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Abstract

Despite considerable pan-cancer efforts, the link between genomics and transcriptomics in cancer
remains relatively weak and mostly based on statistical rather than mechanistic principles. By
performing integrative analysis of transcriptomic and mutational profiles on a sample-by-sample
basis, via regulatory/signaling networks, we identified a repertoire of 407 Master-Regulator
proteins responsible for canalizing the genetics of 20 TCGA cohorts into 112 transcriptionally-
distinct tumor subtypes. Further analysis highlighted a highly-recurrent regulatory architecture
(oncotecture) with Master-Regulators organized into 24 modular MR-Blocks, regulating highly-
specific tumor-hallmark functions and predictive of patient outcome. Critically, >50% of the
somatic alterations identified in individual samples were in proteins affecting Master-Regulator
activity, thus yielding novel insight into mechanisms linking tumor genetics and transcriptional
identity and establishing novel non-oncogene dependencies. Experimental validation of
functional mutations upstream of the most conserved MR-Block confirmed their ability to affect
MR-protein activity, suggesting that the proposed methodology may effectively complement and

extend current pan-cancer knowledge.


mailto:ca2319@cumc.columbia.edu
mailto:MAlvarez@darwinhealth.com
mailto:ac2248@columbia.edu
https://doi.org/10.1101/758268
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/758268; this version posted September 5, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Introduction

Our understanding of cancer as a complex system is constantly evolving: in particular, it is
increasingly appreciated that the transcriptional state of cancer cells (i.e. their transcriptional
identity) is as tightly regulated as that of their physiologic counterparts, albeit via distinct and
aberrant (i.e., dystatic) regulatory mechanisms (Califano and Alvarez, 2017). These mechanisms
play a key role in determining which transcriptional identities may be compatible with the specific
set of somatic and germline variants harbored by cancer cells, as well as their likelihood to
plastically reprogram across molecularly-distinct identities. Some mutations effectively restrict the
transcriptional identity repertoire accessible to a cancer cell; for instance, activating mutations in
ESR1, FOXA1, and GATA3 are observed almost exclusively in the luminal subtype of breast
cancer (Curtis et al., 2012b). However, most mutations are not as restrictive. In glioblastoma, for
instance, there is only weak association between mutational and transcriptional states (Neftel et
al., 2019). Indeed, EGFR mutations, while more frequently associated with a proneural identity,

are also detected in mesenchymal cells.

While it is reasonable to expect that a tumor cell’s mutational landscape may mechanistically
constrain the subset of transcriptional identities occupied by its cells and affect their relative
likelihood (E.g., EGFR mutations in GBM may increase the likelihood of a proneural state), the
specific regulatory and signaling logic that underlies these relationships is still elusive, with most
mutation/transcriptional-subtype relationships based on statistical associations that lack
mechanistic rationale. Indeed, the vast majority of studies aimed at elucidating the molecular
landscape of large tumor cohorts proceed almost invariably in two steps, first by identifying
molecularly-distinct subtypes by gene expression cluster analysis and then by assessing subtype-

specific enrichment in recurrent mutations (Hoadley et al., 2018).
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To address this challenge, we propose to leverage the Oncotecture hypothesis (Califano and
Alvarez, 2017). This proposes the existence of Master Regulator (MR) proteins organized in
highly modular structures (Tumor Checkpoints) that integrate the effect of upstream signals and
genomic alterations to implement specific transcriptional states. We hypothesize that this may
pinpoint more specific relationships between a tumor cell’s mutational landscape and its
transcriptional identities. Here we distinguish between transcriptional states (which may be
transient and thus form a continuum) and identities (i.e., stable states, representing peaks in the
probability density of the states thus associated with higher persistence over time). This is

important because in TCGA bulk tissue, one is more likely to observe identities than states.

The Oncotecture hypothesis, which represents the cancer-specific counterpart of the Omnigene
Hypothesis in human genetics (Boyle et al., 2017), is supported by a wealth of experimental
evidence, from prostate cancer (Aytes et al., 2014b) and breast cancer (Rodriguez-Barrueco et
al., 2015; Walsh et al., 2017), to glioblastoma (Carro et al., 2010), neuroblastoma (Rajbhandari
etal., 2018a), and neuroendocrine tumors (Alvarez et al., 2018), see (Califano and Alvarez, 2017)
for a comprehensive overview, but has not yet been comprehensively and systematically

assessed across multiple tumor types.

In this manuscript we thus explore and validate the Oncotecture hypothesis across the entire
TCGA repository (Cancer Genome Atlas Research et al., 2013), on a sample-by-sample basis.
Specifically, we aim to assess the full range of MR-proteins representing candidate mechanistic
determinants of cancer cell identity, their conservation across distinct tumor cohorts, their ability
to canalize the effect of specific genetic alterations, and, finally, whether the transcriptional
identities they regulate may recapitulate patient outcome and other macroscopic properties. While

TCGA does not comprise metastatic samples, the same approach is equally effective in
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repositories that include samples from metastatic or heavily treated patients, as shown for the

Metabric breast cancer repository (Curtis et al., 2012a).

To accomplish this goal, we developed the Multi Omics Master-Regulator Analysis (MOMA)
framework. MOMA allows single-sample-based identification of candidate Master Regulators that
(a) are downstream of sample-specific, functional genetic alterations—as identified and validated
by GISTIC2.0 (Mermel et al., 2011) and CHASM (Carter et al., 2009)—and (b) mechanistically
determine a sample’s transcriptional identity, via their regulatory targets. For simplicity, we will
use the term Master Regulator to indicate a candidate MR and validated Master Regulator to

indicate one that has been experimentally validated.

MOMA analysis of 9,738 individual primary samples, representing 20 TCGA tumor cohorts of
sufficient size to support the analysis, identified 112 transcriptionally distinct, MR-driven tumor
identities (or subtypes), each one regulated by a distinct Tumor Checkpoint, whose aberrant
activity is determined by distinct genomic alteration landscapes. Unexpectedly, the MRs found in
the Tumor Checkpoints present a highly recurrent sub-modular structure, implemented by 24 MR
sub-modules (MR-Blocks), for a total of 407 regulatory proteins (Supplemental Data 6,11).
MOMA-inferred subtypes provide novel stratification of TCGA cohorts that have been traditionally
difficult to study by gene expression profile alone, while MR-Block activity was found to be highly

predictive of patient outcome in virtually all cohorts.

On average, the top 33 MR proteins defining a Tumor Checkpoint were sufficient to account for
canalization of genomic alterations detected in individual samples. Furthermore, analysis of the
24 MR-Blocks confirmed their role as highly specific, mechanistic regulators of key cancer
hallmark programs. Since each sample was analyzed on an individual basis, these results are

agnostic to prior tumor classification schemas, as well as to tumor histology and thus constitute a
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bona fide, unbiased pan-cancer analysis of tumorigenic mechanism conservation. To support
these findings, we performed experimental in vitro and in vivo studies of 5 loss-of function
mutations that MOMA identified upstream of the worst prognosis subtype Tumor Checkpoint in
prostate cancer. Taken together, this suggests that tumor identities based on the activity of MR-
Block proteins are likely to complement and extend prior pan-cancer classification schemas by

providing more direct relationships between genetics and tumor subtypes.

The MOMA framework can be accessed on Bioconductor (Gentleman et al., 2004), thus allowing
analysis of virtually any cancer cohort with patient-matched transcriptional and mutational profiles.
In addition, we provide both the Tumor Checkpoint MRs for the 112 tumor subtypes identified by
the analysis as well as the MRs in the 24 MR-Blocks. These represent a comprehensive new
collection of candidate tumor dependencies and therapeutic targets and outcome/drug-sensitivity
biomarkers, several of which have been validated in previous studies, see for instance (Alvarez
et al.,, 2018; Aytes et al., 2014b; Bisikirska et al., 2016; Carro et al., 2010; Rajbhandari et al.,
2018b; Walsh et al., 2017). Given the pan-cancer nature of this work, in the following sections we
will use different tumor types to highlight key advantages and novel findings made possible by

the MOMA framework.
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Results

Integrative analysis of genetic alterations and transcriptional state identifies pan-cancer
MR proteins. The goal of this analysis is to systematically identify MR proteins that implement a
tumor’s transcriptional identity by canalizing the effect of genetic alterations in their upstream
pathways, for every tumor sample in the TCGA repository. To accomplish this goal, we first
transformed the gene expression profile of each sample to a protein activity profile, using the
VIPER algorithm (Alvarez et al., 2016). For each sample, we then prioritized the most aberrantly
activated proteins as candidate MRs based on the presence of upstream functional mutations,
using the DIGGIT algorithm (Chen et al., 2014), see Figure 1 for a conceptual workflow of the

analysis.

VIPER has been widely validated as an accurate methodology to measure a protein’'s
transcriptional activity, based on the enrichment of its activated and repressed transcriptional
targets (regulons) in over and under-expressed genes (see methods) (Alvarez et al., 2016). It is
conceptually equivalent to using a multiplexed gene-reporter assay, comprising the transcriptional
targets of a protein (i.e., its regulon), which are tuned for each specific regulatory protein and each
tumor context. We used the ARACNe algorithm (Basso et al., 2005) to dissect accurate regulons
for every transcription factor (TF), co-factor (co-TF), and chromatin remodeling enzyme (CRE)
(n =2,506). These proteins were selected because they represent the most direct/mechanistic
regulators of a cell’'s transcriptional state, via physical, on-chromatin interactions. Systematic
experimental validation had previously confirmed the accuracy of VIPER activity measurements
for >80% of these proteins, including high reproducibility when up to 60% of the targets in a
regulon were randomized (Alvarez et al., 2016), thus showing robustness to false positive

interactions. Moreover, from other prior studies, on average >70% of ARACNe-inferred targets
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were validated via biochemical and functional assays, such as Chromatin Immunoprecipitation
(ChIP) and RNAi-mediated silencing followed by gene expression profiling—see for instance
(Basso et al., 2005; Carro et al., 2010; Lefebvre et al., 2010). This confirms that VIPER not only
produces realistic protein activity measurements but also effectively identifies the proteins that
mechanistically regulate a sample’s transcriptional state through their physical targets. ARACNe
requires N 2100 samples for optimal accuracy, thus restricting the analysis to 20 TCGA cohorts

(Table 1), for a total of 9,738 primary tumor samples.

To identify transcriptional tumor identities (i.e., tumor subtypes) implemented by the same subset
of regulatory proteins, we performed protein-activity-based unsupervised cluster analysis of the
20 selected TCGA cohorts, using a k-medoids approach (see STAR methods). Within each
cohort, the optimal number of clusters was determined using a silhouette-score-based metric
(Figure 2A and STAR methods), using the protein activity of the predicted tumor checkpoint
proteins. Here we show the 5-cluster optimal solution for KIRC, as an illustrative example (Figure
2B); see Figure S1A-T for all other cohorts. Using the same clustering algorithm (PAM) protein-
activity-based clustering significantly outperformed gene-expression-based clustering in all 20
cohorts (p < 1.8E-8 in every cohort and p < 2.2E-16 in all but one (SKCM), by Wilcoxon rank sum
test; see STAR methods, GEX clustering; Figure 2C). Optimal cluster number ranged from k = 2
to k=8 per cohort. Whenever two or more statistically-equivalent cluster structures were
identified for a given cohort (e.g. kK = 3 and k = 4), we selected the one producing the best
association with survival, see Table 2, with twelve cohorts thus further prioritized based on
outcome. As an example, we show differential outcome in Cluster 5 (worst) vs. Cluster 3 (best)

for KIRC (Figure 2D) (p = 1.1E-16).

In total, the analysis identified 112 clusters, representing a novel stratification of cancer into

distinct transcriptional identities, each one mechanistically regulated by a specific subset of
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regulatory proteins (Figure 2B, S1A-T, and Table 3, Supplemental Data 4). Supporting the value
and novelty of the classification, this analysis identified differential outcome subtypes in TCGA
cohorts that had been previously challenging in terms of gene-expression-based stratification,
such as prostate cancer. In addition, for each subtype, the analysis provided a repertoire of MR
proteins representing its most likely mechanistic determinants. As discussed in the following, this
also provides direct links to the specific genetic alterations that, by affecting proteins in upstream

pathways, induce aberrant MR-protein activity on an individual sample basis.

