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Abstract

Efforts to precisely identify tumor human leukocyte antigen (HLA) bound peptides capable of
mediating T cell-based tumor rejection still face important challenges. Recent studies suggest
that non-canonical tumor-specific HLA peptides that derive from annotated non-coding regions
could elicit anti-tumor immune responses. However, sensitive and accurate mass-
spectrometry (MS)-based proteogenomics approaches are required to robustly identify these
non-canonical peptides. We present an MS-based analytical approach that characterizes the
non-canonical tumor HLA peptide repertoire, by incorporating whole exome sequencing, bulk
and single cell transcriptomics, ribosome profiling, and a combination of two MS/MS search
tools. This approach results in the accurate identification of hundreds of shared and tumor-
specific non-canonical HLA peptides and of an immunogenic peptide from a downstream
reading frame in the melanoma stem cell marker gene ABCBS. It holds great promise for the

discovery of novel cancer antigens for cancer immunotherapy.
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Introduction

The efficacy of T cell-based cancer immunotherapy relies on the recognition of HLA-bound
peptides (HLAp) presented on the surface of cancer cells. Characterizing and classifying
immunogenic epitopes is an ongoing endeavor for developing cancer vaccines and adoptive
T cell-based immunotherapies. Neoantigens, which are peptides derived from mutated
proteins, are absolutely tumor-specific yet mostly patient-specific and are implicated in the
therapeutic efficacy of checkpoint blockade immunotherapy**. In contrast to tumor-specific
neoantigens, tumor-associated antigens that are shared across patients may be more
attractive for immunotherapy due to the more efficient and rapid treatment of a greater number
of patients >’. Recent studies have focused on the discovery of non-canonical antigens, which
are antigens derived from the translation of presumed non-coding transcripts. Such aberrant
translation leads to the generation of peptide sequences that are missing in conventional
protein sequence repositories and are therefore considered novel?®. If such translation events
lead to the presentation of novel and immunogenic HLA ligands, then these occurrences could
substantially expand the repertoire of targetable epitopes for cancer immunotherapy®2°.
Currently, approximately 1% of the entire genome is annotated as protein-coding regions, yet,
75% of the genome can be transcribed and theoretically translated, potentially offering a pool

of novel peptide targets?..

To date, the only analytical methodology allowing the direct identification of the in vivo
presented HLAp repertoire is mass spectrometry (MS)?2. Often, MS-based immunopeptidomic
discoveries are limited to the standard, available protein sequence database, usually
containing only annotated protein-coding sequences. Recently, several studies have included
protein sequences derived from the translation of transcripts identified from RNA-Seq, or from
ribosome profiling, into MS-based searches®?28, Overall, these studies warrant further
development in many key aspects: Importantly, elevated false discovery rates (FDRs) for the
non-canonical space can occur when MS reference data are populated with protein sequences

derived from all potential three- or six-frame translations of transcribed regions?®. Several
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studies did not compute FDRs or applied sample-specific thresholds for FDR calculations?+28,
Furthermore, rigorous experimental confirmation with targeted MS for such non-canonical
sequences is currently lacking. Also, current workflows often introduce a risk of bias by pre-
filtering peptide identifications based on HLA-binding predictions?*?8, Finally, the overall
biogenesis of non-canonical HLA binding peptides (honcHLAp) remains understudied due to

a-priori restriction of the search space to tumor-specific non-canonical protein sequences?.

Here we describe a proteogenomic approach to identify tumor-specific noncHLAp derived
from translation of presumed non-coding transcripts, such as from (long) non-coding genes
(IncRNAs), pseudogenes, untranslated regions (UTRs) of coding genes, and transposable
elements (TEs). We performed immunopeptidomics and integrated in our analyses tumor
exome, bulk and single cell transcriptome, and whole translatome data. We then implemented
NewAnce, a new analytical approach for non-canonical element identification that combines
two MS/MS search tools, along with group-specific FDR calculations to identify noncHLAp.
Together, this unveiled an unprecedentedly large number of novel noncHLAp, highlighting the
potential of this approach to enlarge the range of targetable epitopes in cancer

immunotherapy.

Results

A comprehensive strategy for noncHLAp identification

MS-based immunopeptidomics was performed on seven patient-derived melanoma cell lines
and two pairs of lung cancer samples with matched normal tissues (Fig. 1a). This resulted in
the identification of 60,320 unique protein-coding HLA class | bound peptides (protHLAIp) and
11,256 protein-coding HLA class ll-bound peptides (protHLAIlIp). For the exploration and
validation of in vivo naturally presented non-canonical peptides, whole exome and RNA-Seq
data were generated for all samples (Fig. 1a and Supplementary Table 1). For every sample,
we extracted from RNA-Seq data expressed non-canonical genes such as IncRNAs and

pseudogenes. In addition, we applied an analytical pipeline to assign TE-derived RNA-Seq
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reads to single loci (See Methods section for more details), resulting in expression data for
transcribed TEs. All the above transcripts were subsequently translated in three forward open
reading frames (ORFs) (stop-to-stop). For every sample, the novel in-silico translated protein
sequences were concatenated to a personalized canonical proteome reference containing
allelic variant information from patient tumor exome data. Finally, we searched the MS

immunopeptidomics data against these personalized reference databases.
Database size affects the level of false positives in noncHLAp identifications

In silico translation of transcripts in three reading frames results in a large number of potential
protein sequences. In proteogenomics, searching MS data against such inflated protein
reference databases may propagate false positives 2°2°. Hence, our first investigative step
was to understand the impact of database size on the level of false positives in
immunopeptidomics datasets. We searched reference databases containing canonical (i.e.
UniProt) and our non-canonical protein sequences with a single search tool (MaxQuant) and
a global 1% FDR. The accuracy was assessed by assigning HLA-binding prediction scores to
the MS-identified HLAIp with MixMHCpred3®'. We reasoned that non-canonical HLA class |
bound peptides (noncHLAIp) should follow the same binding rules as protHLAIp®2. First, we
compared a generic non-canonical protein sequence database derived from the three forward
frame (“three-frame”) translation of all annotated non-coding genes from GENCODE? with a
sample-specific protein sequence database derived from the three-frame translation of
IncRNAs and pseudogenes from the RNA-Seq data, using an expression cut —off value of
FPKM (fragments per kilobase of transcript per million mapped reads >0). Additional
databases of decreasing size were assembled, by retaining only those sequences that
originated from more highly expressed genes (FPKM >2, >5 or >10). Reducing the size of the
database by personalizing and focusing on highly expressed genes led to an increase in the
percentage of noncHLAIp that were predicted to bind to their respective HLA alleles

(MixMHCpred p-value<0.05) (Fig. 1b).

NewAnce improves accurate identification of hundreds of noncHLAp


https://doi.org/10.1101/758680
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/758680; this version posted September 6, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Restricting the database to protein sequences originating from highly expressed genes should
on one hand improve the accuracy of MS based non-canonical peptide identification, while on
the other hand lead to the potential loss of peptides coming from lower expressed transcripts.
To circumvent the need to exclude protein sequences based on low expressed transcripts, we
developed the computational module called NewAnce, which combines the MS search tools
MaxQuant®** and Comet®®, with the implementation of a group-specific strategy for FDR
calculation. All HLAp identified by either of the search tools were consequently matched
against an up-to-date UniProt sequence database (95,106 protein sequences, with isoforms)
to extract novel noncHLAp that do not map back to known human proteins in UniProt. For
every sample, FDRs were calculated separately for the protHLAp and noncHLAp (Fig. 1c and
Supplementary Fig. 1a). Only consensus (intersection) peptide-spectrum-matches (PSMs)
from Comet and MaxQuant were retained for further downstream analyses. As most false

positive PSMs are specific to one search tool, NewAnce led to an estimated FDR of <0.001%.

With NewAnce, the number of protHLAIp identified across 11 samples ranged from 3,490 to
16,672 per sample, and from 817 to 5,777 for protHLAllp (Supplementary Table 2).
Furthermore, up to 148 noncHLAIp per individual sample were identified with NewAnce, with
a combined total of 452 unique noncHLAIp (Supplementary Table 2 and Supplementary
Data 1). Over the four HLA-II expressing samples investigated, only 4 IncRNA derived

noncHLAIIp out of 11,256 protHLAIIp were detected.

We employed two complementary methods to assess the accuracy of our approach. First, we
predicted the binding of peptides to their respective HLA allotypes. Across all 11 samples,
90% of the noncHLAIp and 91% of the protHLAIp identified with NewAnce were predicted to
bind the HLA allotypes (median values, Supplementary Fig. 1b). As expected, NewAnce
detected less HLAp than Comet (PSM FDR of 3%) or MaxQuant (PSM FDR of 3%) and more
HLAp when the routinely applied FDR of 1% was applied by MaxQuant alone (Fig. 1d,
Supplementary Fig. 1b-f and Supplementary Table 2). Importantly, for the noncHLAIp

repertoire (INcCRNAs, pseudogenes and TEs), significantly higher percentages of peptides
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predicted to bind the HLA allotypes were identified by NewAnce compared with those identified

by MaxQuant or Comet alone (Fig. 1e and Supplementary Fig. 1b-f).

In addition, we correlated the observed mean retention time (RT) of a given peptide against
the predicted hydrophobicity index (HI), which corresponds to the percentage of acetonitrile at
which the peptide elutes from the analytical HPLC system. Predicting the sequence specific
hydrophobicity indices of peptides identified by NewAnce showed that the RT distribution of
non-canonical peptides was on the diagonal line, and was not significantly different than the
distribution of protein-coding peptides, supporting their correct identification (Fig. 1f) (one
sided F-test p-value:1.0e+0). However, we observed a significant difference in RT distribution
when comparing non-canonical peptides from NewAnce to those identified by MaxQuant (one

sided F-test p-value: 6.3e-32) or Comet alone (one sided F-test p-value: 8.4e-20) (Fig. 19g).

