

1 **Single-cell transcriptomic landscape of cardiac neural crest
2 cell derivatives during embryonic and neonatal development**

3 **Xuanyu Liu, PhD¹*** Wen Chen, BSc¹* Wenke Li, MSc¹ Ziyi Zeng, BSc¹* James R.
4 Priest, MD² Zhou Zhou, MD, PhD¹

5 ¹State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for
6 Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine,
7 Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of
8 Medical Sciences and Peking Union Medical College, Beijing 100037, China

9 ²Stanford University School of Medicine, Stanford, CA 94305, USA

10 * X.L. and W.C. contributed equally to this manuscript

11 **Running title:** Single-cell RNA-seq of CNCC derivatives

12 **Subject Terms:**

13 Cell Biology /Structural Biology

14 Developmental Biology

15 Gene Expression and Regulation

16 Vascular Biology

17 **Address correspondence to:**

18 Dr. Zhou Zhou, e-mail: zhouzhou@fuwaihospital.org, No. 167, Beilishi Road, Xicheng
19 District, Beijing, 100037, People's Republic of China

20 Word count: 7,159

21

22 **ABSTRACT**

23 **Rationale:** Cardiac neural crest cells (CNCCs) contribute greatly to cardiovascular
24 development. A thorough understanding of the cell lineages, transcriptomic states and
25 regulatory networks of CNCC derivatives during normal development is essential for
26 deciphering the pathogenesis of CNCC-associated congenital anomalies. However, the
27 transcriptomic landscape of CNCC derivatives during development has not yet been
28 examined at a single-cell resolution.

29 **Objective:** We sought to systematically characterize the cell lineages, define the
30 developmental chronology and elucidate the transcriptomic dynamics of CNCC
31 derivatives during embryonic and neonatal development.

32 **Methods and Results:** We performed single-cell transcriptomic sequencing of 34,131
33 CNCC-derived cells in mouse hearts from eight developmental stages between E10.5
34 and P7. Through single-cell analyses and single-molecule fluorescence *in situ*
35 hybridization, we confirmed the presence of CNCC-derived mural cells. Furthermore,
36 we found the transition from CNCC-derived pericytes to microvascular smooth muscle
37 cells, and identified the genes that were significantly regulated during this transition
38 through pseudo-temporal analysis. CNCC-derived neurons first appeared at E10.5,
39 which was earlier than previously recognized. In addition, the CNCC derivatives
40 switched from a proliferative to a quiescent state with the progression of development.
41 Gradual loss of the neural crest molecular signature with development was also
42 observed in the CNCC derivatives. Our data suggested that many CNCC-derivatives
43 had already committed or differentiated to a specific lineage when migrating to the heart.
44 Finally, we characterized some previously unknown subpopulations of CNCC
45 derivatives during development. For example, we found that *Penk*⁺ cells, which were
46 mainly localized in outflow tract cushions, were all derived from CNCCs.

47 **Conclusions:** Our study provides novel insights into the cell lineages, molecular

48 signatures, developmental chronology and state change dynamics of CNCC derivatives
49 during embryonic and neonatal development. Our dataset constitutes a valuable
50 resource that will facilitate future efforts in exploring the role of CNCC derivatives in
51 development and disease.

52 **Key Words:**

53 Single-cell RNA-seq, cardiac neural crest cell, cardiac mural cell, embryonic
54 development, neonatal development

55 **Nonstandard Abbreviations and Acronyms:**

56 CCS Cardiac conduction system
57 CNCC Cardiac neural crest cell
58 GEM Gel Beads-in-Emulsion
59 mVSMC Microvascular smooth muscle cell
60 NCC Neural crest cell
61 OFT Outflow tract
62 PCA Principal component analysis
63 smFISH Single-molecule fluorescence in situ hybridization
64 TF Transcriptional factor
65 UMAP Uniform manifold approximation and projection
66 UMI Unique molecular identifier
67 VSMC Vascular smooth muscle cell
68

69 INTRODUCTION

70 Neural crest cells (NCCs) are a multipotent, migratory cell population that delaminates
71 from the dorsal part of the neural tube via epithelial-to-mesenchymal transition.¹ During
72 embryogenesis, migratory NCCs give rise to a plethora of cell lineages, and contribute
73 to the development of a variety of tissues and organs, such as the skull bones, adrenal
74 gland, enteric nervous system and heart.² While the heart is mostly of mesodermal
75 origin, NCCs, which are ectodermal derivatives, contribute greatly to heart
76 development.³ The subpopulation of NCCs contributing to the heart are referred to as
77 cardiac neural crest cells (CNCCs).⁴ Since these cells were first discovered by Kirby et
78 al.,⁵ CNCCs have been demonstrated to play essential roles in cardiovascular
79 development including the remodeling of the pharyngeal arch arteries, cardiac outflow
80 tract (OFT) septation, valvulogenesis and cardiac innervation.⁶ Genetic or
81 environmental disturbance of the migration, survival and differentiation of CNCCs may
82 result in congenital cardiovascular anomalies. Various human syndromes involving
83 severe congenital heart defects have been associated with CNCCs, such as DiGeorge,
84 Noonan and CHARGE syndromes.^{4,6} A thorough understanding of the cell lineages,
85 transcriptomic states and regulatory networks of CNCC derivatives during normal
86 development is essential for deciphering the pathogenesis of these CNCC-associated
87 congenital cardiovascular anomalies.

88 In recent decades, significant advances in understanding the CNCC contributions to
89 heart development have been made by using lineage tracing mouse models such as
90 *Wnt1-Cre* mice,⁷ although some aspects remain contentious. In these models, all
91 CNCCs and their derivatives are genetically labeled by the *Cre-loxP* recombinase
92 system and observed via LacZ staining or fluorescence imaging (imaging-based lineage
93 tracing).⁸ After delamination from the neural tube (embryonic day 8.5, E8.5), CNCC
94 derivatives first colonize the pharyngeal arch artery and ultimately differentiate into
95 vascular smooth muscle cells (VSMCs) of the aortic arch.⁴ Starting at E10.5, CNCC-

96 derived mesenchymal cells migrate into the OFT and join the cushion mesenchyme,
97 where they participate in the formation of the aorticopulmonary septum for complete
98 separation of the pulmonary and systemic circulation.⁹ These CNCC-derived
99 mesenchymal cells eventually give rise to part of the smooth muscle walls of the great
100 arteries.¹⁰ The remodeling of OFT cushions also result in the formation of semilunar
101 valvular leaflets, among which CNCC derivatives mainly contribute to the two leaflets
102 adjacent to the aorticopulmonary septum.^{7,11} CNCCs have also been suggested to
103 directly contribute to the smooth muscle walls of the proximal coronary arteries.^{7,12} In
104 addition to the entry point described above (i.e., the arterial pole of the heart), CNCC
105 derivatives enter the heart from a second entry point, the venous pole at E12.5, whereby
106 they penetrate the heart and migrate into the atrioventricular valves.^{11,13} All the
107 melanocytes in atrioventricular valves are derived from CNCCs.¹¹

108 In addition, neurons and glial cells derived from CNCCs contribute to the
109 parasympathetic innervation of the heart.^{11,14} CNCC-derived neurons in the heart were
110 first observed at E11.5.^{14,15} Although it has been suggested that CNCCs are required for
111 normal development of the cardiac conduction system (CCS), it remains contentious
112 whether CNCCs directly contribute to the CCS, which is known to be derived from the
113 myocardium (myocardial conducting cells).^{4,6} Likewise, the presence of CNCC-derived
114 myocardial cells remains controversial, although it has been suggested that CNCCs are
115 essential for normal myocardial development.^{4,16}

116 Mural cells include pericytes that discontinuously ensheathe capillaries and
117 microvascular smooth muscle cells (mVSMCs) that cover larger-caliber vessels of the
118 microcirculation as well as their transitional cells.^{17,18} Neural crest-derived mural cells
119 have been identified in various organs, such as the brain, retina, head and thymus.^{19,20}
120 However, one previous study did not find any CNCC-derived mural cells in the heart
121 ventricle at E14.5 using lineage tracing.²¹ Given that only one developmental stage was
122 examined in the previous study, it remains an open question whether CNCCs contribute

123 to cardiac mural cells.

124 It has become increasingly evident that even at the beginning of migration from the
125 neural tube, the NCCs are heterogeneous, comprising multipotent cells, cells whose
126 differentiation potential are restricted to varying degrees (fate-restricted cells), and even
127 precursors committed to a particular lineage.²² Although transcriptomic states have
128 been investigated for pre-migratory or early migrating NCCs in the dorsal neural tube
129 of the chick embryo,^{23,24} little is known regarding the states of CNCC derivatives with
130 respect to their differentiation potential and proliferative ability when they arrive at the
131 heart or during embryonic and neonatal development of the heart.

