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Abstract 

Despite considerable pan-cancer efforts, the link between genomics and transcriptomics in cancer 

remains relatively weak and mostly based on statistical rather than mechanistic principles. By 

performing integrative analysis of transcriptomic and mutational profiles on a sample-by-sample 

basis, via regulatory/signaling networks, we identified a repertoire of 407 Master-Regulator 

proteins responsible for canalizing the genetics of 20 TCGA cohorts into 112 transcriptionally-

distinct tumor subtypes. Further analysis highlighted a highly-recurrent regulatory architecture 

(oncotecture) with Master-Regulators organized into 24 modular MR-Blocks, regulating highly-

specific tumor-hallmark functions and predictive of patient outcome. Critically, >50% of the 

somatic alterations identified in individual samples were in proteins affecting Master-Regulator 

activity, thus yielding novel insight into mechanisms linking tumor genetics and transcriptional 

identity and establishing novel non-oncogene dependencies.  Experimental validation of 

functional mutations upstream of the most conserved MR-Block confirmed their ability to affect 

MR-protein activity, suggesting that the proposed methodology may effectively complement and 

extend current pan-cancer knowledge. 
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Introduction 

Our understanding of cancer as a complex system is constantly evolving: in particular, it is 

increasingly appreciated that the transcriptional state of cancer cells (i.e. their transcriptional 

identity) is as tightly regulated as that of their physiologic counterparts, albeit via distinct and 

aberrant (i.e., dystatic) regulatory mechanisms (Califano and Alvarez, 2017). These mechanisms 

play a key role in determining which transcriptional identities may be compatible with the specific 

set of somatic and germline variants harbored by cancer cells, as well as their likelihood to 

plastically reprogram across molecularly-distinct identities. Some mutations effectively restrict the 

transcriptional identity repertoire accessible to a cancer cell; for instance, activating mutations in 

ESR1, FOXA1, and GATA3 are observed almost exclusively in the luminal subtype of breast 

cancer (Curtis et al., 2012b).  However, most mutations are not as restrictive. In glioblastoma, for 

instance, there is only weak association between mutational and transcriptional states (Neftel et 

al., 2019). Indeed, EGFR mutations, while more frequently associated with a proneural identity, 

are also detected in mesenchymal cells. 

 

While it is reasonable to expect that a tumor cell’s mutational landscape may mechanistically 

constrain the subset of transcriptional identities occupied by its cells and affect their relative 

likelihood (E.g., EGFR mutations in GBM may increase the likelihood of a proneural state), the 

specific regulatory and signaling logic that underlies these relationships is still elusive, with most 

mutation/transcriptional-subtype relationships based on statistical associations that lack 

mechanistic rationale. Indeed, the vast majority of studies aimed at elucidating the molecular 

landscape of large tumor cohorts proceed almost invariably in two steps, first by identifying 

molecularly-distinct subtypes by gene expression cluster analysis and then by assessing subtype-

specific enrichment in recurrent mutations (Hoadley et al., 2018). 
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To address this challenge, we  propose to leverage the Oncotecture hypothesis (Califano and 

Alvarez, 2017). This proposes the existence of Master Regulator (MR) proteins organized in 

highly modular structures (Tumor Checkpoints) that integrate the effect of upstream signals and 

genomic alterations to implement specific transcriptional states. We hypothesize that this may 

pinpoint more specific relationships between a tumor cell’s mutational landscape and its 

transcriptional identities. Here we distinguish between transcriptional states (which may be 

transient and thus form a continuum) and identities (i.e., stable states, representing peaks in the 

probability density of the states thus associated with higher persistence over time). This is 

important because in TCGA bulk tissue, one is more likely to observe identities than states.  

 

The Oncotecture hypothesis, which represents the cancer-specific counterpart of the Omnigene 

Hypothesis in human genetics (Boyle et al., 2017), is supported by a wealth of experimental 

evidence, from prostate cancer (Aytes et al., 2014b) and breast cancer (Rodriguez-Barrueco et 

al., 2015; Walsh et al., 2017), to glioblastoma (Carro et al., 2010), neuroblastoma (Rajbhandari 

et al., 2018a),  and neuroendocrine tumors (Alvarez et al., 2018), see (Califano and Alvarez, 2017) 

for a comprehensive overview, but has not yet been comprehensively and systematically 

assessed across multiple tumor types. 

 

In this manuscript we thus explore and validate the Oncotecture hypothesis across the entire 

TCGA repository (Cancer Genome Atlas Research et al., 2013), on a sample-by-sample basis. 

Specifically, we aim to assess the full range of MR-proteins representing candidate mechanistic 

determinants of cancer cell identity, their conservation across distinct tumor cohorts, their ability 

to canalize the effect of specific genetic alterations, and, finally, whether the transcriptional 

identities they regulate may recapitulate patient outcome and other macroscopic properties. While 

TCGA does not comprise metastatic samples, the same approach is equally effective in 
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repositories that include samples from metastatic or heavily treated patients, as shown for the 

Metabric breast cancer repository (Curtis et al., 2012a). 

 

To accomplish this goal, we developed the Multi Omics Master-Regulator Analysis (MOMA) 

framework. MOMA allows single-sample-based identification of candidate Master Regulators that 

(a) are downstream of sample-specific, functional genetic alterations—as identified and validated 

by GISTIC2.0 (Mermel et al., 2011) and CHASM (Carter et al., 2009)—and (b) mechanistically 

determine a sample’s transcriptional identity, via their regulatory targets. For simplicity, we will 

use the term Master Regulator to indicate a candidate MR and validated Master Regulator to 

indicate one that has been experimentally validated. 

 

MOMA analysis of 9,738 individual primary samples, representing 20 TCGA tumor cohorts of 

sufficient size to support the analysis, identified 112 transcriptionally distinct, MR-driven tumor 

identities (or subtypes), each one regulated by a distinct Tumor Checkpoint, whose aberrant 

activity is determined by distinct genomic alteration landscapes.  Unexpectedly, the MRs found in 

the Tumor Checkpoints present a highly recurrent sub-modular structure, implemented by 24 MR 

sub-modules (MR-Blocks), for a total of 407 regulatory proteins (Supplemental Data 6,11). 

MOMA-inferred subtypes provide novel stratification of TCGA cohorts that have been traditionally 

difficult to study by gene expression profile alone, while MR-Block activity was found to be highly 

predictive of patient outcome in virtually all cohorts.  

 

On average, the top 33 MR proteins defining a Tumor Checkpoint were sufficient to account for 

canalization of genomic alterations detected in individual samples. Furthermore, analysis of the 

24 MR-Blocks confirmed their role as highly specific, mechanistic regulators of key cancer 

hallmark programs. Since each sample was analyzed on an individual basis, these results are 

agnostic to prior tumor classification schemas, as well as to tumor histology and thus constitute a 
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bona fide, unbiased pan-cancer analysis of tumorigenic mechanism conservation. To support 

these findings, we performed experimental in vitro and in vivo studies of 5 loss-of function 

mutations that MOMA identified upstream of the worst prognosis subtype Tumor Checkpoint in 

prostate cancer. Taken together, this suggests that tumor identities based on the activity of MR-

Block proteins are likely to complement and extend prior pan-cancer classification schemas by 

providing more direct relationships between genetics and tumor subtypes. 

 

The MOMA framework can be accessed on Bioconductor (Gentleman et al., 2004), thus allowing 

analysis of virtually any cancer cohort with patient-matched transcriptional and mutational profiles. 

In addition, we provide both the Tumor Checkpoint MRs for the 112 tumor subtypes identified by 

the analysis as well as the MRs in the 24 MR-Blocks. These represent a comprehensive new 

collection of candidate tumor dependencies and therapeutic targets and outcome/drug-sensitivity 

biomarkers, several of which have been validated in previous studies, see for instance (Alvarez 

et al., 2018; Aytes et al., 2014b; Bisikirska et al., 2016; Carro et al., 2010; Rajbhandari et al., 

2018b; Walsh et al., 2017). Given the pan-cancer nature of this work, in the following sections we 

will use different tumor types to highlight key advantages and novel findings made possible by 

the MOMA framework. 
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Results 

 

Integrative analysis of genetic alterations and transcriptional state identifies pan-cancer 

MR proteins. The goal of this analysis is to systematically identify MR proteins that implement a 

tumor’s transcriptional identity by canalizing the effect of genetic alterations in their upstream 

pathways, for every tumor sample in the TCGA repository. To accomplish this goal, we first 

transformed the gene expression profile of each sample to a protein activity profile, using the 

VIPER algorithm (Alvarez et al., 2016).  For each sample, we then prioritized the most aberrantly 

activated proteins as candidate MRs based on the presence of upstream functional mutations, 

using the DIGGIT algorithm (Chen et al., 2014), see Figure 1 for a conceptual workflow of the 

analysis. 

 

VIPER has been widely validated as an accurate methodology to measure a protein’s 

transcriptional activity, based on the enrichment of its activated and repressed transcriptional 

targets (regulons) in over and under-expressed genes (see methods) (Alvarez et al., 2016). It is 

conceptually equivalent to using a multiplexed gene-reporter assay, comprising the transcriptional 

targets of a protein (i.e., its regulon), which are tuned for each specific regulatory protein and each 

tumor context. We used the ARACNe algorithm (Basso et al., 2005) to dissect accurate regulons 

for every transcription factor (TF), co-factor (co-TF), and chromatin remodeling enzyme (CRE) 

(n = 2,506). These proteins were selected because they represent the most direct/mechanistic 

regulators of a cell’s transcriptional state, via physical, on-chromatin interactions. Systematic 

experimental validation had previously confirmed the accuracy of VIPER activity measurements 

for >80% of these proteins, including high reproducibility when up to 60% of the targets in a 

regulon were randomized (Alvarez et al., 2016), thus showing robustness to false positive 

interactions. Moreover, from other prior studies, on average >70% of ARACNe-inferred targets 
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were validated via biochemical and functional assays, such as Chromatin Immunoprecipitation 

(ChIP) and RNAi-mediated silencing followed by gene expression profiling—see for instance 

(Basso et al., 2005; Carro et al., 2010; Lefebvre et al., 2010). This confirms that VIPER not only 

produces realistic protein activity measurements but also effectively identifies the proteins that 

mechanistically regulate a sample’s transcriptional state through their physical targets. ARACNe 

requires N ≥100 samples for optimal accuracy, thus restricting the analysis to 20 TCGA cohorts 

(Table 1), for a total of 9,738 primary tumor samples.  

 

To identify transcriptional tumor identities (i.e., tumor subtypes) implemented by the same subset 

of regulatory proteins, we performed protein-activity-based unsupervised cluster analysis of the 

20 selected TCGA cohorts, using a k-medoids approach (see STAR methods).  Within each 

cohort, the optimal number of clusters was determined using a silhouette-score-based metric 

(Figure 2A and STAR methods), using the protein activity of the predicted tumor checkpoint 

proteins. Here we show the 5-cluster optimal solution for KIRC, as an illustrative example (Figure 

2B); see Figure S1A-T for all other cohorts. Using the same clustering algorithm (PAM) protein-

activity-based clustering significantly outperformed gene-expression-based clustering in all 20 

cohorts (p ≤ 1.8E-8 in every cohort and p < 2.2E-16 in all but one (SKCM), by Wilcoxon rank sum 

test; see STAR methods, GEX clustering; Figure 2C).  Optimal cluster number ranged from k = 2 

to k = 8 per cohort. Whenever two or more statistically-equivalent cluster structures were 

identified for a given cohort (e.g. k = 3 and k = 4), we selected the one producing the best 

association with survival, see Table 2, with twelve cohorts thus further prioritized based on 

outcome. As an example, we show differential outcome in Cluster 5 (worst) vs. Cluster 3 (best) 

for KIRC (Figure 2D) (p = 1.1E-16).  

 

In total, the analysis identified 112 clusters, representing a novel stratification of cancer into 

distinct transcriptional identities, each one mechanistically regulated by a specific subset of 
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regulatory proteins (Figure 2B, S1A-T, and Table 3, Supplemental Data 4). Supporting the value 

and novelty of the classification, this analysis identified differential outcome subtypes in TCGA 

cohorts that had been previously challenging in terms of gene-expression-based stratification, 

such as prostate cancer. In addition, for each subtype, the analysis provided a repertoire of MR 

proteins representing its most likely mechanistic determinants. As discussed in the following, this 

also provides direct links to the specific genetic alterations that, by affecting proteins in upstream 

pathways, induce aberrant MR-protein activity on an individual sample basis.  