Moreover, a commonly applied approach to boost non-canonical peptide identifications would
be to search the MS data with a single tool (or a union of two tools) applying a permissive FDR
followed by an additional step of filtering to include only peptides predicted to bind the relevant
HLA allotypes®®. To evaluate this approach, we compared the correlation between HI and RT
of predicted non-canonical HLA binders and non-binders identified at 3% PSM FDR with either
MaxQuant (Fig. 1h) or Comet (Fig. 1i). Predicted binders showed better correlations between
HI and RT compared to non-binders (one sided F-test p-values 8.4e-6 for MaxQuant and 4.4e-
18 for Comet). These correlations where fairly poor for MaxQuant, while a much better
correlation was calculated for Comet likely due to the conservative group specific FDR control
strategy we applied for Comet. In conclusion, these comprehensive analyses underline the

superiority of NewAnce over the above alternatives.

Notably, when examining the source protein sequence origin of all noncHLAIp, we detected
an enrichment towards the C-terminus of their precursor protein sequences. This effect was
also observed for protHLAIp originating from similarly short canonical proteins

(Supplementary Fig. 2a-b).
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MS-targeted validation and Ribo-Seq confirm a fraction of noncHLAIp

To experimentally validate the NewAnce computational pipeline, we investigated a selection
of NewAnce-identified HLAp from a melanoma sample (OD5P) with targeted MS-based
analyses. All identified noncHLAIp (IncRNAs and TEs, n=93), as well as a similar-sized subset
of protHLAIp from clinically relevant tumor-associated antigens (TAAs, n=71) detected in
OD5P were synthesized in their heavy isotope-labelled forms for MS-targeted validation. The
selected TAAs were chosen solely based on their interesting tumor-associated biological
functions, as these are known cancer/testis or melanoma antigens. Here, MS-based targeted
confirmation with parallel reaction monitoring (PRM) was directly compared between the non-
canonical and canonical peptide groups by spiking the heavy-labelled peptides into multiple
independent replicates of 0D5P immunopeptidomic samples. This revealed that confirmation
is superior for protHLAIp than for noncHLAIp (78.5% for TAAs versus 55.2% for IncRNAs and
27.7% for TEs) (Fig. 2a, Supplementary Table 3 and Supplementary Data 2). We also
observed that PRM validation is dependent on source RNA expression level (Supplementary
Fig. 3a-d), measured peptide intensities (Supplementary Fig. 3e-h), and detectability by

MS/MS across multiple OD5P replicates (Supplementary Fig. 3i-l).

As a further targeted validation strategy for the noncHLAIp, Ribo-Seq, which involves the
sequencing of ribosome protected fragments (RPFs), was performed on the sample OD5P.
Periodic RPF distributions (see Methods section) that supported translation in the correct ORF
of transcript encoding the identified noncHLAIp was observed for 22.2% of TE peptides and
21.3% of IncRNA peptides, compared to 100% of the TAAs (Fig. 2b). Notably, nine IncRNA
HLAIp, and two TE peptides were validated by both PRM and by Ribo-Seq approaches. For
example, the noncHLAIp SYLRRHLDF was confirmed by MS (Fig. 2c¢), and the translated

ORF that generated the peptide was mapped back to two novel transcripts (Fig. 2d-e).

Low RNA expression level is a limiting step in noncHLAIp presentation
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We then characterized in more depth the expression levels of source RNAs encoding the
HLAIp. For this purpose, we compared all identified source genes of protHLAIp to source
genes of noncHLAIp in the OD5P sample. The protein-coding source genes had a median
FPKM value of 9.3, whereas the non-canonical source genes showed overall lower
expression, with a median FPKM of 2.1 (Fig. 3a-b). Generally, the number of unique peptides
identified per gene increased with higher levels of expression. PRM-validated noncHLAIp
covered a large and dynamic range of gene expression, and interestingly, a few were

confirmed at very low source RNA expression levels (Fig. 3c-d).

The lower levels of expression of source genes that generated noncHLAp prompted us to
investigate the regulation of non-canonical HLA presentation, and whether this can be induced
with drug treatments. We treated melanoma cells either with decitabine, a DNA
methyltransferase inhibitor, known to reactivate epigenetically silenced genes, or with IFN
gamma (IFNy), known to upregulate antigen presentation®-%°. As expected, when T1185B
melanoma cells were treated with IFNy, we observed large quantitative changes in the
presentation of protHLAIp. Specifically, enhanced presentation of peptides derived from
immune-related genes was observed, likely due to their higher gene expression and the
increase in the production of HLA-I molecules (Supplementary Fig. 3m). However, no
obvious change was observed for the noncHLAIp repertoire, with 60% of the identified
noncHLAIp remaining unaltered upon IFNy treatment, suggesting that transcription is the
limiting step in presentation of noncHLAIp (Supplementary Fig. 3n). Furthermore, we
explored the effect of hypomethylating agent decitabine on noncHLAIp in melanoma. Although
decitabine induced expression of selected hypomethylating-induced immune genes*, TAAs
and non-canonical transcripts (Supplementary Fig. 30-q), changes in the OD5P noncHLAIp
repertoire were modest (data not shown). Nonetheless, we identified and confirmed the
presence of a unique decitabine -induced noncHLAIp derived from a IncRNA (Supplementary

Fig. 3r).
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Integration of Ribo-Seq data improves the coverage of immunopeptidomes and

identification of additional noncHLAIp

Next, we hypothesized that immunopeptidomes would be better associated with translatomes
than transcriptomes. To build the translatome-based database for MS search, all ORFs
showing periodic RPF distribution were extracted for the OD5P sample and the transcribed
frames were translated in-silico. This technique reduced the size of the search space, and we
used this independent discovery method in our study in order to identify additional noncHLAIp,

including those from novel ORF in coding genes.

We investigated to what extent a protein sequence database inferred by Ribo-Seq could
replace the search performed with protein sequences derived from three-frame translation of
expressed RNA species. Using OD5P as a representative immunopeptidomic dataset, we
observed a positive correlation between RNA expression and HLAIp sampling (see Methods
section) searched against a canonical protein sequence database (r= 0.392) (Fig. 3e). Then
we searched the same immunopeptidomics MS data against the de novo assembled Ribo-
Seq inferred database, and we correlated this HLAIp sampling with RNA abundance (Fig. 3f)
or with translation rates based on the spectral coefficient of 3-periodic signal in Ribo-Seq data
(see Methods section) (Fig. 3g). This resulted in a significantly higher positive correlation
between HLAIp sampling searched against a Ribo-Seq inferred database and translation rate
(r=0.574) than with the overall RNA abundance (r=0.431, two-sided p-value<10e-16). Thus,
there is evidence that the immunopeptidome, at least for OD5P sample, is better captured by

the translatome than the transcriptome.

Notably, restricting the database to actual translation products by Ribo-Seq provided a deeper
coverage of the immunopeptidome than a canonical protein sequence database (Fig. 3h).
This led to the identification of additional noncHLAIp derived from ORFs originating in 5’ or 3’
untranslated regions, presumed non-coding RNAs, retained introns, and pseudogenes, with
the majority coming from either annotated upstream or entirely novel ORFs (Fig. 3i-j). Many

of these additional noncHLAIp were missed using the RNA-Seq inferred database. Of note,
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this method also takes into account products arising from ribosomal frameshifting, which could
be relevant in the context of non-canonical antigens*?. Interestingly, only 16 common IncRNA-
derived noncHLAIp were found when comparing both strategies. This likely reflects the limited
detection of periodic Ribo-Seq reads in transcripts with low expression, or low mappability

(Supplementary Fig. 4a).

Single-cell transcriptomics reveals transcriptional heterogeneity of presumed non-

coding genes

Tumor cell heterogeneity could present one of the key factors for immune escape leading to
the inefficacy of cancer immunotherapies. In an attempt to understand the pattern of non-
coding gene expression at the single cell level, we performed single-cell RNA-Seq (scRNA-
Seq) on the OD5P melanoma cell line. Overall, 1,400 cells were sequenced at a total depth of
176 million reads resulting in the detection of a median of 6,261 genes per cell (total of 19,178
detected genes). As expected, clustering of OD5P cells revealed dependency on the cell cycle
status (Fig. 4a) and source genes associated with cell cycle could be explored (Fig. 4b-c).
First, we confirmed that the antigen presentation machinery was uniformly expressed in all

cells, as well as many of the selected TAAs (Fig. 4d).