132 One obvious drawback of imaging-based lineage tracing is that it cannot provide
133 detailed molecular information about cell state transitions.⁸ Recent technical advances
134 in large-scale single-cell RNA-seq have enabled the transcriptomes of tens of thousands
135 of cells to be assayed at a single-cell resolution.²⁵ As a complement to conventional
136 imaging-based lineage tracing, large-scale single-cell RNA-seq allows unbiased
137 cellular heterogeneity dissection, molecular signature identification and developmental
138 trajectory reconstruction at an unprecedented scale and resolution. Large-scale time-
139 series single-cell RNA-seq is becoming a powerful tool for studying the development
140 of complex tissues, organs and even whole organisms.^{26,27} However, to our knowledge,
141 the transcriptomic landscape of CNCC derivatives during embryonic and neonatal
142 development has not yet been examined at a single-cell resolution.

143 Here, we performed single-cell RNA-seq of CNCC derivatives in mouse hearts from
144 eight developmental stages between E10.5 and P7 (postnatal day 7). We sought to
145 systematically characterize the cell lineages, define the developmental chronology and
146 elucidate the transcriptomic dynamics of CNCC derivatives during embryonic and
147 neonatal development.

148 **METHODS**

149 The raw sequencing reads have been deposited in the Sequence Read Archive and are
150 available through project accession number PRJNA562135. Detailed methods can be
151 found in the Supplementary Methods.

152 **RESULTS**

153 ***Single-cell transcriptomic sequencing of CNCC derivatives during embryonic and***
154 ***neonatal development.***

155 To investigate the transcriptomic landscape of CNCC derivatives during development,
156 we used the *Wnt1-Cre; Rosa26-tdTomato* mouse model to specifically label CNCC-
157 derived cells (Figure 1A). Whole hearts were dissociated, and *tdTomato*-positive cells
158 were sorted for single-cell capture. The developmental stages we selected spanned from
159 the very early time when CNCC derivatives arrived at the cardiac OFT during
160 embryonic development (i.e., E10.5)⁹ to neonatal stage P7 (Figure 1B). 10X Genomics
161 Chromium Single Cell 3' transcriptomic sequencing libraries were constructed and
162 subjected to sequencing. The sequencing quality metrics were similar across samples,
163 reflecting relatively little technical variation (Online Table I). After the application of
164 stringent quality control, we obtained high-quality single-cell transcriptomes of 34,131
165 CNCC-derived cells from eight stages. To facilitate further data exploration, we
166 developed a web-based interface for our dataset (<http://scrnaseqcnncc.fwgenetics.org>)
167 that permits interactive examination of expression for any gene of interest.

168 ***The spatial distribution of the CNCC derivatives.***

169 The visualization of *tdTomato*-positive cells by single-molecule fluorescence *in situ*
170 hybridization (smFISH) enabled us to accurately obtain spatial distribution information
171 for the CNCC derivatives, which was not included in the single-cell RNA-seq data
172 (Figure 1C). At neonatal stage P7, we observed a large number of *tdTomato*-positive
173 cells in the walls of the aorta and pulmonary artery (Figure 1C-D) as well as the aortic

174 and pulmonary valve leaflets (Figure 1E, Online Figure I), reflecting the great
175 contribution of CNCCs to the OFT development. Notably, our smFISH results indicated
176 that CNCC-derived cells only populated the inner medial cells of both the ascending
177 aorta and aortic root (Figure 1C-D), thus supporting the view put forth in the most
178 recent report about the distribution of CNCC- and SHF- derived VSMCs.¹⁰ Consistent
179 with previous reports,^{7,11} the CNCC derivatives were found mainly in the two leaflets
180 adjacent to the aorticopulmonary septum of aortic and pulmonary valves (i.e., right and
181 left leaflets) (Online Figure I). Compared with the aortic and pulmonary valves (Figure
182 1E), the CNCCs made a much smaller contribution to the atrioventricular valves (Figure
183 1F). In addition, *tdTomato*-positive cells were found to be embedded in the walls of
184 ventricles (Figure 1G). CNCC-derived VSMCs were observed in the coronary
185 vasculature, as evidenced by the co-expression of *tdTomato* and a specific marker for
186 mature VSMCs (i.e., *Myh11*) (Figure 1H).

187 ***Cell lineages and transcriptomic states of the CNCC derivatives during embryonic***
188 ***and neonatal development.***

189 After recognizing the spatial distribution of the CNCC derivatives, we systematically
190 dissected the cell lineages and transcriptomic states of the CNCC derivatives. The
191 unsupervised clustering of the 34,131 CNCC-derived cells from eight stages identified
192 21 cell clusters (Figure 2A). The data structure was visualized in a two- or three-
193 dimensional UMAP embedding (Online Data I). Six cell lineages were revealed by
194 hierarchical clustering of the clusters based on the average expression of 2,000 selected
195 features (Figure 2B) and the expression of established markers (Figure 2C). The
196 representative molecular signatures for each cluster are shown in Figure 2D (Online
197 Table II).

198 The VSMC (marked by the mature VSMC marker *Myh11*²⁸ and the immature VSMC
199 marker *Cxcl12*²⁹) and mesenchymal (marked by *Pdgfra*³⁰ and *Lum*³¹) lineages
200 constituted the two largest lineages of the CNCC derivatives (accounting for 50.4% and

201 42.1% of the derivatives, respectively). Consistent with the differentiation of
202 mesenchymal cells into VSMCs during development, these two lineages were aligned
203 closely in the UMAP embedding (Figure 2A), and some intermediate subpopulations,
204 such as c4, expressed markers of both lineages (Figure 2C). As expected, we identified
205 CNCC-derived neurons (marked by the parasympathetic neuron marker *Slc18a3* and
206 the sympathetic neuron marker *Th*¹⁴), Schwann cells (marked by *Gfra3* and *Cnp*³²) and
207 melanocytes (marked by *Mlana*³³ and *Dct*³⁴). We did not find any CCS or myocardial
208 cell clusters, so our data do not support a direct contribution of CNCCs to the CCS and
209 myocardium in the mouse.

210 Intriguingly, we observed a cluster of mural cells (i.e., c19) based on the pericyte
211 markers recently reported from single-cell studies: *P2ry14*³² and *Vtn*³⁵ (Figure 2B-C),
212 thus supporting the existence of CNCC-derived mural cells. To further confirm their
213 mural cell identity, we examined the expression of canonical pericyte markers and
214 VSMC contractile markers (Figure 2E). Compared with the others, the c19 cluster
215 expressed higher levels of canonical pericyte markers including *Pdgfrb*, *Cspg4* (NG2),
216 *Rgs5*, *Des* and *Kcnj8*.^{18,36} It also exhibited high expression of VSMC contractile
217 markers, including *Acta2*, *Cnn1* and *Myh11*,²⁸ reflecting a heterozygous microvascular
218 mural population comprising both pericytes and mVSMCs. Our smFISH results
219 ultimately validated the presence of CNCC-derived pericytes in the heart through the
220 co-expression of *tdTomato* and *Vtn* (Figure 2F).

221 ***CNCC-derived pericytes transition to microvascular smooth muscle cells.***

222 To understand the heterogeneity of the CNCC-derived mural cells, we performed
223 subclustering of the c19 cells from stage P7 (227 cells, accounting for 48% of the
224 cluster). Two subclusters were identified, sc1 and sc2, which correspond to pericytes
225 and mVSMCs, respectively, based on the expression of markers (Figure 3A-B). RNA
226 velocity analysis represents a computational framework that can infer the direction and
227 rate of cellular state changes based on the relative abundance of spliced and unspliced

228 transcripts.³⁷ Our RNA velocity analysis revealed a transition from pericytes to
229 mVSMCs, which is in agreement with a previous report that pericytes serve as
230 progenitors for smooth muscle cells of the coronary vasculature.³⁸

231 The single-cell data provided a unique opportunity for interrogating the regulatory
232 changes during the transition. Pseudo-temporal ordering of the cells using Monocle2
233 resulted in the construction of a linear trajectory of cellular transition (Figure 3D-E).
234 We further identified 952 genes that were significantly regulated during the progression
235 of the transition (Figure 3F, Online Table III, adjusted P-value <1E-04). Hierarchical
236 clustering of the identified genes revealed three clusters. Gene cluster I represented the
237 molecular characteristics of pericytes and was mainly enriched for lysosomal
238 membrane organization, cellular response to platelet-derived growth, cellular response
239 to vascular endothelial growth factor stimulus and response to hypoxia (Figure 3F,
240 Online Table IV). Gene cluster II reflected the phenotype of transitioning cells and was
241 mainly enriched for mitochondrial electron transport, positive regulation of SMAD
242 protein signal transduction, negative regulation of vascular smooth muscle cell
243 proliferation and the response to fluid shear stress. Gene cluster III represented the
244 characteristics of mVSMCs and was mainly enriched for positive regulation of
245 transcription from RNA polymerase II promoter involved in smooth muscle cell
246 differentiation and substrate adhesion-dependent cell spreading. Figure 3G shows the
247 expression dynamics of the pericyte markers *Vtn* and *Pdgfrb* as well as the VSMC
248 marker *Myh11*, reflecting a continuum of phenotypic changes in cells embedded in the
249 walls of the microvasculature. Interestingly, Notch3 signaling has been suggested to be
250 important in the pericyte to VSMC transition.³⁸ We found that *Notch3* was significantly
251 up-regulated specifically in the middle phase of the trajectory (Figure 3G, adjusted P-
252 value = 0.031), while other Notch receptors including *Notch1*, *Notch2* and *Notch4* were
253 not significantly regulated. Moreover, we examined the transcription factors (TFs) that
254 were significantly regulated during the transition (Figure 3H). Notably, *Fosb*, *Tbx2* and

255 *Klf2* were specifically up-regulated in the middle phase of the trajectory, implying that
256 they played roles in the transition.