 

As previously reported, identification of tumor subtypes that effectively associate with clinical and 

other phenotypic properties by gene expression analysis has often been challenging. For 

instance, with the exception of the neuroendocrine subtype, outcome stratification of prostate 

cancer cohorts by gene expression profile analysis has been elusive. In contrast, MOMA identified 

transcriptional clusters strongly associated with outcome in all of the 20 cohorts (Figure 2A), 

except for COAD, where the p-value was just slightly above statistical significance (p = 0.07, by 

Kaplan Meier).  Combined with the highly significant improvement in cluster statistics (i.e., cluster 

tightness), this suggests that protein-activity-based clustering significantly outperforms a directly 

comparable gene-expression-based PAM cluster analysis (Figure 2C). In addition, it provides a 

far more compact and interpretable subtype stratification, by replacing differential expression 

signatures comprising thousands of genes with just a handful of their transcriptional regulators. 

 

While producing a largely novel subtype architecture, VIPER-based clustering also showed 

concordance with the most established molecular subtypes. In breast cancer, for instance, the 

four protein-activity based clusters were highly concordant with established molecular subtypes 

(Figure S2A, p = 2.2E-16 by Chi2 test). Similarly, in high-grade glioma, we found highly significant 

concordance (p = 2.2E-16; by χ2 analysis) with published subtypes (Brennan et al., 2013b) and 

similar outcome differences between clusters associated with best and worst progression-free 
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survival (p = 1.4E-3; Figure S2B). Indeed, in agreement with prior literature, the worst survival 

cluster was comprised almost entirely of mesenchymal tumors, while the best surviving cluster 

was predominantly comprised of proneural tumors (p = 1.3E-3 and p = 3E-6 by FET, respectively) 

(Brennan et al., 2013a; Carro et al., 2010; Chen et al., 2014).  Even though MOMA analysis is 

fully unsupervised, results were consistent with previous supervised analyses in glioblastoma and 

prostate cancer, for instance, where samples corresponding to poorest and best outcome had 

been directly compared.  Specifically, CEBPβ/CEBPδ/STAT3 and FOXM1/CENPF—previously 

validated as synergistic Master Regulators of the most aggressive subtypes of GBM (Carro et al., 

2010) and prostate cancer (Aytes et al., 2014a), respectively—were among the top MR proteins 

identified by MOMA for the PRAD and GBM subtypes associated with worst prognosis. See 

Figure S2C for differential CEBPβ/CEBPδ/STAT3 activity in cluster 2 (mesenchymal) and cluster 

3 (proneural) GBM. This is especially noteworthy, since the poor prognosis subtype in PRAD 

includes only nine samples, a result of the TCGA tissue selection criteria.  

 

To further prioritize MR-proteins based on the genetic alterations that determine their aberrant 

activation, we computed a genomic score based on the enrichment of genomic alteration in their 

upstream pathways—on a sample-by-sample basis—using the DIGGIT algorithm (Alvarez et al., 

2015; Chen et al., 2014; Torres-Garcia et al., 2014).  This includes three steps. First candidate 

modulators of MR activity were identified by the CINDy algorithm (Giorgi et al., 2014). Further 

improving the original MINDy algorithm (Wang et al., 2009), CINDy uses the Conditional Mutual 

Information (CMI) between MRs, their downstream targets and potential upstream modulators, to 

identify MR-modulator proteins, whose abundance is associated with differential MR activity. 

Activity Quantitative Trait Locus (aQTL) analysis was then used to determine whether genetic 

alterations in CINDy-inferred MR-modulators were effectively associated with their differential 

activity. Finally, conditional analysis was used to assess which ones of the aQTLs identified by 

the analysis were statistically independent of other aQTLs, thus efficiently distinguishing between 
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driver and passenger alterations (e.g., same-amplicon genes with no functional effect on the MR). 

DIGGIT was shown not only to recapitulate known driver mutations but also to infer novel, highly 

penetrant mutations that were missed by traditional approaches and were then experimentally 

validated (Chen et al., 2014).  

 

Finally, to generate a refined repertoire of MR proteins that are responsible for determining a 

tumor’s transcriptional identity by canalizing the effect of genetic alterations in their upstream 

pathways, we used a Bayesian evidence integration approach. Specifically, we ranked MRs by 

integrating evidence from (a) their protein activity (VIPER score), (b) their upstream genetic 

alterations (genomic score), and (c) additional structure and literature-based evidence supporting 

direct protein-protein interactions between the MRs and their MR-modulators harboring genetic 

alterations, such as the PrePPI algorithm (Zhang et al., 2012) (see STAR Methods, Integrated 

Rankings). 

 

Identification of MR-proteins in Tumor Checkpoints: We have defined Tumor Checkpoint 

modules as the minimum repertoire of regulatory proteins necessary to implement a tumor’s 

transcriptional identity by canalizing the effect of upstream genomic events (i.e., mutations, copy 

number alterations, etc.). Based on this definition, we used saturation analysis to identify Tumor 

Checkpoint MRs from the full ranked-list of aberrantly activated proteins, for each of the 112 

subtypes (Figure 3A,B). Specifically, this was accomplished by assessing how many of the most 

aberrantly activated proteins are needed to capture a substantial proportion of, or saturate, the 

number of genomic alterations they canalize. If, as postulated, Tumor Checkpoints comprise only 

a handful of MRs, saturation should occur rapidly. In contrast, if mutations were randomly 

distributed across all proteins, saturation would be gradual.  

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/758268doi: bioRxiv preprint 

https://doi.org/10.1101/758268
http://creativecommons.org/licenses/by-nc-nd/4.0/


To test this hypothesis, we first identified all proteins harboring genetic alterations detected by 

GISTIC2.0 (Mermel et al., 2011) and non-silent SNVs in a specific subtype—including functional 

CNVs significant associated with differential gene expression, non-silent SNVs, and focal SCNAs. 

We then assessed how many of these occurred in CINDy-inferred modulators of the N most 

statistically significant MRs (on a sample-by-sample basis), as ranked by the previously described 

Bayesian evidence integration, with N ranging from 1 to 100. Finally, we plotted both the fraction 

and total number of mutations as a function of N, averaged over all samples in the subtype (Figure 

3A). 

 

Consistent with the Tumor Checkpoint hypothesis, we observed extremely rapid saturation of the 

genetic events canalized by the top MR proteins, across virtually all 112 subtypes, (Figure 3A). 

For each subtype, we estimated the inflection point of these saturation curves using a simple 

heuristic (see STAR methods) and found that only a handful of MRs were required to virtually 

saturate the vast majority of mutations in individual samples. This ranged from 4 MRs (THCA 

subtype 6) to 86 (LAML subtype 3), with Ovarian cancer representing an outlier with 170, 140, 

and 140 MRs in subtypes 1,3 and 4, respectively.  The latter is likely due to the extremely large 

number of structural events in this tumor. 

 

Between 14 (0.6%) and 52 (2%) MRs were sufficient to account for the first and third quantile of 

the mutational burden of each sample and a median of 33 (1.3%) MRs per Tumor Checkpoint. In 

contrast, when MRs were chosen at random from all 2,506 regulatory proteins, saturation 

increased very gradually, with no evidence of ever reaching a plateau. Specifically, on average, 

only 0.4% of the mutations/fusions/CNVs were found upstream of the first 130 (5%) randomly 

selected MRs (Figure 3A). This confirmed that rapid saturation observed upstream of inferred 

MRs does not arise from lack of analysis specificity.  
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At the saturation inflection point, the ratio of genomic events to MRs ranged from r = 0.02 (i.e., 

one event affecting 50 MRs) to r = 32 (i.e., 32 events affecting a single MR), with an average of 5 

events per MR. This is consistent with the hypothesis that the handful of MR-proteins in each 

Tumor Checkpoints represent critical regulatory bottlenecks, responsible for canalizing the effect 

of multiple functional mutations (Supplemental Data 4,6). Once saturation was achieved, about 

half (50%) of all mutations were reported upstream of top MR proteins. Remaining events likely 

are either non-functional (passenger), too infrequent to be effectively analyzed, or false negatives 

(i.e., proteins that the analysis failed to identify as MR-modulators). The most significant mutations 

for each subtype are shown in Supplemental Data 10.  

 

Taken together, these data strongly support the Oncotecture hypothesis and suggest that a much 

larger and finer-grain mutational repertoire than previously suspected may functionally affect MR-

protein activity and, through them, tumor transcriptional identity. In kidney cancer (KIRC), for 

instance, the analysis identified between 15 and 45 MRs for each of five transcriptional subtypes 

(Figure 4A-E). These accounted for 40% to 55% of the total number of non-silent SNV and focal 

GISTIC2.0-detected SCNAs in individual samples of each respective subtype (Figure 4F-J), 

suggesting significant intertumoral genomic heterogeneity. Specifically, between 40 and 80 

genomic alterations per sample were identified as functional determinants of KIRC MR 

dysregulation. Interestingly, the genetic alterations identified for each subtype are highly distinct, 

both in terms of their type (e.g., amplifications vs. deletions, Figure 4A,B) and identity. As purely 

illustrative examples, for instance, TSC1 deletions were detected in >50% of subtype 4 and 5 

samples, but only in <30% of subtypes 1, 2, and 3 samples; similarly, BRAF amplifications were 

detected exclusively in subtype 4 and 5, while KRAS amplifications were exclusive to subtype 5. 

Such highly subtype-specific mutational landscape co-segregation is pervasive across all tumor 

cohorts (Figure S4A-T). 
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It should be noted that this analysis is not meant to identify all genetic alterations but rather those 

that functionally contribute, mechanistically or stochastically, to implementing distinct 

transcriptional identities. For instance, TP53 mutations, which are completely ubiquitous in 

ovarian cancer—thus providing no specific contribution to implementing individual transcriptional 

identities in this cohort—are not reported (Figure S4L). In addition, the proposed cluster analysis 

may over-stratify some cohorts, to avoid missing rare, molecularly distinct subtypes or subtypes 

where largely overlapping MR proteins are dysregulated by different genetic events. For instance, 

in PRAD (Figure S1O), the most aggressive subtype (C6) would be missed due to its small size 

if a smaller clustering solution were selected. As a result, at first sight, cluster C3 and C7 may 

appear similar in terms of their MR activity and suggest overstratification. However, closer 

inspection of the mutational events that co-segregate in these subtypes (Figure S4N) shows that 

C3 is dominated by TMPRS-ERG fusion events, PTEN mutations and deletions, and ERG, RB1, 

FOXO1, and SORBS3 deletions. In contrast, C7 is largely devoid of TMPRS-ERG fusions and is 

instead most enriched in ZNF292, SYNCRIP, MAP3K7, SNX14 deletions and SPOP mutations, 

suggesting that, albeit similar, their transcriptional identity is driven by an almost orthogonal 

mutational landscape. In rare cases, subtypes with largely overlapping MR activity and mutational 

events may be inferred, due to overstratification, as we observed to some degree with pancreatic 

adenocarcinoma (PAAD), finding high similarity between the mutational events and MR 

checkpoints of subtypes 3,4 and 5 (Figure S4M). This, however, is not surprising, given the 

complexity of identifying a common strategy to analyze highly heterogenous cluster structures, 

as well as the known complexity of pancreatic cancer stratification (Birnbaum et al., 2017).  

 

Finally, there may be biologically relevant subtypes that are missed at the selected level of 

clustering granularity. For instance, in breast cancer, we identify a basal-like cluster (C4), a 

Luminal-B enriched cluster (C2), and two Luminal-A clusters (C1 and C3). However, while a more 

granular 8-cluster solution splits Claudin low/high expressing subtypes in basal cancers (Fig. S1-
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V), HER2 positive tumors are split between C2 (HR+) and C4 (HR-) and are not identified as 

forming distinct sub-clusters (Fig. S1-C). This suggests that while HER2+ tumors may present a 

classic oncogene dependency, their transcriptional identity is actually consistent with that of other 

basal and Luminal B breast cancers. This highlights the complementarity of this approach, 

whereas drugs targeting oncogene dependencies would benefit from mutational analysis, while 

drugs targeting core identity-based dependencies, may target Luminal B HER2+ and Luminal B 

HER2- with the same approach.  Since manual selection of the number of clusters is possible in 

MOMA, one can explore different clustering solutions to identify the one that makes the most 

biological/clinical sense. This is of course best accomplished at the individual tumor level rather 

than across all tumors.  

 

To estimate MOMA’s ability to differentiate between likely driver and passenger mutations, we 

computed the differential enrichment of mutations upstream of MRs in either GISTIC2.0/CHASM 

predicted events or all genomic events. When averaged across all MOMA-inferred subtypes of a 

specific TCGA cancer cohort, differential enrichment of GISTIC2.0 events—i.e., focal 

amplifications and deletions (confidence 99%)—and significant CHASM events (p < 0.05) was 

highly statistically significant across all but one (LAML) of the tumor subtypes (p = 1E-7 to p = 1E-

156, Figure S3A,B). Our data suggest that low SNV and high fusion-event rates, may have 

contributed to the LAML discrepancy, since CHASM only assesses candidate SNVs. Even though 

the vast majority of inferred events were novel, MOMA also effectively recovered all 200 high 

confidence, pancancer driver genes harboring genetic alterations, as recently identified (Bailey et 

al., 2018), as well as 92%-100% of the tissue-specific, high-confidence driver genes (98.8%, on 

average; Supplemental Data 5). 