Out of the 71 non-canonical source genes identified by bulk transcriptomics, 35 were detected
also at the single-cell level (Fig. 4d). HLAIp derived from non-canonical source genes were
detected with higher coverage at the single cell were those confirmed by PRM (6 out of 8
genes confirmed in >50% cells, and 14 out of 27 genes in <50% cells) and by Ribo-Seq (37
out of 41 genes confirmed in >50% cells, and 25 out of 46 genes in <50% cells) (Fig. 4d,
Supplementary Fig. 4b-c). Profiles of source non-canonical genes clearly show expression
heterogeneity and nearly none of them were uniformly expressed across cells, though the
limited sensitivity of SCRNA-Seq could account for this variation. Expression of LINC00520
was higher than expected given its detection in only 75% of cells, suggesting that it is not

uniformly expressed (Fig. 4d).
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We further explored marker genes associated with a cluster of OD5P cells significantly
expressing LINC00520 (Fig. 4e-f). Interestingly, we found that LINC00520 was co-expressed
with the ATP-binding cassette sub-family B member 5 (ABCB5) gene, that mediates
chemotherapeutic drug resistance in stem-like tumor cell subpopulations in human malignant
melanoma and is commonly over-expressed on circulating melanoma tumor cells*®, with beta-
catenin (CTNNB1) which is a key regulator of melanoma cell growth*, and with its critical
downstream target the microphthalmia-associated transcription factor (MITF) that mediates
melanocytes differentiation*® (Fig. 4g). The source RNA expression of ABCB5 was detected
in only 37% of OD5P cells, however, as shown below, the ABCB5 gene encodes a novel ORF
that gives rise to an immunogenic epitope. Indeed, immune-targeting of non-canonical targets

expressed on a subset of aggressive or melanoma stem cells could be beneficial.
Identification of tumor-specific noncHLAIp

As our initial MS search space was not restricted to protein sequences derived from tumor-
specific transcripts, we investigated in retrospect the potential of identified noncHLAIp to be
classified as tumor specific. A public database of RNA sequencing data from 30 different
healthy tissues (GTEx*) was assessed at a strict 90" percentile, which represents the
expression value cut-off for the top 10% expressed genes. We identified 335 noncHLAIp from
280 IncRNA genes in the seven melanoma samples of which 23% were expressed only in our
tumor samples, and not in any of the healthy tissues (excluding testis due to its immune-
privileged nature) (Fig. 5a). Among these was the tumor-specific LINCO0518 gene that has
been proposed as a two-gene classifier for melanoma detection together with the tumor

associated antigen PRAME®’.

Using an in-house curated inventory of human transposable element (TE)-derived protein
sequences (from three-frame translations) as reference, we found 88 unique TE-HLAIp in our

whole dataset. Some were derived from autonomous TEs, such as long tandem repeat (LTR)
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retrotransposons and long interspersed nuclear elements (LINEs), and others from non-
autonomous retrotransposons such as short interspersed nuclear elements (SINE) or SINE-
VNTR-AIlu (SVA) elements (Supplementary Fig. 5a). Importantly, 60 of the 88 TE-HLAIp were
found in presumed non-coding TE regions and therefore represent completely novel HLA
peptides. These TE-HLAIp would have been overlooked in canonical MS-based searches.
Furthermore, 10% of the noncHLAIp derived from TEs were retrospectively shown to be
expressed only in a single healthy tissue, excluding testis. For example, peptides derived from
AluSg2 SINE/Alu and L1PA16 LINE/L1 elements were expressed only in skin and testis.
Finally, selected TAAs were also investigated in the same manner for melanoma and lung

tissue samples separately (Supplementary Fig. 5b-c).

We next examined whether our approach could identify tumor specific non-canonical targets
in the ideal case where normal and tumor biopsies are available, i.e. from the two lung cancer
patients included in the present dataset. For example, out of 14,120 non-canonical genes
expressed in patient C3N-02289, we found that 409 were exclusively expressed at the RNA
level in the patient’'s tumor. We identified 45 noncHLAIp in patient C3N-02289 (Fig. 5b), out
of which 10 peptides were identified only in the tumor tissue by MS (Fig. 5c). Four of these
source genes were tumor-specific when compared to the matched healthy tissue of patient
C3N-02289 (90" percentile Transcripts per Million (TPM) < 1). However, when compared to
the GTEx database, only one noncHLAIp from RP11-566H8.3 was finally considered as tumor
and testis- specific for patient C3N-02289 (Fig. 5c). The same analyses with TE genes
resulted in the identification of 1,159 elements that were expressed at the RNA level only in
the C3N-02289 tumor. Of those, we identified the LTR7B LTR/ERV1 TE HLAIlp that was
presented in the tumor tissue, however this gene is also expressed in healthy brain. In
comparison, we were able to identify six tumor-associated protHLAIp, which were only found

in the tumor tissue (BIRC5, TERT, FAP, SPAG4, MAGEA9 and BCL2L1).

NoncHLAIp are shared across patient samples
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We investigated the likelihood of shared noncHLAIp amongst the nine tumor samples
analyzed and identified 27 peptides that were detected in at least two patient samples. Seven
noncHLAIp, already validated in OD5P, were confirmed by PRM in at least one other patient
sample that expressed HLA allotypes with identical or highly similar binding specificities
(Supplementary Table 4), with a total of 15 individually detected PRM events (Fig. 6a).
Interestingly, one noncHLAIp VTDQASHIY, derived from microcephalin-1 antisense RNA
(MCPH1-AS1), was confirmed independently with PRM in three melanoma or lung cancer
patients (Supplementary Fig. 6a-b). Further, the shared presentation of noncHLAIp
AAFDRAVHF, derived from the family of LINEs (LINE/L2) on chromosome 6, was confirmed
in two melanoma samples (Supplementary Fig. 6c¢-d). Interestingly, the corresponding

source RNA expression is skin- and testis-restricted.

Next, we interrogated a large collection of immunopeptidomic datasets (ipMSDB*, 137
biological cancer tissue/cell line sources, 39 biological healthy tissues/cell line sources; 2,250
MS raw files in total) and obtained the first large-scale signature of noncHLAIp presentation.
In total, 398,622 peptides were obtained for the healthy samples in ipMSDB, versus 488,500
peptides for cancer samples. We observed that 92 out of the 96 tumor-specific noncHLAIp
(90" percentile TPM < 1 in maximum 3 tissues) identified in this present study were re-
identified in ipMSDB (Fig. 6b), 52 of those were detected in at least one additional sample in
ipMSDB excluding our investigated samples. Another 72 additional novel noncHLAIp were
discovered from the same tumor specific non-canonical source genes. Remarkably, we
observed that noncHLAIp presentation was significantly enriched in tumor samples in ipMSDB
(cancer versus healthy p-value=0.048, melanoma versus healthy p-value=0.025), and more
significantly when B and T cells, which were rapidly expanded in culture or EBV-transformed,
were excluded from the analysis (p-value = 0.009) (Fig. 6¢). Interestingly, two noncHLAIp from
HAGLROS (KVLAGTVLFK and VLAGTVLFK), identified in the lung cancer tissue only, were
exclusively found only in cancer samples in ipMSDB, mainly in ovarian cancer samples, where

genetic association with HAGLROS was previously reported®.
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Assessing immunogenicity of noncHLAIp with autologous T cells

The involvement of the noncHLAIp in tumor immune recognition was assessed by measuring
IFNy release by autologous tumor-infiltrating lymphocytes (TILs) or peripheral blood
mononuclear cells (PBMCs) upon peptide stimulation. Out of the 786 peptides screened (94
TEs, 421 IncRNAs, 56 alternative ORFs, 215 TAAs), we confirmed the specific recognition of
autologous TILs to TAAs HYYVSMDAL and RLPSSADVEF from tyrosinase (TYR), and
RYNADISTF from tyrosinase-related protein 1 (TYRP1) in melanoma sample OD5P, and TAA
YLEPGPVTA from PMEL in melanoma sample T1015A. One non-canonical peptide
KYKDRTNILF, derived from the downstream ORF (dORF) of the melanoma stem cell marker
ABCBS gene in OD5P, was found to be immunogenic in both CD8+ TILs and CD8+ T cells
from peripheral blood lymphocytes (PBLS) (Fig. 6d-e). Notably, this peptide is shared across

three additional melanoma samples in ipMSDB.

Discussion

Our proteogenomics approach led to the stringent identification of hundreds of noncHLAIp
derived from non-coding genes, TEs and alternative ORFs. This was achieved with NewAnce,
a novel computational module which overcame the challenge of reduced sensitivity and
specificity when searching against large MS search spaces?®*°. NewAnce is publically
available and can be used with any (non-canonical) protein sequence databases of interest.
We rigorously tested the validity of noncHLAIp identifications with HLA binding predictions,
sequence-specific retention characteristics, targeted MS analyses, and provided evidence of
translation in peptide-encoding ORFs by Ribo-Seq. We confirmed with these multiple
strategies that NewAnce is superior to MaxQuant and Comet alone, across all investigated
samples. As an example with one patient, we conducted PRM and Ribo-Seq analyses to
compare a subset of protHLAIp to non-canonical antigen classes (IncRNAs and TEs), thereby
validating at the experimental level a recurrently identified noncHLAIp. We found that

noncHLAIp had an overall lower confirmation rate than protHLAIp, possibly due to their lower
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expression, which also led to their stochastic detection by MS. Interestingly, the expression
and translation of microproteins derived from presumed non-coding RNAs in the heart were
recently discovered using a Ribo-Seq directed proteogenomics approach, with evidence of
translation in the correct ORF confirmed for 22.5% of the IncRNAs and 55.4% of the
micropeptides validated by PRM MS®L, Importantly, our results additionally demonstrate that
the correct identification of noncHLAIp in proteogenomic workflows requires proper FDR

controls and validation using multiple independent methods.

Combining immunopeptidomics with  RNA-Seq and Ribo-Seq datasets enables the
comprehensive assessment of how transcription, translation and HLA presentation are
correlated. Despite the different methodological challenges®*®, the expected correlations
were observed between HLA presentation level and expression based on both RNA-Seq and,
more clearly on Ribo-Seq, perhaps because translation is biologically closer to antigen
processing and presentation. In addition, we found that in melanoma 0D5P, most of the novel
noncHLAIp derived from the Ribo-Seq inferred database originated from source genes
harboring upstream ORFs (UORFs). Of note, uUORFs can trigger non-sense-mediated decay

of MRNAs and provide a rich source of noncHLAIp>>>".

While a previous study has shown that the presentation of non-canonical peptides is enhanced
by inflammatory stimuli, only the presentation of specific HLA peptides were documented®®. In
contrast, our large-scale analyses of both decitabine and IFNy-treated cells did not detect
profound changes in noncHLAIp presentation, although non-canonical source genes were
induced. Hence, we hypothesize that low copy number of such noncHLAIp still remains a
limiting factor for their presentation. Moreover, corroborating prior research?, we report the
enrichment of noncHLAIp originating from the C-termini of source protein sequences.