257 ***Developmental chronology and transcriptomic state change dynamics of CNCC***
258 ***derivatives during development.***

259 The study of the developmental chronology of CNCC derivatives has previously been
260 limited by improper or limited cell markers for each developmental stage. The large-
261 scale single-cell RNA-seq dataset gave us an unpreceded opportunity, since the cells
262 were clustered in an unbiased manner based on the whole transcriptome, without the
263 need for *a priori* knowledge about the cell markers. Figure 4A and 4B show the
264 proportion of each cluster in each stage and the proportion of cells from each stage in
265 each cluster, respectively. As shown in cluster I of Figure 4B, the melanocyte lineage
266 first appeared at E11.5 and then greatly expanded at E14.5. These results are consistent
267 with a previous report that *Dct* (a melanocyte marker) expression is first observed at
268 E11.5 and that a larger number of melanocytes are found in the atrioventricular
269 endocardial cushions at E14.5,³⁴ reflecting the reliability of our dataset. Surprisingly,
270 CNCC-derived neurons were found to appear first at E10.5, which was earlier than
271 previously recognized (E11.5).^{13,14} Only six E10.5 neuron cells were captured, but they
272 all expressed neural markers (Online Table V), thus excluding errors from data
273 integration and clustering.

274 As expected, the VSMC lineage expanded mainly at the later stages of development
275 (after E14.5; cluster II in Figure 4B), and the mesenchymal lineage expanded mainly at
276 the early stages (before E14.5; cluster III in Figure 4B). Notably, the mural cells
277 expanded greatly postnatally (especially at P7), in line with the increase in capillary
278 growth during the postnatal development of the heart.³⁹ The transcriptomic state change
279 dynamics during development of the CNCC-derived lineages can be clearly visualized
280 in Figure 4C. Notably, the earliest sample from E10.5 included multiple cell lineages,
281 supporting the view that many CNCC-derivatives had already committed or

282 differentiated to a specific lineage when they arrived at the heart.

283 ***Gradual loss of proliferation and the neural crest molecular signature with***
284 ***development in CNCC derivatives.***

285 We further characterized the CNCC derivatives with respect to their proliferation ability
286 and differentiation potential when they arrived at the heart as well as during embryonic
287 and postnatal development. We found that the CNCC derivatives were highly
288 proliferative when they arrived at the heart (E10.5) and switched from a proliferative
289 to a quiescent state with the progression of development (Figure 5A). Some clusters,
290 such as c18, c12, c8, c5 and c7, were highly proliferative (Figure 5B). We further
291 investigated the differentiation potential of CNCC derivatives by examining the
292 expression of a list of markers for pluripotency and pre-migratory neural crest cells that
293 was compiled by a previous study.²³ No cell clusters were found to exhibit high
294 expression of pluripotency genes such as *Nanog* and *Pou5f1* (*Oct4*), suggesting that the
295 CNCC-derived cells generally did not possess stemness after migrating into the heart
296 (Figure 5C). Moreover, we observed gradual loss of the neural crest molecular signature
297 with development in the CNCC derivatives (Figure 5D). Notably, the CNCC-derived
298 cell lineages exhibited differences in the neural crest molecular signature (Figure 5E).
299 Surprisingly, the melanocytes, rather than the mesenchymal cells, were most similar to
300 pre-migratory neural crest cells. The melanocytes also showed high expression of other
301 neural crest markers, including *Pax3* and *Kit*⁴⁰ (Online Figure II).

302 ***Characterization of interesting cell subpopulations of CNCC derivatives during***
303 ***development.***

304 Single-cell RNA-seq permits the identification of previously unrecognized
305 subpopulations, and we characterized some interesting subpopulations that deserve
306 further study. Cluster c1, c2 and c3 exhibited high expression of *Myh11*, thus
307 representing relatively mature VSMCs (Figure 2C). However, c2 was aligned distant
308 from c1 and c3 in the UMAP space (Figure 2A, Online Data I), suggesting that c2
309 represents another branch of the VSMC lineage distinct from c1 and c3, while the last

310 two clusters aligned together closely. Interestingly, compared with c1 and c3, c2
311 expressed significantly higher levels of contractile markers such as *Myh11* and *Cnn1* as
312 well as pericyte markers such as *Rgs5* and *Kcnj8* (Figure 6A). Cluster c1 and c3
313 expressed significantly higher levels of extracellular matrix genes such as *Eln* and
314 *Fbln2* than c2. Taken together, c2 may represent the CNCC-derived VSMCs of the
315 coronary vasculature, while c1 and c3 may represent the CNCC-derived VSMCs of the
316 great arteries. The smFISH results confirmed that the coronary arteries expressed
317 significantly higher levels of *Myh11* than the great arteries (Figure 6B-C).

318 The mesenchymal cluster c11 showed high expression of the transcription factor *Tcf21*
319 (Figure 6D), which may indicate a subpopulation of CNCC-derived valve interstitial
320 cells based on the previous reports.^{33,41} Our lab previously identified a *Penk*⁺
321 mesenchymal subpopulation in the developing OFT; however, whether this
322 subpopulation is derived from CNCCs was not answered.²⁹ In this study, we found the
323 mesenchymal cluster c9 showed high expression of *Penk* (Figure 6E), and the smFISH
324 results showed that the *Penk*⁺ cells were mainly localized in the OFT cushions where
325 the aortopulmonary septum formed, and all the *Penk*⁺ cells were derived from CNCCs
326 (Figure 6F).

327 Another interesting mesenchymal cluster is c5, which mainly comprised cells from the
328 early stages (Figure 3A), suggesting that it may represent the early state of the CNCC-
329 derived mesenchymal cells. This subpopulation showed high expression of the *Crabp1*
330 gene, encoding cellular retinoic acid binding protein 1 (Figure 6G), which has been
331 reported as the top marker of CNCC-derived mesenchymal cells at E9.25.⁴² It also
332 showed high expression of the *Crabp2* gene, encoding cellular retinoic acid binding
333 protein 2 (Figure 6H). The expression of *Crabp1* and *Crabp2*, two important regulators
334 of retinoic acid signaling, decreased during development. These results indicate that
335 CNCC derivatives are more sensitive to retinoic acid signaling at early stages of
336 development.

337 **DISCUSSION**

338 The neural crest is fascinating. The formation, migration and differentiation of NCCs
339 and NCC-associated pathologies have been the subject of intense research since the
340 discovery of these cells 150 years ago.⁴³ CNCCs play critical roles in the evolution and
341 development of the vertebrate cardiovascular system.⁴⁴ In this study, we systematically
342 investigated the transcriptional landscape of CNCC derivatives during cardiac
343 development at a single-cell resolution. On the basis of large-scale single-cell RNA-seq
344 analyses and smFISH validation, we reported the presence of CNCC-derived mural
345 cells associated with the microvasculature. Furthermore, we found the transition from
346 CNCC-derived pericytes to mVSMCs and identified the genes that were significantly
347 regulated during the transition through pseudo-temporal ordering analysis. We defined
348 the developmental chronology of the CNCC-derived lineages and found that the
349 CNCC-derived neurons first appeared at E10.5, which was earlier than previously
350 recognized. Our data indicated that many CNCC derivatives had already committed or
351 differentiated to a specific lineage when they arrived at the heart. We found that the
352 CNCC derivatives were highly proliferative when migrating into the heart, and
353 switched from a proliferative to a quiescent state with the progression of development.
354 Gradual loss of the neural crest molecular signature with development was also
355 observed in the CNCC derivatives. The CNCC-derived cell lineages exhibited
356 differences in the neural crest molecular signature. Surprisingly, the melanocytes were
357 most similar to the pre-migratory neural crest cells. Finally, we confirmed some
358 interesting subpopulations of the CNCC derivatives during development. For example,
359 we found that *Penk*⁺ cells were mainly localized in the OFT cushions where the
360 aortopulmonary septum formed, and confirmed that all the *Penk*⁺ cells were derived
361 from CNCCs.

