid.es

48

49 **Funding sources:**

50 This work was supported by the Government of Aragón (DGA-METIC–consortium;
51 B04_17R), FP7-PEOPLE-MC-CIG to RK, FIS-CB06/07/1036 to PG and RK, ERC-
52 2014-StG-638284, DPI2016-75458-R, T39_17R to EP; FIS-PI16/02112 to ALGO;
53 NHLBI-R01-HL080173, NCRR-P20-RR018751 to HM. JLG received a DGA-PhD
54 scholarship (C072/2014). BMB was supported by the NCATS (UL1 TR001860 and
55 linked award TL1 TR001861). KLH received sabbatical support from the University
56 of Otago.

57

58 **Abbreviations:** CASP3, Caspase-3; DOX, Doxycycline; KCa3.1, intermediate-
59 conductance calcium-activated potassium channel; PCNA, proliferating cell nuclear
60 antigen.

61

62

63 **Authors contributions:**

64 ***Conceptualization:*** RK, HM, YG. Ideas; formulation or evolution of overarching
65 research goals and aims.

66 ***Data Curation:*** RK

67 ***Formal Analysis:*** RK, JLG, Application of statistical, mathematical, computational,
68 or other formal techniques to analyze or synthesize study data.

69 ***Funding Acquisition:*** RK, HM, EP, ALGO, HW, PG, Acquisition of the financial
70 support for the project leading to this publication.

71 ***Investigation:*** RK, HM, JLG, HW, ALGO, VS, BMB, PDW, KLH, AOV, MSV, AJ,
72 ETC, YG, EAL, SPR, MM. Conducting a research and investigation process,
73 specifically performing the experiments, or data/evidence collection.

74 ***Methodology:*** RK, HM, HW, JLG, JO, JCS, EP, AOV, ETC, SPR, PDW, AJ, MSV,
75 MM, Development or design of methodology; creation of models.

76 ***Project Administration:*** RK Management and coordination responsibility for the
77 research activity planning and execution.

78 ***Resources:*** RK, HM, JO, JCS, ALGO, EP, ETC, MSV, EAL, AJ, HW, PG, YG, MM,
79 Provision of study materials, reagents, materials, patients, laboratory samples,
80 animals, instrumentation, computing resources, or other analysis tools.

81 ***Supervision:*** RK Oversight and leadership responsibility for the research activity
82 planning and execution, including mentorship external to the core team.

83 ***Validation:*** RK Verification, whether as a part of the activity or separate, of the
84 overall replication/reproducibility of results/experiments and other research outputs.

85 ***Visualization:*** RK, JLG, KLH, ETC, PDW, AJ, SPR, MM, Preparation, creation
86 and/or presentation of the published work, specifically visualization/data
87 presentation.

88 ***Writing - Original Draft Preparation:*** RK, JLG, KHL, HW, HM, Creation and/or
89 presentation of the published work, specifically writing the initial draft (including
90 substantive translation).

91 ***Writing - Review and Editing:*** RK, HM, HW, JO, KLH, EP, JCS, ALGO, YG, EAL,
92 AJ, PDW, PG, MSV, SPR, AOV, JLG, BMB, VS, ETC, MM, Preparation, creation
93 and/or presentation of the published work by those from the original research group,
94 specifically critical review, commentary or revision - including pre- or post-
95 publication stages.

96

97

98 **ABSTRACT**

99

100 Ion channels have recently attracted attention as potential mediators of skin disease.
101 Here, we explored the consequences of genetically encoded induction of the cell
102 volume-regulating Ca^{2+} -activated KCa3.1 channel (*Kcnn4*) for murine epidermal
103 homeostasis. Doxycycline-treated mice harboring the KCa3.1+-transgene under the
104 control of the reverse tetracycline-sensitive transactivator (rtTA) showed 800-fold
105 channel overexpression above basal levels in the skin and solid KCa3.1-currents in
106 keratinocytes. This overexpression resulted in epidermal spongiosis, progressive
107 epidermal hyperplasia and hyperkeratosis, itch and ulcers. The condition was
108 accompanied by production of the pro-proliferative and pro-inflammatory cytokines,
109 IL- β 1 (60-fold), IL-23 (34-fold), IL-6 (33-fold), and TNF α (26-fold) in the skin.
110 Treatment of mice with the KCa3.1-selective blocker, Senicapoc, significantly
111 suppressed spongiosis and hyperplasia, as well as induction of IL- β 1 (-88%), IL-23 (-
112 77%), and IL-6 (-90%). In conclusion, KCa3.1-induction in the epidermis caused
113 expression of pro-proliferative cytokines leading to spongiosis, hyperplasia and
114 hyperkeratosis. This skin condition resembles pathological features of eczematous
115 dermatitis and identifies KCa3.1 as a regulator of epidermal homeostasis and
116 spongiosis, and as a potential therapeutic target.
117

118 **Key words:** Eczema, hyperkeratosis, KCa3.1, KCNN4, itch, spongiosis.

119

120 **INTRODUCTION**

121 Ion channels have long been known to contribute to the pathophysiology of
122 inflammatory, autoimmune [1], and proliferative diseases [2-4]. More recently,
123 several calcium-permeable channels of the transient receptor potential family (TRP)
124 and potassium channels have been found to be involved in skin conditions, such as
125 melanoma [5], psoriasis [6], atopic dermatitis [7], Olmsted syndrome [8], and rosacea
126 [9-11], suggesting the respective channels as potential treatment targets.

127 One of the K⁺ channels considered a skin ion channel is the intermediate-
128 conductance Ca²⁺-activated K⁺ channel, KCa3.1, encoded by the *KCNN4*-gene [12-
129 14]. Its calmodulin mediated activation produces K⁺ efflux and membrane
130 hyperpolarization, thus serving its multiple biological functions such as erythrocyte
131 volume decrease [15-16], hyperpolarization-driven Ca²⁺-influx, proliferation and
132 cytokine production in T-cells [1, 17], migration and activation of
133 macrophages/microglia [18-19], Cl⁻ and H₂O secretion in epithelia [20-21], as well as
134 endothelium-derived hyperpolarization-mediated vasodilation [22-23].

135 KCa3.1 induction has been implicated in several diseases states characterized
136 by excessive cell proliferation and inflammation (For recent in-depth reviews of
137 KCa3.1 in health and as drug target in disease see [1-2, 24]. For instance, induction of
138 KCa3.1 was shown to regulate the phenotypic switch of fibroblasts and smooth
139 muscle cells towards a dedifferentiated proliferative phenotype that promoted
140 pathological organ remodelling in the lung, heart, and kidneys [25-30], as well as
141 arterial neointima formation [18, 31-32]. In addition, high expression of KCa3.1 has
142 been considered a marker of tumor progression for some cancers [3, 33-34].

143 KCa3.1, therefore, can be viewed as a possible driver of disease, and several
144 small molecule inhibitors for this therapeutically attractive target have been
145 developed and tested in pre-clinical animal models [35-36]. The inhibitor, ICA-17043
146 (Senicapoc), initially intended for the treatment of sickle cell anemia, has been found
147 clinically safe [37] and is currently being considered for drug repurposing for stroke
148 and Alzheimer's disease, two conditions in which KCa3.1 contributes to the
149 pathophysiology [19, 38].

150 However, concerning the skin, the physiological role of KCa3.1 and its
151 pathophysiological significance for human skin disease is largely unexplored. So far,
152 KCa3.1 protein expression and/or mRNA message have been found in rat epidermis
153 [39], in human keratinocytes and melanoma [5], where pharmacological inhibition of
154 KCa3.1 has anti-proliferative efficacy in vitro. Yet, the role of KCa3.1 in the healthy
155 or diseased epidermis remains elusive. Here, we hypothesized that epidermal KCa3.1,
156 as a channel that controls cell volume, proliferation and chloride and water-secretion,
157 is a regulator of epidermal homeostasis.

158 To test the hypothesis, we generated conditional KCa3.1-overexpressor mice
159 (KCa3.1+) that harbor a murine *Kcnn4*-transgene under the control of a tetracycline
160 response element (TRE) together with a rtTA-transgene [40] for DOX-inducible
161 *Kcnn4*-transgene expression specifically in epithelia including the epidermis (Fig 1
162 A) and found that KCa3.1-induction causes eczematous dermatitis characterized by
163 intra-epidermal edema (spongiosis), epidermal hyperplasia and hyperkeratosis, severe
164 itch, and ulcers.

165

166 **MATERIAL & METHODS**

167 **Transgenic Mice**

168 Our TRE-Tg*Kcnn4* mice were generated at Unitech Co., Ltd. (Chiba, Japan).
169 Briefly, a tetracycline-regulated *Kcnn4* expression construct was generated by
170 subcloning PCR-amplified cDNA encoding the open reading frame of murine *Kcnn4*
171 (gene ID16534) into the pTRE-Tight expression vector (Clontech). The construct was
172 verified by sequencing. The pTRE-Tight vector construct was cleaved with the
173 restriction enzyme and injected into pronuclei of fertilized mouse oocytes of the
174 C57BL/6J strain. The putative TRE-Tg*Kcnn4* founders obtained were genotyped by
175 PCR with primers specific for the murine *Kcnn4* sequence. Two founders were crossed
176 with wild type C57BL/6J mice to establish the F1 generation. One line was inbred over
177 2-3 generations and then crossed with B6.Cg-Gt(ROSA)26Sortm1(rtTA* M2)Jae/J +
178 [40]. Routine genotyping was performed by using DNA from tail tips and PCR primers
179 (see table 1) and the SuperHotTaq Master mix (BIORON GMBH, Germany); cycle
180 program: 94 °C for 2 min, 35 cycles 94 °C for 20 sec, 56°C for 30 sec, 72 °C for 30 sec,
181 and cooling to 10°C. PCR products were separated by gel electrophoresis (1.5%
182 agarose). Pups being hemizygous for both transgenes were used for experimentation.
183 All transgenic mice were generated and maintained within a specific pathogen free
184 (SPF) barrier facility of Aragonese Center for Biomedical Research according to local
185 and national regulations.

186 For transgene-induction over 1 or 2 weeks, doxycycline (DOX, Sigma) was
187 added to the drinking water (1mg/ml) and water intake was monitored. Senicapoc was
188 synthesized in-house as previously described. Senicapoc-medicated chow was prepared
189 to administer a dose of 30 mg/kg/day. Photo- and video-documentation was routinely
190 performed at the day of or the day prior to sacrifice. Organs and blood were collected

191 after CO₂ suffocation and stored on dry ice or fixed in neutral-buffered formaldehyde
192 (4%) until further processing. All procedures were approved by the local Animal Ethics
193 Committee (PI27/13; PI28/12; PI37/13/16; PI32/15) and in accordance with the
194 ARRIVE guidelines.

195

196 **Isolation of Epidermal Keratinocyte**

197 Tails were sterilized by short immersion in 90% ethanol and then stored in
198 MEM-Earle with 20 mM HEPES until further processing. For separation of the skin
199 from the underlying tissue, the skin was carefully cut open and removed from the base
200 to the tip of the tail and cut into approximately 0.5 cm² large pieces. Thereafter, pieces
201 floated on a 0.25% trypsin/phosphate-buffered solution (PBS) overnight. For
202 keratinocyte isolation, epidermis and dermis were carefully separated and the epidermis
203 was cut into small pieces using a scalpel. Keratinocytes were dispersed by repeated
204 passing through the tip of a cell culture pipette, seeded on coverslips in MEM Earle
205 supplemented with 10% calf serum, and used for patch-clamp experiments within the
206 next 3 hrs.