Translation products of such presumed non-coding regions could be considered as defective
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ribosomal products that are expected to be unstable and rapidly degraded, likely bypassing

the proteasome®.

Given the lack of comprehensive healthy tissue immunopeptidomics libraries from patients,
we propose a workflow to retrospectively filter for tumor-specific noncHLAIp with publicly
available RNA-Seq databases (such as GTEx*). We further validated our proteogenomics
approach in the ideal situation where both tumor and matched normal tissue are available.
Two overlapping epitopes were identified in INcRNA HAGLROs, which were expressed and
presented only in the lung tumor tissue. This IncRNA has been implicated in cancer
progression®®®! and should now be prioritized for downstream validation. Moreover, while
Laumont et al.?* first proposed the existence of shared noncHLAIp, our work validates that
noncHLAIp can be shared across multiple tumor samples and thus we anticipate greater

efficiency in treatment with such shared noncHLAIp compared to private neoantigens®23,

Expression of tumor-specific noncHLAp in a subpopulation of tumor cells suggests a
dependency on a molecular or functional state. For example, the immunogenic noncHLAIp,
derived from dORF in the ABCB5 gene was moderately expressed in only 37% of the
melanoma cells, compared to the immunogenic TYR and TYRP1, both of which were highly
and uniformly expressed. Although targets for immunotherapy should ideally be uniformly
presented in all cancer cells in order to minimize outgrowth of escaping cells, immune pressure
on selected tumor cell subsets of particular biological relevance — such as cancer stem-like
cells, tumor cells with epithelial-mesenchymal transition features or proliferating tumor cells —
could affect tumor behavior and be clinically beneficial. Ideally, such targets would also be

upregulated by inflammatory cytokines or pharmacologically.

Indeed, we found such immunogenic noncHLAIp from OD5P derived from the dORF of the
ABCBS5 gene. ABCBS has been shown to be expressed in malignant-melanoma-initiating cells

and was suggested to be responsible both for the progression and chemotherapeutic
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refractoriness of advanced malignant melanoma*. Through an IL1B/IL8/CXCR1 cytokine
signaling circuit, it has been shown to control IL1B3 secretion and maintain slow cycling and
chemoresistance®*. Blockage of ABCB5 reversed resistance to multiple chemotherapeutic
agents, induced cellular differentiation, and impaired tumor growth in vivo®. We found that
ABCBS5 was differentially co-expressed in a cluster of OD5P cells with the transcription factor
MITF and beta-catenin, and others that their expression may be enriched in melanoma stem
cell populations®. The presence of spontaneous specific T cells recognizing the noncHLAIp
derived from the dORF of the ABCB5 gene, in both peripheral blood and TILs, suggests no
central tolerance, and that this target could allow immune-targeting of melanoma stem cell

subpopulation to drastically affect tumor growth.

Out of 571 noncHLAIp screened, immune recognition by rapidly expanded TILs and PBMCs
was detected for only a single immunogenic noncHLAIp. Various mechanisms could account
for this lack of recognition. First, we were only able to screen autologous TILs that had been
long propagated in culture. We have previously reported that TIL ex vivo expansion may lead
to depletion of T cell clones that recognize tumor neoantigens®. Second, it is possible that the
melanoma cells, which had to be expanded considerably in culture for immunopeptidomics
analyses, could have altered their HLA peptide repertoire, leading to the identification of
noncHLAIp that were originally not present in freshly extracted cells. However, we also
interrogated snap-frozen lung cancer tissues and still could not detect immune recognition of
identified non-canonical targets in autologous PBMCs. Alternatively, the ability of noncHLAIp
to induce a natural immune response might be inferior to protHLAp. Low expression might
limit uptake by professional antigen presenting cells and hence priming of naive T cells in vivo
through cross presentation. Similarly, engagement of CD4+ T helper cells through HLA class
Il presentation might be limited as well. Nevertheless, tumor-specific non-canonical targets
may still be valuable for cancer vaccines, even when no prior immune response against the
targets has been detected ex vivo, as previously shown for neoantigens*®7¢8, More research

should be performed to thoroughly assess the ability of honcHLAp to augment protective
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immune response in vivo. Such approaches are supported by evidence in mouse models that
peptides derived from non-canonical regions can be spontaneously recognized and leveraged
in cancer immunotherapy?*°,

Remarkably, across tumor types, the potential number of predicted noncHLAp is orders of
magnitude larger than that of neoantigens encompassing non-synonymous somatic
mutations. As T cell-based screenings currently have limited throughput and are expensive™,
an accurate and cost-effective non-canonical target discovery pipeline is crucial for their
further development and use in cancer immunotherapy. With the renewed interest in cancer
vaccines and the constantly growing number of antigens screened for immune recognition, we
expect that enough training data will become available to allow the development of accurate
predictors of immunogenicity. Combining this with our newly developed module NewAnce to
shortlist in vivo presented noncHLAp and to rank them according to their predicted
immunogenicity, will facilitate the comprehensive exploration of non-canonical antigens, their
association with immune responses and their potential for building effective cancer

immunotherapies.
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Methods

Patient material

Melanoma cell lines (OD5P, OMM745, ONVC) were generated as follows: Patient-derived
tumors were cut into small pieces before being transferred into a digestion buffer containing
collagenase type | (Sigma Aldrich) and DNase | (Roche) for at least one hour. Dissociated
cells were washed and maintained in RPMI 1640 + GlutaMAX medium (Life Technologies)
supplemented with 10% heat-inactivated FBS (Dominique Dutscher) and 1%
Penicillin/Streptomycin Solution (BioConcept). If fibroblasts appeared, they were selectively
eliminated with G418 (Geneticin; Gibco) treatment. The primary melanoma cell lines T1185B,
T1015A, Me290 and Me275 were generated at the Ludwig Cancer Research Center,
Department of Oncology, University of Lausanne, as previously described’ 2. All established
melanoma cells were subsequently grown to 1 x 108 cells, collected by centrifugation at 151 x
g for 5 min, washed twice with ice cold PBS and stored as dry cell pellets at -20°C until use.
For the in vitro 72h treatment with IFNy (100 1U/mL, Miltenyl Biotec), T1185B cells were grown
to 2 x 108 in triplicates. For the treatment with Decitabine (DAC, Sigma-Aldrich), 2 x 108
melanoma cells were grown for 8 days in 0.5 pM Decitabine with medium and drug renewal

on the 4th day.

Autologous TILs were expanded from fresh melanoma tumor samples corresponding to
patients OD5P, OMM745, ONVC, LAU1185 (tumor cell line T1185B), LAU1015 (tumor cell line
T1015A), LAU203 (tumor cell line Me290) and LAU50 (tumor cell line Me275) at the Ludwig
Cancer Research Center, Department of Oncology, University of Lausanne. The fresh tissues
were manually cut into fragments of one to two mm?2. The tumour fragments were then placed
in 24-well plates containing RPMI CTS grade (Life Technologies), 10% Human serum
(Biowest), 0.025 M HEPES (Life Technologies), 55 pmol/L 2- Mercaptoethanol (Life
Technologies) and supplemented with IL-2 (6,000 IU/mL, Proleukin) for three to five weeks.

Following this pre-REP (Rapid Expansion Protocol), TILs were then expanded with another
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REP as follows: 5x10° TILs were stimulated with irradiated feeder cells (Ratio 1:200), anti-
CD3 (OKT3, 30 ng/mL, Miltenyl biotec) and IL-2 (3,000 IU/mL) for 14 days. After 14 days of
REP, about 2x10° TILs were harvested, washed and cryopreserved until use. The purity (i.e.
the % of CD3 T cells) was >95%. As additional control, one flask with the exact same REP
conditions without TILs was cultured in parallel and no cells were detectable at day 14. REP
TILs were thawed in 5 lU/mL DNAse | (Sigma-Aldrich) and cultured in 3000 IU/mL IL-2 for two
days in RPMI 1640 Medium with GlutaMAX™ Supplement (Gibco), with the addition of 8%
Human serum (Biowest), 10 mM HEPES (Gibco), 50 yM Beta- Mercaptoethanol (Gibco), 100
MM non-essential amino acids (Gibco), 100 IU/mL Penicillin and 0.1 mg/mL Streptomycin,
2mM L-Glutamine (Gibco), 0.1 mg/mL Kanamycinsulfate (Carl Roth) and 1mM sodium
pyruvate (Gibco). Cells were then washed twice in complete medium and subsequently rested
overnight in the presence of 150 IU/mL IL-2 prior to peptide stimulation.

Snap-frozen normal and lung tumor tissue material from C3N-02289 (Lung squamous cell
carcinoma, grade 2) and C3N-02671 (Lung adenocarcinoma, G2) were kindly provided by the
International Institute of Molecular Oncology. Informed consent of the participants was
obtained following requirements of the institutional review board (Ethics Commission, CHUV,
Bioethics Committee, Poznan University of Medical Sciences, Poznan, Poland).

All cells were tested negative for mycoplasma contamination. High resolution 4-digit HLA-I
and HLA-II typing (Supplementary Table 1) was performed either at the Laboratory of
Diagnostics, Service of Immunology and Allergy, CHUV, Lausanne or in-house with the
following method: The amplification of the HLA was conducted with the TruSight HLA v2
Sequencing Panel kit (CareDx) according to the manufacturer’s protocol. Sequencing was
performed on the lllumina® MiniSeq™ System (lllumina) using paired-end 2x150 bp protocol.

The data was analyzed with the Assign TruSight HLA v2.1 software (CareDx).