As previously reported, identification of tumor subtypes that effectively associate with clinical and
other phenotypic properties by gene expression analysis has often been challenging. For
instance, with the exception of the neuroendocrine subtype, outcome stratification of prostate
cancer cohorts by gene expression profile analysis has been elusive. In contrast, MOMA identified
transcriptional clusters strongly associated with outcome in all of the 20 cohorts (Figure 2A),
except for COAD, where the p-value was just slightly above statistical significance (p = 0.07, by
Kaplan Meier). Combined with the highly significant improvement in cluster statistics (i.e., cluster
tightness), this suggests that protein-activity-based clustering significantly outperforms a directly
comparable gene-expression-based PAM cluster analysis (Figure 2C). In addition, it provides a
far more compact and interpretable subtype stratification, by replacing differential expression

signatures comprising thousands of genes with just a handful of their transcriptional regulators.

While producing a largely novel subtype architecture, VIPER-based clustering also showed
concordance with the most established molecular subtypes. In breast cancer, for instance, the
four protein-activity based clusters were highly concordant with established molecular subtypes
(Figure S2A, p = 2.2E-16 by Chi? test). Similarly, in high-grade glioma, we found highly significant
concordance (p = 2.2E-16; by x? analysis) with published subtypes (Brennan et al., 2013b) and

similar outcome differences between clusters associated with best and worst progression-free
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survival (p = 1.4E-3; Figure S2B). Indeed, in agreement with prior literature, the worst survival
cluster was comprised almost entirely of mesenchymal tumors, while the best surviving cluster
was predominantly comprised of proneural tumors (p = 1.3E-3 and p = 3E-6 by FET, respectively)
(Brennan et al., 2013a; Carro et al., 2010; Chen et al., 2014). Even though MOMA analysis is
fully unsupervised, results were consistent with previous supervised analyses in glioblastoma and
prostate cancer, for instance, where samples corresponding to poorest and best outcome had
been directly compared. Specifically, CEBPB/CEBP&/STAT3 and FOXM1/CENPF—previously
validated as synergistic Master Regulators of the most aggressive subtypes of GBM (Carro et al.,
2010) and prostate cancer (Aytes et al., 2014a), respectively—were among the top MR proteins
identified by MOMA for the PRAD and GBM subtypes associated with worst prognosis. See
Figure S2C for differential CEBPB/CEBP&/STAT3 activity in cluster 2 (mesenchymal) and cluster
3 (proneural) GBM. This is especially noteworthy, since the poor prognosis subtype in PRAD

includes only nine samples, a result of the TCGA tissue selection criteria.

To further prioritize MR-proteins based on the genetic alterations that determine their aberrant
activation, we computed a genomic score based on the enrichment of genomic alteration in their
upstream pathways—on a sample-by-sample basis—using the DIGGIT algorithm (Alvarez et al.,
2015; Chen et al., 2014; Torres-Garcia et al., 2014). This includes three steps. First candidate
modulators of MR activity were identified by the CINDy algorithm (Giorgi et al., 2014). Further
improving the original MINDy algorithm (Wang et al., 2009), CINDy uses the Conditional Mutual
Information (CMI) between MRs, their downstream targets and potential upstream modulators, to
identify MR-modulator proteins, whose abundance is associated with differential MR activity.
Activity Quantitative Trait Locus (aQTL) analysis was then used to determine whether genetic
alterations in CINDy-inferred MR-modulators were effectively associated with their differential
activity. Finally, conditional analysis was used to assess which ones of the aQTLs identified by

the analysis were statistically independent of other aQTLs, thus efficiently distinguishing between
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driver and passenger alterations (e.g., same-amplicon genes with no functional effect on the MR).
DIGGIT was shown not only to recapitulate known driver mutations but also to infer novel, highly
penetrant mutations that were missed by traditional approaches and were then experimentally

validated (Chen et al., 2014).

Finally, to generate a refined repertoire of MR proteins that are responsible for determining a
tumor’s transcriptional identity by canalizing the effect of genetic alterations in their upstream
pathways, we used a Bayesian evidence integration approach. Specifically, we ranked MRs by
integrating evidence from (a) their protein activity (VIPER score), (b) their upstream genetic
alterations (genomic score), and (c) additional structure and literature-based evidence supporting
direct protein-protein interactions between the MRs and their MR-modulators harboring genetic
alterations, such as the PrePPI algorithm (Zhang et al., 2012) (see STAR Methods, Integrated

Rankings).

Identification of MR-proteins in Tumor Checkpoints: We have defined Tumor Checkpoint
modules as the minimum repertoire of regulatory proteins necessary to implement a tumor’s
transcriptional identity by canalizing the effect of upstream genomic events (i.e., mutations, copy
number alterations, etc.). Based on this definition, we used saturation analysis to identify Tumor
Checkpoint MRs from the full ranked-list of aberrantly activated proteins, for each of the 112
subtypes (Figure 3A,B). Specifically, this was accomplished by assessing how many of the most
aberrantly activated proteins are needed to capture a substantial proportion of, or saturate, the
number of genomic alterations they canalize. If, as postulated, Tumor Checkpoints comprise only
a handful of MRs, saturation should occur rapidly. In contrast, if mutations were randomly

distributed across all proteins, saturation would be gradual.
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To test this hypothesis, we first identified all proteins harboring genetic alterations detected by
GISTIC2.0 (Mermel et al., 2011) and non-silent SNVs in a specific subtype—including functional
CNVs significant associated with differential gene expression, non-silent SNVs, and focal SCNAs.
We then assessed how many of these occurred in CINDy-inferred modulators of the N most
statistically significant MRs (on a sample-by-sample basis), as ranked by the previously described
Bayesian evidence integration, with N ranging from 1 to 100. Finally, we plotted both the fraction
and total number of mutations as a function of N, averaged over all samples in the subtype (Figure

3A).

Consistent with the Tumor Checkpoint hypothesis, we observed extremely rapid saturation of the
genetic events canalized by the top MR proteins, across virtually all 112 subtypes, (Figure 3A).
For each subtype, we estimated the inflection point of these saturation curves using a simple
heuristic (see STAR methods) and found that only a handful of MRs were required to virtually
saturate the vast majority of mutations in individual samples. This ranged from 4 MRs (THCA
subtype 6) to 86 (LAML subtype 3), with Ovarian cancer representing an outlier with 170, 140,
and 140 MRs in subtypes 1,3 and 4, respectively. The latter is likely due to the extremely large

number of structural events in this tumor.

Between 14 (0.6%) and 52 (2%) MRs were sufficient to account for the first and third quantile of
the mutational burden of each sample and a median of 33 (1.3%) MRs per Tumor Checkpoint. In
contrast, when MRs were chosen at random from all 2,506 regulatory proteins, saturation
increased very gradually, with no evidence of ever reaching a plateau. Specifically, on average,
only 0.4% of the mutations/fusions/CNVs were found upstream of the first 130 (5%) randomly
selected MRs (Figure 3A). This confirmed that rapid saturation observed upstream of inferred

MRs does not arise from lack of analysis specificity.
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At the saturation inflection point, the ratio of genomic events to MRs ranged from r = 0.02 (i.e.,
one event affecting 50 MRs) to r = 32 (i.e., 32 events affecting a single MR), with an average of 5
events per MR. This is consistent with the hypothesis that the handful of MR-proteins in each
Tumor Checkpoints represent critical regulatory bottlenecks, responsible for canalizing the effect
of multiple functional mutations (Supplemental Data 4,6). Once saturation was achieved, about
half (50%) of all mutations were reported upstream of top MR proteins. Remaining events likely
are either non-functional (passenger), too infrequent to be effectively analyzed, or false negatives
(i.e., proteins that the analysis failed to identify as MR-modulators). The most significant mutations

for each subtype are shown in Supplemental Data 10.

Taken together, these data strongly support the Oncotecture hypothesis and suggest that a much
larger and finer-grain mutational repertoire than previously suspected may functionally affect MR-
protein activity and, through them, tumor transcriptional identity. In kidney cancer (KIRC), for
instance, the analysis identified between 15 and 45 MRs for each of five transcriptional subtypes
(Figure 4A-E). These accounted for 40% to 55% of the total number of non-silent SNV and focal
GISTIC2.0-detected SCNAs in individual samples of each respective subtype (Figure 4F-J),
suggesting significant intertumoral genomic heterogeneity. Specifically, between 40 and 80
genomic alterations per sample were identified as functional determinants of KIRC MR
dysregulation. Interestingly, the genetic alterations identified for each subtype are highly distinct,
both in terms of their type (e.g., amplifications vs. deletions, Figure 4A,B) and identity. As purely
illustrative examples, for instance, TSC1 deletions were detected in >50% of subtype 4 and 5
samples, but only in <30% of subtypes 1, 2, and 3 samples; similarly, BRAF amplifications were
detected exclusively in subtype 4 and 5, while KRAS amplifications were exclusive to subtype 5.
Such highly subtype-specific mutational landscape co-segregation is pervasive across all tumor

cohorts (Figure S4A-T).
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It should be noted that this analysis is not meant to identify all genetic alterations but rather those
that functionally contribute, mechanistically or stochastically, to implementing distinct
transcriptional identities. For instance, TP53 mutations, which are completely ubiquitous in
ovarian cancer—thus providing no specific contribution to implementing individual transcriptional
identities in this cohort—are not reported (Figure S4L). In addition, the proposed cluster analysis
may over-stratify some cohorts, to avoid missing rare, molecularly distinct subtypes or subtypes
where largely overlapping MR proteins are dysregulated by different genetic events. For instance,
in PRAD (Figure S10), the most aggressive subtype (C6) would be missed due to its small size
if a smaller clustering solution were selected. As a result, at first sight, cluster C3 and C7 may
appear similar in terms of their MR activity and suggest overstratification. However, closer
inspection of the mutational events that co-segregate in these subtypes (Figure S4N) shows that
C3 is dominated by TMPRS-ERG fusion events, PTEN mutations and deletions, and ERG, RB1,
FOXO1, and SORBS3 deletions. In contrast, C7 is largely devoid of TMPRS-ERG fusions and is
instead most enriched in ZNF292, SYNCRIP, MAP3K7, SNX14 deletions and SPOP mutations,
suggesting that, albeit similar, their transcriptional identity is driven by an almost orthogonal
mutational landscape. In rare cases, subtypes with largely overlapping MR activity and mutational
events may be inferred, due to overstratification, as we observed to some degree with pancreatic
adenocarcinoma (PAAD), finding high similarity between the mutational events and MR
checkpoints of subtypes 3,4 and 5 (Figure S4M). This, however, is not surprising, given the
complexity of identifying a common strategy to analyze highly heterogenous cluster structures,

as well as the known complexity of pancreatic cancer stratification (Birnbaum et al., 2017).

Finally, there may be biologically relevant subtypes that are missed at the selected level of
clustering granularity. For instance, in breast cancer, we identify a basal-like cluster (C4), a
Luminal-B enriched cluster (C2), and two Luminal-A clusters (C1 and C3). However, while a more

granular 8-cluster solution splits Claudin low/high expressing subtypes in basal cancers (Fig. S1-
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V), HER2 positive tumors are split between C2 (HR+) and C4 (HR-) and are not identified as
forming distinct sub-clusters (Fig. S1-C). This suggests that while HER2+ tumors may present a
classic oncogene dependency, their transcriptional identity is actually consistent with that of other
basal and Luminal B breast cancers. This highlights the complementarity of this approach,
whereas drugs targeting oncogene dependencies would benefit from mutational analysis, while
drugs targeting core identity-based dependencies, may target Luminal B HER2+ and Luminal B
HER2- with the same approach. Since manual selection of the number of clusters is possible in
MOMA, one can explore different clustering solutions to identify the one that makes the most
biological/clinical sense. This is of course best accomplished at the individual tumor level rather

than across all tumors.