207

208 **Patch-Clamp Electrophysiology**

209 Ca²⁺-activated K⁺ currents in murine keratinocytes were measured in the whole-
210 cell configuration using an EPC10-USB amplifier (HEKA, Electronics, Lambrecht-
211 Pfalz, Germany) and a pipette solution (intracellular) containing 1 μM Ca²⁺ free for
212 channel activation (in mM): 140 KCl, 1 MgCl₂, 2 EGTA, 1.71 CaCl₂ (1 μM [Ca²⁺]_{free})
213 and 5 HEPES (adjusted to pH 7.2 with KOH). The bath solution contained (in mM):
214 140 NaCl, 5 KCl, 1 MgSO₄, 1 CaCl₂, 10 glucose and 10 HEPES (adjusted to pH 7.4
215 with NaOH). For KCa3.1 inhibition, we applied 1,3-Phenylenebis(methylene)bis(3-

216 fluoro-4-hydroxybenzoate (RA-2) at a concentration of 1 μ M (n=2, experiments). Data
217 acquisition and analysis was done with the Patch-Master program (HEKA). Ohmic leak
218 conductance of up to 1 nS was subtracted where appropriate. We quantified outward
219 currents at a potential of 0 mV. Membrane capacitance was 6 +/- 1 pF (n=4) in
220 keratinocytes from Dox-treated mice and 7 +/- 2 pF (n=5) in keratinocytes from non-
221 treated mice.

222

223 **Histology**

224 Samples were fixed in 4% formaldehyde for at least 24 hrs and then transferred
225 to 60% ethanol. Thereafter samples were imbedded in paraffin and cut into 4 μ m-thick
226 sections. Sections were stained with hematoxylin and eosin. Scoring: For quantifying
227 and comparing the skin pathology, skin sections were scored for grade of hyperplasia,
228 and hyperkeratosis by a pathologist (MM) and for grade of intra-epidermal edema by
229 two investigators (RK/KLH), independently and in a blinded fashion. We used the
230 following in-house developed scoring system: Mild: $\geq 0.5 < 1$; Moderate: $\geq 1 < 2$; Severe:
231 ≥ 2 . Individual scores for intra-epidermal edema did not vary by more than 0.5 and were
232 averaged.

233

234 **Immunohistochemistry and TUNEL Assay**

235 For KCa3.1, tissue samples were fixed in 4% neutral buffered formaldehyde
236 solution and embedded in paraffin. 2.5 μ m-thick sections were cut with a rotation
237 microtome (Leica RM2255). Slides were air dried at 37°C overnight, were de-
238 paraffinized in xylene for 10 min, and then rehydrated. After rehydration, epitope
239 retrieval was carried out using the PT Link (Dako) at 95°C for 20 min in a high pH
240 buffer (Dako Antigen retrieval, high pH). Endogenous peroxidase was blocked using

241 the EnVision FLEX Peroxidase-Blocking kit followed by two washes for 5 min each
242 (Dako wash buffer). Sections were incubated for 60 min with a rabbit anti-KCNN4
243 primary antibody (AV35098, Sigma-Aldrich) at 1/2000 dilution followed by two
244 washes. Signal amplification was done using the ImmPRESS™ Excel Amplified HRP
245 Polymer Staining Kit (Vector Laboratories). After 3 wash steps (Dako wash buffer, 5
246 min each). Sections were incubated with 3,3'-diaminobenzidine (DAB) for 10 min and
247 counterstained with hematoxylin.

248 Proliferating cell nuclear antigen (PCNA) and Caspase 3 (CASP3): 5 μ m-thick
249 tissue sections were placed on silanated slides. After de-paraffinization, endogenous
250 peroxidase was quenched by immersing the samples in methanol containing 0.03%
251 hydrogen peroxide. Heat antigen retrieval was performed in pH 6.5 10 μ M citrate-based
252 buffered solution (Dako). In order to prevent non-specific binding, samples were
253 incubated for 2 h with Protein Block (Dako). Samples were incubated overnight at 4°C
254 with mouse and rabbit monoclonal antibodies against PCNA (Cell Signaling, 1:100)
255 and Cleaved-CASP3 (Calbiochem, 1:100), respectively, followed by incubation with
256 an anti-mouse or anti-rabbit polymer-based Ig coupled with peroxidase (Cell Signaling)
257 for 30 min at RT. Then, sections were incubated with 3,3'-diaminobenzidine (DAB)
258 and counterstained with hematoxylin, and studied under an Olympus BX-61
259 microscope.

260

261 Apoptosis was determined by using the TUNEL (Terminal deoxynucleotide
262 transferase mediated X-dUTP nick end labeling) assay. 5 μ m-thick sections were de-
263 paraffinized and rehydrated. Then, sections were treated with Proteinase K (20 μ g ml-
264 1, 15 min, at RT) and rinsed twice with phosphate buffered saline (PBS). For detection
265 of apoptotic nuclei, sections were incubated for 1 hrs at 37°C in the dark with the *in situ*

266 Cell Death Detection Kit (Roche) according to the manufacturer's instructions. After
267 two washes with PBS, sections were mounted in ProLong® with DAPI (Life
268 technologies). Fluorescence-microscopy was performed with an Olympus BX-61 epi-
269 fluorescence microscope equipped with filter sets for fluorescence microscopy:
270 ultraviolet (UV, 365 nm, exciting filter UG-1) and blue (450-490 nm, exciting filter BP
271 490). Photographs were taken with a digital Olympus CCD DP70 camera.

272

273 **RNA Isolation, Reverse Transcription, and Quantitative RT-PCR**

274 Depilated skin of the neck and other organs were placed into 1 ml TriReagent
275 (Sigma, Saint Louis, Missouri, USA) and stored at -80°C. Samples were homogenized
276 with a T10 basic ULTRA-TURRAX (IKA, Staufen, Germany) at 4°C.

277 Total RNA was isolated with the TriReagent following the manufacturer's protocol,
278 and further purified using RNA Clean-up and Concentration-Micro-Elute kit (Norgen
279 Biotek, Thorold, Canada). Genomic DNA was digested using the Ambion DNA-free
280 kit (Invitrogen, Carlsbad, California, USA). Quantity and purity of extracted RNA were
281 determined by spectrophotometry (NanoDrop1000, ThermoFisher, Waltham, MA) and
282 stored at -80°C for later use. Integrity of RNA samples and successful digestion of
283 genomic DNA were verified by gel electrophoresis. Reverse transcription was
284 performed with 600 ng of total RNA by using the Super Script III reverse transcriptase
285 (Invitrogen, Carlsbad, California, USA) and random hexamers following the
286 manufacturer's protocol.

287 cDNA obtained from 10 ng of total RNA was amplified in triplicates using the
288 SYBR Select Master Mix and a StepOnePlus Real-Time PCR system (Applied
289 Biosystems, Foster City, California, USA) using the following cycle protocol: 95°C, 15
290 s and 60°C, 60 s repeated for 40 cycles. As final step, a melting curve analysis was

291 carried out to verify correct amplification. The primers are given in table 1. Data were
292 analyzed with LinReg PCR software and gene expression levels relative to *Gapdh*
293 expression as reference gene and normalized to control were calculated using the
294 formula: $\% \text{ of } Gapdh = Efficiency^{Cq(Gapdh)-Cq(GOI)} \times 100$. The values were used to
295 calculate ratio values (DOX/-DOX; Senicapoc/Ctrl) given in graphs.

296

297 **LC-MS Analysis**

298 A 10 mM stock solution of Senicapoc (from in-house organic synthesis) was
299 prepared by dissolving 6.4 mg Senicapoc in 2 ml acetonitrile. Working standard
300 solutions were obtained by diluting the stock solution with acetonitrile.

301 Preparation of plasma samples: Commercial SPE cartridges (Hypersep C18,
302 100 mg, 1 ml) were purchased from Thermo Scientific (Houston, TX, U.S.A). Before
303 extraction, cartridges were conditioned with acetonitrile, 2 × 1 ml, followed by water,
304 2-times × 1 ml. After loading the SPE cartridges with plasma samples, they were
305 washed successively with 1 ml each of 20% and 40% acetonitrile in water followed by
306 elution with 2 ml of acetonitrile. Elute fractions were collected and evaporated to
307 dryness, under a constant flow of air, using a PIERCE Reacti-Vap™ III evaporator
308 (PIERCE, IL, USA). The residues were reconstituted using 200 µl acetonitrile and were
309 used for LC-MS analysis.

310 Preparation of skin samples: A 100 mg of depilated skin sample was
311 homogenized thoroughly in 2.0 ml of acetonitrile in a gentleMACS™ M tube using a
312 gentleMACS™ Dissociator (Miltenyi Biotec Inc., CA, USA). Each sample was
313 subjected to three cycles of the preprogrammed homogenization protocol
314 Protein_01.01 (a 55 s homogenization cycle with varying speeds and directions of
315 rotation). Homogenized samples were centrifuged for 10 min at 4000 rpm. Each

316 supernatant was collected in a 4 ml glass vial and was evaporated to dryness, under a
317 constant flow of air, as described above. The residues were reconstituted in 100 μ l
318 acetonitrile and were used for LC-MS analysis.

319 LC/MS analysis was performed with a Waters Acquity UPLC (Waters, NY,
320 USA) equipped with a Acquity UPLC BEH 1.7 μ M C-18 column (Waters, New York,
321 NY) interfaced to a TSQ Quantum Access Max mass spectrometer (MS) (Thermo
322 Fisher Scientific, Waltham, MA, USA). The isocratic mobile phase consisted of 80%
323 acetonitrile and 20% water, both containing 0.1% formic acid with a flow rate of 0.25
324 ml per minute. Under these conditions, Senicapoc had a retention time of 0.80 minute.

325 Using Heated electrospray ionization source (HESI II) in positive ion mode,
326 capillary temperature 250 °C, vaporizer temperature: 30°C, spray voltage 3500 V,
327 sheath gas pressure (N₂) 60 units, Senicapoc was analyzed by the selective reaction
328 monitoring (SRM) transition of its molecular ion peak 324.09 (M+1) into 228.07,
329 200.07,183.11 and 122.18 *m/z*. An 8-point calibration curve from 50 nM to 10 μ M
330 concentration range was used for quantification.

331

332 **Statistics**

333 Data in Text and graphs are means +/- standard error of the mean (SEM), if not
334 stated otherwise. If not otherwise stated, we used the unpaired Student's T Test (two-
335 tailed) for comparison of data sets. The significance level was set to a P value of <0.05.

336

337

338 **RESULTS**

339

340 **KCa3.1 Induction in Skin**

341 Doxycycline(DOX)-treatment with 1 mg/ml in drinking water produced a 833-
342 fold KCa3.1-overexpression in the skin, 1378-fold KCa3.1-overexpression,
343 particularly, in the epidermis, and a 46-fold overexpressing in the intestine (Fig 1 B).
344 In bone marrow, brain, lung, skeletal muscle, spleen, KCa3.1-mRNA levels were
345 similar to untreated mice.