362 Understanding the origin and regulators driving the development of the cardiac
363 vasculature is an important topic in developmental biology. Microvascular mural cells,

364 comprising microvascular pericytes and microvascular smooth muscle cells, have
365 recently been recognized playing a critical role in cardiac vascular homeostasis and
366 disease.¹⁸ The plasticity of microvascular pericytes makes them promising cells for
367 application in cardiac regenerative medicine.¹⁷ Nevertheless, the phenotypes of
368 microvascular mural cells are variable, and canonical markers such as *Pdgfrb*, *Des* and
369 *Cspg4* do not specifically label them, as also shown in our data (Figure 2E), thus
370 impeding the identification of the source and role of this important but heterogeneous
371 population of cells. Using lineage tracing and canonical markers, previous studies have
372 reported the embryonic origin of cardiac mural cells from epicardium or endocardial
373 endothelial cells.^{21,45} Based on single-cell clustering and novel markers recently
374 reported from single-cell studies, we identified a third source of mural cells in the heart
375 (i.e., CNCC-derived mural cells) (Figure 2B-C). This finding makes sense because
376 NCCs have already been reported to give rise to mural cells in many organs, such as
377 the brain, retina and thymus.^{19,20} We also found that the mural cells expanded greatly
378 postnatally (especially at P7, Figure 4B), in line with the increase in capillary growth
379 during the postnatal development of the heart.³⁹ This may be one of the reasons why
380 the CNCC-derived mural cells were not identified in a previous study²¹ since the
381 CNCC-derived mural cells are relatively few at E14.5 (the stage that study only
382 examined). Consistent with the phenotypic heterogeneity of cardiac mural cells, our
383 results reflected a more complex embryonic origin of cardiac mural cells than
384 previously recognized. Whether cardiac mural cells of different origins behave
385 differentially during pathological processes of the coronary vasculature deserves further
386 study. Although a previous study indicated that pericytes can transition to mVSMCs,³⁸
387 the gene expression dynamics underlying this transition are not yet fully elucidated.
388 Through pseudo-temporal ordering of single cells, we confirmed the linear trajectory
389 of the pericyte-to-mVSMC transition and, for the first time, elucidated the previously
390 unknown regulatory changes during the transition (Figure 3F). Our results support the
391 role of Notch3 signaling during the transition and provide candidate regulators

392 potentially driving the process (Figure 3H).

393 Although our data do not support a direct contribution of CNCCs to the CCS and
394 myocardium, our results highlight the contribution of CNCCs to cardiac vessels of
395 different calibers, from the VSMCs of the great arteries to mural cells wrapping the
396 microvasculature. Moreover, we found that the phenotypes of the cells wrapping the
397 cardiac vessels may vary as a function of the caliber of the vessels. For example, the
398 coronary arteries expressed significantly higher levels of the contractile marker *Myh11*
399 than the great arteries (Figure 6A-C). Our results reflect a continuum of cell phenotypes
400 along the cardiac vascular tree with VSMCs and pericytes at the two ends of the
401 phenotypic spectrum. The heterogeneity of the phenotypes of vessel-associated cells in
402 the brain vasculature has been dissected using single-cell RNA-seq.³⁶ The phenotypic
403 heterogeneity of the cardiac vasculature is also complex and deserves to be explored at
404 a single-cell resolution in the future by integrating single-cell RNA-seq data with spatial
405 transcriptomic data.⁴⁶

406 Due to the limitations of imaging-based lineage tracing used in the previous studies,^{7,11}
407 we know little about the states of CNCC derivatives when they migrate to the heart or
408 the molecular change dynamics during development. The large-scale single-cell RNA-
409 seq dataset gave us unpreceded opportunity to explore these questions. Unexpectedly,
410 CNCC-derived neurons expressing mature neuron markers were found to first appear
411 at E10.5 (Figure 4B, Online Table V), which is earlier than previously recognized.^{13,14}
412 Notably, the earliest sample investigated from E10.5 contained multiple cell lineages
413 and exhibited the expression of lineage-specific mature markers (Figure 4C). The
414 neuron, Schwann and melanocyte lineages aligned relatively distant from the
415 mesenchymal lineage in the UMAP embedding (Figure 4C), suggesting that most cells
416 of these lineages were not differentiated from the mesenchymal lineage after migrating
417 into the heart. No cell clusters were found to highly express the pluripotency genes such
418 as *Nanog* and *Pou5f1*, suggesting that CNCC-derived cells generally do not possess

419 stemness after migrating into the heart (Figure 5C). Taken together, our results support
420 the view that many CNCC-derivatives have already committed or differentiated to a
421 specific lineage when they arrived at the heart. In addition, we observed that the CNCC
422 derivatives were highly proliferative when migrating into the heart, and switched from
423 a proliferative to a quiescent state with the progression of development (Figure 5A).
424 We also observed gradual loss of the neural crest molecular signature with development
425 in the CNCC derivatives. These findings revealed by single-cell analyses provide a
426 deeper understanding of the CNCC derivatives during development.

427 In conclusion, our study provides novel insights into the cell lineages, molecular
428 signatures, developmental chronology and state change dynamics of CNCC derivatives
429 during embryonic and neonatal development. Our dataset constitutes a valuable
430 resource that will facilitate future efforts to explore the roles of CNCC derivatives in
431 development and disease.

432 **AUTHOR CONTRIBUTIONS**

433 X.L. performed data analysis, interpreted the results, and wrote the manuscript. W.C.
434 performed the wet lab experiments with the assistance of Z. Zeng. W.L. designed the
435 web interfaces. J. R. P. gave suggestions on result interpretation. Z. Zhou conceived the
436 project. X.L. and W.C. participated in designing the project.

437 **DISCLOSURES**

438 There are no conflicts of interest to declare by any of the authors.

439 **ACKNOWLEDGMENTS**

440 We thank Dr. Zhen Zhang at Children's Hospital of Shanghai for transferring the Wnt1-
441 Cre mouse line to our lab.

442 **SOURCES OF FUNDING**

443 This work is supported by grants from the National Natural Science Foundation of
444 China (81900282), the CAMS Initiative for Innovative Medicine (2016-I2M-1-016),
445 the Post-doctoral International Exchange Project (2018-BSH04), and the Foundation
446 for Fuwai Hospital Youth Scholars (2019-F08).

447 **REFERENCES**

- 448 1. Bhatt S, Diaz R, Trainor PA. Signals and switches in mammalian neural crest
449 cell differentiation. *Cold Spring Harb Perspect Biol.* 2013;5:a008326.
- 450 2. Szabo A, Mayor R. Mechanisms of neural crest migration. *Annu Rev Genet.*
451 2018;52:43–63.
- 452 3. Sieber-Blum M. Cardiac neural crest stem cells. *Anat Rec A Discov Mol Cell*
453 *Evol Biol.* 2004;276:34–42.
- 454 4. Plein A, Fantin A, Ruhrberg C. Neural crest cells in cardiovascular
455 development. *Curr Top Dev Biol.* 2015;111:183–200.
- 456 5. Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal
457 aorticopulmonary septation. *Science (80-).* 1983;220:1059–1061.
- 458 6. Keyte A, Hutson MR. The neural crest in cardiac congenital anomalies.
459 *Differentiation.* 2012;84:25–40.
- 460 7. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the
461 mammalian cardiac neural crest. *Development.* 2000;127:1607–1616.
- 462 8. Wu SS, Lee JH, Koo BK. Lineage Tracing: computational reconstruction goes
463 beyond the limit of imaging. *Mol Cells.* 2019;42:104–112.
- 464 9. Lin C-J, Lin C-Y, Chen C-H, Zhou B, Chang C-P. Partitioning the heart:
465 mechanisms of cardiac septation and valve development. *Development.*

466 2012;139:3277–3299.

467 10. Sawada H, Rateri DL, Moorleghen JJ, Majesky MW, Daugherty A. Smooth
468 muscle cells derived from second heart field and cardiac neural crest reside in
469 spatially distinct domains in the media of the ascending aorta - brief report.
470 *Arterioscler Thromb Vasc Biol.* 2017;37:1722–1726.

471 11. Nakamura T, Colbert MC, Robbins J. Neural crest cells retain multipotential
472 characteristics in the developing valves and label the cardiac conduction
473 system. *Circ Res.* 2006;98:1547–1554.