Immunoaffinity purification of HLA peptides

We performed HLA immunoaffinity purification following our previously established

protocols®®”3.  Briefly, W6/32 and HB145 monoclonal antibodies were purified from the
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supernatant of HB95 (ATCC® HB-95™) and HB145 cells (ATCC® HB-145™) using protein-
A sepharose 4B (Pro-A) beads (Invitrogen), and antibodies were then cross-linked to Pro-A
beads. Cell lysis was performed with PBS containing 0.25% sodium deoxycholate (Sigma-
Aldrich), 0.2 mM iodoacetamide (Sigma-Aldrich), 1 mM EDTA, 1:200 Protease Inhibitors
Cocktail (Sigma-Aldrich), 1 mM Phenylmethylsulfonylfluoride (Roche), 1% octyl-beta-D
glucopyranoside (Sigma-Alrich) at 4°C for 1 hour. Lysates were cleared by centrifugation in a
table-top centrifuge (Eppendorf) at 4°C at 21,191 x g for 50 min. Snap-frozen tissue samples
were homogenized on ice in 3-5 short intervals of 5 seconds each using an Ultra Turrax
homogenizer (IKA) at maximum speed. Lysates were cleared by centrifugation at 25,000 rpm
in a high speed centrifuge (Beckman Coulter, JSS15314) at 4°C for 50 minutes. We employed
the Waters Positive Pressure-96 Processor (Waters) and 96-well single-use micro-plates with
3um glass fiber and 10um polypropylene membranes (Seahorse Bioscience, ref no: 360063).
Anti-pan HLA-I and HLA-II antibodies cross-linked to beads were loaded on their respective
plates. For tissue samples, a depletion step of endogenous antibodies was required containing
Pro-A beads. The lysates were passed sequentially through HLA-I and -l plates at 4°C. Plates
were then washed separately with varying concentrations of salts using the processor. Finally,
beads were washed twice with 2 mL of 20 mM Tris-HCI pH 8.

Sep-Pak tC18 100 mg Sorbent 96-well plates (Waters, ref no: 186002321) were used for the
purification and concentration of HLA-I and HLA-II peptides. Plates were conditioned and
direct elution of the HLA complexes and the bound peptides from the affinity plate with 1%
trifluoroacetic acid (TFA; Sigma-Aldrich) was performed. After washing the C18 wells with 2
mL of 0.1 % TFA, HLA-I peptides were eluted with 28% Acetonitrile (ACN; Sigma-Aldrich) in
0.1% TFA. HLA-II peptides were eluted from the class Il C18 plate with 500 pL of 32% ACN
in 0.1% TFA. Recovered HLA-I and -Il peptides were dried using vacuum centrifugation

(Concentrator plus, Eppendorf) and stored at -20°C.

LC-MS/MS analyses
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The LC-MS/MS system consists of an Easy-nLC 1200 (Thermo Fisher Scientific) hyphenated
with a Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific). Peptides were
separated on a 450 mm analytical column of 75 pm inner diameter.

For HLAIp, we used the following gradient for analytical separation, with a flow rate of 250
nL/min using a mix of 0.1 % FA (solvent A) and 0.1% FA in 80 % ACN (solvent B): 0-5 min
(5% B); 5-85 min (5-35% B); 85-100 min (35-60 % B); 100-105 min (60-95% B); 105-110 min
(95% B); 110-115 min (95-2% B) and 115-125 min (2% B). For HLAIIp, the gradient was run
as follows: 0-5 min (2-5% B); 5-65 min (5-30% B); 65-70 min (30-60% B); 70-75 min (60-95 %

B); 75-80 min (95% B), 80-85 min (95-2% B) and 85-90 min (2% B).

The mass spectrometer was operated as follows for discovery data-dependent acquisition
(DDA). Full MS spectra were acquired in the Orbitrap from m/z = 300-1650 with a resolution
of 60’000 (m/z = 200) and ion accumulation time of 80 ms. The auto gain control (AGC) was
set to 3e6 ions. MS/MS spectra were acquired in a data-dependent manner on 10 most
abundant precursor ions (if present) with a resolution of 15,000 (m/z = 200), ion accumulation
time of 120 ms and an isolation window of 1.2 m/z. The AGC was set to 2e5 ions, dynamic
exclusion to 20 s and a normalized collision energy (NCE) of 27 was used for fragmentation.
No fragmentation was performed for HLAIp in case of assigned precursor ion charge states of
four and above, and for HLAIIp, in case of assigned precursor ion charge states of one, and

also from six and above. The peptide match option was disabled.

Parallel Reaction Monitoring

Selected endogenous HLAp that required confirmation by parallel reaction monitoring (PRM)
were ordered as crude (PePotec grade 3) or HPLC grade (purity > 70%) with one stable
isotope labelled amino acid from Thermo Fisher Scientific. The mass spectrometer was
operated at a resolution of 120’000 (at m/z = 200) for MS1 full scan, scanning a mass range

from 300-1650 m/z with an ion injection time of 100ms and an AGC of 3e6. Then each peptide
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was isolated with an isolation window of 2.0 m/z prior to ion activation by HCD (NCE = 27).
Targeted MS/MS spectra were acquired at a resolution of 30°'000 (at m/z = 200) with an ion
injection time of 60ms and an AGC of 5e5. Only those peptides that ultimately pass quality
control were considered for further downstream analyses through spiking them back into the
patient sample.

The PRM data was processed and analyzed by Skyline (v4.1.0.18169, MacCoss Lab
Software)™® and an ion mass tolerance of 0.02 m/z was used to extract fragment ion
chromatograms. To display MS/MS spectra, raw data was converted into MGF by MSConvert
(Proteowizard v3.0.18136) and peak lists for the heavy peptide and light counterpart were
extracted. The assessment of MS/MS matching was performed by pLabel (Version 2.4.0.8,

pFind studio, Sci. Ac.) and Skyline.

Exome/RNA sequencing

DNA was extracted for HLA typing and exome sequencing with the commercially available
DNeasy Blood & Tissue Kit (Qiagen), following manufacturers’ protocols. For tissue samples,
pelleted DNA was used, which was obtained after lysis of the tissue and centrifugation during
HLA immunopurification. The supernatant was used for HLA immunopurification, whereas the
pelleted DNA was homogenized with a pestle (70 mm, 1.5/2.0mL, Schuett-Biotec) before DNA
extraction following manufacturer’s instructions.

RNA extraction for RNA sequencing was achieved using the total RNA isolation RNeasy Mini
Kit (Qiagen) following manufacturer’s protocols for all melanoma cell lines (including DNAse |
(Qiagen) on-column digestion). Frozen pieces of tumor and normal tissue samples (<20 mg)
were directly submerged in 350 pL of RLT buffer supplemented with 40 uM DTT (Sigma-
Aldrich). Tissues were then completely homogenized on ice using a pestle (70 mm, 1.5/2.0mL,
Schuett-Biotec) and by passing the sample through a 26G needle syringe for five times (BD
Microlance). Centrifugation was performed in a table-top centrifuge (Eppendorf) at 4°C at

18,213 x g for 3 min, before the supernatant was removed and used for RNA extraction. All
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subsequent steps are described in detail in the manufacturer’s protocol (including DNAse |
(Qiagen) on-column digestion).

Three micrograms of genomic DNA were fragmented to 200bp using a Covaris S2 (Covaris).
Sequencing libraries were prepared with the Agilent SureSelectXT Reagent Kit (Agilent
Technologies). Exome enrichment was performed with Agilent SureSelect XT Human All
Exome v5 probes. Cluster generation was performed with the resulting libraries using the
lllumina HiSeq PE Cluster Kit v4 reagents and sequenced on the Illumina HiSeq 2500 using
SBS Kit v4 reagents. At least 70x coverage for the melanoma cell lines and PBMCs/TILs were
required. For tumor/normal lung tissues, at least 100x coverage was required. Sequencing
data were demultiplexed using the bcl2fastq Conversion Software (v. 1.84, lllumina).

RNA quality was assessed on a Fragment Analyzer (Agilent Technologies) and all RNA had
a RON beween 7.4 and 10. RNA-seq libraries were prepared using 500 ng or 375 ng of total
RNA with the Illlumina TruSeq Stranded mRNA reagents (lllumina) following manufacturer’'s
recommendations. Libraries were quantified by a fluorimetric method and their quality
assessed on a Fragment Analyzer (Agilent Technologies). Cluster generation was performed
from the resulting libraries using the lllumina HiSeq PE Cluster Kit v4 reagents and sequenced
on the lllumina HiSeq 2500 using HiSeq SBS Kit v4 paired end reagents for 2x100 cycles
paired end sequencing. Sequencing data were de-multiplexed using the bcl2fastg2w

Conversion Software (v. 2.20, lllumina).

RNA-Seq data processing for IncRNA and gene expression analysis

The GENCODE comprehensive gene annotation version 221,2 was downloaded from the
GENCODE website (https://www.gencodegenes.org/releases/22.html). It was used to define
the protein-coding and non-coding gene features including chromosome position, transcript
structure, as well as transcript and protein sequences. Here, the human reference genome
GRCh38/hg38 was downloaded from the UCSC Genome Browser website

(http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/) and was used as the genome
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assembly. The RNA-seq reads were aligned to the GRCh38/hg38 reference genome using
RNA-Star (v2.4.2a; https://github.com/alexdobin/STAR). The gene expression was
normalized and calculated as in Fragments Per Kilobase of transcript per Million mapped
reads (FPKM) values by Cufflinks (v2.2.1) (http://cole-trapnell-
lab.github.io/cufflinks/releases/v2.2.1/). The gene level RNA expression data of both protein-

coding and non-coding genes were used for downstream gene expression analysis3*7®,

RNA-Seq data processing for TE expression analysis

Reads from the investigated samples and public data from GTEx were mapped to the human
(GRCh37) genome using hisat2 v.2.1.07%. Counts on genes and TEs were generated using
featureCounts 1.6.277. To avoid read assignation ambiguity between genes and TEs, a gtf file
containing both was provided to featureCounts. For repetitive sequences, an in-house curated
version of the Repbase database was used (fragmented LTR and internal segments belonging
to a single integrant were merged). Only uniquely mapped reads were used for counting on
genes and TEs. Finally, features that did not have at least one sample with 20 reads were
discarded from the analysis. Normalization for sequencing depth was done for both genes and
TEs using the TMM method as implemented in the limma v.3.36.5 package of Bioconductor

and using the counts on genes as library size.