346 Patch-clamp electrophysiology studies in isolated keratinocytes revealed a
347 strong induction of KCa3.1-function in DOX-treated KCa3.1+ mice. The KCa3.1-
348 currents demonstrated the typical fingerprint characteristics of KCa3.1, which were
349 activation by 1 μ M Ca^{2+} , voltage-independent, and mildly inwardly-rectifying. RA-2
350 (1 μ M), a negative-gating modulator of KCa2/3 channels [41], blocked the KCa3.1
351 current. KCa3.1-induction was not found in untreated mice and KCa3.1 outward-
352 currents were small or difficult to discriminate from background currents in most cells
353 (Fig 1 C). In fact, we saw a clearly distinguishable KCa3.1 current in only 1 of 5 cells
354 (Fig S1A).

355 We examined the KCa3.1-protein expression by immune histology (Fig 1 D)
356 and identified weak immune reactivity in the thin epidermal layer of untreated mice
357 and appreciable immune reactivity in the thicker epidermal layer of DOX-treated
358 mice (see following paragraphs).

359 Together, these findings demonstrate strong induction of KCa3.1-transgene
360 expression and function in the skin and, particularly, in the epidermis.

361

362 **Skin Phenotype and Behavioral and Systemic Alterations in DOX-Treated**

363 **KCa3.1+ Mice**

364 The DOX-treated KCa3.1+ mice of both sexes appeared normal during the 1st
365 week of the treatment and then developed progressive skin pathology with
366 generalized piloerection, intense scratching behavior (S Movie 1), scaly skin patches,
367 and ulcerative lesions, mainly visible in the neck areas, chest, and ears (Fig 2), all
368 sites where mice groom frequently.

369 Histology (Fig 3 A to D) of neck skin showed moderate to severe hyperplasia
370 of the epidermis, affecting also the hair follicles, and substantial hyperkeratosis. In
371 the epidermis of the DOX-treated mice, we found foci of moderate intra-epidermal
372 edema (Fig 3 D), similar to spongiosis, which is characteristic of eczematous
373 dermatitis [42]. The phenotype was completely reversible within 6 weeks when DOX
374 was removed after 9 days of treatment (see S1B Fig).

375 At an earlier time point (1-week DOX), we recorded the same degree of intra-
376 epidermal edema and an early stage of hyperplasia and hyperkeratosis (Fig 3 C and
377 S1C Fig). Yet, at first sight, the mice appeared healthy. Concerning controls, a 2-
378 week DOX-treatment of the inducer strain (R26-rtTA-M2) or of *Kcnn4*-transgene-
379 harbouring mice lacking the rtTA induced no observable skin pathology (S1D Fig).

380

381 Immune histology on KCa3.1+ skins showed high-expression of the
382 proliferating cell nuclear antigen (PCNA), a marker of cell proliferation, in the
383 hyperplastic epidermal layer of 2-week DOX-treated mice (Fig 3 E and S1E Fig). In
384 the untreated control animals, uniform immune reactivity was observed in the nuclei
385 of keratinocytes lining the basal epidermal layer. We also stained for CASP3, another
386 marker of apoptosis, and did not find induction of CASP3 in the hyperplastic

387 epidermal layer or in the dermis, with the exception of ulcerative sites (S1E Fig). No
388 CASP3 immune reactivity was seen in keratinocytes of the epidermis of untreated
389 controls (S1F Fig). Apoptosis as measured by TUNEL was not found at hyperplastic
390 sites (Fig 3 F), but at wound areas with substantial tissue destruction (S1E Fig).

391

392 Together, these data demonstrate that induction of KCa3.1 produces moderate
393 intra-dermal edema (sub-acute spongiosis) and drives keratinocyte proliferation, but
394 does not cause generalized cell toxicity and cell death. The localized epidermal
395 damage and ulcers are likely the result of the intense scratching behavior.

396

397 **Alterations of Cytokine Expression Profile in Skin**

398 To shed light on the mechanisms, by which KCa3.1-induction in the
399 keratinocytes produced spongiosis and epidermal hyperplasia, we measured the
400 mRNA-expression of several pro-proliferative cytokines that are known to promote
401 keratinocyte proliferation in an auto-stimulatory or autacoid fashion [43] (Fig 4). It is
402 worth mentioning that KCa3.1-KO and/or inhibition have been shown to reduce IL- β 1
403 and TNF α levels in activated microglia after cerebral infarction [19].

404 We found strongly increased mRNA expression of IL- β 1 (60-fold), IL-23 (34-
405 fold), IL-6 (33-fold), and TNF α (26-fold). Expression levels of HGF and TGF α as
406 well as a series of other cytokines and growth factors, of which some are expressed by
407 keratinocytes (amphiregulin, betacellulin, epiregulin, IL-2, IL-4, IL-25, IL-33, and
408 keratinocyte growth factor, for review see [43], were not significantly altered (Fig 4
409 A). T-cell specific IL-17A and IL-17F mRNA expression was not detectable (data not
410 shown).

411 The induction of IL- β 1, IL-23, and TNF α expression was particularly high in
412 the epidermal layer, although not statistically different from levels in the dermis. Yet,
413 these data demonstrate strong cytokine induction in keratinocytes (Fig 4 B).

414

415 **Systemic KCa3.1 Channel Blockade Reduces Skin Pathology**

416 We next tested whether pharmacological blockade of KCa3.1 functions can
417 suppress this phenotype and treated the mice with Senicapoc-containing chow at a
418 dose of 30mg/kg/day [44] during the 2-weeks of DOX treatment.
419 The Senicapoc treatment gave rise to total plasma concentrations of 254+/-61 nM
420 (n=11) and tissue levels in the skin of 2.9+/-0.9 μ M (n=4) at the time of sacrifice. At
421 these total concentrations (and assuming a protein binding of 90%), pharmacological
422 inhibition of the channel can be expected because concentrations of Senicapoc in the
423 skin are at least 2 orders of magnitude above the reported IC₅₀ of 10 nM [12, 37].

424 As shown in Figure 5 A, we report that the Senicapoc treatment did not
425 prevent the pathological skin alterations, but significantly reduced intra-epidermal
426 edema by \approx 60%, hyperplasia by \approx 50%, as well as a trend in reduction of
427 hyperkeratosis and fibrosis.

428 Overall, this Senicapoc trial suggests that the skin pathology was caused largely by
429 the induced function of KCa3.1 and demonstrates that Senicapoc is able to reduce the
430 earliest strong alteration, i.e. intra-epidermal edema (Fig 3 C and D), presumably by
431 blocking KCa3.1-induced disturbances of epidermal water-salt homeostasis.

432

433 Considering cytokine levels in the skin (Fig 5 B), Senicapoc significantly
434 reduced mRNA-expression levels of IL- β 1 (\approx -88%), IL-23 (\approx -77%), as well as of IL-
435 6 (\approx -90%) when compared to DOX-treated control animals, while TNF α mRNA-

436 expression levels were unchanged. These lower levels of pro-proliferative cytokines
437 could explain the lower degree of hyperplasia.

438

439

440 **DISCUSSION**

441

442 The present study introduces a genetic model of epidermal KCa3.1-induction
443 to investigate the physiological and potential pathophysiological significance of this
444 channel capable of controlling cell volume, growth, and cellular salt/water
445 homeostasis in the epidermis. In fact, it is the first study describing the consequences
446 of genetically encoded induction of an ion channel above basal levels in the skin. Our
447 results demonstrate that KCa3.1 over-expression was capable of causing a severe
448 disturbance of epidermal homeostasis.

449 This is based on the following lines of evidence: 1) KCa3.1-induction
450 produced intra-epidermal edema (spongiosis). 2) KCa3.1-induction produced
451 progressive epidermal hyperplasia and hyperkeratosis causing severe itch and ulcers.
452 Finally, 3) KCa3.1-induction strongly up-regulated epidermal (i.e., keratinocyte)
453 synthesis of the pro-proliferative, auto-stimulatory, and pro-inflammatory cytokines,
454 in particular, IL- β 1, IL-23, and TNF α . Taken together, KCa3.1-induction in the
455 epidermis produced skin pathology in mice that resembled the pathological features of
456 itchy eczematous dermatitis [42].

457

458 The physiological and pathophysiological significance of KCa3.1 in the skin
459 has been elusive until now. So far, keratinocyte KCa3.1 has been studied –
460 superficially though - by mRNA-expression experiments in cultured human

461 keratinocytes [5] and immune histochemistry in rat epidermis [39], which did not
462 provide much information about the role of the channel in epidermal homeostasis *in-*
463 *vivo*. Here we intended to provide new knowledge by generating a murine model of
464 genetic conditional induction of a murine KCa3.1-transgene in epidermis (Fig 1).

465 The KCa3.1 induction in DOX-treated animals was specific for skin epidermis
466 as concluded from 800-fold overexpression. Concerning other tissues, we found a
467 much less pronounced 20-fold overexpression in the intestine (see below).

468 We confirmed KCa3.1 transgene function after *in-vivo* DOX-treatment by
469 patch-clamp electrophysiology on isolated keratinocyte, which unequivocally
470 revealed large KCa3.1-currents being sensitive to a KCa3.1-inhibitor displaying the
471 biophysical and pharmacological characteristics of KCa3.1 (Fig 1 C) [12]. In
472 keratinocytes from untreated mice, KCa3.1 currents were very small or undetectable
473 suggesting low basal channel expression or a few KCa3.1-expressing cells. IHC
474 demonstrated appreciable immune reactivity in the hyperplastic epidermis of the
475 DOX-treated mice. Immune reactivity was also found in the thin epidermis of
476 untreated mice, suggesting some constitutive protein expression in addition to
477 mRNA-expression of KCa3.1 (Fig 1 D).

478

479 A major outcome of our study was that KCa3.1-induction produced visibly
480 piloerection, scaly skin patches, and intense scratching behavior that in turn gave rise
481 to bloody ulcerative lesions (Fig 2 and S1 Movie). These symptoms are similar to
482 those of itchy eczematous dermatitis in humans [42]. In analysis of histological
483 sections, we observed intra-epidermal edema (sub-acute spongiosis) and ensuing
484 progressive hyperplasia, and hyperkeratosis as histological features of chronic eczema
485 [42].

486 It is also worth mentioning that sub-chronic conditional gene deletion of
487 KCa3.1 in the epidermis as well as life-long KCa3.1-deficiency [16] complete did not
488 produce any skin alterations, indicating that basal KCa3.1 expression is apparently not
489 crucial for epidermal homeostasis. In keeping with the induction of KCa3.1 in the
490 small intestine, we also demonstrate a mild intestinal phenotype characterized by
491 moderate chyme accumulation and lower propulsive spontaneous motility, which is
492 the content of a separate report [45].

493

494 Concerning the cellular mechanisms, by which KCa3.1-induction produced
495 this skin condition, the morphological and molecular biological alterations described
496 here agree well with the known physiological functions of KCa3.1 [12]: 1) The intra-
497 epidermal edema can be explained by KCa3.1's ability to move K^+ and concomitantly
498 water and Cl^- into the extracellular compartment [13, 15, 20]. Overexpression of the
499 channel could do this in an excessive manner leading to the observed expansion of the
500 extracellular compartment and/or cell shrinkage producing intracellular gaps. In fact,
501 intra-epidermal edema was already pronounced at the early time point (1 week), when
502 hyperplasia and hyperkeratosis was still in an initial phase. Intra-epidermal edema
503 was of similar grade later, when hyperplasia and hyperkeratosis progressed further.
504 Therefore, intra-epidermal edema can be considered the starting point for the latter
505 alterations.