474 12. Arima Y, Miyagawa-Tomita S, Maeda K, Asai R, Seya D, Minoux M, Rijli
475 FM, Nishiyama K, Kim KS, Uchijima Y, Ogawa H, Kurihara Y, Kurihara H.
476 Preotic neural crest cells contribute to coronary artery smooth muscle involving
477 endothelin signalling. *Nat Commun.* 2012;3:1267.

478 13. Poelmann RE, Jongbloed MRM, Molin DGM, Fekkes ML, Wang Z, Fishman
479 GI, Doetschman T, Azhar M, Gittenberger-De Groot AC. The neural crest is
480 contiguous with the cardiac conduction system in the mouse embryo: A role in
481 induction? *Anat Embryol (Berl).* 2004;208:389–393.

482 14. Hildreth V, Webb S, Bradshaw L, Brown NA, Anderson RH, Henderson DJ.
483 Cells migrating from the neural crest contribute to the innervation of the
484 venous pole of the heart. *J Anat.* 2008;212:1–11.

485 15. Végh A, Duim S, Smits A, Poelmann R, ten Harkel A, DeRuiter M, Goumans
486 M, Jongbloed M. Part and Parcel of the Cardiac Autonomic Nerve System:
487 Unravelling Its Cellular Building Blocks during Development. *J Cardiovasc
488 Dev Dis.* 2016;3:28.

489 16. Engleka KA, Gitler AD, Zhang M, Zhou DD, High FA, Epstein JA. Insertion
490 of Cre into the Pax3 locus creates a new allele of Splotch and identifies

491 unexpected Pax3 derivatives. *Dev Biol.* 2005;280:396–406.

492 17. Avolio E, Madeddu P. Discovering cardiac pericyte biology: From
493 physiopathological mechanisms to potential therapeutic applications in
494 ischemic heart disease. *Vasc Pharmacol.* 2016;86:53–63.

495 18. Holm A, Heumann T, Augustin HG. Microvascular mural cell organotypic
496 heterogeneity and functional plasticity. *Trends Cell Biol.* 2018;28:302–316.

497 19. Zachariah MA, Cyster JG. Neural crest-derived pericytes promote egress of
498 mature thymocytes at the corticomedullary junction. *Science (80-).*
499 2010;328:1129–1135.

500 20. Trost A, Schroedl F, Lange S, Rivera FJ, Tempfer H, Korntner S, Stolt CC,
501 Wegner M, Bogner B, Kaser-Eichberger A, Krefft K, Runge C, Aigner L,
502 Reitsamer HA. Neural crest origin of retinal and choroidal pericytes. *Investig
503 Ophthalmol Vis Sci.* 2013;54:7910–7921.

504 21. Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, Corada M, Dejana
505 E, Zhou B, Adams RH. Endothelial cells are progenitors of cardiac pericytes
506 and vascular smooth muscle cells. *Nat Commun.* 2016;7:12422.

507 22. Kalcheim C. Neural crest cells and their derivatives. In: Encyclopedic
508 Reference of Genomics and Proteomics in Molecular Medicine. Berlin,
509 Heidelberg: Springer Berlin Heidelberg; 2006. p. 1254–1258.

510 23. Lignell A, Kerosuo L, Streichan SJ, Cai L, Bronner ME. Identification of a
511 neural crest stem cell niche by Spatial Genomic Analysis. *Nat Commun.*
512 2017;8:1830.

513 24. Tani-Matsuhasha S, Vieceli FM, Gandhi S, Inoue K, Bronner ME.
514 Transcriptome profiling of the cardiac neural crest reveals a critical role for
515 MafB. *Dev Biol.* 2018;

516 25. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB,
517 Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L,
518 Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW,
519 Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ,
520 McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP,
521 Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital transcriptional
522 profiling of single cells. *Nat Commun.* 2017;8:14049.

523 26. Plass M, Solana J, Wolf FA, Ayoub S, Misios A, Glažar P, Obermayer B,
524 Theis FJ, Kocks C, Rajewsky N. Cell type atlas and lineage tree of a whole
525 complex animal by single-cell transcriptomics. *Science (80-)*.
526 2018;360:eaaq1723.

527 27. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F,
528 Mundlos S, Christiansen L, Steemers FJ, Trapnell C, Shendure J. The single-
529 cell transcriptional landscape of mammalian organogenesis. *Nature*.
530 2019;566:496–502.

531 28. Sinha S, Iyer D, Granata A. Embryonic origins of human vascular smooth
532 muscle cells: implications for in vitro modeling and clinical application. *Cell
533 Mol Life Sci.* 2014;71:2271–2288.

534 29. Liu X, Chen W, Li W, Li Y, Priest JR, Zhou B, Wang J, Zhou Z. Single-cell
535 RNA-seq of the developing cardiac outflow tract reveals convergent
536 development of the vascular smooth muscle cells. *Cell Rep.* 2019;28:1346–
537 1361.e4.

538 30. Farahani RM, Xaymardan M. Platelet-derived growth factor receptor alpha as a
539 marker of mesenchymal stem cells in development and stem cell biology. *Stem
540 Cells Int.* 2015;2015:8.

541 31. Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M,

542 Lewitus E, Sykes A, Hevers W, Lancaster M, Knoblich JA, Lachmann R,
543 Pääbo S, Huttner WB, Treutlein B. Human cerebral organoids recapitulate gene
544 expression programs of fetal neocortex development. *Proc Natl Acad Sci U S*
545 A. 2015;112:15672–15677.

546 32. Skelly DA, Squiers GT, McLellan MA, Bolisetty MT, Robson P, Rosenthal
547 NA, Pinto AR. Single-Cell Transcriptional Profiling Reveals Cellular Diversity
548 and Intercommunication in the Mouse Heart. *Cell Rep.* 2018;22:600–610.

549 33. Hulin A, Hortells L, Gomez-Stallons MV, O'Donnell A, Chetal K, Adam M,
550 Lancellotti P, Oury C, Potter SS, Salomonis N, Yutzey KE. Maturation of heart
551 valve cell populations during postnatal remodeling. *Development.*
552 2019;146:dev173047.

553 34. Brito FC, Kos L. Timeline and distribution of melanocyte precursors in the
554 mouse heart. *Pigment Cell Melanoma Res.* 2008;21:464–470.

555 35. Farbhei N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K,
556 Ho JW, Nordon RE, Harvey RP. Single-cell expression profiling reveals
557 dynamic flux of cardiac stromal, vascular and immune cells in health and
558 injury. *Elife.* 2019;8:e43882.

559 36. Vanlandewijck M, He L, Mäe MA, Andrae J, Ando K, Del Gaudio F, Nahar K,
560 Lebouvier T, Laviña B, Gouveia L, Sun Y, Raschperger E, Räsänen M, Zarb Y,
561 Mochizuki N, Keller A, Lendahl U, Betsholtz C. A molecular atlas of cell types
562 and zonation in the brain vasculature. *Nature.* 2018;554:475–480.

563 37. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V,
564 Lidschreiber K, Kastriti ME, Lönnerberg P, Furlan A, Fan J, Borm LE, Liu Z,
565 van Bruggen D, Guo J, He X, Barker R, Sundström E, Castelo-Branco G,
566 Cramer P, Adameyko I, Linnarsson S, Kharchenko P V. RNA velocity of
567 single cells. *Nature.* 2018;560:494–498.

568 38. Volz KS, Jacobs AH, Chen HI, Poduri A, McKay AS, Riordan DP, Kofler N,
569 Kitajewski J, Weissman I, Red-Horse K. Pericytes are progenitors for coronary
570 artery smooth muscle. *Elife*. 2015;4:e10036.

571 39. Riley PR, Smart N. Vascularizing the heart. *Cardiovasc Res*. 2011;91:260–268.

572 40. Hatzistergos KE, Takeuchi LM, Saur D, Seidler B, Dymecki SM, Mai JJ,
573 White IA, Balkan W, Kanashiro-Takeuchi RM, Schally A V., Hare JM. cKit+
574 cardiac progenitors of neural crest origin. *Proc Natl Acad Sci*.
575 2015;112:13051–13056.