Personalised sequence databases for non-coding genes

The curated set of human ENCODE non-coding transcripts (GRCh37 reference assembly)
was downloaded from https://www.gencodegenes.org/human/release_24lift37.html. Short
ORFs (shORFs) in all three forward reading frames were identified using a stop-to-stop
strategy. The minimum peptide length was set at 8 amino acids, and the longest polypeptide
identified was 3644 amino acids. Unless otherwise mentioned, all non-coding genes that were
expressed per sample (FPKM > 0) were translated in all three forward reading to build the

personalized fasta file for non-coding genes.
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Personalised sequence databases for protein-coding genes including variants

GENCODE v24 (GRCh37 human reference assembly, downloaded from
https://www.gencodegenes.org/human/release_24lift37.html) was chosen as the standard
reference dataset. Whole exome sequence reads were aligned to the GRCh37 human
assembly with BWA-MEM?® and variants were predicted using the GATK framework v3.7 and
Picard Tools v 2.9.08°. SNPs were defined as variants present in both tumor and germline,
and somatic mutations (SNVs and indels) as present only in tumor. The GENCODE
comprehensive gene annotation file, in GFF3 format, was parsed to extract genomic
coordinate information for every exon in each protein coding transcript, and those coordinates
were compared with sample-specific variant coordinates to derive non-synonymous amino
acid changes within each protein. For every sample, we created a separate fasta file where
residue mutation information was added to the header of the affected translated protein coding
transcripts, in a format compatible with MaxQuant v1.5.9.4i as previously reported®..

Mass Spectrometry Database Search

We used two widely used search tools: Comet 2017.01 rev. 2% and the Andromeda search
engine within MaxQuant v1.5.9.4i%2, Both Andromeda and Comet allow searching for peptides
with and without variants. Andromeda matched the MS/MS spectra of each sample against
their personalized reference libraries (mentioned above). Similarly, the variants were
annotated in the PEFF format (http://www.psidev.info/peff) for Comet. Both search tools were
run with the same principal search parameters: precursor mass tolerance 20ppm, MS/MS
fragment tolerance 0.02 Da, peptide length 8-15 for HLA-I only and 8-25 for HLA-I and HLA-II
peptides and no fixed modifications. For samples 0D5P, OVNC and OMM745, oxidation (M)
and phosphorylation (STY) were set as variable modifications and for the remaining samples
only Oxidation (M) was included as a variable modification. A PSM FDR of 3% was used for
Andromeda as a first filter, and non-canonical reference sequences were loaded into the
“proteogenomics fasta files” module for separate FDR calculations for protein-coding and non-

canonical sequences.
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To assure that non-canonical peptide sequences do not match other protein coding genes, all
peptides found by Andromeda or Comet were aligned against the UniProt (www.uniprot.org)
sequence database (human reviewed sequences with isoforms, downloaded 18/12/2018),
where leucine and iso-leucines were treated as equal since they are not distinguishable by
mass spectrometry. If peptides were found matching standard UniProt sequences, they were
assigned as protein-coding with the UniProt IDs. However, we assigned and kept TE peptide
sequences that matched annotated TEs that were integrated into the human reference in

UniProt.

As schematically described in Supplementary Fig. 1a, the Comet FDR calculation was done
separately for protein-coding and non-canonical PSMs with an in-house software written in
Java, which utilizes the MzJava class library 8. All PSMs resulting from the Comet search,
including the decoy PSMs (decoy hits originating from reversed sequences), were split into
three sublists with PSMs of charge (2) 1, 2, and charge 3 or higher. The three Comet scores
XCorr, deltaCn and spScore were considered. It has been shown that when feature vectors
are partitioned into different groups, group-wise local FDR (IFDR) calculation provides the
most sensitive decision boundaries, for controlling the global FDR®*. Therefore, the 3D space
(XCorr, deltaCn and spScore) was partitioned into small cells (40 intervals in each dimension)
and the IFDR was estimated for each cell. We used the following equation to calculate the

IFDR:

(1)

IFDR(x,Z) =

mop(x|Z, H = 0) B m; p(x|Z,H=1) -1
mop(X|Z,H=0) +mp(x|ZH=1) oy p(x|Z,H = 0)

-1
= (1 + %y(x,Z))

where my, and m; are the class probabilities for true (H=1) and wrong (H=0) PSMs, and
p(x|Z,H=0,1) are the probability distributions for feature vector x=

(XCorr,deltaCn, spScore) of PSMs with charge Z. The probability ratio y(x, Z) is estimated
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for every cell and charge using all the target and decoy PSMs. The m, /m, ratios are calculated
for the non-canonical and protein-coding groups separately and then the m, /@, ratios are
plugged into Equation (1). This way the IFDR values are calculated for every cell for both
groups. For each cell i, the number of wrong hits (no) is set to the number of decoy hits, while
the number of true hits (ny) is set to the number of target hits minus ng. These counts are then
smoothed by averaging over the neighboring cells. Then y(x,Z) = ny; - g to¢/Moi * N1 tor OF
y(x,Z) = 1 if noi = 0, where ngwr and N1 are the total number of decoy and target hits in all
cells. The target and decoy PSMs are further split into non-canonical and protein-coding
PSMs. Since there usually are not enough PSMs to estimate y(x, Z) for the non-canonical
group, y(x, Z) is taken from all PSMs but w4 /m, is adapted for each group. Therefore, it is
assumed that the score distributions are the same for each group, but that the ratio of true to
wrong PSMs may change. The it /m ratios are calculated for the non-canonical and protein-
coding groups separately and then the iy /m, ratios are plugged into Equation (1). This way
the IFDR values are calculated for every cell for both groups separately. The m/m, ratio in
the non-canonical group is relatively smaller than the protein-coding i/, ratio, because the
non-canonical database is larger and maostly consists of peptides that are not present in the
sample. This will lead to a larger non-canonical IFDR value, and to a more conservative
filtering of non-canonical PSMs. Finally, the IFDR threshold is adjusted to allow a global FDR

of 3% for the non-canonical and protein-coding groups.

PSMs from both search tools were combined and only the intersection, meaning PSMs with
identical Comet and Andromeda matches (same peptide sequence with the same
modification) were retained. In order to assign peptides into source protein groups, we
implemented a greedy bipartite graph protein grouping algorithm®. The total and ‘unique’
peptide counts were calculated for each protein. To calculate the adjusted peptide counts we
sorted the proteins in each group by decreasing number of peptides and for each protein

removed the peptides of all proteins higher up in the list.
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To build the ipMSDB database, we searched 2,250 immunopeptidomics raw files with Comet
(PSM FDR of 1%, as described above), and the Apache Spark cluster computing framework®
was used to process the results and calculate the FDR. The samples were annotated with

basic biological information for further statistical analysis.
Ribo-Seq: Experimental Protocol

Ribo-Seq was performed according to Calviello et al 2016%’. Ribo-Seq libraries were derived
from 80% confluent 10 cm tissue culture dishes of adherent melanoma OD5P cells. Following
a wash with ice-cold PBS supplemented with 100 ug/mL cycloheximide (Sigma Aldrich), the
cells were immediately snap-frozen by placing the dishes on liquid nitrogen, which were then
placed on wet ice. Lysis Buffer containing 20 mM Tris-Cl pH 7.4, 150 mM NacCl, 5 mM MgCiI2,
1 mM DTT (Sigma Aldrich) and 100 pg/mL cycloheximide, 1% (v/v) Triton X-100 (Calbiochem)
and 25 U/mL TURBO DNase (Life Tech) at a volume of 400 uL was immediately added to
frozen cells. The cells and buffer were then scraped off, mixed by pipetting and transferred to
eppendorf tubes and kept to lyse on ice for 10 minutes. The lysate was then titurated through
a 26-G needle for 10 times with 1 mL syringes and cleared by centrifugation for 10 min at
20,000 x g at 4°C. The cleared supernatant was then transferred to a pre-cooled tube on ice,
and footprinting was performed by adding 1000U of RNase | (Life Tech. #AM2295) per 400
ML of the lysate and incubation in a thermomixer set to 23°C, shaking at 500 rpm for 45 min.
The digestion was stopped by adding 13 uL SUPERASE-In (Thermo, 20 U/uL) per 400 pL of

lysate.

Ribosomes were recovered using two MicroSpin S-400 HR columns (GE Healthcare) per
sample. The columns were first equilibrated with a total of 3 mL of buffer containing 20 mM
Tris-Cl pH 7.4, 150 mM NaCl, 5 mM MgCI2 and 1mM DTT by performing 6 rounds of washes
with 500 uL of the buffer. The resin was resuspended with the last wash and drained by
spinning for 4 min at 600 x g. One half of the sample volume was then filtered per column for
2 min at 600 x g, and the filtered halves were then combined. To the combined flow-through,

three volumes of Trizol LS (Life Tech) were added and RNA was extracted using the Direct-
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zol RNA Mini-Prep kit (Zymo Research) following the manufacturer’s instructions (including
DNase | digestion). RNA was finally eluted in 30 uL of nuclease-free water and quantified

using the Qubit RNA Broad Range Assay (Life Tech).

