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Abstract

Isocitrate dehydrogenase (IDH) mutation status is an important marker in glioma diagnosis and
therapy. We propose a novel automated pipeline for predicting IDH status noninvasively using
deep learning and T2-weighted (T2w) MR images with minimal preprocessing (N4 bias correction
and normalization to zero mean and unit variance). T2w MRI and genomic data were obtained
from The Cancer Imaging Archive dataset (TCIA) for 260 subjects (120 High grade and 140 Low
grade gliomas). A fully automated 2D densely connected model was trained to classify IDH
mutation status on 208 subjects and tested on another held-out set of 52 subjects, using 5-fold cross
validation. Data leakage was avoided by ensuring subject separation during the slice-wise
randomization. Mean classification accuracy of 90.5% was achieved for each axial slice in
predicting the three classes of no tumor, IDH mutated and IDH wild-type. Test accuracy of 83.8%
was achieved in predicting IDH mutation status for individual subjects on the test dataset of 52
subjects. We demonstrate a deep learning method to predict IDH mutation status using T2w MRI
alone. Radiologic imaging studies using deep learning methods must address data leakage (subject
duplication) in the randomization process to avoid upward bias in the reported classification
accuracy.
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1 Introduction

In 2008 it was reported that some glioblastomas harbor a mutation in a gene coding for the citric
acid cycle enzyme isocitrate dehydrogenase (IDH) (1). Subsequent studies revealed that the
majority of low grade gliomas possess a mutant form of IDH, and that the mutant enzyme catalyzes
the production of the oncometabolite 2-hydroxyglutarate (2-HG) (2). Although this product of the
mutant form of IDH is believed to play a role in the initiation of the neoplastic process, it has been
observed that gliomas that contain the mutant enzyme have a better prognosis than tumors of the
same grade that contain only the wild type IDH. This observation implies that IDH mutated and
IDH wild type gliomas are biologically different tumors, and led the World Health Organization
(WHO) to designate them as such in the latest revision of their classification of gliomas (3).
Although a presumptive diagnosis of an IDH mutated glioma may be made on the basis of MR
spectroscopy for 2-HG (4-7), at the present time, the only way to definitively identify an IDH
mutated glioma is to perform immunohistochemistry or gene sequencing on a tissue specimen,
acquired through biopsy or surgery. Because the differences between IDH mutated and IDH wild
type gliomas may have implications for their treatment, especially if inhibitors of the mutant IDH
enzyme currently in development prove to halt their growth, there is interest in attempting to
distinguish between these two tumor types prior to surgery. As noted above, one avenue of
research involves using MR spectroscopy to measure levels of 2-HG in the tumor (5, 8-10). More
recent studies have attempted to utilize machine learning techniques to analyze diagnostic MR
images and predict IDH mutation status in gliomas using anatomic differences between the two

tumor types.

Delfanti et al. demonstrated that genomic information with fluid attenuated inversion recovery
(FLAIR) MRI could be used for the classification of patient images into IDH wild type, and IDH
mutation with and without 1p/19q co-deletion (11). The main determinants for classification were
tumor border and location, with IDH mutant tumors having well-defined or slightly ill-defined
borders and predominantly a frontal localization; and IDH wild type tumors demonstrating
undefined borders and location in non-frontal areas. Chang et al. developed a deep learning
residual network model for predicting IDH mutation with preprocessing steps including
resampling, co-registration of multiple sequences, bias correction, normalization and tumor

segmentation (12). Using a combination of imaging and age, the model demonstrated testing
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accuracy of 89.1% and an area under the curve (AUC) value of 0.95 for IDH mutation for all image
sequences combined. Zhang et al. used 103 low grade glioma (LGG) subjects for training a support
vector machine (SVM) for classifying IDH mutation status, achieving an AUC of 0.83 on testing
data (13). In another approach, Chang et al (14) similarly demonstrated that IDH mutation status
can be determined using T2-weighted (T2w), T2w- Fluid attenuated inversion recovery (FLAIR)
and T1-weighted pre- and post-contrast images. Preprocessing steps in their work included co-
registration of all sequences, intensity normalization using zero mean and unit variance,
application of a 3D convolutional neural network (CNN) based whole tumor segmentation tool for
segmenting the lesion margins, cropping the output tumor mask on all input imaging sequences,
and resizing individual image slices to 32 x 32 with 4 input sequence channels. The mean accuracy
result from the model was 94% with a 5-fold cross validation accuracy ranging from 90% to 96%
(14). Common to all of these previous methods is the involvement of preprocessing steps, typically
including some form of brain tumor pre-segmentation or region of interest extraction, and utilizing
multiparametric or 3D near-isotropic MRI data that is often not part of the standard clinical

imaging protocol (12, 14).