506 2) In addition to its function as a K^+ secreting channel, KCa3.1 activity is known to
507 produce strong membrane hyperpolarization, which in turn potentiates calcium-influx
508 enabling long-lasting elevations in $[Ca^{2+}]_I$ (for review see: [1, 36]). In several cell
509 systems, this elevation of $[Ca^{2+}]_I$ has been shown to be required for the sustained
510 initiation of several cellular processes, including proliferation and migration [1, 46].

511 KCa3.1-mediated hyperpolarization and ensuing amplification of $[\text{Ca}^{2+}]_{\text{I}}$ signaling is
512 known to regulate cytokine production in T cells, activated fibroblasts or smooth
513 muscle cells (for review see: [1]). Accordingly, inhibition or genetic knockdown of
514 the channel has been reported to reduce IL-2 production by T cells [46-47] and IL- β 1
515 and TNF α levels by microglia in ischemic stroke [19]. Here, we showed that the
516 reverse maneuver (induction) resulted in a higher expression of IL- β 1, IL-23, and
517 TNF α in keratinocytes of the epidermis (Fig 5). This keratinocyte cytokine production
518 may drive hyperplasia and hyperkeratosis in an auto-stimulatory fashion.

519 Considering the impressive magnitude of hyperplasia and hyperkeratosis
520 (Figure 3), we speculate that this is a secondary and overshooting repair mechanism
521 in response to intra-epidermal edema and epidermal destabilization.

522 In summary, we provide first mechanistic evidence that KCa3.1 induction
523 produced skin pathology *in-vivo* by causing extracellular fluid accumulation and
524 epidermal destabilization as a primary event and secondary phenotypic switch to a
525 proliferative keratinocyte phenotype (PCNA-high, Fig 3E), producing epidermal
526 hyperplasia.

527

528 It is worth mentioning that the selective KCa3.1-blocker Senicapoc
529 significantly reduced both the primary intra-epidermal edema and the subsequent
530 hyperplasia (Fig 5). The reduction in edema is somewhat reminiscent of the reported
531 reduction in *in-vitro* cyst formation by kidney cells from patients with autosomal-
532 dominant polycystic kidney disease with a KCa3.1 blocker [25]. Moreover, Senicapoc
533 treatment reduced IL- β 1, IL-6, and IL-23, and TNF α mRNA-expression levels in the
534 affected skin (Fig 5). These data strongly indicate that these morphological alterations
535 and the higher expression pro-proliferative cytokines as mechanistic drivers of

536 epidermal hyperplasia are mediated by channel functions. Because the treatment did
537 not fully suppress the phenotype, we cannot fully exclude additional local or systemic
538 mechanisms.

539

540 Compared with human skin diseases, the phenotype in KCa3.1+ mice is
541 strikingly similar to eczematous dermatitis with spongiosis, epidermal hyperplasia,
542 and itch, as important pathological features [42]. Yet, the cellular mechanisms
543 causing this condition and, particularly, spongiosis are poorly understood. In this
544 regard, our findings suggest that epidermal KCa3.1 could be a mechanistic player. At
545 present a pathomechanistic role of KCa3.1 has not been shown for human skin
546 conditions with the exception of role in melanoma cell proliferation. Yet, our study
547 provides the rationale to investigate KCa3.1-function in specifically eczematous
548 dermatitis with keratinocyte hyperplasia and in other skin pathologies, characterized
549 by excessive keratinocyte growth such as psoriasis, and test clinical efficacy of
550 KCa3.1-inhibitors.

551

552 In conclusion, epidermal KCa3.1 overexpression in murine skin produces
553 itchy eczematous dermatitis. This can be dampened by pharmacological channel
554 inhibition. Future target identification and validation studies in patients will show
555 whether KCa3.1-inhibitors are of therapeutic utility in human skin pathologies.

556

557 **CONFLICT OF INTEREST**

558 The authors state no conflict of interest.

559

560

561 **ACKNOWLEDGEMENTS**

562 We thank Andrea Lorda for excellent technical assistance and the scientific staff of
563 the IACS: Dr. Maria Royo (IACS), Dr. Mark Strunk, Alicia de Diego Olmos and the
564 staff of animal of the animal core facility IACS for IHC stains, genotyping, animal
565 breeding and collecting tissue, respectively.

566

567 **REFERENCES**

- 568 1. Feske S, Wulff H, Skolnik EY. Ion channels in innate and adaptive immunity.
569 *Annu Rev Immunol.* 2015; 33: 291-353.
- 570 2. Brown BM, Pressley B, Wulff H. KCa3.1 channel modulators as potential
571 therapeutic compounds for glioblastoma. *Curr Neuropharmacol.* 2017;16(5): 618-
572 626.
- 573 3. Rabjerg M, Oliván-Viguera A, Hansen LK, Jensen L, Sevelsted-Moller L, Walter
574 S, et al. High expression of KCa3.1 in patients with clear cell renal carcinoma
575 predicts high metastatic risk and poor survival. *PLoS One.* 2015;10(4): e0122992.
- 576 4. Arcangeli A, Becchetti A. Novel perspectives in cancer therapy: Targeting ion
577 channels. *Drug Resist Updat.* 2015;21-22: 11-9.
- 578 5. Oliván-Viguera A, Garcia-Otin AL, Lozano-Gerona J, Abarca-Lachen E, Garcia-
579 Malinis AJ, Hamilton KL, et al. Pharmacological activation of TRPV4 produces
580 immediate cell damage and induction of apoptosis in human melanoma cells and
581 HaCaT keratinocytes. *PLoS One.* 2018;13(1): e0190307
- 582 6. Kundu-Raychaudhuri S, Chen YJ, Wulff H, Raychaudhuri SP. Kv1.3 in psoriatic
583 disease: PAP-1, a small molecule inhibitor of Kv1.3 is effective in the SCID
584 mouse psoriasis--xenograft model. *J Autoimmun.* 2014;55: 63-72.
- 585 7. Oh MH, Oh SY, Lu J, Lou H, Myers AC, Zhu Z, et al. TRPA1-dependent pruritus
586 in IL-13-induced chronic atopic dermatitis. *J Immunol.* 2013;191(11):5371-82.
- 587 8. Eytan O, Fuchs-Telem D, Mevorach B, Indelman M, Bergman R, Sarig O, et al.
588 Olmsted syndrome caused by a homozygous recessive mutation in TRPV3. *J
589 Invest Dermatol.* 2014;134(6):1752-4.

590 9. Chen Y, Moore CD, Zhang JY, Hall RP, MacLeod AS, Liedtke W. TRPV4 Moves
591 toward center-fold in Rosacea pathogenesis. *J Invest Dermatol.* 2017;137(4): 801-
592 4.

593 10. Moore C, Cevikbas F, Pasolli HA, Chen Y, Kong W, Kempkes C, et al. UVB
594 radiation generates sunburn pain and affects skin by activating epidermal TRPV4
595 ion channels and triggering endothelin-1 signaling. *Proc Natl Acad Sci U S A.*
596 2013;110(34): E3225-34.

597 11. Caterina MJ, Pang Z. TRP channels in skin biology and pathophysiology.
598 *Pharmaceuticals (Basel).* 2016;9(4).

599 12. Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H. International
600 Union of Pharmacology. LII. Nomenclature and molecular relationships of
601 calcium-activated potassium channels. *Pharmacol Rev.* 2005;57(4): 463-72.

602 13. Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J. A human
603 intermediate conductance calcium-activated potassium channel. *Proc Natl Acad
604 Sci U S A.* 1997;94(21): 11651-6.

605 14. Lee CH, MacKinnon R. Activation mechanism of a human SK-calmodulin
606 channel complex elucidated by cryo-EM structures. *Science.* 2018;360(6388): 508-
607 13.

608 15. Vandorpe DH, Shmukler BE, Jiang L, Lim B, Maylie J, Adelman JP, et al. cDNA
609 cloning and functional characterization of the mouse Ca^{2+} -gated K^+ channel,
610 mIK1. Roles in regulatory volume decrease and erythroid differentiation. *J Biol
611 Chem.* 1998;273(34): 21542-53.

612 16. Grgic I, Kaistha BP, Paschen S, Kaistha A, Busch C, Si H, et al. Disruption of the
613 Gardos channel (KCa3.1) in mice causes subtle erythrocyte macrocytosis and
614 progressive splenomegaly. *Pflugers Arch.* 2009;458(2): 291-302.

615 17. Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG. Design of
616 a potent and selective inhibitor of the intermediate-conductance Ca^{2+} -activated K^+
617 channel, IKCa1: a potential immunosuppressant. *Proc Natl Acad Sci U S A.*
618 2000;97(14): 8151-6.

619 18. Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, et al. The
620 intermediate-conductance calcium-activated potassium channel KCa3.1 contributes
621 to atherogenesis in mice and humans. *J Clin Invest.* 2008;118(9): 3025-37.

622 19. Chen YJ, Nguyen HM, Maezawa I, Grössinger EM, Garing AL, Köhler R, et al.
623 The potassium channel KCa3.1 constitutes a pharmacological target for
624 neuroinflammation associated with ischemia/reperfusion stroke. *J Cereb Blood
625 Flow Metab.* 2016;36(12): 2146-61.

626 20. Devor DC, Singh AK, Frizzell RA, Bridges RJ. Modulation of Cl⁻ secretion by
627 benzimidazolones. I. Direct activation of a Ca²⁺-dependent K⁺ channel. *Am J
628 Physiol.* 1996;271(5 Pt 1):L775-84.

629 21. Bertuccio CA, Lee SL, Wu G, Butterworth MB, Hamilton KL, Devor DC.
630 Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-
631 dependent and recycling endosome-independent. *PLoS One.* 2014;9(3): e92013.

632 22. Si H, Heyken WT, Wölfle SE, Tysiac M, Schubert R, Grgic I, et al. Impaired
633 endothelium-derived hyperpolarizing factor-mediated dilations and increased
634 blood pressure in mice deficient of the intermediate-conductance Ca²⁺-activated
635 K⁺ channel. *Circ Res.* 2006;99(5): 537-44.

636 23. Wulff H, Köhler R. Endothelial small-conductance and intermediate-conductance
637 KCa channels: an update on their pharmacology and usefulness as cardiovascular
638 targets. *J Cardiovasc Pharmacol.* 2013;61(2): 102-12.

639 24. Köhler R, Oliván-Viguera A, Wulff H. Endothelial small- and intermediate-
640 conductance K channels and endothelium-dependent hyperpolarization as drug
641 targets in cardiovascular disease. *Adv Pharmacol.* 2016;77: 65-104.

642 25. Albaqumi M, Srivastava S, Li Z, Zhdnova O, Wulff H, Itani O, et al. KCa3.1
643 potassium channels are critical for cAMP-dependent chloride secretion and cyst
644 growth in autosomal-dominant polycystic kidney disease. *Kidney Int.* 2008;74(6):
645 740-9.