 

A key novelty of the approach is that it effectively co-segregated genetic alterations—both novel 

and previously reported—with tumor subtypes, while identifying the specific MR proteins 
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dysregulated by these events and thus responsible for canalizing their effect. Additionally, MOMA 

inferred a large number of mutational events missed by CHASM and GISTIC, suggesting that the 

actual repertoire of functional alterations contributing to a tumor’s transcriptional identity may be 

much larger than previously suspected. See Table 3, and Supplemental Data 4 for a complete 

account of MOMA-inferred Tumor Checkpoints and MRs, and Figures S4A-U for Master 

Regulator saturation analysis and upstream genomic event for each of the 112 subtypes. For 

convenience, we labeled individual Tumor Checkpoints using their two most significant MRs or, 

when possible, using experimentally validated MRs (e.g., CEBPβ/δ-STAT3 for subtype 2 of high-

grade glioma (Carro et al., 2010)). 

 

Tumor Checkpoints are hyperconnected and modular: Analysis of MOMA-inferred MRs 

shows that Tumor Checkpoints represent hyperconnected modules of regulatory proteins. This 

was assessed based on literature-curated regulatory and signaling networks, including 

HumanNet 2.0 (Hwang et al., 2018) (p < 5.0E-42, by Kolmogorov-Smirnov) and Multinet (Khurana 

et al., 2013) (p < 2.0E-37) (Figure S3C,D), as well as on protein-protein interactions predicted by 

PrePPI using 3D-structure information (Zhang et al., 2012) (p = 9.0E-44) (Figure S3E), compared 

to equal-size sets of regulatory proteins selected at random, as a null model. 

 

To further explore Tumor Checkpoint modularity, we tested whether MR sub-modules could be 

recurrently identified across multiple Tumor Checkpoints, suggesting the existence of pan-cancer, 

core regulatory structures (MR-Blocks or MRB for short). To accomplish this goal, we first 

identified and then clustered a subset of recurrent MR proteins included in at least 4 of 112 

MOMA-inferred Tumor Checkpoints—a statistically significant threshold based on a random 

permutation null model (Figure S5A). From the analysis, k = 24 MR-Blocks emerged as the 

optimal solution (Figure 5A, Figure S5B), providing an initial tessellation, where each recurrently-

inferred MR was assigned to one and only one MR-Block. To allow a more biologically plausible 
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solution, we then used a “fuzzy” clustering method (Miyamoto et al., 2008) (see STAR methods, 

fuzzy clustering). such that individual MRs could be included in more than one MR-Block, see 

Supplemental Data 6. Clustering parameters were optimized to ensure uniqueness and specificity 

of the MR-Block solution (see methods Checkpoint Generation; Figure S5C)  

 

Thus, each Tumor Checkpoint comprises and is defined by a set of aberrantly-activated and/or 

inactivated MR-Blocks. This suggests that each MR-Block may regulate a set of complementary 

genetic programs required to implement and maintain a tumor cell’s transcriptional identity. 

Consistent with this hypothesis, we found highly significant enrichment of Cancer Hallmarks—as 

defined by the Broad Institute collection (Drake et al., 2016; Liberzon et al., 2015)—in MR-Block-

specific MRs, with most hallmarks enriched in the MRs of at least one MR-Block (Figure S5D, 

Supplemental Data 7; see methods Checkpoint Generation). Confirming specificity, most MR-

Blocks were enriched in only a handful of hallmarks (N ≤ 5 for >50% of MR-Blocks). In terms of 

clinical applicability, most hallmark blocks were able to significantly stratify patients by outcome, 

see Figure 5B and 5C, for BRCA stratification in the Metabric cohort using MRB2—an MR-Block 

comprised of classic cell growth, DNA repair, and cell division regulators (Figure 5D)—and for 

SKCM stratification in TCGA using MRB24—an MR-Block highly enriched in immune-related 

hallmarks (Figure 5E). See also Figure S6A for a comprehensive analysis across all TCGA 

cohorts. These results represent an initial attempt to elucidate how specific cancer hallmarks may 

be mechanistically regulated in each tumor subtypes. 

 

We then assessed whether MR-Blocks could effectively stratify tumor cohorts based on outcome. 

For this purpose, we used a sparse Lasso COX proportional hazards regression model 

(Tibshirani, 1997), using the mean MR-Block activity of each sample as a predictor. In most cases, 

survival separation was more statistically significant than using the entire tumor-checkpoint 

(Figure S6B vs. S2E, Supplemental Data 8). For instance, in melanoma (SKCM) we observed 
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striking survival separation (p < 1.6E-7), using a 6 MR-Block model—including MRB10, 

associated with strong inflammatory/immune phenotype (Supplemental Data 7). In contrast, the 

best outcome separation by full Tumor Checkpoint analysis was much less significant (p = 9.4E-

3). Similarly, in colorectal cancer (COAD), significant outcome separation was achieved using a 

3 MR-Block model (p < 3.5E-3)—with MRB6 providing the greatest contribution. In contrast, 

differential outcome by Tumor Checkpoint analysis was not statistically significant in this tissue 

type (p = 0.07).  

 

To assess whether the MR-Block landscape emerging from this analysis would generalize to non-

TCGA cohorts, we assessed VIPER-inferred activity of breast cancer relevant MRs from a large 

compendium of breast cancer samples with considerable long-term survival data (Curtis et al., 

2012a). Considering N = 7 MR-Blocks with high differential activity in the TCGA breast cancer 

cohort (MRB2, 3, 7, 11, 14, 16, and 21), all of them but MRB11 provided statistically significant 

survival stratification, with 5 of the 6 MR-Blocks in the p = 1.88E-8 to 9.13E-7 range (Bonferroni 

corrected), as well as highly correlated activity of MR-Block MRs (Figure S6C). This suggests that 

MR-Block proteins may play a key role in tumor outcome by regulating key cancer hallmark 

programs. 

 

Cell line-specific MOMA-inferred tumor checkpoints are enriched in experimentally 

validated tumor dependencies. We further assessed whether MRs in MR-Block associated with 

viability-related cancer hallmarks were enriched in essential proteins, based on existing pooled 

RNAi screen data from the Achilles Project (Cowley et al., 2014), see Figure S2D for a conceptual 

workflow. Specifically, we used VIPER to transform RNASeq profiles of all Cancer Cell Line 

Encyclopedia (CCLE) into protein activity profiles, then matched the average protein activity 

profile of each of the 24 MR-Blocks to a set of best-matched cell lines, by MR enrichment analysis. 

Finally, we assessed essentiality of the corresponding MR-Block MRs based on their Achilles’ 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/758268doi: bioRxiv preprint 

https://doi.org/10.1101/758268
http://creativecommons.org/licenses/by-nc-nd/4.0/


Project score. As expected, the three MR-Blocks enriched for growth and proliferation-related 

hallmarks (G2M, E2F, etc.) (Figure S5D) had the highest ratio of essential MRs (MRB2: 50%; 

MRB7: 43.8%; MRB3: 30.4%), including proteins such as E2F1, E2F2, E2F7, TOP2A, PTTG1, 

FOXM1, MYBL2, UHRF1, DNMT3B, ZNF695, TCF19, RBL1, and ZNF367. Interestingly, 

however, we also found a large fraction of essential proteins in additional blocks, including MRB6 

(31.3%; ZNF436, HES1, HOXB7, TP63, TRIM29, GRHL1, PBX4, IKZF2, RARG, IRX5, HHEX, 

RUNX2, STAT5A, HDAC1, HOXC6) and MRB14 (18.8%; GRHL2, OVOL1, ZBTB7B), for 

instance. Not surprisingly, we found no Achilles validated MR proteins in immune-related MR-

Blocks (MRB10, 22, 23, and 24)—consistent with lack of in vitro immune function. However, we 

already addressed the pan-cancer role of these proteins and of their upstream mutations in 

regulating immunity and inflammation in a prior publication (Thorsson et al., 2018a). Overall, we 

found MOMA-inferred MR proteins to be significantly enriched in essential genes, compared with 

106 randomly chosen, identically sized regulatory protein sets, not included in any Tumor 

Checkpoint (p = 7.1E-6; Figure S2E). 

 

MRB2 canalizes the effect of driver mutations in MAP3K7, SORBS3, BCAR1, PTEN, and 

TP53: As discussed, MRB2 mechanistically regulates the transcriptional identity of several highly 

aggressive subtypes, including in UCEC, STAD, SKCM, SARC, READ, PRAD, PAAD, LUAD, 

LIHC, LGG, and KIRC. Moreover, FOXM1 and CENPF—two of its core MR proteins—rank 2nd 

and 17th as most recurrently inferred across all TCGA tumor samples. Consistently, an MRB2-

based regularized COX regression model produced several of the largest regression coefficients 

for outcome stratification across all TCGA samples (Supplemental Data 8), and is one of the most 

significant and effective single-block predictors of outcome across the TCGA cohorts (Figure 

S6A).  
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We thus sought to investigate the specific mutational events upstream of this MR-Block that 

determine its aberrant activation. MOMA identified 7 molecularly-distinct prostate 

adenocarcinoma (PRAD) subtypes, with significant survival separation (p = 6E-3; Cox 

proportional hazard model; Figure 6A, Figure S6D) between subtype 6 and subtypes 1, 3 and 5, 

driven by checkpoint proteins that include a majority subset of MRB2 (Figure 6A). Interestingly 

and consistent with (Aytes et al., 2014a), outcome difference was most significantly driven by 

MRB2 MRs (Figure S6B, Supplemental Data 8), with the lowest and highest MRB2 activity 

associated with best (subtype 1, 3, and 5) and worst (subtype 6) survival, respectively . Further 

supporting MRB2 as a key molecular determinant of disease outcome, we also observed high 

enrichment of negative prognosis samples, based on Gleason score and biochemical recurrence 

(Figure 6B,C), in subtype 6. This subtype also had the worst survival outcome of any cluster, 

which was significantly worse compared to cluster 3, the best outcome subtype, with 0 of 109 

deaths (p < 7E-4; Figure S2B). To further study this malignant phenotype, we computed the 

differential gene expression signature between subtypes 6 and 1 and confirmed its highly 

significant enrichment in “G2M” (p = 1.6E-24), “E2F-Targets” (p = 1.8E-31), “Mitotic Spindle” (p = 

2.6E-5), and “DNA Repair” (p = 2.2E-5) hallmarks (Figure 6D), which is consistent with the 

hallmark enrichment analysis of the proteins in MRB2 (Figure 6E).  

 

We then considered the repertoire of genetic alterations identified by DIGGIT as upstream of 

MRB2, ranking them based on their combined statistical significance in the PRAD cohort, as well 

as across all pancancer cohorts. To visualize the genomic events with the strongest overall 

checkpoint association, we combined the strongest individual interactions of each of the eight 

MRs in MRB2 with equal weights (Figure 6F,G; Supplemental Data 8). Critically, we found that 

most of these genomic events would have been missed by existing mutation assessment 

algorithms (Table 4, Supplemental Data 9). When ranking all samples by the overall activity of 
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MR-Block:2, clusters 6 was the one most enriched in samples with high activity, while cluster 1 

was the most enriched in samples with low-activity.  

 

We selected 6 DIGGIT-inferred loss-of-function events for experimental validation, including 

TP53Mut (strongest pancancer association with MRB2 among single-point mutations), PTENDel 

(strongest pancancer association among deletions, also associated with PTENMut), MAP3K7Del 

(strongest PRAD-specific association, among deletions), SORBS3Del (one of the most significant 

associations, both pancancer and PRAD-specific, among deletions) (Figure 6B) and BCAR1Del, 

the strongest pancancer association, among deletions supported by a direct protein-protein 

interaction with one of the MRs (i.e., FOXM1)). These are visualized as green circles in the context 

of other statistically significant deletion (blue lines), mutation (green lines) and amplification (red 

lines) events in Figure 6D.  