In this work, we propose a fully automated deep learning based pipeline using a densely connected
network model, that involves minimal preprocessing and requires only standard T2w images. A
similar approach has been previously used for the identification of the O® — methylguanine-DNA
methyltransferase (MGMT) methylation status and prediction of 1p/19g chromosomal arm
deletion (15). Clinical T2-weighted images are acquired in a short time frame (typically around 2
minutes), and are robust to motion with current acquisition methods. Almost universally, high
quality T2-weighted images are acquired during clinical brain tumor work-ups. The preprocessing
steps preserve the original image information without the need for any resampling, skull stripping,
region-of-interest, or tumor pre-segmentation procedures. The advantage of a dense network
model is that it passes the weights from all the previous blocks to the subsequent blocks, preserving

the information from the initial layer and aiding in the classification.

The ability to quickly and accurately classify IDH status non-invasively can help with better
planning, counseling, and treatment of brain tumor patients, especially in cases where biopsy is

not feasible due to unfavorable tumor locations. A methodologic contribution that we make
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specifically to the radiologic deep learning literature is on the approach to data randomization for
2D models. Furthermore, the deep learning approach is fully automated and can be easily

implemented in the clinical workflow using only T2-weighted MR images.

2 Materials and Methods

2.1 Subjects

260 subjects from The Cancer Imaging Archive (TCIA) (16) dataset were selected, including 120
high grade gliomas (HGG) (17) and 140 low grade gliomas (LGG) (18), and based on their pre-
operative status from a pool of 461 subjects. The genomic information was provided through the
National Cancer Institute - Genomic Data Commons (GDC) Data Portal (19). The genomic data
was available in the following 3 classes: IDH mutated, IDH wild type, and Not Available (N/A).
The Genomic data of the N/A type was excluded from the pool of 461 subjects. MRI data was
filtered for any visible artifacts in the images. The final dataset consisted of 260 subjects based
on the available genomic information, MRI data, pre-operative status and lack of image artifacts

on the T2w images.

A standard 80:20 data split was employed with 80% training and 20% testing (held-out). The 80%
training was further split into a standard 80:20 split of 80% training and 20% validation. The final
dataset of 260 subjects was thus randomly divided into a training set (208 subjects, including
approximately 96 HGG and 112 LGG) and a test set (52 subjects, including approximately 24
HGG and 28 LGG). This process was repeated separately for each fold during the 5-fold cross

validation.

For each fold of the cross-validation, 208 subjects with, on average, 9,728 axial slices of T2w
images were selected for training and validation (7177 slices — No tumor, 1110 slices — IDH
mutated, 1441 slices— IDH wild type). The start and end slices of the tumor (edge slices) were
manually labeled for each T2 dataset. These edge slices were excluded from training to provide
more robust ground truth data. All slices were included for the testing set. Each T2w slice was
manually assigned only one label (No Tumor, IDH mutated, or IDH wild type). In order to address
any class imbalance due to the higher number of no tumor slices, class weights were assigned

based on the labels in the training dataset. Although this was a slice-wise training model, slices of
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subjects in the testing set were not mixed into the training set. This is a critical step related to the
data leakage problem in 2D networks, especially for radiologic deep learning studies (20, 21). This
was necessary to avoid bias during testing and an over inflation of the measured accuracies. Fifty
two subjects with 2522 axial slices (1839 slices— No Tumor, 299 slices— IDH mutated, 384 slices—
IDH wild type) were not included in the training or validation and were used for testing, for each
fold. Classification was done on a slice-wise basis (2D) followed by majority voting across all
slices to provide a patient-level classification. Note that we use the term slice-wise to refer to
classification of each 2D axial image for IDH status. Similarly, the term subject-wise is used for
classification of IDH status for each subject. We used a straightforward majority voting scheme to
determine subject-wise classification based on the majority IDH classification of the individual
2D slices. Subjects classified with an equal number of IDH mutated and IDH wild-type tumor
slices were assigned to the IDH wild type group.

2.2 Image Processing

Minimal standard preprocessing of the T2w images from the TCIA data set was performed prior
to training (Figure 1). The images were converted from DICOM to nifti format using dcmz2nii, bias
corrected to remove RF inhomogeneity using the N4 bias correction algorithm, zero-mean
intensity normalized to between -1 and 1, and resampled to 128 x 128 image dimensions to
improve the computational efficiency during training. The Inception V4 model however, required
input image size of 299 x 299 as a design constraint of this model when originally constructed (22,

23). The total preprocessing time for each subject was less than 1 minute.