To estimate MOMA'’s ability to differentiate between likely driver and passenger mutations, we
computed the differential enrichment of mutations upstream of MRs in either GISTIC2.0/CHASM
predicted events or all genomic events. When averaged across all MOMA-inferred subtypes of a
specific TCGA cancer cohort, differential enrichment of GISTIC2.0 events—i.e., focal
amplifications and deletions (confidence 99%)—and significant CHASM events (p < 0.05) was
highly statistically significant across all but one (LAML) of the tumor subtypes (p = 1E-7 to p = 1E-
156, Figure S3A,B). Our data suggest that low SNV and high fusion-event rates, may have
contributed to the LAML discrepancy, since CHASM only assesses candidate SNVs. Even though
the vast majority of inferred events were novel, MOMA also effectively recovered all 200 high
confidence, pancancer driver genes harboring genetic alterations, as recently identified (Bailey et
al., 2018), as well as 92%-100% of the tissue-specific, high-confidence driver genes (98.8%, on

average; Supplemental Data 5).

A key novelty of the approach is that it effectively co-segregated genetic alterations—both novel

and previously reported—with tumor subtypes, while identifying the specific MR proteins
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dysregulated by these events and thus responsible for canalizing their effect. Additionally, MOMA
inferred a large number of mutational events missed by CHASM and GISTIC, suggesting that the
actual repertoire of functional alterations contributing to a tumor’s transcriptional identity may be
much larger than previously suspected. See Table 3, and Supplemental Data 4 for a complete
account of MOMA-inferred Tumor Checkpoints and MRs, and Figures S4A-U for Master
Regulator saturation analysis and upstream genomic event for each of the 112 subtypes. For
convenience, we labeled individual Tumor Checkpoints using their two most significant MRs or,
when possible, using experimentally validated MRs (e.g., CEBPB/6-STAT3 for subtype 2 of high-

grade glioma (Carro et al., 2010)).

Tumor Checkpoints are hyperconnected and modular: Analysis of MOMA-inferred MRs
shows that Tumor Checkpoints represent hyperconnected modules of regulatory proteins. This
was assessed based on literature-curated regulatory and signaling networks, including
HumanNet 2.0 (Hwang et al., 2018) (p < 5.0E-42, by Kolmogorov-Smirnov) and Multinet (Khurana
et al., 2013) (p < 2.0E-37) (Figure S3C,D), as well as on protein-protein interactions predicted by
PrePPI using 3D-structure information (Zhang et al., 2012) (p = 9.0E-44) (Figure S3E), compared

to equal-size sets of regulatory proteins selected at random, as a null model.

To further explore Tumor Checkpoint modularity, we tested whether MR sub-modules could be
recurrently identified across multiple Tumor Checkpoints, suggesting the existence of pan-cancer,
core regulatory structures (MR-Blocks or MRB for short). To accomplish this goal, we first
identified and then clustered a subset of recurrent MR proteins included in at least 4 of 112
MOMA-inferred Tumor Checkpoints—a statistically significant threshold based on a random
permutation null model (Figure S5A). From the analysis, k=24 MR-Blocks emerged as the
optimal solution (Figure 5A, Figure S5B), providing an initial tessellation, where each recurrently-

inferred MR was assigned to one and only one MR-Block. To allow a more biologically plausible
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solution, we then used a “fuzzy” clustering method (Miyamoto et al., 2008) (see STAR methods,
fuzzy clustering). such that individual MRs could be included in more than one MR-Block, see
Supplemental Data 6. Clustering parameters were optimized to ensure uniqueness and specificity

of the MR-Block solution (see methods Checkpoint Generation; Figure S5C)

Thus, each Tumor Checkpoint comprises and is defined by a set of aberrantly-activated and/or
inactivated MR-Blocks. This suggests that each MR-Block may regulate a set of complementary
genetic programs required to implement and maintain a tumor cell's transcriptional identity.
Consistent with this hypothesis, we found highly significant enrichment of Cancer Hallmarks—as
defined by the Broad Institute collection (Drake et al., 2016; Liberzon et al., 2015)—in MR-Block-
specific MRs, with most hallmarks enriched in the MRs of at least one MR-Block (Figure S5D,
Supplemental Data 7; see methods Checkpoint Generation). Confirming specificity, most MR-
Blocks were enriched in only a handful of hallmarks (N < 5 for >50% of MR-Blocks). In terms of
clinical applicability, most hallmark blocks were able to significantly stratify patients by outcome,
see Figure 5B and 5C, for BRCA stratification in the Metabric cohort using MRB2—an MR-Block
comprised of classic cell growth, DNA repair, and cell division regulators (Figure 5D)—and for
SKCM stratification in TCGA using MRB24—an MR-Block highly enriched in immune-related
hallmarks (Figure 5E). See also Figure S6A for a comprehensive analysis across all TCGA
cohorts. These results represent an initial attempt to elucidate how specific cancer hallmarks may

be mechanistically regulated in each tumor subtypes.

We then assessed whether MR-Blocks could effectively stratify tumor cohorts based on outcome.
For this purpose, we used a sparse Lasso COX proportional hazards regression model
(Tibshirani, 1997), using the mean MR-Block activity of each sample as a predictor. In most cases,
survival separation was more statistically significant than using the entire tumor-checkpoint

(Figure S6B vs. S2E, Supplemental Data 8). For instance, in melanoma (SKCM) we observed
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striking survival separation (p < 1.6E-7), using a 6 MR-Block model—including MRB10,
associated with strong inflammatory/immune phenotype (Supplemental Data 7). In contrast, the
best outcome separation by full Tumor Checkpoint analysis was much less significant (p = 9.4E-
3). Similarly, in colorectal cancer (COAD), significant outcome separation was achieved using a
3 MR-Block model (p < 3.5E-3)—with MRB6 providing the greatest contribution. In contrast,
differential outcome by Tumor Checkpoint analysis was not statistically significant in this tissue

type (p = 0.07).

To assess whether the MR-Block landscape emerging from this analysis would generalize to non-
TCGA cohorts, we assessed VIPER-inferred activity of breast cancer relevant MRs from a large
compendium of breast cancer samples with considerable long-term survival data (Curtis et al.,
2012a). Considering N = 7 MR-Blocks with high differential activity in the TCGA breast cancer
cohort (MRB2, 3, 7, 11, 14, 16, and 21), all of them but MRB11 provided statistically significant
survival stratification, with 5 of the 6 MR-Blocks in the p = 1.88E-8 to 9.13E-7 range (Bonferroni
corrected), as well as highly correlated activity of MR-Block MRs (Figure S6C). This suggests that
MR-Block proteins may play a key role in tumor outcome by regulating key cancer hallmark

programs.

Cell line-specific MOMA-inferred tumor checkpoints are enriched in experimentally
validated tumor dependencies. We further assessed whether MRs in MR-Block associated with
viability-related cancer hallmarks were enriched in essential proteins, based on existing pooled
RNAI screen data from the Achilles Project (Cowley et al., 2014), see Figure S2D for a conceptual
workflow. Specifically, we used VIPER to transform RNASeq profiles of all Cancer Cell Line
Encyclopedia (CCLE) into protein activity profiles, then matched the average protein activity
profile of each of the 24 MR-Blocks to a set of best-matched cell lines, by MR enrichment analysis.

Finally, we assessed essentiality of the corresponding MR-Block MRs based on their Achilles’
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Project score. As expected, the three MR-Blocks enriched for growth and proliferation-related
hallmarks (G2M, E2F, etc.) (Figure S5D) had the highest ratio of essential MRs (MRB2: 50%;
MRB7: 43.8%; MRB3: 30.4%), including proteins such as E2F1, E2F2, E2F7, TOP2A, PTTG1,
FOXM1, MYBL2, UHRF1, DNMT3B, ZNF695, TCF19, RBL1, and ZNF367. Interestingly,
however, we also found a large fraction of essential proteins in additional blocks, including MRB6
(31.3%; ZNF436, HES1, HOXB7, TP63, TRIM29, GRHL1, PBX4, IKZF2, RARG, IRX5, HHEX,
RUNX2, STAT5A, HDAC1, HOXC6) and MRB14 (18.8%; GRHL2, OVOL1, ZBTB7B), for
instance. Not surprisingly, we found no Achilles validated MR proteins in immune-related MR-
Blocks (MRB10, 22, 23, and 24)—consistent with lack of in vitro immune function. However, we
already addressed the pan-cancer role of these proteins and of their upstream mutations in
regulating immunity and inflammation in a prior publication (Thorsson et al., 2018a). Overall, we
found MOMA-inferred MR proteins to be significantly enriched in essential genes, compared with
108 randomly chosen, identically sized regulatory protein sets, not included in any Tumor

Checkpoint (p = 7.1E-6; Figure S2E).

MRB2 canalizes the effect of driver mutations in MAP3K7, SORBS3, BCAR1, PTEN, and
TP53: As discussed, MRB2 mechanistically regulates the transcriptional identity of several highly
aggressive subtypes, including in UCEC, STAD, SKCM, SARC, READ, PRAD, PAAD, LUAD,
LIHC, LGG, and KIRC. Moreover, FOXM1 and CENPF—two of its core MR proteins—rank 2"
and 17" as most recurrently inferred across all TCGA tumor samples. Consistently, an MRB2-
based regularized COX regression model produced several of the largest regression coefficients
for outcome stratification across all TCGA samples (Supplemental Data 8), and is one of the most
significant and effective single-block predictors of outcome across the TCGA cohorts (Figure

S6A).


https://doi.org/10.1101/758268
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/758268; this version posted September 5, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

We thus sought to investigate the specific mutational events upstream of this MR-Block that
determine its aberrant activation. MOMA identified 7 molecularly-distinct prostate
adenocarcinoma (PRAD) subtypes, with significant survival separation (p=6E-3; Cox
proportional hazard model; Figure 6A, Figure S6D) between subtype 6 and subtypes 1, 3 and 5,
driven by checkpoint proteins that include a majority subset of MRB2 (Figure 6A). Interestingly
and consistent with (Aytes et al., 2014a), outcome difference was most significantly driven by
MRB2 MRs (Figure S6B, Supplemental Data 8), with the lowest and highest MRB2 activity
associated with best (subtype 1, 3, and 5) and worst (subtype 6) survival, respectively . Further
supporting MRB2 as a key molecular determinant of disease outcome, we also observed high
enrichment of negative prognosis samples, based on Gleason score and biochemical recurrence
(Figure 6B,C), in subtype 6. This subtype also had the worst survival outcome of any cluster,
which was significantly worse compared to cluster 3, the best outcome subtype, with 0 of 109
deaths (p < 7E-4; Figure S2B). To further study this malignant phenotype, we computed the
differential gene expression signature between subtypes 6 and 1 and confirmed its highly
significant enrichment in “G2M” (p = 1.6E-24), “E2F-Targets” (p = 1.8E-31), “Mitotic Spindle” (p =
2.6E-5), and “DNA Repair” (p = 2.2E-5) hallmarks (Figure 6D), which is consistent with the

hallmark enrichment analysis of the proteins in MRB2 (Figure 6E).

We then considered the repertoire of genetic alterations identified by DIGGIT as upstream of
MRB2, ranking them based on their combined statistical significance in the PRAD cohort, as well
as across all pancancer cohorts. To visualize the genomic events with the strongest overall
checkpoint association, we combined the strongest individual interactions of each of the eight
MRs in MRB2 with equal weights (Figure 6F,G; Supplemental Data 8). Critically, we found that
most of these genomic events would have been missed by existing mutation assessment

algorithms (Table 4, Supplemental Data 9). When ranking all samples by the overall activity of
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MR-Block:2, clusters 6 was the one most enriched in samples with high activity, while cluster 1

was the most enriched in samples with low-activity.

We selected 6 DIGGIT-inferred loss-of-function events for experimental validation, including
TP53Mt (strongest pancancer association with MRB2 among single-point mutations), PTENP®
(strongest pancancer association among deletions, also associated with PTENM"), MAP3K7P®!
(strongest PRAD-specific association, among deletions), SORBS3P® (one of the most significant
associations, both pancancer and PRAD-specific, among deletions) (Figure 6B) and BCAR1P¢!,
the strongest pancancer association, among deletions supported by a direct protein-protein
interaction with one of the MRs (i.e., FOXM1)). These are visualized as green circles in the context
of other statistically significant deletion (blue lines), mutation (green lines) and amplification (red

lines) events in Figure 6D.