 

For experimental validation, 22Rv1 human prostate cancer cells were chosen, which present low 

MRB2 activity—thus providing an ideal model to detect MRB2 activity increase, following loss-of-

function assays for the selected genes. Pools of 5 shRNAs/target were used to individually silence 

PTEN, TP53, MAP3K7, SORBS3 and BCAR1. Functional and tumorigenic effects were 

subsequently assessed both in vitro and in vivo (Figure 7A). VIPER analysis of gene expression 

profiles, following shRNA-mediated silencing of each candidate gene, confirmed significant 

increase MRB2 MR activity (Figure 7B). In addition, of the 5 candidates, MAP3K7, PTEN and 

TP53 showed the most pronounced and significant increase in cell migration using scratch assays 

at the indicated time points and relative to control cells infected with scramble shRNAs (Figure 

7C-D), as further confirmed by Boyden chamber migration assays (Figure 7E). Finally, control 

and shRNA-silenced 22rv1 cells for each individual gene were engrafted in immune deficient mice 

to assess the relative capacity for tumor growth in vivo. As shown by these in vivo assays—and 

even discarding the expected effect on tumorigenesis associated with loss of PTEN and TP53—
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MAP3K7 silencing resulted in a marked and significant increase in tumor growth (p <0.01) (Figure 

7F). As a result, all of the predicted loss of function events induced activation of MRB2 MR 

proteins, while three out of five had additional significant effects in terms of increased in vitro 

migration and in vivo tumorigenesis. Several of the phenotypes associated with MRB2, such as 

increased metastatic progression or reduced immunosurveillance, cannot be fully assessed in 

these assays or may require additional co-segregating events to be fully revealed.  
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Discussion 

The repertoire of transcriptional identities accessible to a cancer cell in response to endogenous 

and exogenous perturbations (i.e., its plasticity), is constrained by the cell’s genetic alteration 

landscape and by the baseline epigenetics of its tissue of origin. Yet, the specific mechanistic 

rationale of these constraints is largely unexplored. For instance, it is unclear why EGFR or NF1 

mutations may alter the probability of individual GBM cells adopting a proneural or a 

mesenchymal identity. In this manuscript, we attempt to address this challenge by identifying 

Master Regulator proteins that mechanistically regulate the tumor cell’s transcriptional identity by 

integrating the effect of multiple genomic alterations in their upstream pathways. To achieve this 

goal both systematically and in a completely unbiased fashion, we analyzed 9,738 individual 

samples, representing the 20 largest TCGA cohorts using a novel methodology (MOMA).  

 

MOMA revealed a highly modular regulatory architecture where 112 distinct tumor subtypes—

representing distinct transcriptional identities—are implemented by combinations of only 24 

regulatory modules comprised of Master Regulator proteins (MR-Blocks). Furthermore, an 

average of 33 Master Regulator proteins per subtype was sufficient to account for the effect of a 

majority of genomic alterations identified on a sample by sample basis, suggesting the existence 

of cross-tumor commonalities yielding a relatively small and yet highly universal repertoire of non-

oncogene dependency mechanisms. Thus, by connecting MR proteins to genomic alterations in 

their upstream pathways, MOMA produced a comprehensive map of interactions between 

cancer’s genomic landscape and the MR proteins presiding over the transcriptional identity of 

distinct tumor subtypes. The fact that a large number of genomic events were found upstream of 

actual but not randomly selected MR proteins suggests that many more alterations than 

previously appreciated may be required to make a cancer cell. While some “passenger” genomic 

events may have been erroneously identified as MR modulators (false positives), we also expect 
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that a large number of weakly-additive events may cooperate to provide a potentially large 

contribution to tumorigenesis, as is the case for other complex diseases (Boyle et al., 2017).  

 

 

If further confirmed, these findings would have several relevant consequences for the study of 

cancer: First, they reduce the complexity arising from the extraordinary diversity of mutational 

patterns detected in cancer cells—even within the same mass—by providing a small number of 

highly universal modular regulatory dependencies, as well as the specific Master Regulator 

proteins comprising them. This was independently validated by assessing statistically significant 

overlap of MR proteins in proliferation related MR-Blocks with Achilles’ project dependencies, 

suggesting that MR-Blocks associated with other hallmarks (e.g., immunoevasion or migration) 

may be critical to tumor survival and progression in vivo.  Second, they may redirect the search 

for new cancer drugs development, from the development of inhibitors of signaling proteins that 

only indirectly affect MR activity and whose effect can be easily bypassed by alternative 

mutations, to direct MR protein activity inhibitors inducing Tumor Checkpoint collapse, which was 

shown to abrogate tumor viability in vivo, see for instance (Alvarez et al., 2018; Califano and 

Alvarez, 2017).  This is especially relevant because, over the last decade, regulatory proteins are 

relinquishing their status as undruggable targets, for instance as a result of novel covalent 

inhibitors targeting protein cystines (Singh et al., 2011) or via activation of degron mechanisms 

(Gan et al., 2015). Third, these findings dramatically expand the number of genetic alterations 

mechanistically linked to specific tumor subtypes. This stems from abandoning a purely 

associative, statistical methodology in favor of one that leverages the tumor-specific 

transcriptional-regulation and signal-transduction architecture to limit the number of genomic 

events inducing aberrant activity of Master Regulator proteins. Fourth, they represent a much 

finer-grain tumor-subtype molecular characterization, whose novelty and potential value is also 

supported by statistically significant association with patient outcome across every analyzed 
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TCGA cohort. Finally, as previously shown for regulation of programs presiding over immune 

infiltration and immunoevasion (Thorsson et al., 2018c), the analysis provides direct mechanistic 

hypotheses for the specific proteins that regulate virtually each classic tumor hallmark, in different 

tumor subtypes, as well as for the specific genomic events that determine their aberrant activity.  

 

Over the last 50 years, a number of cancer hallmarks, representing programs necessary for 

cancer cell survival and proliferation, have emerged (Hanahan and Weinberg, 2011), thus 

spurring research aimed at identifying the specific proteins and protein-modules that comprise 

them. This has led to development of several methods to ‘decompose’ the 20,000+ dimensional 

gene-expression data space into orthogonal programs, either using 2-dimentional matrices (Kim 

et al., 2017) or higher dimensional tensors (Sankaranarayanan et al., 2015), thus creating a 

simplified representation of the underlying cellular states and shared oncogenic alterations (Kim 

et al., 2017; Malta et al., 2018). These studies are encouraging and confirm that cancer hallmarks 

may be indeed implemented by coordinated activity of specific gene modules. However, the high 

complexity of these solutions combined with lack of direct biological interpretability continue to be 

critical roadblocks in terms of reducing these models to a set of hypotheses that may be 

experimentally validated. In addition, since these models arise from application of “non-convex” 

optimization problems, their stability and reproducibility are a concern, as multiple (and arbitrarily 

selected) sub-optimal solutions may exist. In contrast, we have shown that due to the use of large 

regulons, VIPER-based protein activity measurements are extremely reproducible, robust, and 

highly conserved within tumor subtypes (Alvarez et al., 2016; Califano and Alvarez, 2017). Indeed, 

based on their reproducibility, two VIPER-based algorithms (OncoTarget and OncoTreat (Alvarez 

et al., 2018)) have achieved NY State CLIA certification.  

 

As compared to these other models, MOMA analysis produced 112 distinct Tumor Checkpoints, 

each comprising an average of only 33 proteins, which account for the effect of dozens of genomic 
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alterations in their upstream pathways. More critically, each Tumor Checkpoint was shown to 

result from the superposition of only 24 independent, pancancer MR-Blocks, each implementing 

critical tumor hallmark functions.  This modular organization yields biologically interesting findings, 

linking tumor hallmarks with their candidate mechanistic determinants and generating 

straightforward hypotheses that can be efficiently validated, as shown for mutations upstream of 

the MRB2 MR-Block in prostate cancer.  

 

MRB2 was specifically selected for validation because it emerged as the most stable and robust 

pancancer MR-Block across all tumor subtypes, for clustering solutions ranging from k = 2 to 

k = 100 (Figure S5E). This MR-Block comprises 14 regulators of cell growth, DNA repair, and cell 

division, including: CENPK, HELLS, E2F2/7, MCM6, TIMELESS, TOP2A, PTTG1, FOXM1, 

MYBL2, ASF1B, CENPF, TRIP13, UHRF1 (Supplemental Data 6).  Among these, FOXM1 and 

CENPF were previously validated as synergistic MRs of the most aggressive subtype of prostate 

cancer (Aytes et al., 2014a). However, their effect in regulating aggressive cancer across several 

distinct tumor cohorts could not have emerged without a systematic, pancancer study.  TRIP13 

is also known to play a critical role in chromosomal structure maintenance during meiosis (Roig 

et al., 2010), facilitated by the DNA topoisomerase 2-alpha subunit, TOP2A, which enables 

chromosome condensation and chromatid separation, and already represents a key cancer 

therapeutic target (Jain et al., 2013). FOXM1, CENPF, MYBL2, and TRIP13 have all been 

implicated as part of a core “proliferation cluster,” associated with poor outcome, whose activity 

is dependent on p53 inactivation (Brosh and Rotter, 2010). Indeed, MOMA identified mutations in 

TP53 as the most significant event upstream of aberrant FOXM1 and CENPF activation. UHRF1, 

also a candidate therapeutic target, is overexpressed in many cancers (Unoki et al., 2009), where 

it regulates gene expression and peaks in G1 phase, continuing through G2 and M, while 

ASF1B—a core member of the histone chaperone proteins responsible for providing a constant 

supply of histones at the site of nucleosome assembly—plays an essential role in many cancers 
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and is predictive of outcome in some (Corpet et al., 2011). In addition, MRB2 comprises multiple 

proliferation-related proteins, such as E2F2, E2F7, and TIMELESS, and is associated with 

proliferative cancer hallmarks, including “E2F Targets” (p = 4.26E-09), “Mitotic Spindle” 

(p = 4.65E-07), “G2/M Checkpoint” (p = 5.96E-06), and “peroxisome” (p = 3.64E-04). 

Consistently, the proteins harboring the 100 most statistically significant recurrent genomic 

alterations upstream of MBR2 MRs were also enriched in these hallmarks—e.g., “E2F Targets” 

(p = 2.2E-03) and “Mitotic Spindle” (p = 5.7E-5).  Thus, while the individual role of these proteins 

may be established in some cancer context, our study suggests that their ability to form a hyper-

connected, synergistic core “subunit” represents a universal determinant of highly aggressive 

cancer subtypes, from melanoma and glioblastoma, to colorectal, prostate, and ovarian 

adenocarcinoma (Figure 5D).  Not surprisingly, whenever MRB2 was predictive of survival, we 

found negative regression coefficients in the respective COX proportional hazards models, 

meaning higher MRB2 activity was predictive of worse survival (Figure S6B; ucec, stad, skcm, 

sarc, paad, luad, lihc, lgg, kirc).  

 

Experimental validation of the 5 top recurrent mutations upstream of MRB2 not only confirmed its 

predicted functional properties but also showed that activity of MRB2 MRs was dysregulated 

following shRNA-mediated silencing of the five mutated genes. Interestingly, activity of MRB3 and 

MRB7 was correlated with MRB2 activity. These MR-blocks control complementary, yet distinct 

aspects of the proliferation hallmark, via established proliferative MRs such as E2F(1/2/7/8), as 

well as chromatin modification enzymes involved in mitotic progression (SUV39H1), assembly 

(CHAF1B), and mini-chromosome maintenance (MCM2/3/6/7).  

 

At the other end of the functional spectrum, MRB24 emerged as significantly associated with 

inflammatory response and immune function, including via the immune-regulatory MR STAT1 

(Figure 5B), with high activity in a subset of Cutaneous Melanoma (Figure 5C). Indeed, MRB24 
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activity was a highly-significant survival predictor in this tumor, based on Kaplan Meier analysis 

(Figure 5C), confirming that higher immune infiltration, may be associated with increased 

immunosurveillance and thus better outcome. MRB19 also emerged as highly enriched in the 

“immune activity” hallmark, including via (a) the MHC trans-activator CIITA, whose inactivation in 

cancer abrogates HLA-DR presentation thus promoting immunoevasion (Yazawa et al., 1999), 

(b) Cluster of Differentiation 86 (CD86), the canonical CTLA-4 ligand involved in immune 

checkpoint activation, as well as (c) several additional proteins—such as NOTCH4, MITF, etc.—

commonly associated with an immunoevasive microenvironment, as reported in a recent analysis 

of master regulators of tumor immune response (Thorsson et al., 2018b) (Figure 5E). 

 

Clearly—consistent with other large-scale, high-throughput analyses, both experimental and 

computational—one cannot expect all MOMA inferences to be correct. However, as shown in a 

large body of literature, experimental validation rates of the methodologies used by the MOMA 

framework—including ARACNe, VIPER, and DIGGIT—compare favorably with those of high-

throughput experimental assays, see (Califano and Alvarez, 2017) for a comprehensive review. 