Ribosomal RNA depletion was performed from up to 5 ug of footprinted RNA using the
RiboZero Magnetic Gold kit (lllumina) following the manufacturer’s protocol. Footprinted RNA
was precipitated from the supernatant (90 pL) using 1.5 pL of glycoblue (Life Tech), 9uL of 3
M sodium acetate and 300uL of ethanol by snap-freezing in liquid nitrogen and a one-hour to
overnight incubation at -80°C and pelleted for 30 min at 21,000 x g at 4°C. The RNA pellet

was dissolved in 10 yL of RNase-free water.

Following rRNA depletion, isolation of short fragments and phosphorylation of these by a T4
PNK treatment, sequencing libraries were prepared using the NEXTflex Small RNA-Seq Kit
v3 (BiooScientific). Following the manufacturer's instructions, adapters were diluted 1:2 to
decrease adapter dimerization. To determine the optimal number of PCR cycles for library
amplification, a pilot PCR with the respective forward and reverse primers was performed for
each sample for 12, 14, 16, 18 and 20 cycles. Adapter and primer sequences are published
by BiooScientific. Products were run on a native PAGE and optimal cycle numbers were
determined as the threshold cycle of the library product of 160 bp, which is expected size for
ribosome protected fragments, showing up on the gel with as little adapter dimer product (130
bp) as possible. After the final PCR, libraries were run on and excised from an agarose gel,
followed by clean-up using Zymoclean Gel DNA Recovery (Zymo Research). Library
guantification and validation were performed using a Qubit dsDNA HS and Bioanalyzer DNA
HS assay, respectively. Three OD5P control samples and three DAC treated samples (in a
pool of 21 libraries) and additionally also two OD5P samples (in a pool of 3 libraries) were
sequenced on a NextSeq 500 machine at a loading concentration of 1.6pM using High Output

Kits v2 (lllumina) with 75 cycles single-end.

Ribo-Seq: Analysis
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Ribo-Seq reads were stripped of adaptor sequences using cutdapt, and contaminants such
as tRNAs and rRNA were removed by alignment to a contaminants index via Bowtie v 2.3.5,
consisting of nucleotide sequences from known human rRNA and tRNA sequences drawn
from the GENCODE annotation v24%. Unaligned reads from this analysis were then aligned
to human genome version hgl19 with the STAR v 2.6.1a_08-278° splice-aware alignment tool
allowing for up to 1 mismatch. The star genome index was built using GENCODE version 24
(lift 37). Reads with up to 20 multi-mapping positions were included, with multi mapping reads
beings separately treated in subsequent periodicity analysis. The RlboseQC pipeline v1.0%°
was used to deduce P-site positions from Ribo-Seq reads, and this P-site data was then used
as input to the SaTAnn pipeline v1.0°! in combination with custom R scripts®’ for ORF-calling.
The SaTAnn pipeline searches for the periodic ribosomal footprint pattern characteristic of
translated ORFs using a supplied database of transcripts, yielding a set of ORFs
corresponding to known coding regions, as well as ORFs originating in untranslated regions,
non-coding RNAs, intron retentions, and read-through events. OD5P samples had a median
of 2.8 million reads mapping to coding sequences per sample, which constituted a median of
81% of the total reads. Since the false positive rate of periodicity based ORF calling is
expected to be tolerant to non-periodic sources of noise such as genomic contamination, we
included all samples for OD5P. ORFs were called in both individual libraries and in the pooled
set of all libraries for OD5P, and ORFs which were fully contained within ORFs detected in
another library were merged. ORFs were tested for periodicity, by a multitaper test®” and those

with a p-value of below 0.05 were kept for analyses.

Protein sequences in fasta format were generated from the coordinates of these ORFs, and
used both for validation of peptides found using the RNA-Seq based database, and as a de
novo assembled database for the subsequent round of peptide detection. Peptides were
considered validated by Ribo-Seq if they matched anywhere within the translated ORF

sequences.

Riboseq profile plots were plotted with P-site numbers per-base on a log2 (n+1) scale.
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10x Genomics pipeline and gene expression analyses

For single-cell library preparation on the 10x Genomics platform, the Chromium Single Cell 3'
Library and SingleCell 3’ Reagent v3 were utilized, following the official user guide CG000183
RevA, and the instrument 10x Chromium single cell controller. A total of 1,692 OD5P cells
were captured for single-cell transcriptomics. Resulting cDNA libraries were sequenced on
NextSeq v 2.5 (with lllumina protocol #15048776). The Cell Ranger v.3.0.1 software (10x
Genomics) (https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines) was used to process data generated using the 10x Chromium
platform, with a restriction to include only 1400 cells to avoid cells or debris with low UMI
counts. This led to the detection of 19,178 genes with a mean of 125,937 mapped reads.
Genes present in at least five cells and cells detecting at least 200 genes but no more than
50% of mito genes were kept for the rest of the analysis. This resulted in a reduced matrix of

15,710 genes over 1,365 cells.

The raw counts were log-normalised using the NormalizeData implemented in the Seurat R
package (Seurat v3). Prior to further processing, we scaled the data to remove cell-cell
variations due to cell cycling or high percentage of mitochondrial genes. For cell cycling
correction, we followed the scoring strategy described in Tirosh et al, 2016%: each cell was
assigned a “Cell Cycle” score and the difference between G2M and S phase scores was
regressed out. The clustering was obtained using a graph-based method implemented in
Seurat (FindClusters with a resolution set to 0.5) leading to the identification of 5 clusters.
Marker genes for each cluster were identified with FindMarkers from Seurat by setting the
logFC threshold parameter to 0.15. Marker genes with an adjusted bonferroni p-value < 0.05
were considered significantly differentially expressed. Functional analyses were performed

with STRING-db v11 on each cluster using their corresponding marker genes as input.

Interrogating T-cell reactivity
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Peptides were synthesized and lyophilized by the Protein and Peptide Chemistry Facility at
the Ludwig Cancer Research Center (crude - >80% purity), Department of Oncology,
University of Lausanne, or by Thermo Scientific, and resuspended in DMSO at 10 mg/mL.
IFNy ELISpot assays were conducted to assess the reactivity of the REP TILs towards
antigens of interest (TAAs, noncHLAIp) using pre-coated 96-well ELISpot plates (Mabtech)
following the manufacturer’s protocol. If necessary, REP TILs were stimulated in vitro for 14
days with a single peptide or peptide pool at 1ug/mL before re-challenging with the peptide to
assess IFN y response. For this purpose, REP TILs were plated at 1-2x10° cells per well and
challenged for 18h with cognate peptides at a final peptide concentration of 1 uM, in triplicates.
Medium without peptide was used as negative control, and 1x Cell Stimulation Cocktall
(eBioscience™, Thermo Fisher Scientific) was used as positive control. Spot-forming units
were quantified using the Bioreader-6000-E automated counter (BioSys). Positive hits were
identified by having more spots than the negative control wells, which did not contain any
peptide, plus 3 times the standard deviation of the negative control. Positivity was confirmed

in at least = 2 independent experiments.

Identification of circulating antigen-specific T cells in patient OD5P was performed as
previously described 69, CD19+ cells were isolated from cryopreserved PBLs using magnetic
beads (Miltenyi) and expanded for 14 days with multimeric-CD40L (Adipogen, Epalinges,
Switzerland, 1ug/mL) and IL-4 (Miltenyi, 200 IU/mL). CD8+ T lymphocytes were isolated from
cryopreserved PBL using magnetic beads (Miltenyi) and were co-incubated at a 1:1 ratio with
irradiated autologous CD40-activated B cells and peptides (single peptide or pools of < 50
peptides, 1 UM each). After 12 days of in vitro expansion, CD8+ T cells were re-challenged

with cognate peptide and T cell responses were assessed by ELISpot.
Statistical analyses

All statistical analyses have been indicated where appropriate. The following tools were used

for statistical analyses: GraphPad Prism 8, Perseus 1.5.5.3, RStudio 3.5.1 and Python 3.6.
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HLA-binding predictions

In order to evaluate the binding affinity of HLAIp, MixMHCpred.v2 prediction was run on all

HLAIp of length 8-14. Peptides with a p-value < 0.05 were considered as binders.
Sequence Specific Retention Calculator

Sequence specific retention was calculated with an online available tool SSRCalc%:

http://hs2.proteome.ca/SSRCalc/SSRCalcQ.html. Only unmodified peptides were included.

Peptides and their mean retention times were plotted against the predicted hydrophobicity
indices, which were obtained from the SSRCalc based on the 100A C18 column, 0.1% formic

acid separation system and without cysteine protection.
Correlation analyses

Correlative analyses between the immunopeptidome and transcriptome of OD5P (Fig. 2a-d)
were achieved by first assigning HLAp to their respective source genes. For noncHLAp, unless
otherwise indicated, if the peptide map back to more than one non-coding source gene, the

gene with the highest transcript expression was allocated for further analyses.
Assessing HLAIp sampling

For HLAIp sampling analyses, peptides were assigned to source protein groups as described
above. Adjusted peptide counts were taken, summed over a gene, and subsequently matching
to their corresponding expression values (either transcriptome or translatome based).
Normalized sampling corresponds to the adjusted peptide count per protein, normalized by
the protein length. Determination of correlation between gene expression or spectral
coefficient of 3-periodic signal in Ribo-Seq data and HLA presentation were assessed by fitting
a polynomial curve of degree 3 to each dataset. Pearson correlation was calculated to assess

the correlation between the fitted curve and the data.

Peptide position analysis

35


http://hs2.proteome.ca/SSRCalc/SSRCalcQ.html
https://doi.org/10.1101/758680
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/758680; this version posted September 6, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

For peptide position analysis within a protein sequence (Supplementary Fig. 2), protein-
coding datasets fitting to the length distribution of the 95% confidence level of the INcCRNA
dataset were selected. Then, the position of HLAp, relative to the full protein sequence, was
calculated for source IncRNA and protein-coding sequences. Since the data was not normally
distributed, the Wilcoxon test was chosen for statistical analysis.