For experimental validation, 22Rv1 human prostate cancer cells were chosen, which present low
MRB2 activity—thus providing an ideal model to detect MRB2 activity increase, following loss-of-
function assays for the selected genes. Pools of 5 shRNAs/target were used to individually silence
PTEN, TP53, MAP3K7, SORBS3 and BCAR1. Functional and tumorigenic effects were
subsequently assessed both in vitro and in vivo (Figure 7A). VIPER analysis of gene expression
profiles, following shRNA-mediated silencing of each candidate gene, confirmed significant
increase MRB2 MR activity (Figure 7B). In addition, of the 5 candidates, MAP3K7, PTEN and
TP53 showed the most pronounced and significant increase in cell migration using scratch assays
at the indicated time points and relative to control cells infected with scramble shRNAs (Figure
7C-D), as further confirmed by Boyden chamber migration assays (Figure 7E). Finally, control
and shRNA-silenced 22rv1 cells for each individual gene were engrafted in immune deficient mice
to assess the relative capacity for tumor growth in vivo. As shown by these in vivo assays—and

even discarding the expected effect on tumorigenesis associated with loss of PTEN and TP53—
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MAP3K?7 silencing resulted in a marked and significant increase in tumor growth (p <0.01) (Figure
7F). As a result, all of the predicted loss of function events induced activation of MRB2 MR
proteins, while three out of five had additional significant effects in terms of increased in vitro
migration and in vivo tumorigenesis. Several of the phenotypes associated with MRB2, such as
increased metastatic progression or reduced immunosurveillance, cannot be fully assessed in

these assays or may require additional co-segregating events to be fully revealed.
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Discussion

The repertoire of transcriptional identities accessible to a cancer cell in response to endogenous
and exogenous perturbations (i.e., its plasticity), is constrained by the cell’'s genetic alteration
landscape and by the baseline epigenetics of its tissue of origin. Yet, the specific mechanistic
rationale of these constraints is largely unexplored. For instance, it is unclear why EGFR or NF1
mutations may alter the probability of individual GBM cells adopting a proneural or a
mesenchymal identity. In this manuscript, we attempt to address this challenge by identifying
Master Regulator proteins that mechanistically regulate the tumor cell’s transcriptional identity by
integrating the effect of multiple genomic alterations in their upstream pathways. To achieve this
goal both systematically and in a completely unbiased fashion, we analyzed 9,738 individual

samples, representing the 20 largest TCGA cohorts using a novel methodology (MOMA).

MOMA revealed a highly modular regulatory architecture where 112 distinct tumor subtypes—
representing distinct transcriptional identities—are implemented by combinations of only 24
regulatory modules comprised of Master Regulator proteins (MR-Blocks). Furthermore, an
average of 33 Master Regulator proteins per subtype was sufficient to account for the effect of a
majority of genomic alterations identified on a sample by sample basis, suggesting the existence
of cross-tumor commonalities yielding a relatively small and yet highly universal repertoire of non-
oncogene dependency mechanisms. Thus, by connecting MR proteins to genomic alterations in
their upstream pathways, MOMA produced a comprehensive map of interactions between
cancer’s genomic landscape and the MR proteins presiding over the transcriptional identity of
distinct tumor subtypes. The fact that a large number of genomic events were found upstream of
actual but not randomly selected MR proteins suggests that many more alterations than
previously appreciated may be required to make a cancer cell. While some “passenger” genomic

events may have been erroneously identified as MR modulators (false positives), we also expect


https://doi.org/10.1101/758268
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/758268; this version posted September 5, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

that a large number of weakly-additive events may cooperate to provide a potentially large

contribution to tumorigenesis, as is the case for other complex diseases (Boyle et al., 2017).

If further confirmed, these findings would have several relevant consequences for the study of
cancer: First, they reduce the complexity arising from the extraordinary diversity of mutational
patterns detected in cancer cells—even within the same mass—by providing a small number of
highly universal modular regulatory dependencies, as well as the specific Master Regulator
proteins comprising them. This was independently validated by assessing statistically significant
overlap of MR proteins in proliferation related MR-Blocks with Achilles’ project dependencies,
suggesting that MR-Blocks associated with other hallmarks (e.g., immunoevasion or migration)
may be critical to tumor survival and progression in vivo. Second, they may redirect the search
for new cancer drugs development, from the development of inhibitors of signaling proteins that
only indirectly affect MR activity and whose effect can be easily bypassed by alternative
mutations, to direct MR protein activity inhibitors inducing Tumor Checkpoint collapse, which was
shown to abrogate tumor viability in vivo, see for instance (Alvarez et al., 2018; Califano and
Alvarez, 2017). This is especially relevant because, over the last decade, regulatory proteins are
relinquishing their status as undruggable targets, for instance as a result of novel covalent
inhibitors targeting protein cystines (Singh et al., 2011) or via activation of degron mechanisms
(Gan et al., 2015). Third, these findings dramatically expand the number of genetic alterations
mechanistically linked to specific tumor subtypes. This stems from abandoning a purely
associative, statistical methodology in favor of one that leverages the tumor-specific
transcriptional-regulation and signal-transduction architecture to limit the number of genomic
events inducing aberrant activity of Master Regulator proteins. Fourth, they represent a much
finer-grain tumor-subtype molecular characterization, whose novelty and potential value is also

supported by statistically significant association with patient outcome across every analyzed
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TCGA cohort. Finally, as previously shown for regulation of programs presiding over immune
infiltration and immunoevasion (Thorsson et al., 2018c), the analysis provides direct mechanistic
hypotheses for the specific proteins that regulate virtually each classic tumor hallmark, in different

tumor subtypes, as well as for the specific genomic events that determine their aberrant activity.

Over the last 50 years, a number of cancer hallmarks, representing programs necessary for
cancer cell survival and proliferation, have emerged (Hanahan and Weinberg, 2011), thus
spurring research aimed at identifying the specific proteins and protein-modules that comprise
them. This has led to development of several methods to ‘decompose’ the 20,000+ dimensional
gene-expression data space into orthogonal programs, either using 2-dimentional matrices (Kim
et al.,, 2017) or higher dimensional tensors (Sankaranarayanan et al., 2015), thus creating a
simplified representation of the underlying cellular states and shared oncogenic alterations (Kim
etal., 2017; Malta et al., 2018). These studies are encouraging and confirm that cancer hallmarks
may be indeed implemented by coordinated activity of specific gene modules. However, the high
complexity of these solutions combined with lack of direct biological interpretability continue to be
critical roadblocks in terms of reducing these models to a set of hypotheses that may be
experimentally validated. In addition, since these models arise from application of “non-convex”
optimization problems, their stability and reproducibility are a concern, as multiple (and arbitrarily
selected) sub-optimal solutions may exist. In contrast, we have shown that due to the use of large
regulons, VIPER-based protein activity measurements are extremely reproducible, robust, and
highly conserved within tumor subtypes (Alvarez et al., 2016; Califano and Alvarez, 2017). Indeed,
based on their reproducibility, two VIPER-based algorithms (OncoTarget and OncoTreat (Alvarez

et al., 2018)) have achieved NY State CLIA certification.

As compared to these other models, MOMA analysis produced 112 distinct Tumor Checkpoints,

each comprising an average of only 33 proteins, which account for the effect of dozens of genomic
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alterations in their upstream pathways. More critically, each Tumor Checkpoint was shown to
result from the superposition of only 24 independent, pancancer MR-Blocks, each implementing
critical tumor hallmark functions. This modular organization yields biologically interesting findings,
linking tumor hallmarks with their candidate mechanistic determinants and generating
straightforward hypotheses that can be efficiently validated, as shown for mutations upstream of

the MRB2 MR-Block in prostate cancer.

MRB2 was specifically selected for validation because it emerged as the most stable and robust
pancancer MR-Block across all tumor subtypes, for clustering solutions ranging from k = 2 to
k =100 (Figure S5E). This MR-Block comprises 14 regulators of cell growth, DNA repair, and cell
division, including: CENPK, HELLS, E2F2/7, MCM6, TIMELESS, TOP2A, PTTG1, FOXM1,
MYBL2, ASF1B, CENPF, TRIP13, UHRF1 (Supplemental Data 6). Among these, FOXM1 and
CENPF were previously validated as synergistic MRs of the most aggressive subtype of prostate
cancer (Aytes et al., 2014a). However, their effect in regulating aggressive cancer across several
distinct tumor cohorts could not have emerged without a systematic, pancancer study. TRIP13
is also known to play a critical role in chromosomal structure maintenance during meiosis (Roig
et al., 2010), facilitated by the DNA topoisomerase 2-alpha subunit, TOP2A, which enables
chromosome condensation and chromatid separation, and already represents a key cancer
therapeutic target (Jain et al., 2013). FOXM1, CENPF, MYBL2, and TRIP13 have all been
implicated as part of a core “proliferation cluster,” associated with poor outcome, whose activity
is dependent on p53 inactivation (Brosh and Rotter, 2010). Indeed, MOMA identified mutations in
TP53 as the most significant event upstream of aberrant FOXM1 and CENPF activation. UHRF1,
also a candidate therapeutic target, is overexpressed in many cancers (Unoki et al., 2009), where
it regulates gene expression and peaks in G1 phase, continuing through G2 and M, while
ASF1B—a core member of the histone chaperone proteins responsible for providing a constant

supply of histones at the site of nucleosome assembly—plays an essential role in many cancers
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and is predictive of outcome in some (Corpet et al., 2011). In addition, MRB2 comprises multiple
proliferation-related proteins, such as E2F2, E2F7, and TIMELESS, and is associated with
proliferative cancer hallmarks, including “E2F Targets” (p=4.26E-09), “Mitotic Spindle”
(p = 4.65E-07), “G2/M Checkpoint” (p=5.96E-06), and “peroxisome” (p = 3.64E-04).
Consistently, the proteins harboring the 100 most statistically significant recurrent genomic
alterations upstream of MBR2 MRs were also enriched in these hallmarks—e.g., “E2F Targets”
(p = 2.2E-03) and “Mitotic Spindle” (p = 5.7E-5). Thus, while the individual role of these proteins
may be established in some cancer context, our study suggests that their ability to form a hyper-
connected, synergistic core “subunit’ represents a universal determinant of highly aggressive
cancer subtypes, from melanoma and glioblastoma, to colorectal, prostate, and ovarian
adenocarcinoma (Figure 5D). Not surprisingly, whenever MRB2 was predictive of survival, we
found negative regression coefficients in the respective COX proportional hazards models,
meaning higher MRB2 activity was predictive of worse survival (Figure S6B; ucec, stad, skcm,

sarc, paad, luad, lihc, Igg, kirc).

Experimental validation of the 5 top recurrent mutations upstream of MRB2 not only confirmed its
predicted functional properties but also showed that activity of MRB2 MRs was dysregulated
following shRNA-mediated silencing of the five mutated genes. Interestingly, activity of MRB3 and
MRB7 was correlated with MRB2 activity. These MR-blocks control complementary, yet distinct
aspects of the proliferation hallmark, via established proliferative MRs such as E2F(1/2/7/8), as
well as chromatin modification enzymes involved in mitotic progression (SUV39H1), assembly

(CHAF1B), and mini-chromosome maintenance (MCM2/3/6/7).

At the other end of the functional spectrum, MRB24 emerged as significantly associated with
inflammatory response and immune function, including via the immune-regulatory MR STAT1

(Figure 5B), with high activity in a subset of Cutaneous Melanoma (Figure 5C). Indeed, MRB24
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activity was a highly-significant survival predictor in this tumor, based on Kaplan Meier analysis
(Figure 5C), confirming that higher immune infiltration, may be associated with increased
immunosurveillance and thus better outcome. MRB19 also emerged as highly enriched in the
“immune activity” hallmark, including via (a) the MHC trans-activator CIITA, whose inactivation in
cancer abrogates HLA-DR presentation thus promoting immunoevasion (Yazawa et al., 1999),
(b) Cluster of Differentiation 86 (CD86), the canonical CTLA-4 ligand involved in immune
checkpoint activation, as well as (c) several additional proteins—such as NOTCH4, MITF, etc.—
commonly associated with an immunoevasive microenvironment, as reported in a recent analysis

of master regulators of tumor immune response (Thorsson et al., 2018b) (Figure 5E).