As a result, it is reasonable to assume that a significant subset or even the majority of these 

predictions will be eventually validated and will complement the existing knowledge on tumor 

subtype genetics and transcriptomics. In that sense, MOMA inferences represent high-likelihood 

hypotheses that may be further investigated by the research community to elucidate the 

mechanistic regulation of tumor hallmark programs across all cancers, including both the MR 

proteins that control these programs and the genetic alterations that determine their aberrant 

activity.  It should also be noted that a number of significant improvements are possible and will 

be investigated in future work. For instance, ARACNe networks can be further improved by use 

of epigenetic data, such as that derived by ATAC and ChIP-Seq methodologies, while VIPER is 

being improved using results from systematic drug and CRISPRi perturbations. 
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To make the MOMA results available to the research community, as an interactive resource that 

can be easily queried and visualized, we have developed a publicly accessible graphical web 

interface that allows users to easily navigate the ~2 million tumor-specific molecular interactions 

emerging from the MOMA analysis. Users can also execute advanced queries through this 

interface, using an efficient graph database based on Neo4j (neo4j.org).  

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/758268doi: bioRxiv preprint 

https://doi.org/10.1101/758268
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments: 

We acknowledge support from the genomic and small animal imaging facility, which are shared 

resources of the Herbert Irving Comprehensive Cancer Center at Columbia University, supported 

in part by NIH/NCI grant #P30 CA013696. This research was also supported by funding from the 

National Cancer Institute Outstanding Investigator Award to AC (CA197745), U54 Cancer 

Systems Biology Centers to AC and CAS (CA209997), R01 to CAS (CA173481 and CA196662), 

and by two S10 NIH Shared Instrumentation Grants (OD012351 and OD0217640). AA was 

supported by grant from the Spanish ISCIII-MINECO (PI16/01070, CP15/00090), 

EAURF/407003/XH, and a Fundación BBVA-Young Investigator Award.  

 

Author Contributions: 

Conceptualization and Methodology, E.O.P., A.A., F.M.G., M.J.A., C.AS. and A.C.; Investigation, 

E.O.P, A.A., F.M.G, S.J.J., M.J.A., and A.C.; Resources, E.O.P., B.C., S.J. and P.S.; Formal 

Analysis E.O.P., F.M.G., E.F.D., S.J. and M.J.A. ; Writing – Original Draft, E.O.P, P.S., and A.C.; 

Writing – Review and Editing, all authors.  

Figure Legends 

 

Figure 1:  Conceptual overview of the algorithm to find sample “checkpoints” and 
checkpoint blocks.  (A) Diagram illustrating the “bottleneck hypothesis”. Master regulator 

proteins (‘MR’) integrate the signal from genomic mutations (‘P’) and other “driver” genomic 

alterations, modulating the “downstream” gene expression signature (red represents upregulated 

genes, and blue represents downregulated genes). Proteins that assist or co-modulate the signal 

but are not downstream of genomic alterations, or downstream of only passenger events, are not 

considered master regulators. The set of master regulator proteins for a given sample is defined 

as that sample’s “checkpoint”. (B) Checkpoint “blocks” are defined as sets of master regulator 

proteins (‘MR blocks’) that modulate a specific part of the gene expression signature.. Each 

sample’s checkpoint may contain several active checkpoint “blocks” that collectively integrate the 

signal from upstream genomic drivers to modulate the overall gene expression signature. (C) 
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Flow diagram of the inference algorithm to find sample checkpoints and recurrent pan-cancer 

checkpoint blocks. Multi ‘omics data (gene expression, copy number, SNPs, Fusions and protein-

protein interactions) is integrated in a computational pipeline to infer sample checkpoints and 

checkpoint blocks.  
 

Figure 2:  Unsupervised transcriptional subtypes inferred from multi-omics data 
integration, and associated survival. (A) Analytical score using a modified silhouette measure 

of each cohort’s cluster fit is shown for each clustering solution from k=2-10, for each tissue type 

(y-axis). Larger and redder dots represent better mean scores. If multiple statistically equivalent 

solutions existed the solution with the strongest survival separation between the best and worst 

surviving clusters was selected (black cross); significance of survival separation is shown in -

log2(p-value) to the right of each clustering solution (blue bars, X-axis is -log2(p-value)). A dashed 

line represents the canonical threshold for statistical significance (p < 0.05) in log space. (B)  
Heatmap of VIPER-inferred protein activity for the candidate master regulators of 5 transcriptional 

subgroups of the TCGA kidney cancer cohort. The best and worst surviving clusters 3 and 5, are 

highlighted. (C) Violin plots of cluster silhouette scores (y-axis) for each sample, for each of 20 

tissue types (x-axis); light blue are VIPER protein activity clusters, dark blue are raw gene 

expression clustering solutions. (D) Survival probability of patients in unsupervised VIPER-

inferred cluster 3 (green solid line) relative to cluster 5 (dashed black line) after fitting a Cox 

proportional hazards model to the TCGA clinical data (p < 1.1e-16).  

 

Figure 3:  Genomic saturation analysis of candidate master regulators across all tissues 
of origin. (A) The mean fraction of genomic copy number, SNP and fusions events in each patient 

(y-axis) and linked candidate Master Regulators (x-axis) is shown as a separate curve for each 

transcriptional subgroup. Vertical dashed lines indicate the saturation point covering 85% of all 

events associated with some candidate Master Regulators or the estimated inflection point. (see 

figure S4; methods). (B) Identities of Master Regulators derived from the saturation analysis in 

(A) are shown as black tick marks for each transcriptional subtype (row). Color of the y-axis 

subtype labels represents tissue of origin. Columns (Master Regulators) are sorted by frequency 

of recurrence in multiple subtypes, from left (highest) to right (lowest). Grey ribbons at the bottom 

of the plots represent the null-model genomic coverage for 1000 randomly chosen transcription 

and co-transcription factors that were not ranked in the top 50% by the MOMA algorithm.  
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Figure 4: Genomic events upstream of KIRC transcriptional subtype checkpoints. (A-E) 

Genomic saturation curves for KIRC transcriptional subtypes 1-5; dashed line indicates the point 

where 85% of all events associated with some Master Regulator are covered, which defines the 

MR checkpoint for each subtype. Grey ribbons at the bottom of the plots represent the null-model 

genomic coverage for 1000 randomly chosen transcription and co-transcription factors that were 

not ranked in the top 50% by the MOMA algorithm. (F-J) Frequency bar plots of genomic events 

found in samples of each subtype that are downstream of each set of checkpoint MRs, 

respectively. The number of samples within each subtype with that alteration is plotted on the x-

axis; genomic location or gene name is indicated on the y-axis, with studied cancer driver genes 

indicated if located within a focal amplification or deletion. Bar colors indicate the type of event 

(focal deletion: blue; focal amplification: red; fusion: yellow; mutation: green).  

 
Figure 5: Checkpoint blocks are closely related to known cancer biology. (A) Active 

checkpoint blocks (y-axis) are shown in a heatmap summary across identified transcriptional 

subtypes (x-axis). Darker shades indicate higher mean activity across a subtype, for a given 

checkpoint. Breast cancer (BRCA) and melanoma (SKCM) transcriptional sub-type columns are 

highlighted along with checkpoint block 3 and 12 (rows). (B) Activity of MRB7 significantly stratifies 

Metabric breast cancer patients by outcome (p < 3.5E-8; Kaplan-Meier estimator). (C) Activity of 

MRB24 significantly stratifies TCGA melanoma patients by outcome (p < 1.9E-5; Kaplan-Meier 

estimator). In this case, high checkpoint activity leads to better outcome (D) VIPER Predicted 

activity for checkpoint proteins in checkpoint block 3 across Metabric breast cancer samples 

(columns). VIPER activity is highly correlated in all but one (E2F1) protein. (E) Enrichment “radar” 

plot for MRB24. Several hallmarks of cancer, including inflammatory/immune response hallmarks, 

apical junction IL/JAK/STAT transition are enriched within the checkpoint proteins of this block. 

 
Figure 6:  Proliferative checkpoint block 2 and associated causal genomic events drive the 
aggressive subtype of prostate cancer. (A) Heatmap of VIPER protein activity scores for the 

checkpoint proteins in all TCGA prostate cancer subtypes. Dashed vertical lines indicate subtype 

demarcation, rows are checkpoint proteins. Color indicates the VIPER inferred protein activity 

(red is high activity; blue is negative activity). (B) Clinical Gleason scores for TCGA prostate 

samples, grouped by the 7 clusters identified in our analysis (Figure 6A). All but one of the grade 

10 samples were found in cluster 6, with the remaining sample found in cluster 4, which we found 

to have moderate activity in checkpoint block 2. (C) Clinical recurrence status of TCGA prostate 

samples, grouped by the 7 clusters in Figure 6A. Missing values are shown in grey, whereas 
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recurrent samples are shown in blue/green. The largest fraction of recurrent samples was shown 

in cluster 6, with the second largest fraction in cluster 4. (D) Gene expression signature between 

9 samples in cluster 6 and 149 samples in cluster 1 is sorted from highest differential gene 

expression (t-test on variance stabilized gene expression; red) to lowest (blue). Genes in 

significantly enriched respective hallmarks (GSEA; “DNA Repair”, NES = 2.6, p = 2.2E-16; 

“Mitotic Spindle,” NES = 3, p = 2.2E-16; “E2F Targets,” NES = 6.3, p = 2.2E-16; “G2M,” NES = 6, 

p = 2.2E-16) are shown as grey ticks. (E) Hallmark enrichment wheel of checkpoint block 2 

proteins, from MSigDB 2.0 hallmark categories. Orange radii indicate enrichments that are 

statistically significant after multi-hypothesis correction (Benjamini-Hochberg FDR < 0.01).   (F) 
Sample copy number and mutation events statistically associated with checkpoint 2 activity. 

Samples (columns) are sorted by checkpoint 2 VIPER activity (bottom); grey ticks indicate 

samples with a SNV/copy number/fusion event. Copy number events that are also mutated in one 

or more samples in the cohort are marked with a red star to their left. Genes are ordered from 

most (top) to least frequently altered in the cohort. The five genes selected for experimental 

validation are highlighted in green. (G) Network diagram of checkpoint 2 proteins and DIGGIT 

interactions highlighted in (F), with deletions (blue), mutations (green) and amplification events 

(red) shown as bundled edges.  Green-circled events were selected for experimental follow-up 

(Figure 7).  

 

Figure 7:  Functional validation of predicted candidates. (A) Schematics for functional assays. 

Androgen independent 22rv1 prostate cancer cells were infected with lentiviral control vectors 

and vectors containing shRNAs to silence recurrent genomic events upstream of FOXM1, namely, 

SORBS3, BCAR1, MAP3K7, PTEN and TP53. After selection for stable silencing, cells were used 

in in vitro in in vivo assays.  (B) VIPER analysis of the MR-Block proteins (y-axis) in each silencing 

condition (x-axis). Red indicate increased activity relative to the control condition, blue decreased 

activity. (C) Migration of 22Rv1 cells was assessed in wound healing assays at 24 and 48 hours 

after scratching a confluent culture of control and silenced 22rv1. Quantification of the migration 

assay is shown in (D). Invasion capabilities of control and individually silenced 22rv1 cells was 

carried out in Boyden chamber invasion assays and quantification of the percent of invading cells 

is shown in (E). (F) Functional validation in vivo. Control and individually silenced 22rv1 cells 

where engrafted in mice and tumor growth was monitored over time until euthanasia. Tumor 

growth curves are shown. All in vitro experiments were done in triplicate in two independent 

replicates and significance was assessed using standard T-Student test comparing silencing to 

control.  The in vivo assays where performed in two independent replicates and significance 
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assessed using the Two-way analysis of variance (ANOVA). The p-values are indicated by * < 

0.05, ** < 0.001 and *** < 0.0001. 
 

Figure S1:  Heatmap(s) of MOMA clustering each of the 20 TCGA subtypes. Checkpoint 

proteins for all subtypes are shown on the y-axis, samples on the x-axis. VIPER protein activity 

scores are plotted (red = high activity; blue = low activity) with the scale bar shown on the right. 

Established subtype identities are shown for select tissues, where available (BRCA, COAD, GBM, 

STAD).  

 

Figure S2: Functional validation of MOMA subtypes and survival segregation. (A) Similarity 

plot between MOMA identified sample clusters (bottom) and classical breast cancer subtypes 

(upper). Classical breast cancer subtypes are shown (light blue: luminal A; dark blue: luminal B; 

basal: red; her2: yellow).  (B) Kaplan-Meyer survival plot, displaying differential outcome for the 

best and worst surviving subtype of each of the 20 TCGA Tissue types, with survival time in days 

plotted on the x-asis, and survival probability plotted on the y-axis. P-values for the COX 

proportional hazard model test between subtypes are displayed above each plot. Legends display 

the subtype identities (C) VIPER inferred protein activity heatmap for STAT3, CEBPD and CEBPB 

in Glioblastoma MOMA clusters 2 and 3. The black vertical line separates samples from subtype 

2 (left) and subtype 3 (right). VIPER activities are colored by score (red=high; blue=low). (D) 

Illustration of how Achilles single gene essentiality screens are used in conjunction with patient 

samples and cell line models. Patient sample clusters are matched to the nearest cell line models 

by comparison with VIPER inferred protein activity profiles. Achilles K.O. scores for those specific 

cell lines are then used to assess single gene essentiality (E) Density plot of the number of Master 

Regulators identified as significantly essential in Achilles (Bonferroni corrected p-value < 1e-5) for 

each sample clusters checkpoint, as compared with randomly selected cMR checkpoints (black 

distribution; p < 1.6E-3) of the same size. The null model was constructed with 1E6 randomly 

selected checkpoints, and fitted to a normal distribution to asses statistical significance of the true 

number of significantly essential Master Regulators (153: blue vertical line).  