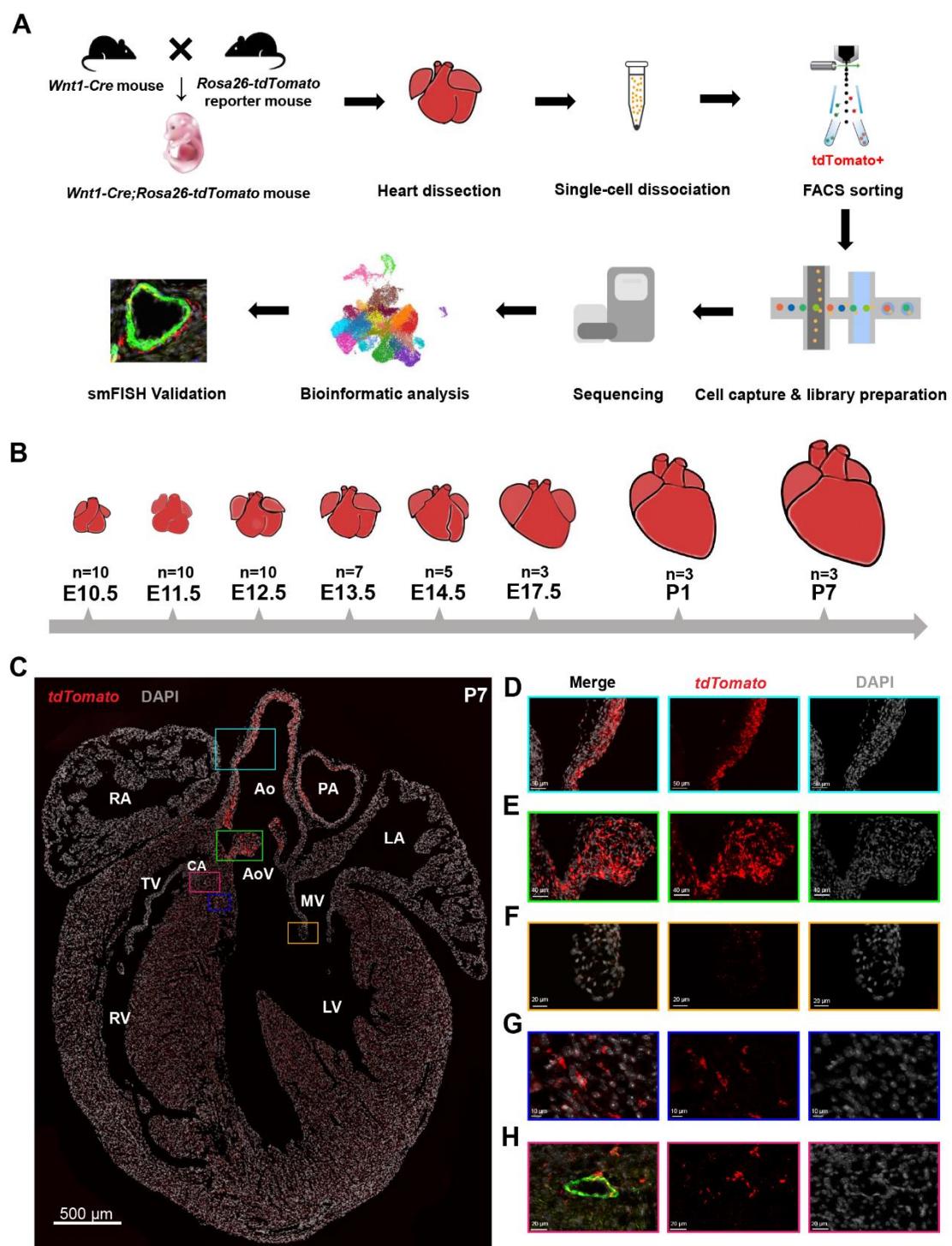
576 41. Acharya A, Baek ST, Banfi S, Eskiocak B, Tallquist MD. Efficient inducible
577 Cre-mediated recombination in Tcf21 cell lineages in the heart and kidney.
578 *Genesis*. 2011;49:870–877.

579 42. Soysa TY de, Ranade S, Okawa S, Ravichandran S, Huang Y, Salunga H,
580 Schricker A, Sol A del, Gifford C, Srivastava D. Single-cell transcriptome
581 analysis during cardiogenesis reveals basis for organ level developmental
582 anomalies. *Nature*. 2019;572:120–124.

583 43. Prasad MS, Charney RM, García-Castro MI. Specification and formation of the
584 neural crest: Perspectives on lineage segregation. *Genesis*. 2019;57:1–21.

585 44. Keyte AL, Alonzo-Johnsen M, Hutson MR. Evolutionary and developmental
586 origins of the cardiac neural crest: Building a divided outflow tract. *Birth
587 Defects Res Part C - Embryo Today Rev*. 2014;102:309–323.

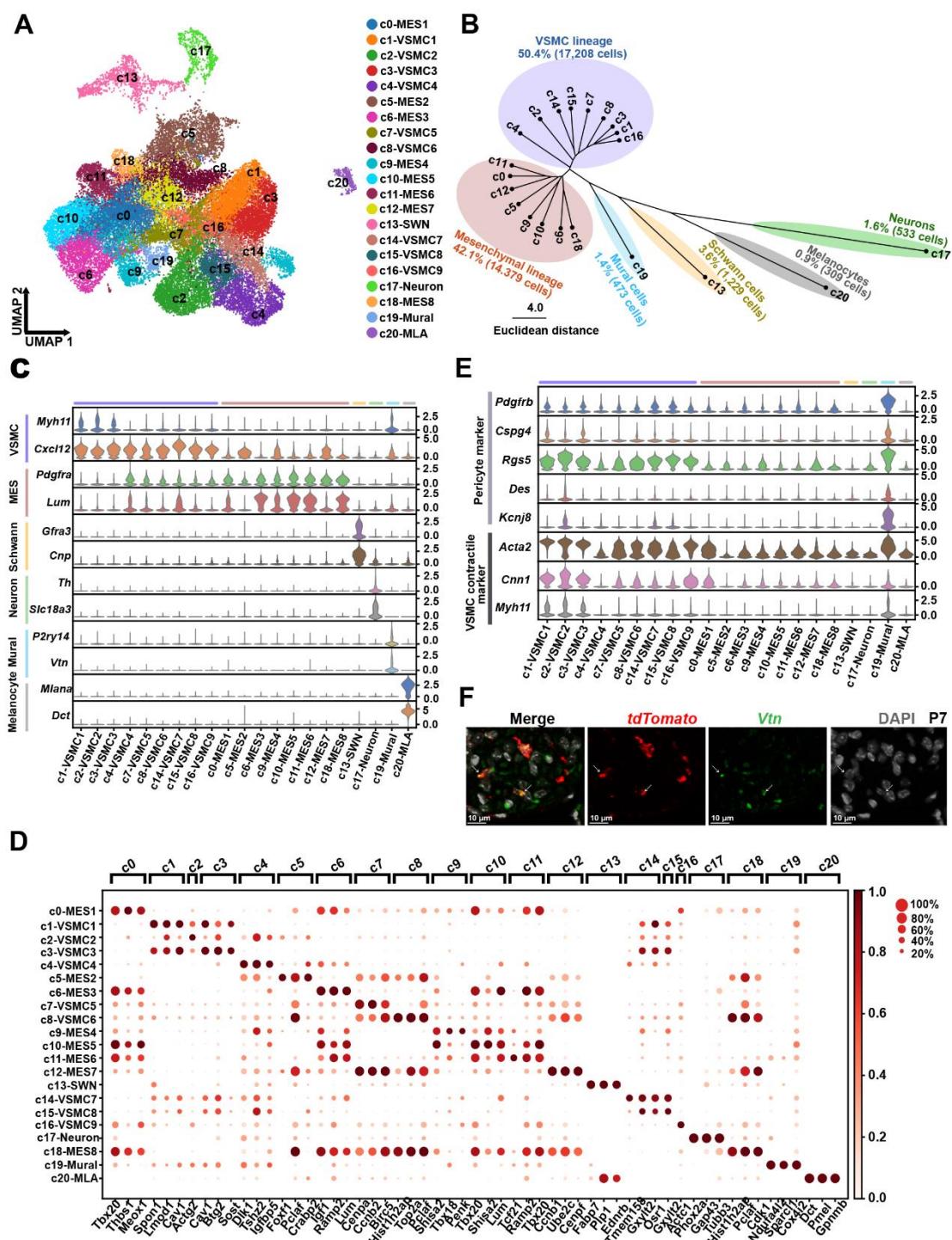
588 45. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D,
589 Von Gise A, Ikeda S, Chien KR, Pu WT. Epicardial progenitors contribute to
590 the cardiomyocyte lineage in the developing heart. *Nature*. 2008;454:109–113.


591 46. Moncada R, Wagner F, Chiodin M, Devlin JC, Baron M, Hajdu CH, Simeone
592 DM, Yanai I. Integrating single-cell RNA-Seq with spatial transcriptomics in

593 pancreatic ductal adenocarcinoma using multimodal intersection analysis.