Clearly—consistent with other large-scale, high-throughput analyses, both experimental and
computational—one cannot expect all MOMA inferences to be correct. However, as shown in a
large body of literature, experimental validation rates of the methodologies used by the MOMA
framework—including ARACNe, VIPER, and DIGGIT—compare favorably with those of high-
throughput experimental assays, see (Califano and Alvarez, 2017) for a comprehensive review.
As a result, it is reasonable to assume that a significant subset or even the majority of these
predictions will be eventually validated and will complement the existing knowledge on tumor
subtype genetics and transcriptomics. In that sense, MOMA inferences represent high-likelihood
hypotheses that may be further investigated by the research community to elucidate the
mechanistic regulation of tumor hallmark programs across all cancers, including both the MR
proteins that control these programs and the genetic alterations that determine their aberrant
activity. It should also be noted that a number of significant improvements are possible and will
be investigated in future work. For instance, ARACNe networks can be further improved by use
of epigenetic data, such as that derived by ATAC and ChIP-Seq methodologies, while VIPER is

being improved using results from systematic drug and CRISPRI perturbations.
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To make the MOMA results available to the research community, as an interactive resource that
can be easily queried and visualized, we have developed a publicly accessible graphical web
interface that allows users to easily navigate the ~2 million tumor-specific molecular interactions
emerging from the MOMA analysis. Users can also execute advanced queries through this

interface, using an efficient graph database based on Neo4j (neo4j.org).
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Figure Legends

Figure 1: Conceptual overview of the algorithm to find sample “checkpoints” and
checkpoint blocks. (A) Diagram illustrating the “bottleneck hypothesis”. Master regulator
proteins (‘MR’) integrate the signal from genomic mutations (‘P’) and other “driver” genomic
alterations, modulating the “downstream” gene expression signature (red represents upregulated
genes, and blue represents downregulated genes). Proteins that assist or co-modulate the signal
but are not downstream of genomic alterations, or downstream of only passenger events, are not
considered master regulators. The set of master regulator proteins for a given sample is defined
as that sample’s “checkpoint”. (B) Checkpoint “blocks” are defined as sets of master regulator
proteins (‘MR blocks’) that modulate a specific part of the gene expression signature.. Each
sample’s checkpoint may contain several active checkpoint “blocks” that collectively integrate the

signal from upstream genomic drivers to modulate the overall gene expression signature. (C)
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Flow diagram of the inference algorithm to find sample checkpoints and recurrent pan-cancer
checkpoint blocks. Multi ‘omics data (gene expression, copy number, SNPs, Fusions and protein-
protein interactions) is integrated in a computational pipeline to infer sample checkpoints and

checkpoint blocks.

Figure 2: Unsupervised transcriptional subtypes inferred from multi-omics data
integration, and associated survival. (A) Analytical score using a modified silhouette measure
of each cohort’s cluster fit is shown for each clustering solution from k=2-10, for each tissue type
(y-axis). Larger and redder dots represent better mean scores. If multiple statistically equivalent
solutions existed the solution with the strongest survival separation between the best and worst
surviving clusters was selected (black cross); significance of survival separation is shown in -

log,(p-value) to the right of each clustering solution (blue bars, X-axis is -log,(p-value)). A dashed

line represents the canonical threshold for statistical significance (p < 0.05) in log space. (B)
Heatmap of VIPER-inferred protein activity for the candidate master regulators of 5 transcriptional
subgroups of the TCGA kidney cancer cohort. The best and worst surviving clusters 3 and 5, are
highlighted. (C) Violin plots of cluster silhouette scores (y-axis) for each sample, for each of 20
tissue types (x-axis); light blue are VIPER protein activity clusters, dark blue are raw gene
expression clustering solutions. (D) Survival probability of patients in unsupervised VIPER-
inferred cluster 3 (green solid line) relative to cluster 5 (dashed black line) after fitting a Cox

proportional hazards model to the TCGA clinical data (p < 1.1e-16).

Figure 3: Genomic saturation analysis of candidate master regulators across all tissues
of origin. (A) The mean fraction of genomic copy number, SNP and fusions events in each patient
(y-axis) and linked candidate Master Regulators (x-axis) is shown as a separate curve for each
transcriptional subgroup. Vertical dashed lines indicate the saturation point covering 85% of all
events associated with some candidate Master Regulators or the estimated inflection point. (see
figure S4; methods). (B) Identities of Master Regulators derived from the saturation analysis in
(A) are shown as black tick marks for each transcriptional subtype (row). Color of the y-axis
subtype labels represents tissue of origin. Columns (Master Regulators) are sorted by frequency
of recurrence in multiple subtypes, from left (highest) to right (lowest). Grey ribbons at the bottom
of the plots represent the null-model genomic coverage for 1000 randomly chosen transcription

and co-transcription factors that were not ranked in the top 50% by the MOMA algorithm.
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Figure 4: Genomic events upstream of KIRC transcriptional subtype checkpoints. (A-E)
Genomic saturation curves for KIRC transcriptional subtypes 1-5; dashed line indicates the point
where 85% of all events associated with some Master Regulator are covered, which defines the
MR checkpoint for each subtype. Grey ribbons at the bottom of the plots represent the null-model
genomic coverage for 1000 randomly chosen transcription and co-transcription factors that were
not ranked in the top 50% by the MOMA algorithm. (F-J) Frequency bar plots of genomic events
found in samples of each subtype that are downstream of each set of checkpoint MRs,
respectively. The number of samples within each subtype with that alteration is plotted on the x-
axis; genomic location or gene name is indicated on the y-axis, with studied cancer driver genes
indicated if located within a focal amplification or deletion. Bar colors indicate the type of event

(focal deletion: blue; focal amplification: red; fusion: yellow; mutation: green).

Figure 5: Checkpoint blocks are closely related to known cancer biology. (A) Active
checkpoint blocks (y-axis) are shown in a heatmap summary across identified transcriptional
subtypes (x-axis). Darker shades indicate higher mean activity across a subtype, for a given
checkpoint. Breast cancer (BRCA) and melanoma (SKCM) transcriptional sub-type columns are
highlighted along with checkpoint block 3 and 12 (rows). (B) Activity of MRB7 significantly stratifies
Metabric breast cancer patients by outcome (p < 3.5E-8; Kaplan-Meier estimator). (C) Activity of
MRB24 significantly stratifies TCGA melanoma patients by outcome (p < 1.9E-5; Kaplan-Meier
estimator). In this case, high checkpoint activity leads to better outcome (D) VIPER Predicted
activity for checkpoint proteins in checkpoint block 3 across Metabric breast cancer samples
(columns). VIPER activity is highly correlated in all but one (E2F1) protein. (E) Enrichment “radar”
plot for MRB24. Several hallmarks of cancer, including inflammatory/immune response hallmarks,

apical junction IL/JAK/STAT transition are enriched within the checkpoint proteins of this block.

Figure 6: Proliferative checkpoint block 2 and associated causal genomic events drive the
aggressive subtype of prostate cancer. (A) Heatmap of VIPER protein activity scores for the
checkpoint proteins in all TCGA prostate cancer subtypes. Dashed vertical lines indicate subtype
demarcation, rows are checkpoint proteins. Color indicates the VIPER inferred protein activity
(red is high activity; blue is negative activity). (B) Clinical Gleason scores for TCGA prostate
samples, grouped by the 7 clusters identified in our analysis (Figure 6A). All but one of the grade
10 samples were found in cluster 6, with the remaining sample found in cluster 4, which we found
to have moderate activity in checkpoint block 2. (C) Clinical recurrence status of TCGA prostate

samples, grouped by the 7 clusters in Figure 6A. Missing values are shown in grey, whereas
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recurrent samples are shown in blue/green. The largest fraction of recurrent samples was shown
in cluster 6, with the second largest fraction in cluster 4. (D) Gene expression signature between
9 samples in cluster 6 and 149 samples in cluster 1 is sorted from highest differential gene
expression (t-test on variance stabilized gene expression; red) to lowest (blue). Genes in
significantly enriched respective hallmarks (GSEA; “DNA Repair’, NES = 2.6, p = 2.2E-16;
“Mitotic Spindle,” NES = 3, p = 2.2E-16; “E2F Targets,” NES = 6.3, p = 2.2E-16; “G2M,” NES = 6,
p = 2.2E-16) are shown as grey ticks. (E) Hallmark enrichment wheel of checkpoint block 2
proteins, from MSigDB 2.0 hallmark categories. Orange radii indicate enrichments that are
statistically significant after multi-hypothesis correction (Benjamini-Hochberg FDR < 0.01). (F)
Sample copy number and mutation events statistically associated with checkpoint 2 activity.
Samples (columns) are sorted by checkpoint 2 VIPER activity (bottom); grey ticks indicate
samples with a SNV/copy number/fusion event. Copy number events that are also mutated in one
or more samples in the cohort are marked with a red star to their left. Genes are ordered from
most (top) to least frequently altered in the cohort. The five genes selected for experimental
validation are highlighted in green. (G) Network diagram of checkpoint 2 proteins and DIGGIT
interactions highlighted in (F), with deletions (blue), mutations (green) and amplification events
(red) shown as bundled edges. Green-circled events were selected for experimental follow-up
(Figure 7).

Figure 7: Functional validation of predicted candidates. (A) Schematics for functional assays.
Androgen independent 22rv1 prostate cancer cells were infected with lentiviral control vectors
and vectors containing shRNAs to silence recurrent genomic events upstream of FOXM1, namely,
SORBS3, BCAR1, MAP3KY7, PTEN and TP53. After selection for stable silencing, cells were used
in in vitro in in vivo assays. (B) VIPER analysis of the MR-Block proteins (y-axis) in each silencing
condition (x-axis). Red indicate increased activity relative to the control condition, blue decreased
activity. (C) Migration of 22Rv1 cells was assessed in wound healing assays at 24 and 48 hours
after scratching a confluent culture of control and silenced 22rv1. Quantification of the migration
assay is shown in (D). Invasion capabilities of control and individually silenced 22rv1 cells was
carried out in Boyden chamber invasion assays and quantification of the percent of invading cells
is shown in (E). (F) Functional validation in vivo. Control and individually silenced 22rv1 cells
where engrafted in mice and tumor growth was monitored over time until euthanasia. Tumor
growth curves are shown. All in vitro experiments were done in ftriplicate in two independent
replicates and significance was assessed using standard T-Student test comparing silencing to

control. The in vivo assays where performed in two independent replicates and significance
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assessed using the Two-way analysis of variance (ANOVA). The p-values are indicated by * <
0.05, ** < 0.001 and *** < 0.0001.

Figure S1: Heatmap(s) of MOMA clustering each of the 20 TCGA subtypes. Checkpoint
proteins for all subtypes are shown on the y-axis, samples on the x-axis. VIPER protein activity
scores are plotted (red = high activity; blue = low activity) with the scale bar shown on the right.
Established subtype identities are shown for select tissues, where available (BRCA, COAD, GBM,
STAD).

Figure S2: Functional validation of MOMA subtypes and survival segregation. (A) Similarity
plot between MOMA identified sample clusters (bottom) and classical breast cancer subtypes
(upper). Classical breast cancer subtypes are shown (light blue: luminal A; dark blue: luminal B;
basal: red; her2: yellow). (B) Kaplan-Meyer survival plot, displaying differential outcome for the
best and worst surviving subtype of each of the 20 TCGA Tissue types, with survival time in days
plotted on the x-asis, and survival probability plotted on the y-axis. P-values for the COX
proportional hazard model test between subtypes are displayed above each plot. Legends display
the subtype identities (C) VIPER inferred protein activity heatmap for STAT3, CEBPD and CEBPB
in Glioblastoma MOMA clusters 2 and 3. The black vertical line separates samples from subtype
2 (left) and subtype 3 (right). VIPER activities are colored by score (red=high; blue=low). (D)
lllustration of how Achilles single gene essentiality screens are used in conjunction with patient
samples and cell line models. Patient sample clusters are matched to the nearest cell line models
by comparison with VIPER inferred protein activity profiles. Achilles K.O. scores for those specific
cell lines are then used to assess single gene essentiality (E) Density plot of the number of Master
Regulators identified as significantly essential in Achilles (Bonferroni corrected p-value < 1e-5) for
each sample clusters checkpoint, as compared with randomly selected cMR checkpoints (black
distribution; p < 1.6E-3) of the same size. The null model was constructed with 1E6 randomly
selected checkpoints, and fitted to a normal distribution to asses statistical significance of the true

number of significantly essential Master Regulators (153: blue vertical line).