2.3 Model Training

The following models were used for classification of the T2w images into IDH mutated and IDH
wild type classes: residual network (ResNet-50), Densely connected network (DenseNet-161), and
Inception-v4. Our choice of network architectures was based on the best performers from the
ImageNet challenge for 2015 (ResNET), and 2017 (DenseNet and Inception VV4). The DenseNet
model, designed by Huang et al (24) received the best paper award at CVPR 2017. The models
were trained with the Pycharm and Python IDEs using the Keras python package with TensorFlow
backend engines. Fine tuning of the 3 classes was performed on all models. The three-class labels

for each slice were: no tumor, IDH mutated, and IDH wild type. The models were originally trained
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on ImageNet data with 3 channels (RGB). For our implementation the 3-channel input was
provided as a central slice with the 2 immediate surrounding slices. If the central slice was the first

or last slice, the surrounding slices were assigned as no value.

2.4 ResNet-50 Model

The residual network was implemented as proposed by He et al. (25). Each residual connection
adds the input of the block to the output, helping to preserve the information from the previous
block. A deep residual network framework was added to the model while maintaining parameter
numbers to address issues with convergence in the originally proposed model. The residual net
used the kernel initializer as ‘He normal’ for weight initialization. On top of the residual network
model, a flattened output was added and sent to the dense layer with the rectified linear unit (‘relu’)
activation and a dropout of 0.5. The final layer of the model was the classification layer with a
softmax activation and the number of classes as the output. The residual network model used for

training was ResNet-50 (Figure 2).

2.5  Inception-v4 Model

The Inception model architecture was designed by the Google Research team (22, 23). The
Inception-v4 model is a deep architecture with 41 million parameters and the model is designed
with inception blocks and reduction blocks. The inception blocks are used in a sequential manner
with reduction blocks except for the last inception block, which has an average pooling layer and

a dropout layer before the classification layer.

2.6 DenseNet-161 Model

The DenseNet model was based on the design by Huang et al. (24). This model was inspired by
the residual network model, which allows the residual connections to pass information from the
previous layer to the subsequent layer. Dense networks have advantages over other networks by
alleviating the vanishing gradient problem with feature propagation through the dense connection

to the subsequent layers.

The features passed to the subsequent layers in the DenseNet model are not added by summation,

but are combined using concatenation. Each block has connections from the previous block such
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that L=number of blocks and the number of connections for each block is Lx(L+1)/2, creating a
dense connectivity pattern or DenseNet. The DenseNet-161 model architecture is shown in Figure
3, which illustrates a 5 block approach where the 1% block is the Input layer and each of the
subsequent 4 blocks are characterized by 2D convolution layers with filter size of (1 x 1) and (3 x
3) respectively. The pre-trained model was used to transfer learning and used for classification

based on the trained information. A 161 layer DenseNet model was used for model training.

2.7  Training, Testing and Statistical Analysis

Model training was performed on a Nvidia Tesla P100, P40, K40/K80 GPU with 384 GB RAM
and the model accuracy was assessed for 200 Epochs. The optimizer used for training was the
Stochastic Gradient Descent (26) as described in Zhang et al.(27) and the learning rate was set to
107, with a decay of 10" and momentum of 0.8. Data augmentation was performed on the training
dataset, which included vertical and horizontal flip, random rotation, translation, shear, zoom shifts
and elastic transformation to minimize overfitting the data. The results were analyzed by assessing
accuracy, precision, sensitivity, specificity, and F-1 score values. Figure 4 shows the confusion
matrix and the equations for calculating the testing parameters. Slice-wise model testing was
performed based on the output from the 2D model. Subject-wise classification was performed
based on majority voting across IDH mutated and IDH wild type tumor slices. This classification
accuracy was computed on the independent test dataset that was separate from the testing and
validation data sets.

2.8 Model training times
The DensetNet-161 model took approximately 110 hours for training, while the ResNet-50 model
and the Inception V4 model took approximately 56 hours and 32 hours, respectively. Testing time

for individual subject classification was less than 30 seconds for all models.

3 Results

3.1  Training, validation, and testing accuracy

Table 1 shows the accuracy comparison between the ResNet-50, DenseNet-161 and Inception-v4
models. The DenseNet-161 model was superior in training, validation, and testing accuracy

compared to ResNet-50 and Inception-v4. Averaged across the five folds, the slice-wise accuracy
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of the DenseNet-161 model was 90.5 +1.0% (standard deviation) with an AUC of 0.95 on the held

out test dataset of 52 subjects.