PRM analyses

For analyses of PRM statistics, MS-based intensities were taken from the initial MaxQuant
peptide table output. Tumor-associated antigens (TAAs) for PRM and further comparative

analyses were selected from a non-exhaustive list of known and clinically relevant TAAs.
GTEXx RNA expression analyses

Tissue-specific gene expression data was downloaded from The Genotype-Tissue Expression
(GTEX) project, a public resource that contains data from 53 non-diseased tissues across
nearly 1000 individuals*®. We used a custom R script to retrieve gene expression values,
based on GTEx v7 publicly available data. In the case of multiple transcripts matching the
same entry, expression data of the most expressed one were used. The 90th percentile
expression of the gene in the tissue-derived tumor was reported. Investigated sample’s FPKM
expression units were converted into TPM units for the purpose of comparison with GTEX
data. The R-package “ComplexHeatmap”® from the Bioconductor suite was used to draw

heatmaps.
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have been deposited to the ProteomeXchange Consortium via the PRIDE®® partner repository

with the dataset identifier PXD013649.
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Figure Legends

Fig. 1 A novel proteogenomics approach for the robust identification of noncHLAp. a A
schematic of the entire workflow is shown, where tumor tissue samples or tumor cell lines
were obtained from patients, and exome, RNA and Ribo-Seq performed to provide a
framework to interrogate the non-canonical antigen repertoire. HLAp are immunoaffinity
purified from cancer cell lines and matched tumor/healthy lung tissues and analyzed by MS.
Immunopeptidomics spectra were then searched against RNA and Ribo-Seq based
personalized protein sequence databases that contain non-canonical protein sequences. MS-
identified noncHLAIp were validated by targeted MS-based PRM and tested for
immunogenicity using autologous T cells or PBMCs. b The percentage of HLA-binders with a
MixMHCpred p-value < 0.05 is used to evaluate the accuracy of the identified HLAIp as a
function of database size (blue line). Percentage of binders obtained for each condition is
shown for each bar, for melanoma cell line OD5P. ¢ Different protein sequence databases
combining whole exome sequencing, and inferred from RNA-Seq and Ribo-Seq data were
utilized. NewAnce was implemented by retaining the PSM intersection of the two MS search
tools MaxQuant and Comet, and applying group-specific FDR calculations for protHLAp and
noncHLAp. d The percentages of protein-coding HLA-I binders were assessed for OD5P for
each MS search tool (MaxQuant and Comet at FDR 3%) and NewAnce. e Similar to d, the
comparisons were performed for the different non-canonical antigen classes. f Retention
predictions for peptides identified with melanoma OD5P. Observed mean retention time is
plotted against hydrophobicity indices for NewAnce identified protein coding versus non-
canonical peptides. g All peptides identified with each tool (MaxQuant, Comet, NewAnce)
were analyzed based on their hydrophobicity indices. h MaxQuant or i Comet identified 8-14
mer peptides were analyzed based on their HLA binding predictions which were assessed
with MixMHCpred.

Fig. 2 MS-based targeted validation by PRM and ribosome footprint pattern as evidence
of non-canonical peptide generation. A set of protein-coding tumor-associated antigens
and noncHLAIp (IncRNAs and TEs) from melanoma OD5P were synthesized in its heavy
labelled form and spiked back into replicates of eluted HLAIp from OD5P to confirm the
presence of the endogenous HLAIp. The proportions of confirmed and non-confirmed HLAIp
by a PRM and b through Ribo-Seq targeted validation are shown for each of the antigen
classes. ¢ An example of co-elution profiles of transitions of heavy labelled and endogenous
noncHLAIp (from IncRNA; SYLRRHLDF) from OD5P (left) is shown. MS/MS fragmentation
pattern further confirms the presence the endogenous peptide (A m=10Da) (right). d, e The
Ribo-Seq profiles for two source genes show the frequency of Ribo-Seq reads on ribosome’s
P-site in three replicates. Library size-normalized P-sites per basepair are shown on a log2
scale on the Y-axis, with P-sites inferred as a constant offset from the 5’ end of the footprint,
for each read length. Colored bars represent different reading frames. Yellow bars below the
plots represent exons. For example, the noncHLAIp SYLRRHLDF in OVOS2 (blue arrow) falls
within two nested, Ribo-Seq-supported ORFs (red arrows), within which most P-sites (red
bars) fall in the first reading frame.
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Fig. 3 RNA-Seq and Ribo-Seq based gene expression analyses for the characterization
of theprotein-coding and non-canonical HLA immunopeptidome for melanoma 0OD5P. a
Genes are ranked based on RNA expression in OD5P. P protein-coding (orange) and non-
coding (blue) source genes, in which HLAIp were identified. The frequency distribution of gene
expression for protein-coding and non-coding (INcCRNA) genes is shown. b Magnification of
the region of interest to show the distribution of noncHLAIp source gene expression. ¢ Source
gene restricted plot. Targeted MS validation was performed and its confirmation denoted for
all identified non-canonical and a subset of protHLAIp (selected TAAs). Confirmed hits indicate
that one or more peptides from that source gene were validated by PRM. Point sizes represent
the number of peptides identified per source gene. d Frequency distribution of gene
expression for MS confirmed versus non confirmed (or inconclusive) noncHLAIp. Scatterplots
show the correlation between e UniProt based HLA-I sampling and RNA abundance, f Ribo-
Seg-based HLA-I sampling and RNA abundance, and g Ribo-Seqg-based HLA-I sampling and
translation abundance. HLA-I sampling was calculated from adjusted peptide counts
normalized by protein length. Determination of correlation between gene expression and HLA-
| sampling was assessed by fitting a polynomial curve of degree 3 to each dataset. Pearson
correlations were calculated to assess the correlation between the fitted curve and the
corresponding dataset. h With data derived from OD5P, a comparison of the overall overlap in
unique HLAIp identifications with RNA-Seq based and Ribo-Seq based assembled databases
for MS search is shown. i Overlap of noncHLAIp identifications found with RNA-Seq and Ribo-
Seq based searches. ] The number of identified noncHLAIp by Ribo-Seq is depicted with their
respective source gene types.

Fig. 4 SCRNA-Seq reveals non-coding transcriptional heterogeneity in melanoma OD5P.
a t-SNE plot of the 1,400 cells colored by their “cell cycle” scores. b Examples of genes
that are cell-cycle dependent: ATAD2, a tumor associated antigen, and ¢ TMEM106C, where
a noncHLAIp originated from. d Genes of interest were plotted based on their sum normalized
expression by scRNA-Seq and ordered based on percentage of cells that expressed the gene.
Color codes denote the type of HLAIp identified from those genes. For clarity purposes, only
some genes were labelled. e t-SNE plot of the 1,365 cells colored by the five identified clusters.
Clusters were annotated based on functional enrichment analyses of marker genes. f
Heatmap showing the scaled and centered expressions of marker genes for cluster 0. Cluster
colors from (e) are represented above the plot. g Expression profiles of four marker genes for
cluster O over all other clusters, for two well-known cancer biomarkers MITF and CTNNB1,
and two source genes where noncHLAIp were identified: ABCB5 gene with a dORF, and
LINC00520. The p-values represented in (b), (c) and (g) were obtained with Wilcoxon tests.

Fig. 5 A comparison of non-coding source gene expression of investigated samples to
healthy tissues (GTEx) reveals that a substantial proportion of source non-coding
genes are tumor-specific. a The heatmap of IncRNA source genes shows the 90th percentile
gene expression over 30 healthy tissues on the left, and on the right, the gene expression
levels over our investigated samples. Tissue gene expression was classified into being not
expressed (90th percentile TPM < 1) in any, 1-3, or more than 3 tissues other than testis, to
assess tumor specificity. The number of HLAIp identified per gene is depicted, as well as gene
(GENCODE) and sample type. b The same as above is plotted also for non-coding source

45


https://doi.org/10.1101/758680
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/758680; this version posted September 6, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

genes identified in lung tissue samples and c specifically also for the tumor-specific
noncHLAIp identified in lung cancer patient C3N-02289.

Fig. 6 NoncHLAIp can be shared across individuals and are immunogenic. a The
noncHLAIp-centric heatmap (left) shows the corresponding non-coding gene expression
(90th percentile) across healthy tissues, as well as in our investigated samples (middle). The
peptides that were MS-identified across the investigated samples, and therefore shared, are
outlined in the rightmost heatmap. Validation by PRM was performed for multiple noncHLAIp
across the corresponding samples and denoted with cross markings. b noncHLAIp
identification across a large collection of immunopeptidomics datasets (ipMSDB) consisting of
both tumor and healthy samples. Tumor specific noncHLAIp were re-identified and were
significantly enriched in tumor samples. Tumor samples are labelled in shades of blue, *
include tumor metastasis, myeloma, prostate, uterine, kidney, lung and pancreatic cancer, and
neuroblastoma. Healthy samples are indicated in shades of red, # include fibroblast cells,
monocytes, pancreatic tissue, epithelial cells, normal lung tissue, and apheresis samples. B
and T cells mostly constitute of samples that were immortalized or rapidly expanded in culture.
¢ Boxplot depicting the number of noncHLAIp identified in the different groups of samples
derived from ipMSDB. d Reactivity was measured in melanoma OD5P by IFNy ELISpot using
autologous REP TILs. Three TAAs from TYR and TYRP1, and one non-canonical dORF
derived HLAIp from ABCBS5, induced an IFNy response. e In addition, CD8+ T lymphocytes
from PBLs were re-challenged with autologous CD4+ blasts together with 1uM of the non-
canonical ABCB5 HLAIp. (No Ag: no peptide, positive control: 1x cell stimulation cocktail)
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