Figure S3: Checkpoint proteins are highly interconnected, downstream of known genomic
drivers. (A) Significance of the enrichment for genomic drivers (CHASM: single point mutation
events; GISTIC 2.0: focal copy number) upstream of predicted checkpoint proteins in each tissue
of origin. Log10 p-values are shown in a bar plot, with the horizontal dashed line representing

the canonical significance level of 0.05. (B) Enrichment ratios for genomic drivers upstream of
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predicted checkpoint proteins in each tissue type. The distribution of enrichment ratios is shown
in each violin plot. (C) Density plots of the mean shortest path distance between all pairs of
predicted checkpoint proteins in each tissue of origin (blue), compared with pairwise distances
between random pairs of transcriptional and co-transcriptional proteins, in the HumanNet network.
(D) Density plots of the mean shortest path distance between all pairs of predicted checkpoint
proteins in each tissue of origin (blue), compared with pairwise distances between random pairs
of transcriptional and co-transcriptional proteins, in the Multinet network. (E) Density plots of the
mean shortest path distance between all pairs of predicted checkpoint proteins in each tissue of
origin (blue), compared with pairwise distances between random pairs of transcriptional and co-

transcriptional proteins, in the PrePPI protein-protein interaction network.

Figure S4a-t: Genomic saturation and identity plots for each of the 112 identified subtypes,
within 20 TCGA tissues of origin. Left column: genomic events are shown on the y-axis, with
frequency of alteration in the respective cohort displayed on the x-axix; deletion events are shown
as blue marks, amplifications are red, mutations green. All events are identified as interacting with
the candidate Master Regulator (cMR) proteins that are selected via the genomic saturation
analysis shown on the right column, in the respective subtype/tissue. Saturation curves on the
right each correspond to a single sample cluster, with the quantity of cMRs used to explain
genomic events on the x-axis and the average number of genomic events (and fraction of all non-
silent SNV and GISTIC2.0 identified events) per-sample on the y-axis. The dashed line indicates
the identified inflection point, and defines the cluster checkpoint as all cMR proteins to the left of
that line. (D) No saturation detected above the null distribution for subtype (2) due to low

mutational burden.

Figure S5: Checkpoint block discovery and hallmarks of cancer enrichment. (A) Density
plot of the number of different checkpoints (of the 112 identified pan-cancer subtypes) each cMR
participates in (solid red line), with the fraction of all ~2500 transcription factors (TF) and co-
factors (coTF) considered shown on the y-axis, compared to a null model constructed by randomly
placing (TF/coTF) proteins into bins the same size as the 112 checkpoints, permuted 100 times
(dashed black line). The vertical dotted line represents cMRs that are found in four or more
checkpoints. The real and null distributions are significantly different, according to a non-
parameteric Kolmogorov—Smirnov test (p < 2.2E-16). (B) Plot of the analytical clustering score for
k=2 to k=100 checkpoint clusters, for the 407 highly recurrent candidate Master Regulator (cMR)

proteins across tissue types. The 24 cluster solution of checkpoint “blocks” was found to be the
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highest scoring (green line). (C) Relative score representing the specificity of enrichment in the
classical hallmarks of cancer (y-axis) across all 24 checkpoint blocks, as the blocks are
“‘expanded” with additional nearest neighbor cMRs (x-axis). The coverage score (blue line)
represents the Eigen-trace of the covariance matrix of all hallmark enrichments for all checkpoint
blocks, while the dashed black line is the delta with the previous expansion factor. We selected
k=6 as it is both an early absolute maximum and has one of the highest rates of improvement
over the previous score (k=5). (D) Hallmark enrichments that are significant after multiple-
hypothesis correction (Benjamini-Hochberg FDR) for each of the final 24 checkpoint blocks. (E)
Violin plots of the Jaccard concordance index of each of the 24 checkpoint blocks with the most
similar cluster found in each of the other clustering solutions (k = 2 to 100, excluding 24). Sorted

left to right, from most to least concurrent.

Figure S6: Analysis of survival/outcome predictions from MR-Block activities. (A) The
negative log p-values of single-variable cox regression models are shown for each MR block
(columns), representing the ability of each MR-block to predict patient outcome, across each of
20 TCGA tissue types (rows). Bars represent the -log10(pvalue) significance of each predictor,
truncated at (log10(p)=5) for visual clarity; values less than (log10(p)<1) are not shown. The
dashed line represents the canonical statistical significance level of p=0.05. (B) Survival plots of
all 20 TCGA cohorts using a regularized cox proportional hazards model trained on the mean
activity of the 24 MR-blocks. P-values for the fitted cox regression models (coefficients) are shown
above each plot. Censors are shown and ticks along each axis. (C) Analysis of Pan-cancer
checkpoint block activity in the Metabric breast cancer dataset. VIPER activities of the 7 MR-
Blocks that were found to be highly active in the TCGA breast cancer cohort (Figure 5C),
Differential survival outcomes shown for Metabric samples with positive mean activity of the
proteins in each checkpoint (red) and negative mean activity (blue). Some checkpoint proteins
were not inferred by the ARACNe regulon generated from Metabric data, and are omitted from
the heatmaps. Survival separation was most significant for blocks 2, 3, 7 and 16, as well as block
21 (p < 2E-8, p < 2E-8, P<3E-8, P<3E-8, respectively). In contrast, we found the separation with
block 14 to be only marginally significant (p < 0.006), and non-significant in block 11 (p < 0.3).
(D) Censored survival plot of the TCGA PRAD (prostate cancer) cohort subtypes 3 (best survival;
n=109, deaths=0) and subtype 6 (worst survival; n=9, deaths=1). Separation is significant

according to a cox proportional hazards model (p < 7E-4).
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Table Legends

Table 1: Data Overview. Data for 20 TCGA tumor types is listed, including the number of samples

with RNA, mutational, copy number, and fusion data, respectively.

Table 2: Survival analysis of MOMA sample clustering. Mean silhouette scores, the p-value
of survival differences between the best and worst surviving clusters, and the progression-free

survival p-value are shown for each clustering solution across the 20 TCGA tumor types.

Table 3: MOMA subtype summary. Cluster identities, sample size and fractions are shown for

each of the 20 TCGA tissue types.

Table 4: Putative mutational drivers in PRAD cohort. Mutational drivers upstream of MRB2,
detection status for the MutSig2.CV algorithm, Clinical Correlation via the Broad TCGA Firehose

pipeline, and Mutation-Assesor algorithms are shown in the respective columns.

STAR* Methods

Pan-cancer protein inference: RNA-Seq raw gene counts were downloaded from the TCGA
firehose (gdac.broadinstitute.org), transformed to RPKM using the average transcript length for
each gene and log2 transformed. Transcriptome-wide expression signatures were computed by
two non-parametric transformations. First, each column (tumor sample) was rank transformed
and scaled between 0 and 1. Then each row (gene) was rank transformed and scaled between 0
and 1. Finally, the activity of ~2,500 regulatory proteins was estimated by the VIPER algorithm,

using tissue-matched ARACNE regulons (Giorgi et al., 2016; Lachmann et al., 2016).
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DIGGIT: We identified statistically associated SNP events with the DIGGIT algorithm. Instead of
using the mutual-information computation outlined in the published DIGGIT method (Alvarez et
al., 2015) we computed the aREA enrichment (Alvarez et al., 2016) of the sample set with non-
silent coding mutations in a given gene, against the ranked protein-activity signature inferred by
VIPER for a given MR. This was performed for each VIPER Inferred Protein (VIP) / mutated gene
pair with at least 4 samples with a non-silent alteration. Similarly SNP6 copy number profiles were
downloaded from the Broad Institute and we picked a threshold value of 0.5, the mean value that
we found to be optimally sensitive for detection with DIGGIT while maintaining high specificity for

functional events as explored in recent literature (Jerby-Arnon et al., 2014).

DIGGIT Null Model: A null model was constructed specific to each TCGA tissue type by
considering the 1253 VIPs with the lowest absolute mean activity as a ‘null set’; we then computed
the empirical p-values and g-values of the each DIGGIT/aREA score against the distribution
generated with aREA on the null set of VIPs using the ‘g-value’ Bioconductor package (3.5) (Kall
et al., 2008). Positive DIGGIT/aREA z-scores with an uncorrected empirical p-value of less than
0.05 over the background were combined using Stouffer's method to generate three separate
rankings for each VIP (Jerby-Arnon et al., 2014) based on SNV mutations, amplification events,
and deletion events, respectively. CINDy was run using gene expression and the computed
VIPER profiles separately within each TCGA tissue type. For most tissue types the number of
CINDy interactions between genes with genomic alterations and VIPs with significant DIGGIT
scores was large—hundreds to tens of thousands—and only these interactions were retained
when computing the SNV/Amplification/Deletion rankings detailed above. In the few cases where
overlap was less than 100 total interactions, all significant DIGGIT interactions were retained and
the CINDy data utilized at a later step. Fusion calls were detected with the PRADA algorithm

(Torres-Garcia et al., 2014), aREA and null-model aREA scores were computed in the same way.
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We used the PrePPI database 1.2.0 (Zhang et al., 2013) to incorporate structural information into
the rankings. We first converted all high-confidence (probability > 0.5) PPI interactions into
empirical p-values by ranking and binning the likelihood scores, and assigning the lowest bin the
probability of interaction based on the count of all possible pairs within the PrePP| database.
Significant DIGGIT interactions with corresponding PrePPI interactions were considered for each
VIP; the PrePPI empirical p-values were combined using Fisher's method to generate rankings

for SNV, Amplification and Deletion based DIGGIT interactions, respectively.

Integrated rankings: Integrated rankings were generated by first removing the conditional
dependency of the DIGGIT-based score for each MR by conditioning it on the rank of the VIPER
score, and then converting the rank to an empirical one-tailed p-value. Similarly, PrePPI scores
were conditioned on the DIGGIT scores for each, as were CINDy scores for several tissue types
with a small number of CINDy predictions (see above). This conditional model was applied
separately for each of the SNV, Fusion, Amplification and Deletion data types; the p-values from
all conditionally independent tests were combined using Fisher's method to generate a single

ranking of candidate MRs for each tissue.

Survival analysis: Clinical data was downloaded from the Broad Institute GDAC website
(gdac.broadinstitute.org). We used the ‘survival’ R/ICRAN package version 2.41-3 to fit a Cox
proportional hazards model to each sample grouping defined by the initial cluster. We then
defined the “best” survival clusters as the one with the lowest proportion of observed to expected
death events, and the “worst” survival as the highest observed/expected ratio. We then fit a
second Cox model exclusively to samples from those two clusters and calculated the significance

of survival differences between “best” and “worst” clusters in that model.
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Sample clustering: Each tissue-specific VIPER activity matrix was clustered using k-medoids
clustering with k ranging from 2 to 10 clusters, using a distance matrix defined by the weighted
Pearson correlation between sample VIPER profiles. Weights were defined by the negative log
p-values of the integrated scores described above in Integrated Rankings; to increase the
contribution of high scoring Master Regulators we also transformed the negative log p-values with
a square operation before generating the distance matrix. A silhouette-like score was calculated
for each sample at each k value, using the aREA function described in (Alvarez et al., 2016) to
determine the enrichment in similarity between each sample and it's assigned cluster. We then

chose the k that maximized the mean score across all samples.

GEX clustering: Each tissue-specific gene expression matrix was clustered using k-medoids
clustering with k set as the same value chosen for the tissue-specific VIPER activity clustering
(see methods, Sample clustering). Distance between samples was defined using Pearson
correlation between gene expression profiles. Silhouette scores were computed using the ‘cluster’

package in R.

Candidate drivers: Mutation and SNP6 copy-number data was downloaded from the Broad
Firehose platform (gdac.broadinstitute.org), as described in (methods: clustering/DIGGIT). We
downloaded analysis results from Firehose and characterized each SNP as a candidate driver
event if it achieved a p-value of 0.05 (uncorrected) or less according to the CHASM algorithm.
Similarly, focal copy number events were considered “candidate drivers” if they were considered

a high confidence (99% interval) event according to the GISTIC2.0 algorithm.