594 *bioRxiv*. 2019;

595


596 **FIGURES WITH FIGURE LEGENDS**

597

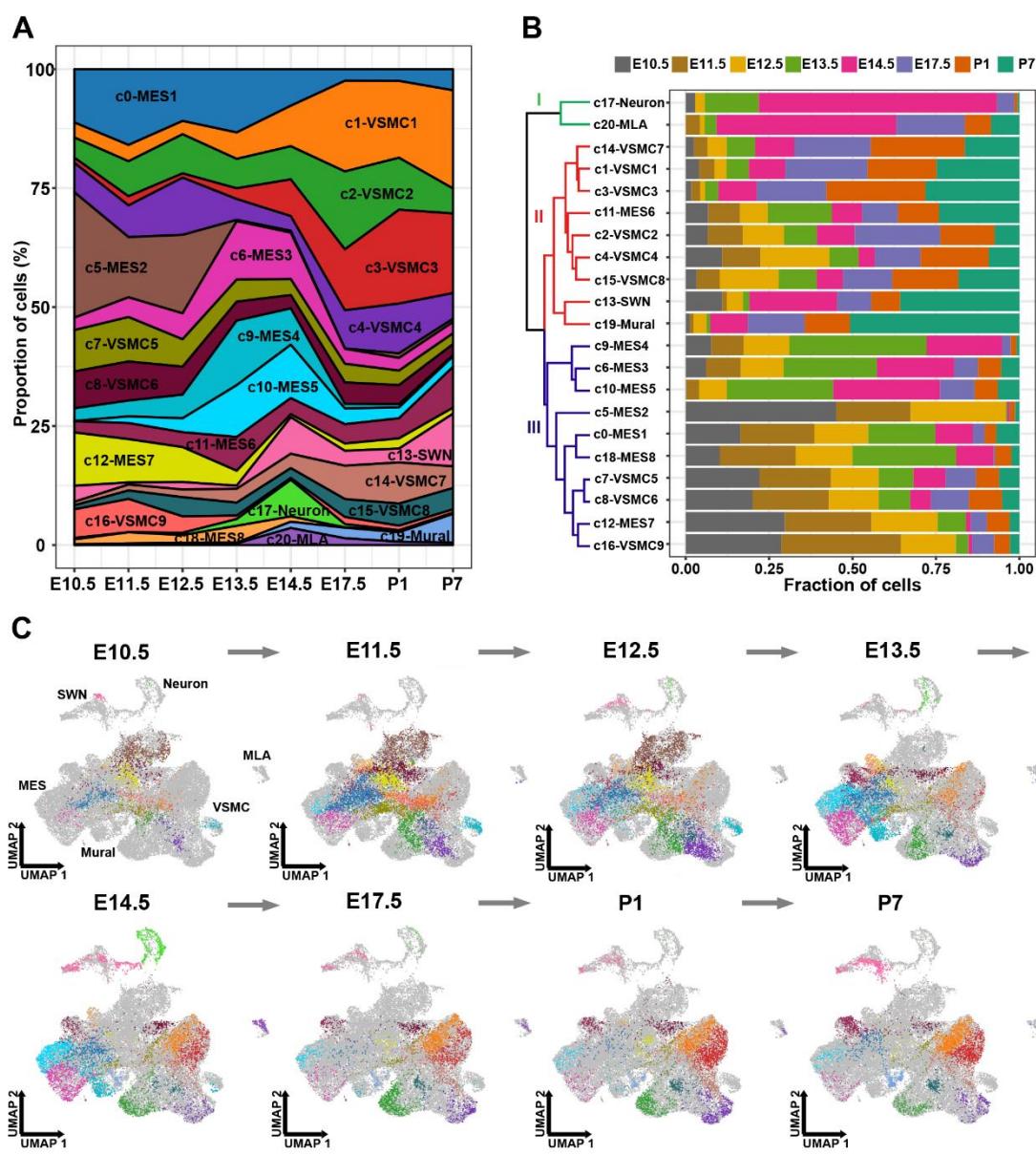
598 **Figure 1. Single-cell RNA-seq and spatial distribution of the CNCC derivatives.**
599 (A) Schematic representation of the experimental procedure. (B) The developmental

600 stages at which the hearts were sampled. Multiple hearts were pooled as a sample for
601 each stage. **(C)** The spatial distribution of the CNCC derivatives labeled by *tdTomato*.
602 **(D-H)** Magnified views of the rectangular regions in C. The same regions are indicated
603 by the same colors. In H, the vessel wall is indicated by the green fluorescence of the
604 VSMC marker *Myh11*. Ao, aorta; AoV, aortic valve; CA, coronary artery; LA, left
605 atrium; LV, left ventricle; MV, mitral valve; PA, pulmonary artery; RA, right atrium;
606 RV, right ventricle; TV, tricuspid valve

607

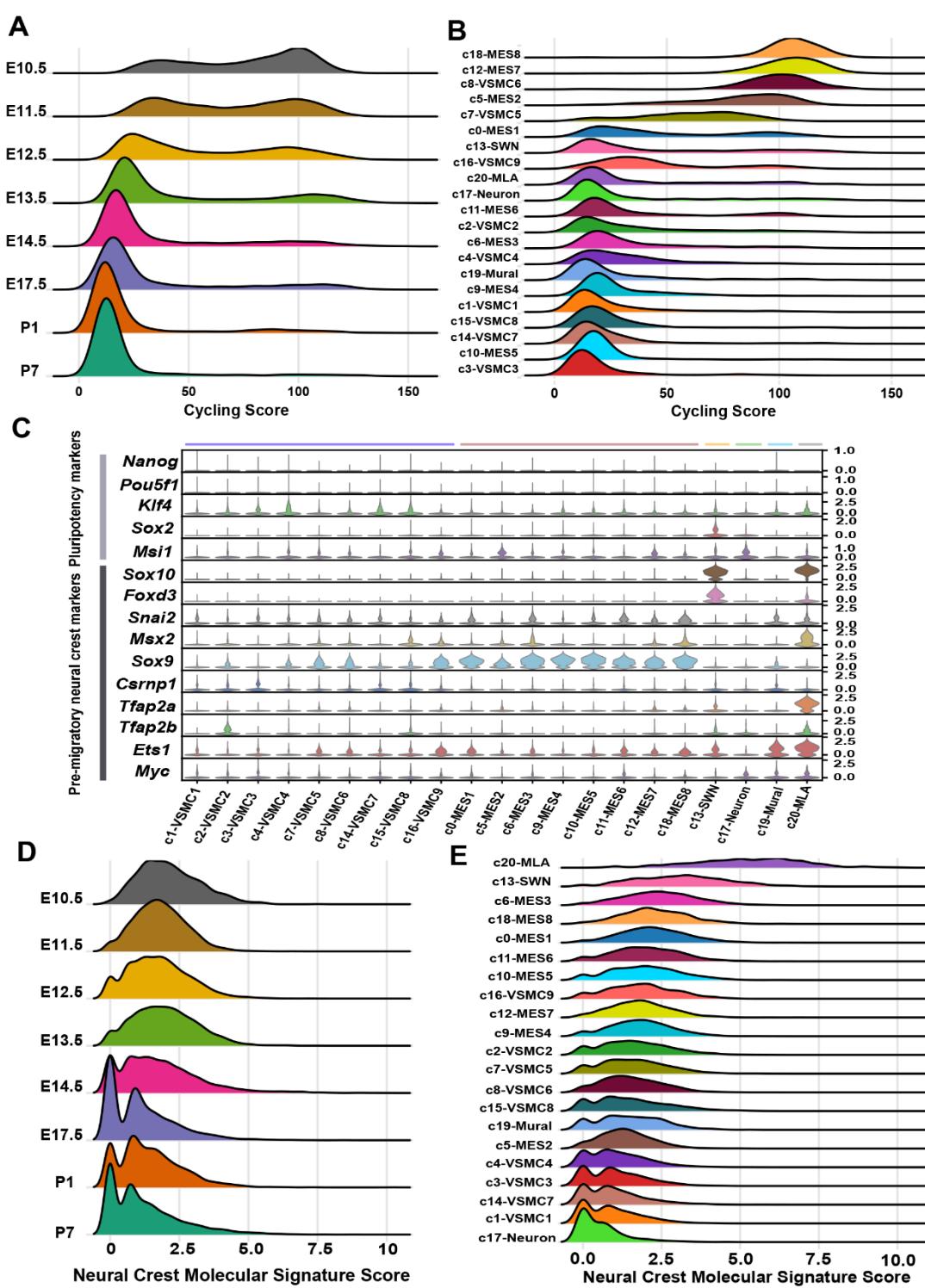
608 **Figure 2. Cell lineages and transcriptomic states of CNCC derivatives during**
609 **embryonic and neonatal development. (A)** Single-cell transcriptomes of 34,131
610 CNCC derivatives projected on a two-dimensional UMAP embedding. Clusters are