646 26. Grgic I, Kiss E, Kaistha BP, Busch C, Kloss M, Sautter J, et al. Renal fibrosis is
647 attenuated by targeted disruption of KCa3.1 potassium channels. *Proc Natl Acad
648 Sci U S A.* 2009;106(34): 14518-23.

649 27. Hua X, Deuse T, Chen YJ, Wulff H, Stubbendorff M, Köhler R, et al. The
650 potassium channel KCa3.1 as new therapeutic target for the prevention of
651 obliterative airway disease. *Transplantation*. 2013;95(2): 285-92.

652 28. Roach KM, Wulff H, Feghali-Bostwick C, Amrani Y, Bradding P. Increased
653 constitutive inverted question markSMA and Smad2/3 expression in idiopathic
654 pulmonary fibrosis myofibroblasts is KCa3.1-dependent. *Respir Res*. 2014;15(1):
655 155.

656 29. Huang C, Pollock CA, Chen XM. Role of the potassium channel KCa3.1 in
657 diabetic nephropathy. *Clin Sci (Lond)*. 2014;127(7): 423-33.

658 30. Zhao LM, Wang LP, Wang HF, Ma XZ, Zhou DX, Deng XL. The role of KCa3.1
659 channels in cardiac fibrosis induced by pressure overload in rats. *Pflugers Arch*.
660 2015;467(11): 2275-85.

661 31. Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, et al. Blockade of
662 the intermediate-conductance calcium-activated potassium channel as a new
663 therapeutic strategy for restenosis. *Circulation*. 2003;108(9): 1119-25.

664 32. Tharp DL, Wamhoff BR, Wulff H, Raman G, Cheong A, Bowles DK. Local
665 delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced
666 coronary smooth muscle phenotypic modulation and limits stenosis. *Arterioscler
667 Thromb Vasc Biol*. 2008;28(6): 1084-9.

668 33. D'Alessandro G, Catalano M, Sciaccaluga M, Chece G, Cipriani R, Rosito M, et
669 al. KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in
670 vivo. *Cell Death Dis*. 2013;4: e773.

671 34. Jiang S, Zhu L, Yang J, Hu L, Gu J, Xing X, et al. Integrated expression profiling
672 of potassium channels identifys KCNN4 as a prognostic biomarker of pancreatic
673 cancer. *Biochem Biophys Res Commun*. 2017;494(1-2): 113-9.

674 35. Wulff H, Castle NA. Therapeutic potential of KCa3.1 blockers: recent advances
675 and promising trends. *Expert Rev Clin Pharmacol*. 2010;3(3): 385-96.

676 36. Christophersen P, Wulff H. Pharmacological gating modulation of small- and
677 intermediate-conductance Ca^{2+} -activated K^+ channels (KCa2.x and KCa3.1).
678 *Channels (Austin)*. 2015;9(6): 336-43.

679 37. Ataga KI, Reid M, Ballas SK, Yasin Z, Bigelow C, James LS, et al. Improvements
680 in haemolysis and indicators of erythrocyte survival do not correlate with acute
681 vaso-occlusive crises in patients with sickle cell disease: a phase III randomized,
682 placebo-controlled, double-blind study of the Gardos channel blocker senicapoc
683 (ICA-17043). *Br J Haematol.* 2011;153(1): 92-104.

684 38. Maezawa I, Jenkins DP, Jin BE, Wulff H. Microglial KCa3.1 channels as a
685 potential therapeutic target for Alzheimer's disease. *Int J Alzheimers Dis.*
686 2012;2012: 868972.

687 39. Thompson-Vest N, Shimizu Y, Hunne B, Furness JB. The distribution of
688 intermediate-conductance, calcium-activated, potassium (IK) channels in epithelial
689 cells. *J Anat.* 2006;208(2): 219-29.

690 40. Hochedlinger K, Yamada Y, Beard C, Jaenisch R. Ectopic expression of Oct-4
691 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues.
692 *Cell.* 2005;121(3): 465-77.

693 41. Oliván-Viguera A, Valero MS, Coleman N, Brown BM, Laria C, Murillo MD, et
694 al. A novel pan-negative-gating modulator of KCa2/3 channels, the fluoro-di-
695 benzoate, RA-2, inhibits EDH-type relaxation in coronary artery and produces
696 bradycardia in vivo. *Mol Pharmacol.* 2015;87: 1-12.

697 42. Nedorost ST. Generalized dermatitis in clinical practice: Springer: Science &
698 Business Media; 2012. pp. 1–3, 9, 13–4 p.

699 43. Seeger MA, Paller AS. The roles of growth factors in keratinocyte migration. *Adv*
700 *Wound Care (New Rochelle).* 2015;4(4): 213-24.

701 44. Sevelsted-Moller L, Fialla AD, Schierwagen R, Biagini M, Reul W, Klein S, et al.
702 KCa3.1 channels are up-regulated in hepatocytes of cirrhotic patients. *J Hepatol.*
703 2015;62: S481.

704 45. Valero MS, Ramón-Giménez M, Lozano-Gerona J, Delgado-Wicke P, Calmarza
705 P, Oliván-Viguera A, López V, García-Otín ÁL, Valero S, Pueyo E, Hamilton KL,
706 Miura H, Köhler R. KCa3.1 Transgene Induction in Murine Intestinal Epithelium
707 Causes Duodenal Chyme Accumulation and Impairs Duodenal Contractility. *Int J*
708 *Mol Sci.* 2019 Mar 8;20(5):): E1193.

709 46. Di L, Srivastava S, Zhdanova O, Ding Y, Li Z, Wulff H, et al. Inhibition of the
710 K⁺ channel KCa3.1 ameliorates T cell-mediated colitis. Proc Natl Acad Sci U S A.
711 2010;107(4): 1541-6.

712 47. Koch Hansen L, Sevelsted-Moller L, Rabjerg M, Larsen D, Hansen TP, Klinge L,
713 et al. Expression of T-cell KV1.3 potassium channel correlates with pro-
714 inflammatory cytokines and disease activity in ulcerative colitis. J Crohns Colitis.
715 2014;8(11): 1378-91.

716

717

718 **Table 1:** Primers for PCR and qRT-PCR

Oligos for genotyping

Gene	Forward primer	Reverse Primer	
TG KCNN4	CAAGCACACTGAAGGAAGGACTC	GGAGATGTCACCATGGAATTCA	
Rosa26	AAA GTC GCT CTG AGT TGT TAT	GCGAAGAGTTTGCTCTAACCC	Tg

**Oligos for
qRT-PCR**

Gene	Forward primer	Reverse Primer	reference
AREG	ACTGTGCATGCCATTGCCTA	ACTGGGCATCTGGAACCATC	NM_009704.4
BTC	GGGAACACAACCAACACC	CACTTTCTGCTTAGGGGTGGT	NM_007568.5
EREG	TGGGTCTTGACGCTGCTTGTCTA	AAGCAGTAGCCGTCCATGTCAGAA	NM_007950.2
GAPDH	AGGGAGATGCTCAGTGTGG	CAATGAATACGGCTACAGCAAC	NM_001289726.1
HB-EGF	CAGGACTTGGAAAGGGACAGA	CCCTAACCCCTTCTTCTTCTT	NM_010415.2
HGF	CATGGTAAAGGAGGGCAGCTATAAA	GGATTCGACAGTAGTTTCCGTAGG	NM_001289460.2
IL-17A	TCCCTCTGTGATCTGGGAAG	CTCGACCCCTGAAAGTGAAAGG	NM_010552.3
IL-17F	CTGGAGGATAACACTGTGAGAGT	TGCTGAATGGCGACGGAGTTC	NM_145856.2
IL-1 β	TGCCACCTTTGACAGTGATG	AAGGTCCACGGAAAGACAC	NM_008361.4
IL-2	GCTGTTGATGGACCTACAGGA	TTCAATTCTGTGGCCTGCTT	NM_008366.3
IL-23	TGGCATCGAGAAAAGCTGTGAGA	TCAGTTCTGATTGGTAGTCTGTTA	NM_031252.2
IL-25	CAGCAAAGAGCAAGAACCC	CCCTGTCCAACCTCATAGC	NM_080729.3
IL-33	TCCAACCTCAAGATTCCCCCG	CATGCAGTAGACATGGCAGAA	NM_001164724.2
IL-4	CCCCCAGCTAGTTGTATCC	AGGACGTTGGCACATCCAT	NM_021283.2
IL-6	TCTGCAAGAGACTTCCATCCA	AGTCTCTCTCCGGACTTGT	NM_031168.2
KGF	CCAAACAGAACAAAGTCAGG	TCCTCCTTCAGGAACACAGC	NM_008008.4
TGF α	CTGTGTGCTGATCCACTGCT	CAAGCAGTCCTCCCTTCAG	NM_031199.4
TNF α	CCCACGTCTGAGCAAACAC	GCAGCCTTGTCCCTTGAAGA	NM_013693.3
KCa3.1	GTCTGTCACAGCTCTCT	TCCCTCCCTGAGTGTGCTT	NM_008433.4

719

720

721 **FIGURE LEGENDS**

722

723 Figure 1: A) Plasmid construct for generation of *Kcnn4* transgenic mice and induction
724 (gene product: KCa3.1) in epithelial tissues. B) Induction of KCa3.1 transgene
725 expression by 2-weeks DOX-treatment over basal levels in various tissues as

726 measured by qRT-PCR. Data (% of control (-DOX)) are given as means +/- SEM;
727 *P<0.01, Student T test; BM, bone marrow (DOX, n=2; -DOX, n=2); Br, brain
728 (DOX, n=4; -DOX, n=2); Int, small intestine (DOX, n=7; -DOX, n=6); skM, skeletal
729 muscle (DOX, n=2; -DOX, n=2); Sk, skin (DOX, n=7; -DOX, n=6); Skin-Epi, skin
730 epidermis (DOX, n=2; -DOX, n=2); Sp, spleen (DOX, n=4; -DOX, n=2); Lu, lung
731 (DOX, n=11; -DOX, n=10). C) Whole-cell patch-clamp on freshly isolated
732 keratinocytes from tail skin. Representative recordings of large KCa3.1 currents in
733 keratinocytes (+DOX) from DOX-treated mice and currents in keratinocytes from
734 untreated Ctrl (-DOX). Note: For an additional recording of small KCa3.1 currents in
735 a keratinocyte from untreated Ctrl see Figure S1A. Inhibition of KCa3.1 currents by
736 RA-2 at 1 μ M. Inset: Summary data of KCa3.1-outward currents at a clamp potential
737 of 0 mV. Data (pA/pF) are given as means +/- SEM (-DOX, n= 4; DOX n=5);
738 *P<0.01, Student's T test. D). Immune histochemical detection of KCa3.1 protein in
739 the epidermis of DOX-treated and untreated mice (-DOX).

740
741 Figure 2: Macroscopic skin pathology DOX-treated KCa3.1+ mice. Photographs of
742 A) untreated Ctrl (-DOX), B) DOX-treated KCa3.1+, C) higher magnification of the
743 neck shown in B, D) patchy erythematous and scaly skin with ulcerative areas of a
744 DOX-treated mouse. Note: Videos of DOX-treated mice showing severe scratching
745 behavior and of Ctrl are found in the supplement.