Genomic coverage: Genomic events considered “candidate drivers” (see above) were used in
the sample-specific analysis if they had a sufficient number of events to be detected by the

DIGGIT algorithm (4 events, in each TCGA tissue type).
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Checkpoint Generation: Proteins were clustered with the VIPER protein activity matrix on the
gene level, using a Euclidean distance metric and partitioning around medoids (PAM) for a
predefined set of clusters k, from 2 to 100. The cluster fit was defined as the mean cluster reliability
of each proteins fit to its respective cluster, which is calculated as the aREA enrichment score of
the cluster member set on the distance vector between the protein and all other protein in the
matrix. We chose an optimal k of 24 as shown in Figure S5B. Each “core” cluster was expanded
by the n candidate Master Regulator proteins with the best similarity (outside of the original
cluster), for all n in the range of 0 to 100. For each n in this range, we computed the trace of the
covariance matrix calculated from hallmark enrichment across the 20 checkpoints expanded by
n to approximate the total variance across the space defined by hallmark enrichment. We found
an optimal increase in this variance at an expansion number of 6 (Figure S5C) and defined the

“fuzzy” checkpoints at that threshold.

Hallmark Enrichment: Cancer Hallmarks were defined as the 25 gene sets defined by the Broad
Institute and refined/simplified by others (Drake et al., 2016; Liberzon et al., 2015). We computed
the p-value of the hypergeometric overlap between each hallmark gene set and each checkpoint,

using the cardinality of all candidate MRs (2506) as the “universe” size.

Achilles Essentiality Validation: Achilles shRNA DEMETER knockout scores were downloaded
from The Broad Institute for all cell lines. Transcription Factor (TF's) Achilles dependencies scores
were re-normalized by fitting bimodal normal mixture models using the R package ‘mixtools’. The
most positive (least dependent) sub-population was set as the reference distribution for the re-
normalized “dependency score” as a z-score. By binning Achilles-scores into distinct sub-
populations, this procedure assumes discrete transcriptional-states with resolvable effects on cell-

viability. In the context of orthogonal transcriptional programs (e.g. basal vs luminal breast cancer)
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this bias should boost meaningful signal for causal transcription factors. In cases of more
continuous relationships between TF dependency and viability (e.g., house-keeping programs)

this bias would most likely destroy information.

For each of the 112 TCGA subtypes, we matched the centroid sample to all CCLE VIPER
profiles, using the ‘viperSimilarity’ algorithm included with the VIPER algorithm (Alvarez et al.,
2016), after weighting each patient-sample by the MOMA scores for the corresponding tissue.
Cell lines that were significant matches (FWER < 0.01; Bonferroni correction) were compared
with non-matches (p = 1) using a non-parametric rank-based Mann-Whitney-Wilcox test;
significant FDRs after multiple hypothesis correction (Benjamini-Hochberg FDR < 0.05) were

retained for each subtype.

METABRIC Breast cancer analysis: We ran ARACNE with 100 bootstrap iterations and a M.I.
threshold of 1e-8, separately for the candidate TF and coTF regulators. Protein activity was
inferred across all samples, using the VIPER algorithm. Survival analysis was performed by first
calculating the mean VIPER activity across checkpoint proteins and binning samples into “high”
and “low” quantiles, for each checkpoint. Clinical data was downloaded from the Broad Institute
GDAC website (gdac.broadinstitute.org). We used the ‘survival’ RICRAN package version 2.41-
3 to fit a Cox proportional hazards model to each sample grouping, using the last known follow-

up date, and testing for significant survival differences with that model.

Interaction rankings: CINDy interactions were converted to empirical p-values by ranking and
binning the number of significant triplets (Giorgi et al., 2014), and assigning the lowest bin the
probability of interaction based on the count of all modulator-TF interactions. For each modulator-
TF interaction, the CINDy based p-value, PrePPI p-value, p-value based on the DIGGIT/aREA

score and the p-value generated by the DIGGIT null model were integrated using Fisher’'s method
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to create a single ‘integrated’ p-value. For each MR, we computed the Benjamini-Hochberg false
discovery rate of all integrated p-values and removed those above a threshold of 10%. Integrated
p-values were combined across tissue types using Fisher's method to generate a pancancer

ranking.

Proliferation cluster interactions: For each of the candidate Master Regulator proteins in
checkpoint 2 we computed the rankings based on the integrated p-value in prostate cancer, as
well as the cross-pancancer rankings for the same interactions. We created a combined rank from
these two lists, using an additive mean and retained the top 20 interactions for each MR.

Interactions were visualized with the Cytoscape software package (Shannon et al., 2003).

ARACNe and VIPER analysis of the Sboner dataset: Clinical data and gene expression
microarray data for 281 prostate cancer samples was downloaded from the Gene Expression
Omnibus (GEO) (ID GSE16560). The expression profiles for 6100 transcriptionally informative
genes (Gene Expression Omnibus Platform GPL5474) was used to generate ARACNe networks
for the same TF and co-TF definitions used for the TCGA analysis, respectively. VIPER scores
were computed for 563 TFs and 254 co-TFs across all 281 samples; representative candidate
Master Regulator in the Pan-cancer checkpoint 2, identified through our TCGA based analysis
included TRIP13, TOP2A, PTTG1, MYBL2, FOXM1 and CENPF. We computed the mean VIPER
activity across these candidate Master Regulators and selected the top and bottom quantiles of

samples with highest and lowest mean activity, respectively, for further analysis.

Perturbation dataset VIPER analysis
We generated a signature for count data from each experimental condition, using the control
condition as a reference, and performing a t test, using 100 permutations of the samples

(columns) as a null model. This signature and null model were inputted to the ‘msviper’ function
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in the VIPER Bioconductor package, along with the TCGA Prostate cancer regulon. A second null
model was constructed by re-running this same analysis on 100 permutations of the column
labels, and a t-test was performed between the VIPER scores from each condition and this null,

to assess the overall ability in reverting the signature for checkpoint 2 proteins.
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# Patients, VIPER | # Patients, # Patients, cnv # Patients,

TCGA Tissue Inferences mutation data data fusion calls

blca 408 130 253 300
brca 1093 977 1051 831
coad 457 217 437 154
gbm 160 291 589 122
hnsc 520 306 513 341
kirc 533 293 520 151
laml 179 196 198 74
lgg 516 289 464 0
lihc 371 202 193 222
luad 515 519 496 405
lusc 501 178 493 401
ov 296 141 587 194
paad 178 168 185 0
prad 497 425 204 437
read 166 81 164 0
sarc 259 255 260 0
skem 468 362 386 338
stad 274 230 353 183
thca 501 402 499 144
ucec 545 248 543 101
cesc 304

esca 184

kirp 290

pcpg 179

tgct 150

thym 120

Table 1: Data Overview. Data for 20 TCGA tumor types is listed, including the number of
samples with RNA, mutational, copy number, and fusion data, respectively.

pval.progression- | pval.progression-
tissue k mean.silhouette | naive free top.analytical.soln
blca 2 0.608997478 0.63232 0.37693 | no
blca 3 0.706560727 0.16872 0.11797 | no
blca 4 0.759714371 0.21336 0.26033 | yes
blca 5 0.720047253 0.1506 0.19498 | yes
blca 6 0.641998616 0.033141 0.01937 | yes
blca 7 0.69636671 0.042014 0.027441 | no
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blca 8 0.633710917 0.03032 0.0044003 | no
blca 9 0.671606656 0.051675 0.13531 | no
blca 10 0.632906191 0.18073 0.07716 | no
brca 2 0.780697516 0.013218 0.039361 | no
brca 3 0.711048776 0.11849 0.010141 | no
brca 4 0.7852366 0.020421 0.013422 | yes
brca 5 0.72477614 0.00082055 0.0107 | no
brca 6 0.719701065 0.0051902 0.0107 | no
brca 7 0.771018746 0.0079326 0.00025076 | no
brca 8 0.759411684 0.016372 0.033565 | no
brca 9 0.723676859 0.016372 0.00034953 | no
brca 10 0.729480844 0.0051699 0.00049293 | no
coad 2 0.646982494 0.8179 0.8435 | no
coad 3 0.686357381 0.84978 0.086235 | no
coad 4 0.645325064 0.78718 0.18189 | no
coad 5 0.722428311 0.74365 0.095462 | yes
coad 6 0.716045021 0.4658 0.24934 | yes
coad 7 0.712651649 0.28944 0.35243 | no
coad 8 0.716932619 0.064724 0.55033 | yes
coad 9 0.714158603 0.08393 0.11422 | no
coad 10 0.698958217 0.15085 0.41205 | no
gbm 2 0.613839743 0.48806 0.053117 | no
gbm 3 0.686719852 0.13087 0.096051 | no
gbm 4 0.639781348 0.0068145 0.0013133 | no
gbm 5 0.737300554 0.0039469 0.0014076 | yes
gbm 6 0.755589927 0.0041277 0.0023037 | yes
gbm 7 0.67755406 0.032386 0.0067482 | no
gbm 8 0.669564142 0.032386 0.0067482 | no
gbm 9 0.652577276 0.03294 0.013374 | no
gbm 10 0.646740114 0.00095328 0.013374 | no
hnsc 2 0.628503024 0.23424 0.055252 | no
hnsc 3 0.667231408 0.0049155 0.030115 | no
hnsc 4 0.703443865 0.078984 0.019162 | yes
hnsc 5 0.722152229 0.00012022 0.0046603 | no
hnsc 6 0.748753543 0.00010972 0.0079217 | yes
hnsc 7 0.744952807 0.00035881 0.0075361 | no
hnsc 8 0.673461776 9.25E-05 0.0084426 | no
hnsc 9 0.647997614 0.00010592 0.00028122 | no
hnsc 10 0.660101673 2.61E-06 7.89E-05 | no
kirc 2 0.589877331 7.23E-14 1.11E-16 | no
kirc 3 0.609216895 1.79E-13 5.09E-13 | no
kirc 4 0.668013519 0 7.77E-16 | no
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kirc 5 0.730298651 1.11E-16 0.00047811 | yes
kirc 6 0.67227246 6.63E-14 5.78E-13 | yes
kirc 7|  0.648441513 0.00066381 0.00029486 | no
kirc 8| 0.649804299 0.0006531 0.00036198 | no
kirc 9 0.59840271 4.30E-12 6.67E-12 | no
kirc 10|  0.575458417 7.73E-12 8.87E-10 | no
laml 2| 0.801153108 0.46044 | NA no
laml 3 0.765486157 0.019749 | NA no
laml 4| 0.810313106 0.0099112 | NA yes
laml 5 0.700628002 0.0062179 | NA yes
laml 6 0.71457491 0.00090455 | NA yes
laml 7| 0710777817 0.00090455 | NA no
laml 8| 0.742692413 0.00090455 | NA no
laml 9| 0631961571 0.0014776 | NA no
laml 10|  0.744817443 0.00028785 | NA no
lgg 2| 0.552213534 0 0| no
lgg 3 0.677869379 0 0| no
lgg 4|  0.690846507 0 1.38E-12 | no
lgg 5 0.737693354 0 1.89E-15 | yes
lgg 6| 0.688394999 0 0| no
lgg 7|  0.704830302 0 2.22E-16 | yes
lgg 8| 0.726068521 0 1.81E-11 | yes
lgg 9 0.63463369 0 1.81E-11 | yes
lgg 10| 0.676811717 0.00011307 0.0018331 | no
lihc 2| 0.561760152 5.10E-05 1.69E-05 | no
lihc 3 0.502660838 0.0028464 0.0029454 | no
lihc 4|  0.625995969 2.05E-05 1.01E-05 | yes
lihc 5 0.685422688 9.02E-06 3.32E-06 | yes
lihc 6| 0.706792583 5.90E-06 1.20E-05 | yes
lihc 7|  0.702901293 9.88E-05 1.17E-05 | yes
lihc 8| 0679974881 0.002001 2.58E-08 | yes
lihc 9| 0.677602536 0.0053459 0.26165 | yes
lihc 10| 0.667423456 0.0024896 0.25462 | yes
luad 2|  0.682103767 0.092896 0.27301 | no
luad 3 0.70962839 0.013047 0.032815 | no
luad 4| 0.714583055 0.10638 0.029843 | yes
luad 5 0.612862379 0.032239 0.029975 | yes
luad 6| 0.640803279 0.022622 0.049676 | yes
luad 7|  0.749596792 0.045614 0.055438 | yes
luad 8| 0656925785 0.0051143 0.02797 | yes
luad 9| 0.648309819 0.015539 0.099825 | yes
luad 10|  0.639529278 0.12293 0.019241 | no