 

Figure S3: Checkpoint proteins are highly interconnected, downstream of known genomic 
drivers. (A) Significance of the enrichment for genomic drivers (CHASM: single point mutation 

events; GISTIC 2.0: focal copy number) upstream of predicted checkpoint proteins in each tissue 

of origin.  Log10 p-values are shown in a bar plot, with the horizontal dashed line representing 

the canonical significance level of 0.05. (B) Enrichment ratios for genomic drivers upstream of 
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predicted checkpoint proteins in each tissue type. The distribution of enrichment ratios is shown 

in each violin plot. (C) Density plots of the mean shortest path distance between all pairs of 

predicted checkpoint proteins in each tissue of origin (blue), compared with pairwise distances 

between random pairs of transcriptional and co-transcriptional proteins, in the HumanNet network. 

(D) Density plots of the mean shortest path distance between all pairs of predicted checkpoint 

proteins in each tissue of origin (blue), compared with pairwise distances between random pairs 

of transcriptional and co-transcriptional proteins, in the Multinet network. (E) Density plots of the 

mean shortest path distance between all pairs of predicted checkpoint proteins in each tissue of 

origin (blue), compared with pairwise distances between random pairs of transcriptional and co-

transcriptional proteins, in the PrePPI protein-protein interaction network. 
 

Figure S4a-t: Genomic saturation and identity plots for each of the 112 identified subtypes, 

within 20 TCGA tissues of origin. Left column: genomic events are shown on the y-axis, with 

frequency of alteration in the respective cohort displayed on the x-axix; deletion events are shown 

as blue marks, amplifications are red, mutations green. All events are identified as interacting with 

the candidate Master Regulator (cMR) proteins that are selected via the genomic saturation 

analysis shown on the right column, in the respective subtype/tissue. Saturation curves on the 

right each correspond to a single sample cluster, with the quantity of cMRs used to explain 

genomic events on the x-axis and the average number of genomic events (and fraction of all non-

silent SNV and GISTIC2.0 identified events) per-sample on the y-axis. The dashed line indicates 

the identified inflection point, and defines the cluster checkpoint as all cMR proteins to the left of 

that line. (D) No saturation detected above the null distribution for subtype (2) due to low 

mutational burden.  

 

Figure S5: Checkpoint block discovery and hallmarks of cancer enrichment. (A) Density 

plot of the number of different checkpoints (of the 112 identified pan-cancer subtypes) each cMR 

participates in (solid red line), with the fraction of all ~2500 transcription factors (TF) and co-

factors (coTF) considered shown on the y-axis, compared to a null model constructed by randomly 

placing (TF/coTF) proteins into bins the same size as the 112 checkpoints, permuted 100 times 

(dashed black line). The vertical dotted line represents cMRs that are found in four or more 

checkpoints. The real and null distributions are significantly different, according to a non-

parameteric Kolmogorov–Smirnov test (p < 2.2E-16). (B) Plot of the analytical clustering score for 

k=2 to k=100 checkpoint clusters, for the 407 highly recurrent candidate Master Regulator (cMR) 

proteins across tissue types. The 24 cluster solution of checkpoint “blocks” was found to be the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/758268doi: bioRxiv preprint 

https://doi.org/10.1101/758268
http://creativecommons.org/licenses/by-nc-nd/4.0/


highest scoring (green line). (C) Relative score representing the specificity of enrichment in the 

classical hallmarks of cancer (y-axis) across all 24 checkpoint blocks, as the blocks are 

“expanded” with additional nearest neighbor cMRs (x-axis). The coverage score (blue line) 

represents the Eigen-trace of the covariance matrix of all hallmark enrichments for all checkpoint 

blocks, while the dashed black line is the delta with the previous expansion factor. We selected 

k=6 as it is both an early absolute maximum and has one of the highest rates of improvement 

over the previous score (k=5). (D) Hallmark enrichments that are significant after multiple-

hypothesis correction (Benjamini-Hochberg FDR) for each of the final 24 checkpoint blocks. (E) 
Violin plots of the Jaccard concordance index of each of the 24 checkpoint blocks with the most 

similar cluster found in each of the other clustering solutions (k = 2 to 100, excluding 24). Sorted 

left to right, from most to least concurrent. 
 

Figure S6: Analysis of survival/outcome predictions from MR-Block activities. (A) The 

negative log p-values of single-variable cox regression models are shown for each MR block 

(columns), representing the ability of each MR-block to predict patient outcome, across each of 

20 TCGA tissue types (rows). Bars represent the -log10(pvalue) significance of each predictor, 

truncated at (log10(p)=5) for visual clarity; values less than (log10(p)<1) are not shown. The 

dashed line represents the canonical statistical significance level of p=0.05. (B) Survival plots of 

all 20 TCGA cohorts using a regularized cox proportional hazards model trained on the mean 

activity of the 24 MR-blocks. P-values for the fitted cox regression models (coefficients) are shown 

above each plot. Censors are shown and ticks along each axis. (C) Analysis of Pan-cancer 

checkpoint block activity in the Metabric breast cancer dataset. VIPER activities of the 7 MR-

Blocks that were found to be highly active in the TCGA breast cancer cohort (Figure 5C), 

Differential survival outcomes shown for Metabric samples with positive mean activity of the 

proteins in each checkpoint (red) and negative mean activity (blue). Some checkpoint proteins 

were not inferred by the ARACNe regulon generated from Metabric data, and are omitted from 

the heatmaps. Survival separation was most significant for blocks 2, 3, 7 and 16, as well as block 

21 (p < 2E-8, p < 2E-8, P<3E-8, P<3E-8, respectively). In contrast, we found the separation with 

block 14 to be only marginally significant (p < 0.006), and non-significant in block 11 (p < 0.3).  
(D) Censored survival plot of the TCGA PRAD (prostate cancer) cohort subtypes 3 (best survival; 

n=109, deaths=0) and subtype 6 (worst survival; n=9, deaths=1). Separation is significant 

according to a cox proportional hazards model (p < 7E-4).  
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Table Legends 

 

Table 1: Data Overview. Data for 20 TCGA tumor types is listed, including the number of samples 

with RNA, mutational, copy number, and fusion data, respectively.  

 

Table 2: Survival analysis of MOMA sample clustering. Mean silhouette scores, the p-value 

of survival differences between the best and worst surviving clusters, and the progression-free 

survival p-value are shown for each clustering solution across the 20 TCGA tumor types.  

 

Table 3: MOMA subtype summary. Cluster identities, sample size and fractions are shown for 

each of the 20 TCGA tissue types.  

 

Table 4: Putative mutational drivers in PRAD cohort. Mutational drivers upstream of MRB2, 

detection status for the MutSig2.CV algorithm, Clinical Correlation via the Broad TCGA Firehose 

pipeline, and Mutation-Assesor algorithms are shown in the respective columns.  

STAR* Methods  

Pan-cancer protein inference: RNA-Seq raw gene counts were downloaded from the TCGA 

firehose (gdac.broadinstitute.org), transformed to RPKM using the average transcript length for 

each gene and log2 transformed. Transcriptome-wide expression signatures were computed by 

two non-parametric transformations. First, each column (tumor sample) was rank transformed 

and scaled between 0 and 1. Then each row (gene) was rank transformed and scaled between 0 

and 1. Finally, the activity of ~2,500 regulatory proteins was estimated by the VIPER algorithm, 

using tissue-matched ARACNE regulons (Giorgi et al., 2016; Lachmann et al., 2016).  
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DIGGIT: We identified statistically associated SNP events with the DIGGIT algorithm. Instead of 

using the mutual-information computation outlined in the published DIGGIT method (Alvarez et 

al., 2015) we computed the aREA enrichment (Alvarez et al., 2016) of the sample set with non-

silent coding mutations in a given gene, against the ranked protein-activity signature inferred by 

VIPER for a given MR. This was performed for each VIPER Inferred Protein (VIP) / mutated gene 

pair with at least 4 samples with a non-silent alteration. Similarly SNP6 copy number profiles were 

downloaded from the Broad Institute and we picked a threshold value of 0.5, the mean value that 

we found to be optimally sensitive for detection with DIGGIT while maintaining high specificity for 

functional events as explored in recent literature (Jerby-Arnon et al., 2014).  

 

DIGGIT Null Model: A null model was constructed specific to each TCGA tissue type by 

considering the 1253 VIPs with the lowest absolute mean activity as a ‘null set’; we then computed 

the empirical p-values and q-values of the each DIGGIT/aREA score against the distribution 

generated with aREA on the null set of VIPs using the ‘q-value’ Bioconductor package (3.5) (Kall 

et al., 2008). Positive DIGGIT/aREA z-scores with an uncorrected empirical p-value of less than 

0.05 over the background were combined using Stouffer’s method to generate three separate 

rankings for each VIP (Jerby-Arnon et al., 2014) based on SNV mutations, amplification events, 

and deletion events, respectively. CINDy was run using gene expression and the computed 

VIPER profiles separately within each TCGA tissue type. For most tissue types the number of 

CINDy interactions between genes with genomic alterations and VIPs with significant DIGGIT 

scores was large—hundreds to tens of thousands—and only these interactions were retained 

when computing the SNV/Amplification/Deletion rankings detailed above. In the few cases where 

overlap was less than 100 total interactions, all significant DIGGIT interactions were retained and 

the CINDy data utilized at a later step. Fusion calls were detected with the PRADA algorithm 

(Torres-Garcia et al., 2014), aREA and null-model aREA scores were computed in the same way.  
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We used the PrePPI database 1.2.0 (Zhang et al., 2013) to incorporate structural information into 

the rankings. We first converted all high-confidence (probability > 0.5) PPI interactions into 

empirical p-values by ranking and binning the likelihood scores, and assigning the lowest bin the 

probability of interaction based on the count of all possible pairs within the PrePPI database. 

Significant DIGGIT interactions with corresponding PrePPI interactions were considered for each 

VIP; the PrePPI empirical p-values were combined using Fisher’s method to generate rankings 

for SNV, Amplification and Deletion based DIGGIT interactions, respectively.  

 

Integrated rankings: Integrated rankings were generated by first removing the conditional 

dependency of the DIGGIT-based score for each MR by conditioning it on the rank of the VIPER 

score, and then converting the rank to an empirical one-tailed p-value. Similarly, PrePPI scores 

were conditioned on the DIGGIT scores for each, as were CINDy scores for several tissue types 

with a small number of CINDy predictions (see above). This conditional model was applied 

separately for each of the SNV, Fusion, Amplification and Deletion data types; the p-values from 

all conditionally independent tests were combined using Fisher’s method to generate a single 

ranking of candidate MRs for each tissue.  

 

Survival analysis:  Clinical data was downloaded from the Broad Institute GDAC website 

(gdac.broadinstitute.org). We used the ‘survival’ R/CRAN package version 2.41-3 to fit a Cox 

proportional hazards model to each sample grouping defined by the initial cluster. We then 

defined the “best” survival clusters as the one with the lowest proportion of observed to expected 

death events, and the “worst” survival as the highest observed/expected ratio. We then fit a 

second Cox model exclusively to samples from those two clusters and calculated the significance 

of survival differences between “best” and “worst” clusters in that model.  
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Sample clustering: Each tissue-specific VIPER activity matrix was clustered using k-medoids 

clustering with k ranging from 2 to 10 clusters, using a distance matrix defined by the weighted 

Pearson correlation between sample VIPER profiles. Weights were defined by the negative log 

p-values of the integrated scores described above in Integrated Rankings; to increase the 

contribution of high scoring Master Regulators we also transformed the negative log p-values with 

a square operation before generating the distance matrix. A silhouette-like score was calculated 

for each sample at each k value, using the aREA function described in (Alvarez et al., 2016) to 

determine the enrichment in similarity between each sample and it’s assigned cluster. We then 

chose the k that maximized the mean score across all samples.   

 

GEX clustering: Each tissue-specific gene expression matrix was clustered using k-medoids 

clustering with k set as the same value chosen for the tissue-specific VIPER activity clustering 

(see methods, Sample clustering). Distance between samples was defined using Pearson 

correlation between gene expression profiles. Silhouette scores were computed using the ‘cluster’ 

package in R.  