746
747 Figure 3: Histological evaluation of skin pathology in KCa3.1+ mice. H&E-stained
748 sections of normal skin of an untreated mouse (A) and a skin of a DOX-treated
749 KCa3.1+ (B) with severe hyperplasia and hyperkeratosis. C) Summary of pathology
750 scores. Data are given as means +/- SEM, n=4 (1 week DOX), n=26 (2 weeks DOX),

751 n=15 (Ctrls); *P < 0.05 vs. 1 week DOX, Student's T test. Note that the scores for
752 Ctrl skin are 0. D) Higher magnification of the hyperplastic epidermis of DOX-treated
753 KCa3.1+. Note the presence of intra-epidermal edema with enlarged intra-cellular
754 space (indicated by white arrow). E) Immune histological stains of the proliferation
755 marker, PCNA, in the hyperplastic epidermis of DOX-treated KCa3.1+. Note the
756 intense staining of the basal layer (white arrow) that becomes weaker when
757 approaching the stratum corneum (representative image from 3 mice). F). The
758 TUNEL assay detected no apoptotic keratinocytes in the hyperplastic epidermis.

759

760 Figure 4: Cytokine mRNA-expression profile. (A) Alterations of cytokine mRNA-
761 expression profile in DOX-treated KCa3.1+ mice (DOX/-DOX). (B) Cytokines with
762 higher expression in the epidermis than dermis (epidermis/dermis). AREG,
763 amphiregulin (DOX, n=2; -DOX, n=2); BTC, betacellulin (DOX, n=2; -DOX, n=2);
764 EREG, epiregulin (dox, n=5; -DOX, n=5); HB-EGF, Heparin-binding EGF-like
765 growth factor (DOXx, n=5; -DOX, n=5); HGF, Hepatocyte growth factor (DOX, n=5;
766 -DOX, n=5), Interleukin(IL)- β 1 (DOX, n=7; -DOX, n=7), IL-2 (DOX, n=2; -DOX,
767 n=2), IL-4 (DOX, n=2; -DOX, n=2), IL-6 (DOX, n=7; -DOX, n=7), IL-23 (DOX,
768 n=2; -DOX, n=6), IL-25 (DOX, n=2; -DOX, n=2), IL-33 (DOX, n=2; -DOX, n=2);
769 KGF, keratinocyte growth factor (DOX, n=2; -DOX, n=2); TGF α , transforming
770 growth factor α (DOX, n=5; -DOX, n=5); TNF α ; tumor necrosis factor- α (DOX, n=5;
771 -DOX, n=5). Data (DOX/-DOX; Epidermis/Dermis)) are given as means +/- SEM;
772 *P<0.05, Student's T test.

773

774 Figure 5: A) Senicapoc suppressed skin pathology and induction of IL- β 1, IL-6, IL-23
775 in DOX-treated KCa3.1+ mice. B) Data (Senicapoc/Ctrl) are given as means +/-
776 SEM, n=5 each, *P<0.05, **P<0.01 Student's T test.

777

778

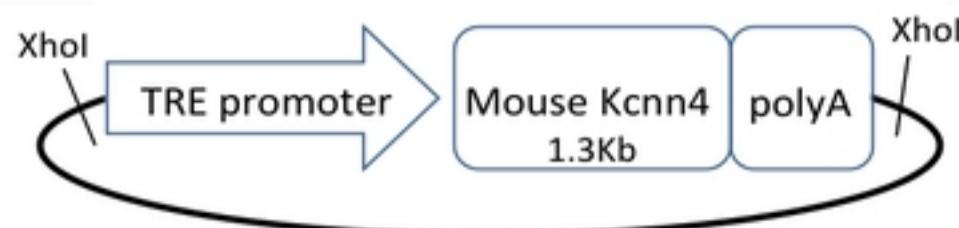
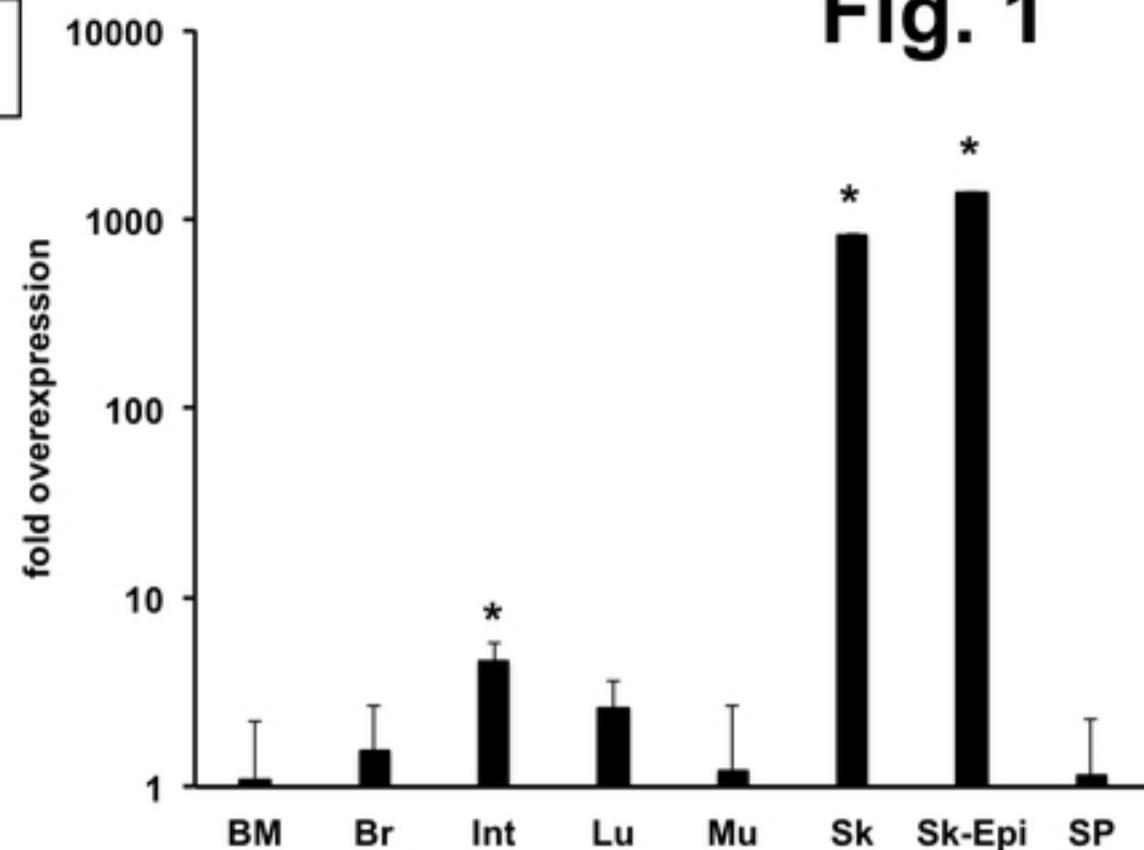
779 **Supporting Information**

780

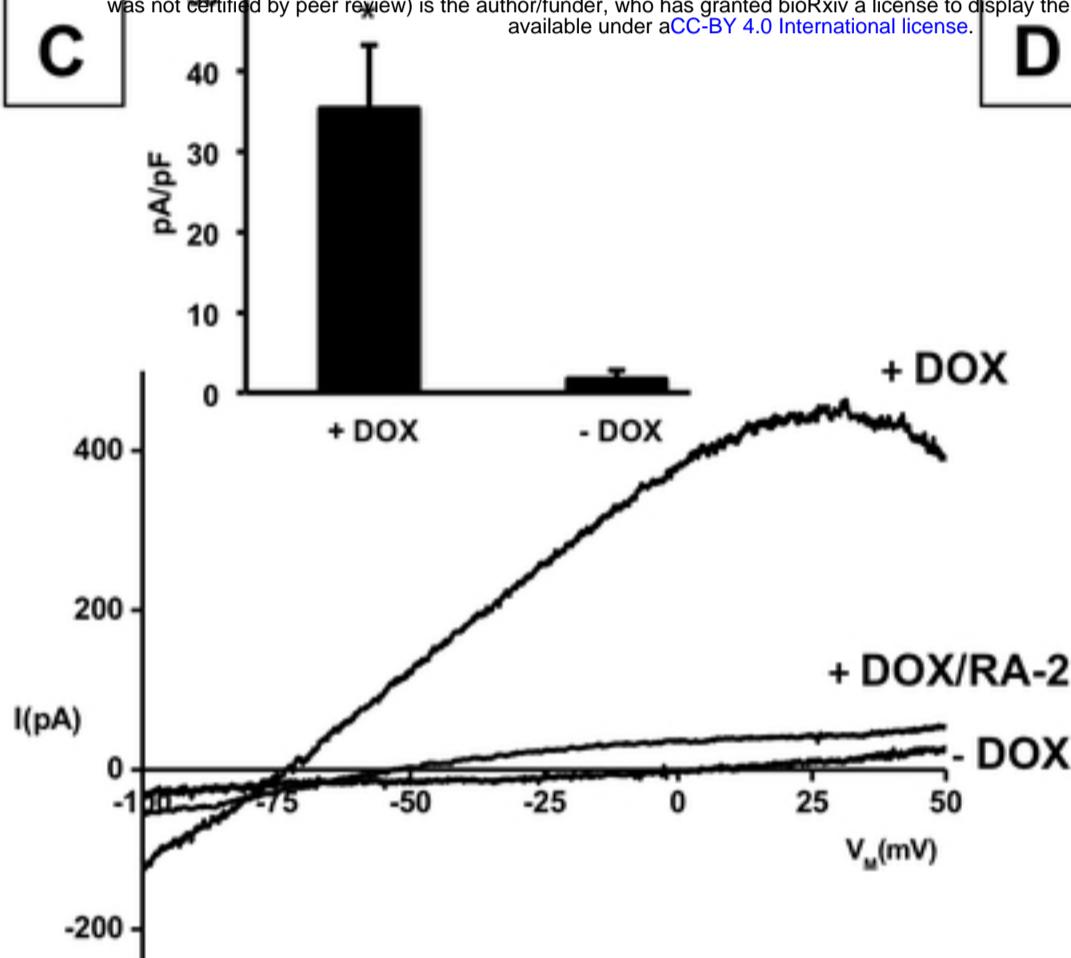
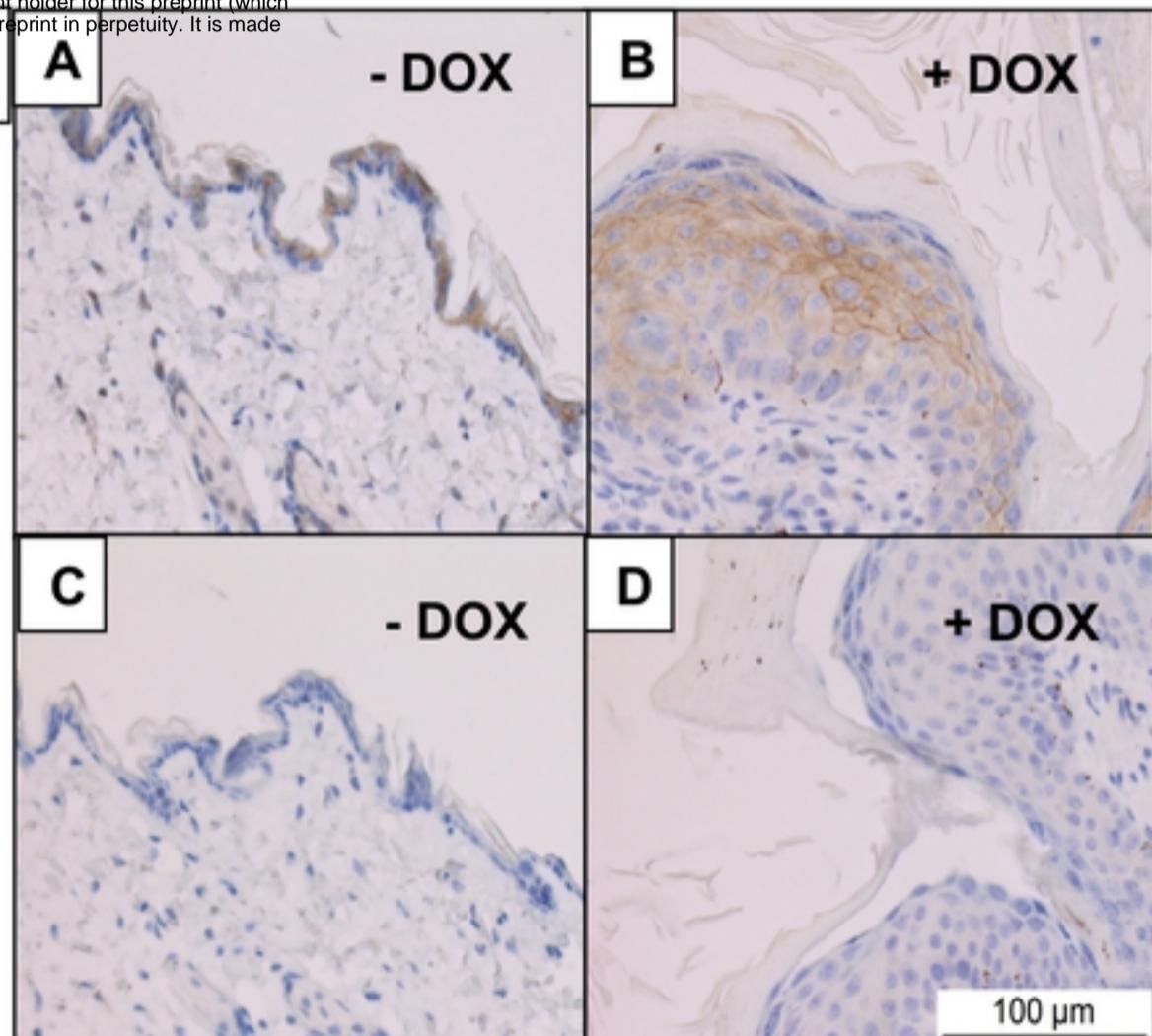
781 1) S1 Fig. Supplemental Data (multi-paneled figure)