https://doi.org/10.1101/758268
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/758268; this version posted September 5, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

lusc 2 0.528566491 0.19052 0.2046 | no
lusc 3 0.75505046 0.0067527 0.0024793 | yes
lusc 4 0.676896457 0.005613 0.0010377 | no
lusc 5 0.728830627 0.050373 0.18249 | no
lusc 6 0.631955309 0.00027513 0.00014193 | no
lusc 7 0.688542834 0.012909 0.0015291 | no
lusc 8 0.639857422 0.0097389 0.00089683 | no
lusc 9 0.663310017 0.00021324 0.02836 | no
lusc 10 0.656324988 0.0010716 0.016821 | no
ov 2 0.537390233 0.10354 0.20396 | no
ov 3 0.710201841 0.015154 0.18232 | yes
ov 4 0.782126608 0.1204 0.22822 | yes
ov 5 0.725069551 0.0057372 0.3668 | yes
ov 6 0.6692378 0.038902 0.34226 | no
ov 7 0.669860496 0.18572 0.31972 | no
ov 8 0.666231449 0.073733 0.24804 | no
ov 9 0.648926518 0.18572 0.28631 | no
ov 10 0.666539449 0.11984 0.26974 | no
paad 2 0.769596412 0.010689 0.0018173 | no
paad 3 0.681340558 0.00093584 5.65E-05 | yes
paad 4 0.689516332 0.0069061 0.0013505 | no
paad 5 0.790259533 0.0051506 0.0034655 | yes
paad 6 0.774964909 0.0051506 0.0034655 | no
paad 7 0.756527477 0.00026206 0.00033836 | yes
paad 8 0.681827078 0.00035612 0.00033836 | no
paad 9 0.697770396 0.00045162 0.00015924 | no
paad 10 0.675166787 0.00045162 0.00015924 | no
prad 2 0.564812805 0.064563 0.001729 | no
prad 3 0.681793239 0.083578 0.002533 | yes
prad 4 0.695943936 0.16174 0.0066142 | yes
prad 5 0.648679804 0.016743 0.0040458 | yes
prad 6 0.656139071 0.0020547 0.058516 | yes
prad 7 0.603397574 0.00069596 0.02439 | yes
prad 8 0.625423616 0.0070901 0.067889 | no
prad 9 0.604941287 0.0016917 7.55E-05 | yes
prad 10 0.622967345 0.0029194 0.00076128 | yes
read 2 0.576258894 0.14116 0.95182 | no
read 3 0.663345981 0.16911 0.1743 | no
read 4 0.666606726 0.030973 0.12663 | no
read 5 0.677701654 0.23047 0.22067 | yes
read 6 0.651477825 0.36028 0.22067 | yes
read 7 0.673415931 0.016712 0.1573 | yes
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read 8 0.684067301 0.18536 0.083265 | yes
read 9 0.64772557 0.21887 0.22067 | yes
read 10 0.646137155 0.24821 0.22067 | yes
sarc 2 0.661718753 0.18972 0.28819 | no
sarc 3 0.7254593 0.0010793 0.1934 | yes
sarc 4 0.742160411 0.005309 0.11886 | yes
sarc 5 0.752197064 0.0094806 0.086744 | yes
sarc 6 0.757693054 0.0001718 0.073535 | yes
sarc 7 0.722452491 0.0019067 0.053358 | yes
sarc 8 0.643407666 0.00082503 0.018268 | yes
sarc 9 0.635483392 0.0001842 0.010914 | no
sarc 10 0.612152076 0.0098517 0.066778 | no
skem 2 0.564156317 0.26587 0.14977 | no
skem 3 0.55969847 0.35076 0.088105 | no
skem 4 0.565191251 0.038617 0.12356 | no
skem 5 0.590803727 0.0075082 0.092109 | no
skcm 6 0.64396706 0.0094092 0.11865 | yes
skcm 7 0.645226795 0.029668 0.179 | yes
skem 8 0.648586086 0.029668 0.12731 | yes
skcm 9 0.635180732 0.061822 0.18792 | yes
skcm 10 0.646480167 0.011415 0.025271 | yes
stad 2 0.723922828 0.0088738 0.0066771 | no
stad 3 0.785824145 0.0048198 0.0015581 | yes
stad 4 0.71885937 0.043995 0.016671 | yes
stad 5 0.739588128 0.038258 0.030502 | yes
stad 6 0.729738863 0.18979 0.07219 | yes
stad 7 0.694404258 0.1144 0.032081 | no
stad 8 0.639886237 0.10595 0.062994 | no
stad 9 0.608928271 0.017654 0.032331 | no
stad 10 0.588086261 0.032527 0.00015066 | no
thca 2 0.650162933 0.69403 0.75789 | no
thca 3 0.697119516 0.054398 0.29184 | no
thca 4 0.640746837 0.10751 0.28275 | no
thca 5 0.609452281 0.0081927 0.083265 | no
thca 6 0.699652501 0.0014467 0.25926 | yes
thca 7 0.647106832 0.00010161 0.22067 | yes
thca 8 0.689565794 0.00037157 0.26355 | no
thca 9 0.63177716 0.00039194 0.34957 | no
thca 10 0.614423854 0.00066888 0.52709 | no
ucec 2 0.742400826 1.72E-05 4.06E-05 | yes
ucec 3 0.68008393 2.23E-06 0.00048987 | no
ucec 4 0.712390962 0.0028716 0.0022609 | no
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ucec 5 0.707244791 0.0030273 0.0023555 | no
ucec 6 0.647148064 0.019392 0.056942 | no
ucec 7 0.677781261 0.0050285 0.027677 | no
ucec 8 0.714713798 0.0055951 0.024932 | no
ucec 9 0.668821752 0.022302 0.0042407 | no
ucec 10 0.635964719 0.021962 0.0036179 | no

Table 2: Survival analysis of MOMA sample clustering. Mean silhouette scores, the p-value of

survival differences between the best and worst surviving clusters, and the progression-free
survival p-value are shown for each clustering solution across the 20 TCGA tumor types.

Sample Subtype

Organ Site Subtype Count Fraction Total Site ID
blca 1 93 23% 408 1
blca 2 46 11%

blca 3 81 20%

blca 4 77 19%

blca 5 62 15%

blca 6 49 12%

brca 1 337 31% 1100 2
brca 2 315 29%

brca 3 222 20%

brca 4 226 21%

coad 1 56 12% 459 3
coad 2 50 11%

coad 3 31 7%

coad 4 78 17%

coad 5 105 23%

coad 6 87 19%

coad 7 38 8%

coad 8 14 3%

gbm 1 25 15% 166 4
gbm 2 8 5%

gbm 3 31 19%

gbm 4 68 41%

gbm 5 34 20%

hnsc 1 59 11% 522 5
hnsc 2 93 18%

hnsc 3 157 30%

hnsc 4 64 12%

hnsc 5 81 16%

hnsc 6 68 13%
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kirc 1 82 15% 534 6
kirc 2 30 6%

kirc 3 250 47%

kirc 4 103 19%

kirc 5 69 13%

laml 1 21 12% 179 7
laml 2 66 37%

laml 3 22 12%

laml 4 24 13%

laml 5 31 17%

laml 6 15 8%

lgg 1 221 42% 530 8
lgg 2 87 16%

lgg 3 25 5%

lgg 4 166 31%

lgg 5 31 6%

lihc 1 81 22% 373 9
lihc 2 66 18%

lihc 3 59 16%

lihc 4 60 16%

lihc 5 67 18%

lihc 6 40 11%

luad 1 41 8% 517 10
luad 2 47 9%

luad 3 52 10%

luad 4 67 13%

luad 5 92 18%

luad 6 40 8%

luad 7 135 26%

luad 8 43 8%

lusc 1 134 27% 501 11
lusc 2 320 64%

lusc 3 47 9%

ov 1 62 21% 299 12
ov 2 40 13%

ov 3 96 32%

ov 4 62 21%

ov 5 39 13%

paad 1 71 40% 179 13
paad 2 25 14%

paad 3 14 8%

paad 4 22 12%
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paad 5 23 13%

paad 6 9 5%

paad 7 15 8%

prad 1 149 30% 498 14
prad 2 47 9%

prad 3 109 22%

prad 4 38 8%

prad 5 86 17%

prad 6 9 2%

prad 7 60 12%

read 1 64 38% 167 15
read 2 38 23%

read 3 11 7%

read 4 27 16%

read 5 9 5%

read 6 13 8%

read 7 5 3%

sarc 1 50 19% 263 16
sarc 2 41 16%

sarc 3 49 19%

sarc 4 71 27%

sarc 5 29 11%

sarc 6 23 9%

skem 1 83 18% 472 17
skem 2 131 28%

skem 3 67 14%

skem 4 119 25%

skem 5 44 9%

skem 6 28 6%

stad 1 139 51% 274 18
stad 2 74 27%

stad 3 61 22%

thca 1 64 13% 509 19
thca 2 55 11%

thca 3 89 17%

thca 4 94 18%

thca 5 55 11%

thca 6 27 5%

thca 7 125 25%

ucec 1 283 52% 546 20
ucec 2 263 48%
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Table 3: MOMA subtype summary. Cluster identities, sample size and fractions are shown for
each of the 20 TCGA tissue types.

Node MSIG.2CV Clin.Correlate Mut.Assesor

KMT2C no no NA

TRIM13 no no NA

PPP2CB no no 0.2
AGK no no 1.1
BAG4 no no NA

ARL3 no no NA

NDEL1 no no NA

RAD17 no no 1.375
GGCT no no 1.265
TNFRSF10B no no 1.545
PTK2B no no NA

EZH2 no no 1.04
TRIB1 no no NA

MED4 no no NA

PLCB4 no no 1.525
NSMAF no no 1.7175
CAV2 no no NA

SORBS3 no no 1.39
MMS19 no no NA

INTS6 no no NA

YWHAZ no no 3.735
RGS22 no no NA

GPS2 no no 0.805
ROCK1 no no 0.715
NDFIP2 no no NA

PAFAH1B1 no no NA

TBC1D2 no no 1.8
DEF8 no no 1.84
MAP3K7 no no 2.195
ARF5 no no NA

VAC14 no no 1.5
DERL1 no no NA

DEPDC1 no no 0.855
PEG10 no no NA

PIK3R1 no no 3.015
NRG1 no no 1.905
LYN no no 0.5625
NRG2 no no 1.645
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PTK2 no no 0.375
CASP8AP2 no no NA
PDK4 no no 0.9075
ARHGEF10 no no 0.9075
DPYSL2 no no 1.625
FNTA no no NA
GFRA2 no no NA
HERPUD1 no no 2.35
GNB2 no no 1.245
IMPA1 no no 3.51
AMFR no no NA
RHOBTB2 no no NA
PIK3CA yes yes 1.7625
APC no yes 1.1975
CLU no no NA
PLAA no no 0.49
TRIM23 no no NA
BCAR1 no no 1.655
CSNK2A2 no no 0.405
ADRA1A no no 0.895
TP53 yes yes 2.9925
TP53BP2 no no 2.06
ERBIN no no NA
BTRC no no 1.6175
CDl164 no no 1.1
SCRIB no no 0.345
PTEN yes yes 3.435
RIPK2 no no 0.345
ADGRA2 no no NA
TNFRSF21 no no 1.325
FBXO31 no no NA
MYQO9A no no 1.83
CDK7 no no 1.775
ARHGAP39 no no 0.69
YWHAE no no NA
LPARG6 no no NA
SHARPIN no no NA
ARHGEF26 no no NA

Table 4: Putative mutational drivers in PRAD cohort. Mutational drivers upstream of MRB2,
detection status for the MutSig2.CV algorithm, Clinical Correlation via the Broad TCGA Firehose
pipeline, and Mutation-Assesor algorithms are shown in the respective columns.


https://doi.org/10.1101/758268
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction
	Results
	Discussion
	Figure Legends
	Table Legends
	STAR* Methods
	References