 

Candidate drivers: Mutation and SNP6 copy-number data was downloaded from the Broad 

Firehose platform (gdac.broadinstitute.org), as described in (methods: clustering/DIGGIT). We 

downloaded analysis results from Firehose and characterized each SNP as a candidate driver 

event if it achieved a p-value of 0.05 (uncorrected) or less according to the CHASM algorithm. 

Similarly, focal copy number events were considered “candidate drivers” if they were considered 

a high confidence (99% interval) event according to the GISTIC2.0 algorithm. 

 

Genomic coverage: Genomic events considered “candidate drivers” (see above) were used in 

the sample-specific analysis if they had a sufficient number of events to be detected by the 

DIGGIT algorithm (4 events, in each TCGA tissue type).  
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Checkpoint Generation: Proteins were clustered with the VIPER protein activity matrix on the 

gene level, using a Euclidean distance metric and partitioning around medoids (PAM) for a 

predefined set of clusters k, from 2 to 100. The cluster fit was defined as the mean cluster reliability 

of each proteins fit to its respective cluster, which is calculated as the aREA enrichment score of 

the cluster member set on the distance vector between the protein and all other protein in the 

matrix. We chose an optimal k of 24 as shown in Figure S5B.  Each “core” cluster was expanded 

by the n candidate Master Regulator proteins with the best similarity (outside of the original 

cluster), for all n in the range of 0 to 100. For each n in this range, we computed the trace of the 

covariance matrix calculated from hallmark enrichment across the 20 checkpoints expanded by 

n to approximate the total variance across the space defined by hallmark enrichment. We found 

an optimal increase in this variance at an expansion number of 6 (Figure S5C) and defined the 

“fuzzy” checkpoints at that threshold.  

 

Hallmark Enrichment: Cancer Hallmarks were defined as the 25 gene sets defined by the Broad 

Institute and refined/simplified by others (Drake et al., 2016; Liberzon et al., 2015). We computed 

the p-value of the hypergeometric overlap between each hallmark gene set and each checkpoint, 

using the cardinality of all candidate MRs (2506) as the “universe” size.  

 

Achilles Essentiality Validation: Achilles shRNA DEMETER knockout scores were downloaded 

from The Broad Institute for all cell lines. Transcription Factor (TF's) Achilles dependencies scores 

were re-normalized by fitting bimodal normal mixture models using the R package ‘mixtools’.  The 

most positive (least dependent) sub-population was set as the reference distribution for the re-

normalized “dependency score” as a z-score.  By binning Achilles-scores into distinct sub-

populations, this procedure assumes discrete transcriptional-states with resolvable effects on cell-

viability. In the context of orthogonal transcriptional programs (e.g. basal vs luminal breast cancer) 
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this bias should boost meaningful signal for causal transcription factors. In cases of more 

continuous relationships between TF dependency and viability (e.g., house-keeping programs) 

this bias would most likely destroy information. 

 

For each of the 112 TCGA subtypes, we matched the centroid sample to all CCLE VIPER 

profiles, using the ‘viperSimilarity’ algorithm included with the VIPER algorithm (Alvarez et al., 

2016), after weighting each patient-sample by the MOMA scores for the corresponding tissue. 

Cell lines that were significant matches (FWER < 0.01; Bonferroni correction) were compared 

with non-matches (p = 1) using a non-parametric rank-based Mann-Whitney-Wilcox test; 

significant FDRs after multiple hypothesis correction (Benjamini-Hochberg FDR < 0.05) were 

retained for each subtype.  

 

METABRIC Breast cancer analysis: We ran ARACNE with 100 bootstrap iterations and a M.I. 

threshold of 1e-8, separately for the candidate TF and coTF regulators. Protein activity was 

inferred across all samples, using the VIPER algorithm. Survival analysis was performed by first 

calculating the mean VIPER activity across checkpoint proteins and binning samples into “high” 

and “low” quantiles, for each checkpoint. Clinical data was downloaded from the Broad Institute 

GDAC website (gdac.broadinstitute.org). We used the ‘survival’ R/CRAN package version 2.41-

3 to fit a Cox proportional hazards model to each sample grouping, using the last known follow-

up date, and testing for significant survival differences with that model.  

 

Interaction rankings: CINDy interactions were converted to empirical p-values by ranking and 

binning the number of significant triplets (Giorgi et al., 2014), and assigning the lowest bin the 

probability of interaction based on the count of all modulator-TF interactions. For each modulator-

TF interaction, the CINDy based p-value, PrePPI p-value, p-value based on the DIGGIT/aREA 

score and the p-value generated by the DIGGIT null model were integrated using Fisher’s method 
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to create a single ‘integrated’ p-value. For each MR, we computed the Benjamini-Hochberg false 

discovery rate of all integrated p-values and removed those above a threshold of 10%. Integrated 

p-values were combined across tissue types using Fisher’s method to generate a pancancer 

ranking.  

 

Proliferation cluster interactions: For each of the candidate Master Regulator proteins in 

checkpoint 2 we computed the rankings based on the integrated p-value in prostate cancer, as 

well as the cross-pancancer rankings for the same interactions. We created a combined rank from 

these two lists, using an additive mean and retained the top 20 interactions for each MR. 

Interactions were visualized with the Cytoscape software package (Shannon et al., 2003).  

 

ARACNe and VIPER analysis of the Sboner dataset:  Clinical data and gene expression 

microarray data for 281 prostate cancer samples was downloaded from the Gene Expression 

Omnibus (GEO) (ID GSE16560). The expression profiles for 6100 transcriptionally informative 

genes (Gene Expression Omnibus Platform GPL5474) was used to generate ARACNe networks 

for the same TF and co-TF definitions used for the TCGA analysis, respectively. VIPER scores 

were computed for 563 TFs and 254 co-TFs across all 281 samples; representative candidate 

Master Regulator in the Pan-cancer checkpoint 2, identified through our TCGA based analysis 

included TRIP13, TOP2A, PTTG1, MYBL2, FOXM1 and CENPF. We computed the mean VIPER 

activity across these candidate Master Regulators and selected the top and bottom quantiles of 

samples with highest and lowest mean activity, respectively, for further analysis.  

 

Perturbation dataset VIPER analysis 

We generated a signature for count data from each experimental condition, using the control 

condition as a reference, and performing a t test, using 100 permutations of the samples 

(columns) as a null model. This signature and null model were inputted to the ‘msviper’ function 
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in the VIPER Bioconductor package, along with the TCGA Prostate cancer regulon. A second null 

model was constructed by re-running this same analysis on 100 permutations of the column 

labels, and a t-test was performed between the VIPER scores from each condition and this null, 

to assess the overall ability in reverting the signature for checkpoint 2 proteins.  
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TCGA Tissue 

# Patients, VIPER 

Inferences 

# Patients, 

mutation data 

# Patients, cnv 

data 

# Patients, 

fusion calls 

blca 408 130 253 300 

brca 1093 977 1051 831 

coad 457 217 437 154 

gbm 160 291 589 122 

hnsc 520 306 513 341 

kirc 533 293 520 151 

laml 179 196 198 74 

lgg 516 289 464 0 

lihc 371 202 193 222 

luad 515 519 496 405 

lusc 501 178 493 401 

ov 296 141 587 194 

paad 178 168 185 0 

prad 497 425 204 437 

read 166 81 164 0 

sarc 259 255 260 0 

skcm 468 362 386 338 

stad 274 230 353 183 

thca 501 402 499 144 

ucec 545 248 543 101 

cesc 304    

esca 184    

kirp 290    

pcpg 179    

tgct 150    

thym 120    

 

Table 1: Data Overview. Data for 20 TCGA tumor types is listed, including the number of 

samples with RNA, mutational, copy number, and fusion data, respectively.  

 

 

 

tissue k mean.silhouette 

pval.progression-

naive 

pval.progression-

free top.analytical.soln 

blca 2 0.608997478 0.63232 0.37693 no 

blca 3 0.706560727 0.16872 0.11797 no 

blca 4 0.759714371 0.21336 0.26033 yes 

blca 5 0.720047253 0.1506 0.19498 yes 

blca 6 0.641998616 0.033141 0.01937 yes 

blca 7 0.69636671 0.042014 0.027441 no 
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blca 8 0.633710917 0.03032 0.0044003 no 

blca 9 0.671606656 0.051675 0.13531 no 

blca 10 0.632906191 0.18073 0.07716 no 

brca 2 0.780697516 0.013218 0.039361 no 

brca 3 0.711048776 0.11849 0.010141 no 

brca 4 0.7852366 0.020421 0.013422 yes 

brca 5 0.72477614 0.00082055 0.0107 no 

brca 6 0.719701065 0.0051902 0.0107 no 

brca 7 0.771018746 0.0079326 0.00025076 no 

brca 8 0.759411684 0.016372 0.033565 no 

brca 9 0.723676859 0.016372 0.00034953 no 

brca 10 0.729480844 0.0051699 0.00049293 no 

coad 2 0.646982494 0.8179 0.8435 no 

coad 3 0.686357381 0.84978 0.086235 no 

coad 4 0.645325064 0.78718 0.18189 no 

coad 5 0.722428311 0.74365 0.095462 yes 

coad 6 0.716045021 0.4658 0.24934 yes 

coad 7 0.712651649 0.28944 0.35243 no 

coad 8 0.716932619 0.064724 0.55033 yes 

coad 9 0.714158603 0.08393 0.11422 no 

coad 10 0.698958217 0.15085 0.41205 no 

gbm 2 0.613839743 0.48806 0.053117 no 

gbm 3 0.686719852 0.13087 0.096051 no 

gbm 4 0.639781348 0.0068145 0.0013133 no 

gbm 5 0.737300554 0.0039469 0.0014076 yes 

gbm 6 0.755589927 0.0041277 0.0023037 yes 

gbm 7 0.67755406 0.032386 0.0067482 no 

gbm 8 0.669564142 0.032386 0.0067482 no 

gbm 9 0.652577276 0.03294 0.013374 no 

gbm 10 0.646740114 0.00095328 0.013374 no 

hnsc 2 0.628503024 0.23424 0.055252 no 

hnsc 3 0.667231408 0.0049155 0.030115 no 

hnsc 4 0.703443865 0.078984 0.019162 yes 

hnsc 5 0.722152229 0.00012022 0.0046603 no 

hnsc 6 0.748753543 0.00010972 0.0079217 yes 

hnsc 7 0.744952807 0.00035881 0.0075361 no 

hnsc 8 0.673461776 9.25E-05 0.0084426 no 

hnsc 9 0.647997614 0.00010592 0.00028122 no 

hnsc 10 0.660101673 2.61E-06 7.89E-05 no 

kirc 2 0.589877331 7.23E-14 1.11E-16 no 

kirc 3 0.609216895 1.79E-13 5.09E-13 no 

kirc 4 0.668013519 0 7.77E-16 no 
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kirc 5 0.730298651 1.11E-16 0.00047811 yes 

kirc 6 0.67227246 6.63E-14 5.78E-13 yes 

kirc 7 0.648441513 0.00066381 0.00029486 no 

kirc 8 0.649804299 0.0006531 0.00036198 no 

kirc 9 0.59840271 4.30E-12 6.67E-12 no 

kirc 10 0.575458417 7.73E-12 8.87E-10 no 

laml 2 0.801153108 0.46044 NA no 

laml 3 0.765486157 0.019749 NA no 

laml 4 0.810313106 0.0099112 NA yes 

laml 5 0.700628002 0.0062179 NA yes 

laml 6 0.71457491 0.00090455 NA yes 

laml 7 0.710777817 0.00090455 NA no 

laml 8 0.742692413 0.00090455 NA no 

laml 9 0.631961571 0.0014776 NA no 

laml 10 0.744817443 0.00028785 NA no 

lgg 2 0.552213534 0 0 no 

lgg 3 0.677869379 0 0 no 

lgg 4 0.690846507 0 1.38E-12 no 

lgg 5 0.737693354 0 1.89E-15 yes 

lgg 6 0.688394999 0 0 no 

lgg 7 0.704830302 0 2.22E-16 yes 

lgg 8 0.726068521 0 1.81E-11 yes 

lgg 9 0.63463369 0 1.81E-11 yes 

lgg 10 0.676811717 0.00011307 0.0018331 no 

lihc 2 0.561760152 5.10E-05 1.69E-05 no 

lihc 3 0.502660838 0.0028464 0.0029454 no 

lihc 4 0.625995969 2.05E-05 1.01E-05 yes 

lihc 5 0.685422688 9.02E-06 3.32E-06 yes 

lihc 6 0.706792583 5.90E-06 1.20E-05 yes 

lihc 7 0.702901293 9.88E-05 1.17E-05 yes 

lihc 8 0.679974881 0.002001 2.58E-08 yes 

lihc 9 0.677602536 0.0053459 0.26165 yes 

lihc 10 0.667423456 0.0024896 0.25462 yes 

luad 2 0.682103767 0.092896 0.27301 no 

luad 3 0.70962839 0.013047 0.032815 no 

luad 4 0.714583055 0.10638 0.029843 yes 

luad 5 0.612862379 0.032239 0.029975 yes 

luad 6 0.640803279 0.022622 0.049676 yes 

luad 7 0.749596792 0.045614 0.055438 yes 

luad 8 0.656925785 0.0051143 0.02797 yes 

luad 9 0.648309819 0.015539 0.099825 yes 

luad 10 0.639529278 0.12293 0.019241 no 
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lusc 2 0.528566491 0.19052 0.2046 no 