611 distinguished by different colors. **(B)** Hierarchical clustering of the clusters based on
612 the average expression of 2,000 selected features. **(C)** Expression of established
613 markers for each cell lineage in each cluster. **(D)** Representative molecular signatures
614 for each cluster. The area of the circles denotes the proportion of cells expressing the
615 gene, and the color intensity reflects the expression intensity. **(E)** Expression of
616 canonical pericyte markers and VSMC contractile markers. **(F)** smFISH validation of
617 CNCC-derived pericytes. Hearts from P7 mice were used. Arrows indicate the co-
618 expression of *tdTomato* and the pericyte marker *Vtn*. MES, mesenchymal cell; MLA,
619 melanocyte; SWN, Schwann cell; UMAP, uniform manifold approximation and
620 projection; VSMC, vascular smooth muscle cell


621

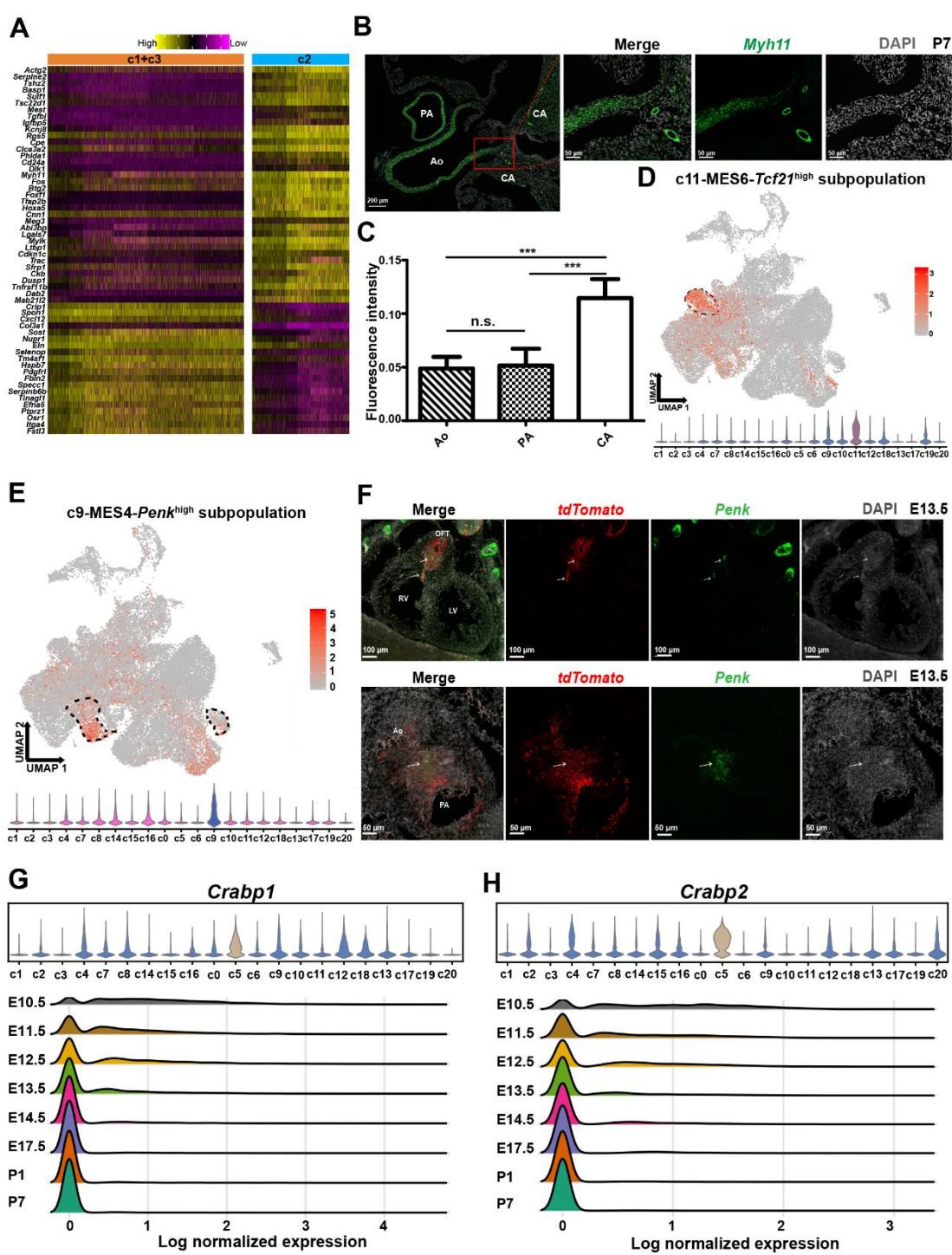
622 **Figure 3. Cellular transition from CNCC-derived pericytes to microvascular**

623 smooth muscle cells. (A) Subclustering of the mural cell cluster c19 reveals two


624 subpopulations. mVSMC, microvascular smooth muscle cells. Only P7 cells were

625 considered in this analysis. **(B)** The expression distribution of the VSMC-specific
626 marker *Myh11* and the pericyte marker *Vtn*. **(C)** RNA velocity analysis reveals a
627 transition from CNCC-derived pericytes to mVSMCs. The direction and length of the
628 arrow reflect the direction and rate of cellular state changes, respectively. **(D)** Linear
629 trajectory constructed via pseudo-temporal ordering of cells. **(E)** Transition trajectory
630 colored according to pseudotime. **(F)** Hierarchical clustering of the genes that were
631 significantly regulated during the progression of the transition. Only genes with an
632 adjusted P-value $<1\text{E-}04$ are shown here. The number in the parentheses represents the
633 percentage of genes associated with the Gene Ontology term for which the gene cluster
634 is significantly enriched (adjusted P-value <0.05). **(G)** The expression changes in
635 *Myh11*, *Vtn*, *Pdgfrb* and *Notch3* during the progression of the cellular transition. **(H)**
636 Transcriptional factors that were significantly regulated during the transition.

638 **Figure 4. The developmental chronology and transcriptomic state change**
639 **dynamics of CNCC derivatives. (A)** The proportion of cells of each cluster in each
640 stage. **(B)** The proportion of cells from each stage in each cluster. All samples are
641 normalized to the same number of cells (2,026). The dendrogram shows the hierarchical
642 clustering of the cell clusters based on the proportion of cells from each stage. **(C)**
643 Dynamic changes in the transcriptomic states of CNCC derivatives during development.
644 The cells are colored according to the clusters. MES, mesenchymal cell; MLA,
645 melanocyte; SWN, Schwann cell; UMAP, uniform manifold approximation and


646 projection; VSMC, vascular smooth muscle cell

647

648 **Figure 5. Gradually loss of proliferation and the neural crest molecular signature**
649 **with development in the CNCC derivatives. (A) Ridge plot showing that CNCC**

650 derivatives switched from a proliferative to a quiescent state with the progression of
651 development. The cycling score of each cell was calculated by summing the log-
652 normalized expression of the cycling genes (“g2m.genes” and “s.genes” in Seurat).
653 **(B)** Ridge plot showing the proliferative ability of each cell cluster. **(C)** The expression
654 of pluripotency and pre-migratory neural crest markers in each cell cluster. **(D)** Ridge
655 plot showing that the divergence in molecular signatures between the CNCC derivatives
656 and pre-migratory neural crest cells increased during development. The neural crest
657 molecular signature score was calculated by summing the log-normalized expression
658 of the pre-migratory neural crest markers (shown in C). **(E)** Ridge plot showing the
659 distribution of the neural crest molecular signature score in each cluster.

661 **Figure 6. Characterization of interesting cell subpopulations of CNCC derivatives**
662 **during development. (A)** Heatmap showing the difference between VSMC clusters c2
663 and c1+c3. The significance threshold was set to an adjusted P-value < 0.05 and log2-
664 fold change > 0.25. **(B)** smFISH results showing significantly higher expression of the

665 contractile marker *Myh11* in VSMCs of the coronary arteries than in VSMCs of the
666 great arteries. **(C)** Quantitative analysis of the fluorescent intensity of *Myh11* expression
667 confirms significantly higher expression of *Myh11* in VSMCs of the coronary arteries
668 than in VSMCs of the great arteries. The bar height represents the average intensity of
669 five biological replicates (\pm SE). One-way ANOVA with Turkey's post-hoc test. P-
670 value ≤ 0.001 (***)**. n.s.** not significant. **(D)** Mesenchymal cluster c11 with high *Tcf21*
671 expression may represent valve interstitial cells. **(E)** Mesenchymal cluster c9 shows
672 high expression of *Penk*. **(F)** smFISH results showing that the *Penk*⁺ cells are mainly
673 localized in the OFT region and are derived from CNCC. **(G)** *Crabp1* shows high
674 expression in mesenchymal cluster c5 and its expression decreases with development.
675 **(H)** *Crabp2* shows high expression in mesenchymal cluster c5 and its expression
676 decreases with development. Ao, aorta; CA coronary artery; LV, left ventricle; OFT,
677 outflow tract; PA, pulmonary artery; RV, right ventricle.