782

783 2) S1 Movie. Supplemental Media file 1; Description: Two sequences showing mice
784 treated with DOX for two weeks and a sequence showing control mice receiving only
785 sucrose. Of the last two sequences the first shows a mouse from the Senicapoc trial
786 that did not receive Senicapoc. The second sequence shows a mouse that received
787 Senicapoc.



788

789 3) Data files:



790 3.1 Data qRT-PCR

791 3.2 Scores (skin pathology) and electrophysiological data

Fig. 1

A

B

bioRxiv preprint doi: <https://doi.org/10.1101/759274>; this version posted September 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

C

D

Fig. 2

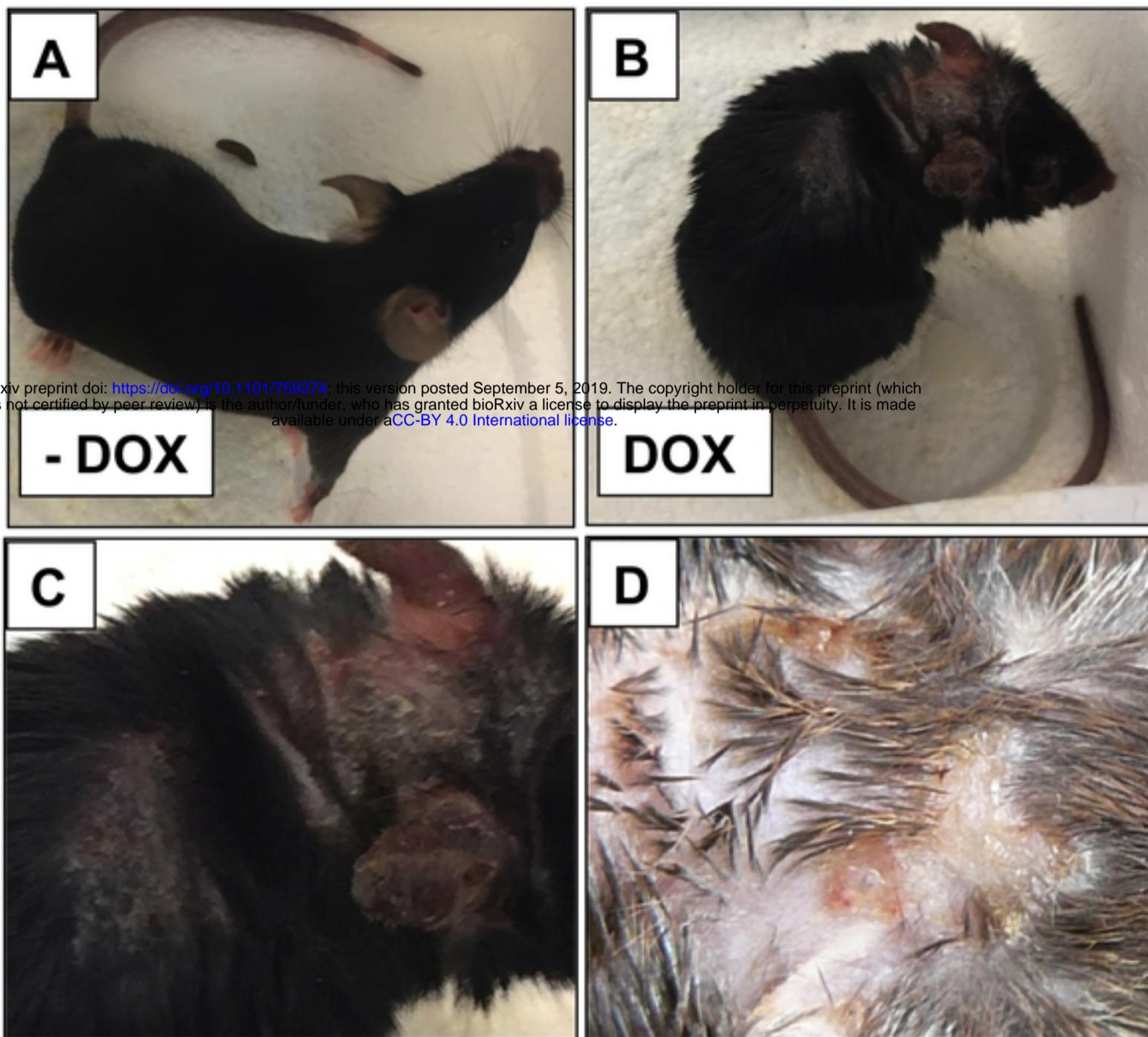
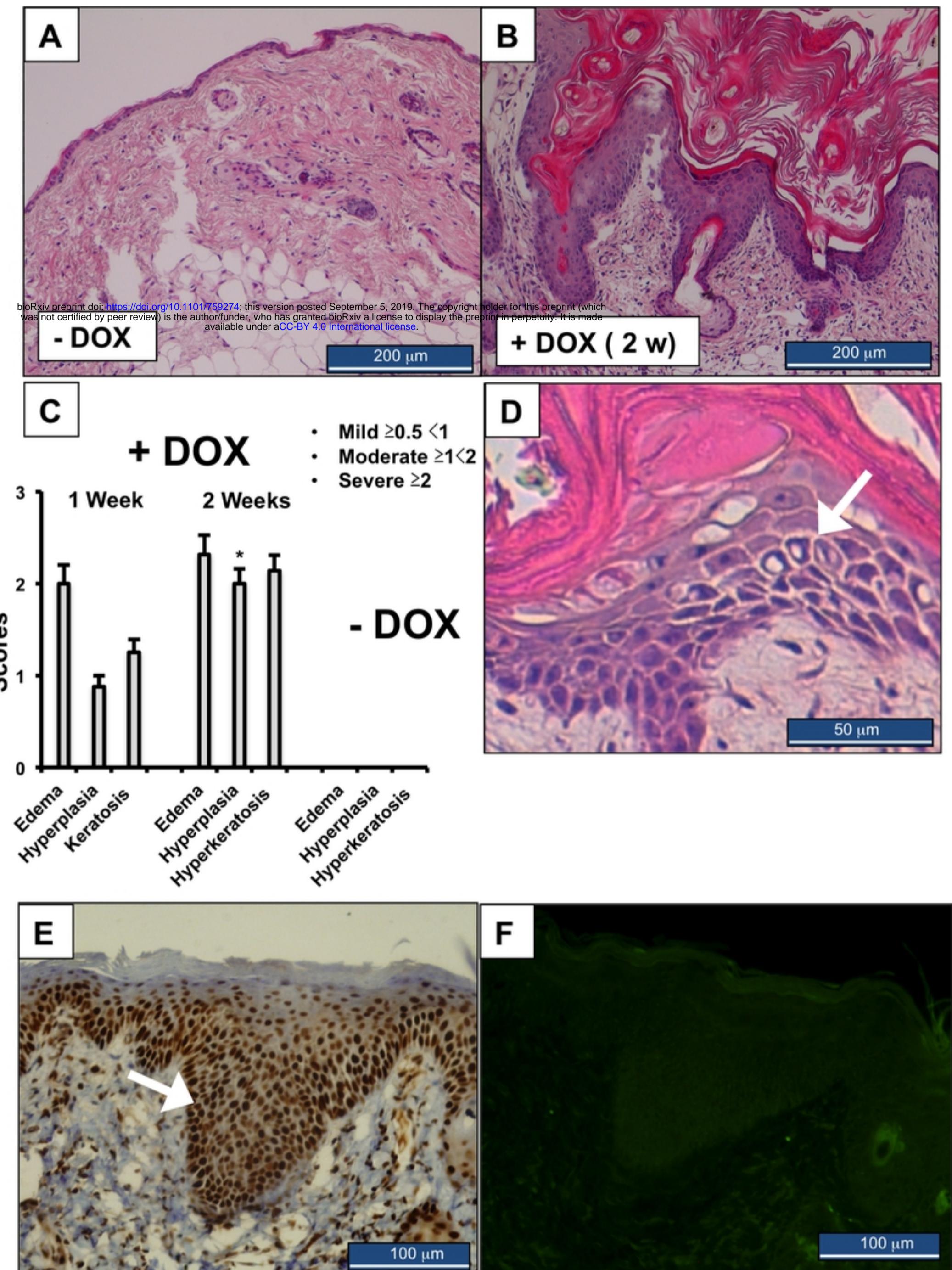
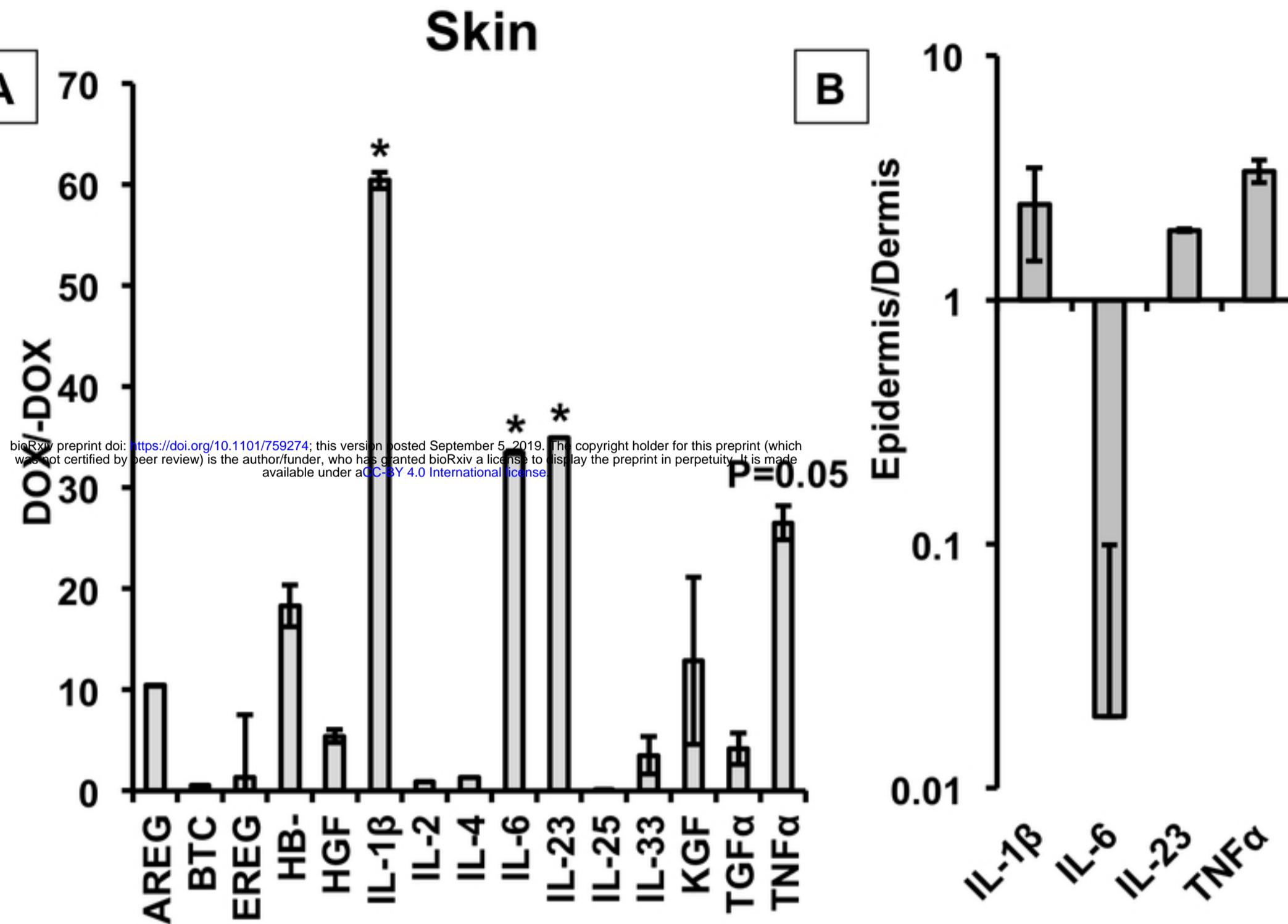
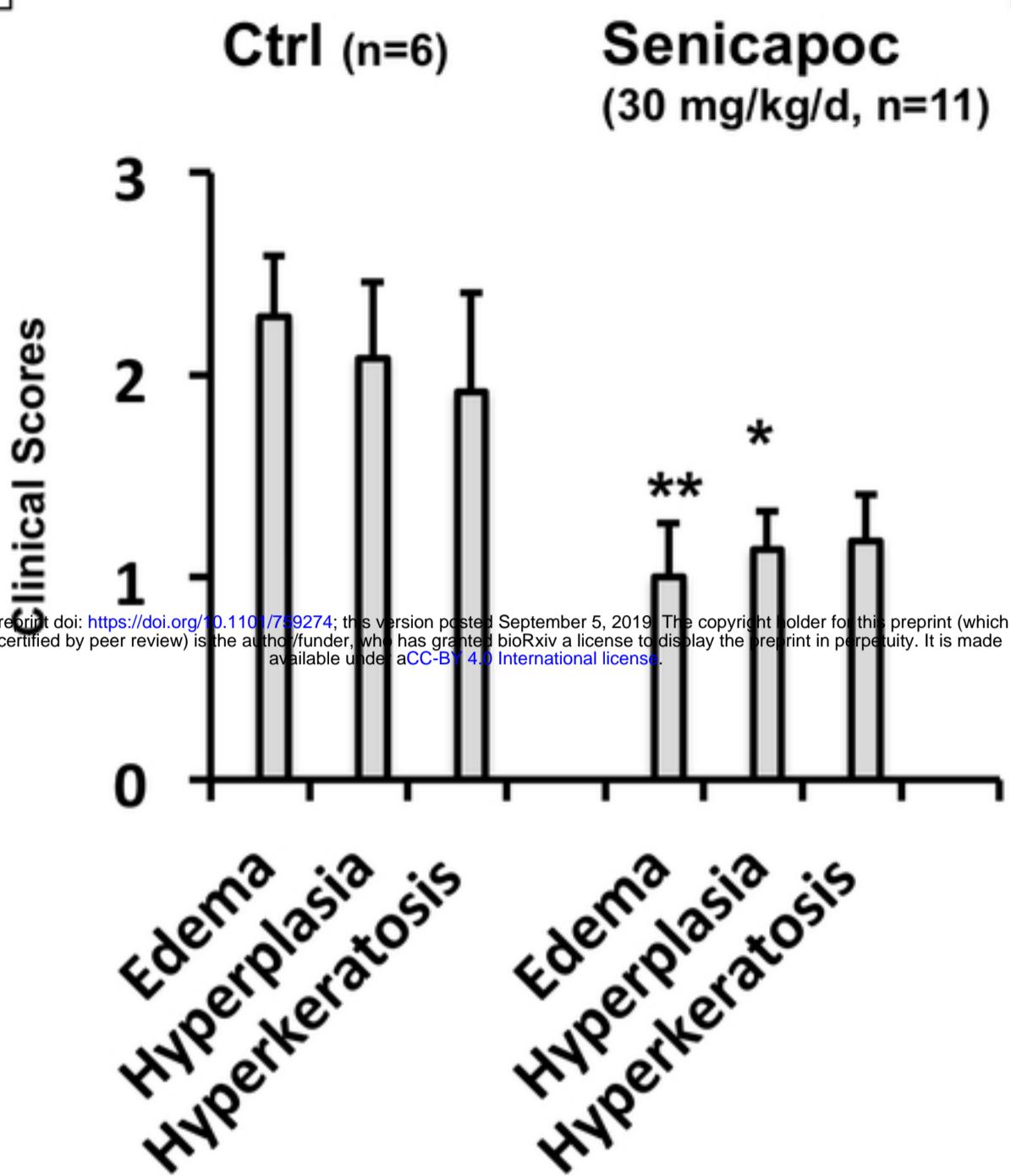
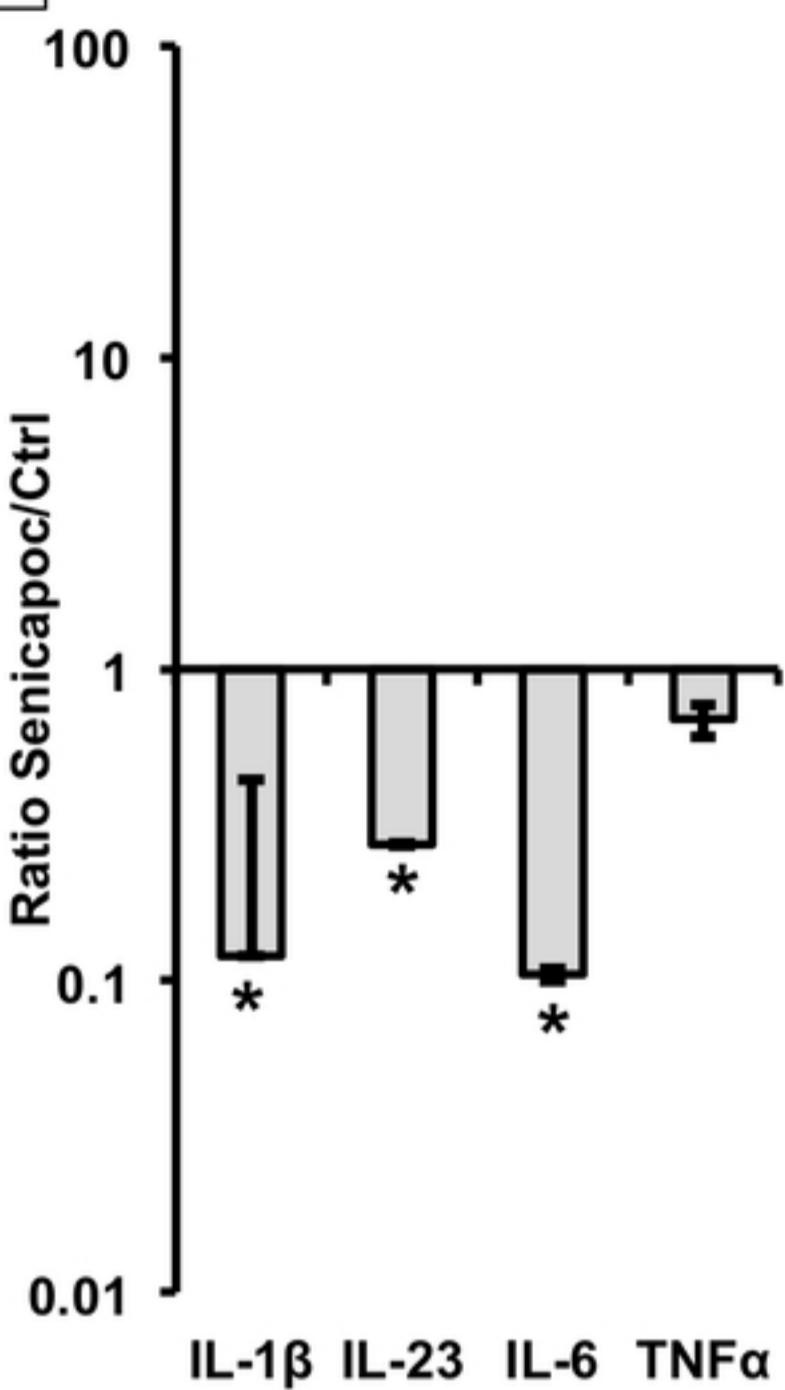






Fig. 3

Fig. 4

Fig. 5**A****B**