lusc 3 0.75505046 0.0067527 0.0024793 yes 

lusc 4 0.676896457 0.005613 0.0010377 no 

lusc 5 0.728830627 0.050373 0.18249 no 

lusc 6 0.631955309 0.00027513 0.00014193 no 

lusc 7 0.688542834 0.012909 0.0015291 no 

lusc 8 0.639857422 0.0097389 0.00089683 no 

lusc 9 0.663310017 0.00021324 0.02836 no 

lusc 10 0.656324988 0.0010716 0.016821 no 

ov 2 0.537390233 0.10354 0.20396 no 

ov 3 0.710201841 0.015154 0.18232 yes 

ov 4 0.782126608 0.1204 0.22822 yes 

ov 5 0.725069551 0.0057372 0.3668 yes 

ov 6 0.6692378 0.038902 0.34226 no 

ov 7 0.669860496 0.18572 0.31972 no 

ov 8 0.666231449 0.073733 0.24804 no 

ov 9 0.648926518 0.18572 0.28631 no 

ov 10 0.666539449 0.11984 0.26974 no 

paad 2 0.769596412 0.010689 0.0018173 no 

paad 3 0.681340558 0.00093584 5.65E-05 yes 

paad 4 0.689516332 0.0069061 0.0013505 no 

paad 5 0.790259533 0.0051506 0.0034655 yes 

paad 6 0.774964909 0.0051506 0.0034655 no 

paad 7 0.756527477 0.00026206 0.00033836 yes 

paad 8 0.681827078 0.00035612 0.00033836 no 

paad 9 0.697770396 0.00045162 0.00015924 no 

paad 10 0.675166787 0.00045162 0.00015924 no 

prad 2 0.564812805 0.064563 0.001729 no 

prad 3 0.681793239 0.083578 0.002533 yes 

prad 4 0.695943936 0.16174 0.0066142 yes 

prad 5 0.648679804 0.016743 0.0040458 yes 

prad 6 0.656139071 0.0020547 0.058516 yes 

prad 7 0.603397574 0.00069596 0.02439 yes 

prad 8 0.625423616 0.0070901 0.067889 no 

prad 9 0.604941287 0.0016917 7.55E-05 yes 

prad 10 0.622967345 0.0029194 0.00076128 yes 

read 2 0.576258894 0.14116 0.95182 no 

read 3 0.663345981 0.16911 0.1743 no 

read 4 0.666606726 0.030973 0.12663 no 

read 5 0.677701654 0.23047 0.22067 yes 

read 6 0.651477825 0.36028 0.22067 yes 

read 7 0.673415931 0.016712 0.1573 yes 
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read 8 0.684067301 0.18536 0.083265 yes 

read 9 0.64772557 0.21887 0.22067 yes 

read 10 0.646137155 0.24821 0.22067 yes 

sarc 2 0.661718753 0.18972 0.28819 no 

sarc 3 0.7254593 0.0010793 0.1934 yes 

sarc 4 0.742160411 0.005309 0.11886 yes 

sarc 5 0.752197064 0.0094806 0.086744 yes 

sarc 6 0.757693054 0.0001718 0.073535 yes 

sarc 7 0.722452491 0.0019067 0.053358 yes 

sarc 8 0.643407666 0.00082503 0.018268 yes 

sarc 9 0.635483392 0.0001842 0.010914 no 

sarc 10 0.612152076 0.0098517 0.066778 no 

skcm 2 0.564156317 0.26587 0.14977 no 

skcm 3 0.55969847 0.35076 0.088105 no 

skcm 4 0.565191251 0.038617 0.12356 no 

skcm 5 0.590803727 0.0075082 0.092109 no 

skcm 6 0.64396706 0.0094092 0.11865 yes 

skcm 7 0.645226795 0.029668 0.179 yes 

skcm 8 0.648586086 0.029668 0.12731 yes 

skcm 9 0.635180732 0.061822 0.18792 yes 

skcm 10 0.646480167 0.011415 0.025271 yes 

stad 2 0.723922828 0.0088738 0.0066771 no 

stad 3 0.785824145 0.0048198 0.0015581 yes 

stad 4 0.71885937 0.043995 0.016671 yes 

stad 5 0.739588128 0.038258 0.030502 yes 

stad 6 0.729738863 0.18979 0.07219 yes 

stad 7 0.694404258 0.1144 0.032081 no 

stad 8 0.639886237 0.10595 0.062994 no 

stad 9 0.608928271 0.017654 0.032331 no 

stad 10 0.588086261 0.032527 0.00015066 no 

thca 2 0.650162933 0.69403 0.75789 no 

thca 3 0.697119516 0.054398 0.29184 no 

thca 4 0.640746837 0.10751 0.28275 no 

thca 5 0.609452281 0.0081927 0.083265 no 

thca 6 0.699652501 0.0014467 0.25926 yes 

thca 7 0.647106832 0.00010161 0.22067 yes 

thca 8 0.689565794 0.00037157 0.26355 no 

thca 9 0.63177716 0.00039194 0.34957 no 

thca 10 0.614423854 0.00066888 0.52709 no 

ucec 2 0.742400826 1.72E-05 4.06E-05 yes 

ucec 3 0.68008393 2.23E-06 0.00048987 no 

ucec 4 0.712390962 0.0028716 0.0022609 no 
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ucec 5 0.707244791 0.0030273 0.0023555 no 

ucec 6 0.647148064 0.019392 0.056942 no 

ucec 7 0.677781261 0.0050285 0.027677 no 

ucec 8 0.714713798 0.0055951 0.024932 no 

ucec 9 0.668821752 0.022302 0.0042407 no 

ucec 10 0.635964719 0.021962 0.0036179 no 

 

Table 2: Survival analysis of MOMA sample clustering. Mean silhouette scores, the p-value of 

survival differences between the best and worst surviving clusters, and the progression-free 

survival p-value are shown for each clustering solution across the 20 TCGA tumor types.  

 

Organ Site Subtype 

Sample 

Count Fraction 

Subtype 

Total Site ID 

blca 1 93 23% 408 1 

blca 2 46 11%   

blca 3 81 20%   

blca 4 77 19%   

blca 5 62 15%   

blca 6 49 12%   

brca 1 337 31% 1100 2 

brca 2 315 29%   

brca 3 222 20%   

brca 4 226 21%   

coad 1 56 12% 459 3 

coad 2 50 11%   

coad 3 31 7%   

coad 4 78 17%   

coad 5 105 23%   

coad 6 87 19%   

coad 7 38 8%   

coad 8 14 3%   

gbm 1 25 15% 166 4 

gbm 2 8 5%   

gbm 3 31 19%   

gbm 4 68 41%   

gbm 5 34 20%   

hnsc 1 59 11% 522 5 

hnsc 2 93 18%   

hnsc 3 157 30%   

hnsc 4 64 12%   

hnsc 5 81 16%   

hnsc 6 68 13%   
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kirc 1 82 15% 534 6 

kirc 2 30 6%   

kirc 3 250 47%   

kirc 4 103 19%   

kirc 5 69 13%   

laml 1 21 12% 179 7 

laml 2 66 37%   

laml 3 22 12%   

laml 4 24 13%   

laml 5 31 17%   

laml 6 15 8%   

lgg 1 221 42% 530 8 

lgg 2 87 16%   

lgg 3 25 5%   

lgg 4 166 31%   

lgg 5 31 6%   

lihc 1 81 22% 373 9 

lihc 2 66 18%   

lihc 3 59 16%   

lihc 4 60 16%   

lihc 5 67 18%   

lihc 6 40 11%   

luad 1 41 8% 517 10 

luad 2 47 9%   

luad 3 52 10%   

luad 4 67 13%   

luad 5 92 18%   

luad 6 40 8%   

luad 7 135 26%   

luad 8 43 8%   

lusc 1 134 27% 501 11 

lusc 2 320 64%   

lusc 3 47 9%   

ov 1 62 21% 299 12 

ov 2 40 13%   

ov 3 96 32%   

ov 4 62 21%   

ov 5 39 13%   

paad 1 71 40% 179 13 

paad 2 25 14%   

paad 3 14 8%   

paad 4 22 12%   
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paad 5 23 13%   

paad 6 9 5%   

paad 7 15 8%   

prad 1 149 30% 498 14 

prad 2 47 9%   

prad 3 109 22%   

prad 4 38 8%   

prad 5 86 17%   

prad 6 9 2%   

prad 7 60 12%   

read 1 64 38% 167 15 

read 2 38 23%   

read 3 11 7%   

read 4 27 16%   

read 5 9 5%   

read 6 13 8%   

read 7 5 3%   

sarc 1 50 19% 263 16 

sarc 2 41 16%   

sarc 3 49 19%   

sarc 4 71 27%   

sarc 5 29 11%   

sarc 6 23 9%   

skcm 1 83 18% 472 17 

skcm 2 131 28%   

skcm 3 67 14%   

skcm 4 119 25%   

skcm 5 44 9%   

skcm 6 28 6%   

stad 1 139 51% 274 18 

stad 2 74 27%   

stad 3 61 22%   

thca 1 64 13% 509 19 

thca 2 55 11%   

thca 3 89 17%   

thca 4 94 18%   

thca 5 55 11%   

thca 6 27 5%   

thca 7 125 25%   

ucec 1 283 52% 546 20 

ucec 2 263 48%   
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Table 3: MOMA subtype summary. Cluster identities, sample size and fractions are shown for 

each of the 20 TCGA tissue types.  

 

Node MSIG.2CV Clin.Correlate Mut.Assesor 

KMT2C no no NA 

TRIM13 no no NA 

PPP2CB no no 0.2 

AGK no no 1.1 

BAG4 no no NA 

ARL3 no no NA 

NDEL1 no no NA 

RAD17 no no 1.375 

GGCT no no 1.265 

TNFRSF10B no no 1.545 

PTK2B no no NA 

EZH2 no no 1.04 

TRIB1 no no NA 

MED4 no no NA 

PLCB4 no no 1.525 

NSMAF no no 1.7175 

CAV2 no no NA 

SORBS3 no no 1.39 

MMS19 no no NA 

INTS6 no no NA 

YWHAZ no no 3.735 

RGS22 no no NA 

GPS2 no no 0.805 

ROCK1 no no 0.715 

NDFIP2 no no NA 

PAFAH1B1 no no NA 

TBC1D2 no no 1.8 

DEF8 no no 1.84 

MAP3K7 no no 2.195 

ARF5 no no NA 

VAC14 no no 1.5 

DERL1 no no NA 

DEPDC1 no no 0.855 

PEG10 no no NA 

PIK3R1 no no 3.015 

NRG1 no no 1.905 

LYN no no 0.5625 

NRG2 no no 1.645 
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PTK2 no no 0.375 

CASP8AP2 no no NA 

PDK4 no no 0.9075 

ARHGEF10 no no 0.9075 

DPYSL2 no no 1.625 

FNTA no no NA 

GFRA2 no no NA 

HERPUD1 no no 2.35 

GNB2 no no 1.245 

IMPA1 no no 3.51 

AMFR no no NA 

RHOBTB2 no no NA 

PIK3CA yes yes 1.7625 

APC no yes 1.1975 

CLU no no NA 

PLAA no no 0.49 

TRIM23 no no NA 

BCAR1 no no 1.655 

CSNK2A2 no no 0.405 

ADRA1A no no 0.895 

TP53 yes yes 2.9925 

TP53BP2 no no 2.06 

ERBIN no no NA 

BTRC no no 1.6175 

CD164 no no 1.1 

SCRIB no no 0.345 

PTEN yes yes 3.435 

RIPK2 no no 0.345 

ADGRA2 no no NA 

TNFRSF21 no no 1.325 

FBXO31 no no NA 

MYO9A no no 1.83 

CDK7 no no 1.775 

ARHGAP39 no no 0.69 

YWHAE no no NA 

LPAR6 no no NA 

SHARPIN no no NA 

ARHGEF26 no no NA 

 

Table 4: Putative mutational drivers in PRAD cohort. Mutational drivers upstream of MRB2, 

detection status for the MutSig2.CV algorithm, Clinical Correlation via the Broad TCGA Firehose 

pipeline, and Mutation-Assesor algorithms are shown in the respective columns.  
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