3.2 Accuracy, Precision, Recall/Sensitivity, Specificity, F1 score and AUC Comparison
Average metrics were computed across folds and classes. The classification accuracy, precision,
recall/sensitivity, specificity, F1 score and AUC for slice-wise IDH classification with the
DenseNet-161 model were 90.5 +1.0%, 79.9 +3.4%, 83.1 +3.2%, 94.8 +0.5%, 81.3 +3.2% and
0.95, respectively. For subject-wise IDH classification, accuracy, precision/positive predictive
value, recall/sensitivity, specificity, F1 score and AUC were 84.1 £2.9%, 83.5 +3.5%, 83.5 +3.5%,
83.5 £3.1%, and 0.84 (Table 2). Slice-wise and subject-wise comparisons of accuracy, precision,
recall/sensitivity, specificity, F1 score and AUC for each of the 5 fold cross validations for the
DenseNet-161 model are shown in Table 3.

3.3 Slice-wise comparison:
The precision for the DenseNet-161 model across 5 fold cross validation was 97.7 £0.5% for the
“no tumor” classification, 71.7 £6.8% for IDH mutation, and 70.3 +5.5% for IDH wild type.

3.4  Subject-wise comparison:
For the DenseNet-161 model, the sensitivity and specificity for subject-wise IDH mutation
classification was 80.9 £9.4% and 86.2 £3.8%, respectively. The positive and negative predictive

values were 82.5 +2.8% and 85.7 +6.3%, respectively.

4 Discussion

The results from Tables 1 and 2 show that the ResNet-50 model performed better than the
Inception-v4 model. The ResNet-50 architecture has residual connections which preserve
information from the previous layer in the residual block. The DenseNet-161 model performed the
best of all the three models tested. Unlike the ResNet-50 model, the DenseNet-161 model
architecture carries the information from all previous layers and adds the information to the next
layer. This helped in learning the information from different layers and transferring to the next
layers. The slice-wise classification AUC results were 0.95 for DenseNet-161, 0.95 for ResNet-
50, and 0.86 for Inception-v4.
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Chang et al. (14) demonstrated a high classification accuracy for IDH mutation status using T2w,
FLAIR, T1w pre- and post-contrast images. Preprocessing steps included coregistration across
multiple sequences, intensity normalization to zero mean and unit variance, segmentation of the
brain tumor and cropping the images and resizing slices to 32 x 32. A 94% mean accuracy on 5-
fold cross validation was reported. The approach to classification was slice-wise, similar to our
model. In designing the slice-wise classification model, it is important to ensure that none of the
slices of subjects from the testing set are inadvertently included in the training set. This can easily
be overlooked in 2D slice-wise models during the slice randomization process that generate the
training slices, validation slices, and testing slices. This can introduce bias in the testing phase
artificially boosting accuracies by including slices from subjects in the training set that share
considerable information with different slices but from the same subjects in the testing set. It is

not clear in the previously reported 2D models whether this caveat was adhered to.

An important methodologic contribution that we make specifically to the radiologic deep learning
literature is on the approach to data randomization for 2D models. It is critical that imaging
researchers are aware of the data leakage and subject duplication issue. This is perhaps unique to
radiology where multiple slices of pathology are acquired in MRI or CT, with considerable overlap
in feature content from slice to slice. Widely used deep learning tools provide the ability to
perform data randomization using a simple flag in the called routine (e.g., in Keras, or Scikit-
learn(28)). Use of this flag in 2D imaging based CNNs can lead to bias in the results by
inadvertently including slices from the same subject in both training and testing cohorts. This is a
significant concern, as it can lead to data leakage in which examples of the same subject (albeit
different slices of the same tumor) can appear in the training set and the test set. The problem of
data leakage in medical images was discussed by Wegmayr et. al. (29) and Feng et. al.(20) and has
been referred to as subject duplication in training and testing sets. In our initial studies, we did
not account for the data leakage problem and achieved accuracies of 95% with the T2 images
alone, slightly higher than that of Chang et al (14). When appropriately accounting for the data
leakage issue, our accuracies were reduced to the 83.8% reported here. One of the major

contributions of our work is in making the radiology community aware of the data leakage
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problem, as it is very easy to overlook when 2D networks are considered that use image slices as

input.

The majority of HGG tumors are IDH wild type (up to 90%). An algorithm that merely
distinguishes between HGG and LGG for determination of IDH status is likely of limited value as
this can be done subjectively with fairly high accuracy on the basis of contrast enhancement. For
example, previous studies that used multiparametric MR data for determination of IDH status in
HGG and LGG may have demonstrated high accuracy predominantly on the basis of contrast
enhancement features. The more valuable distinction from a clinical standpoint would be between
IDH mutated and IDH wild type low grade gliomas in which contrast enhancement is usually
absent. Our training and testing samples were weighted towards LGG, and there were a significant
number of IDH wild type LGG in both the training and validation sample (~ 30%). Our testing
accuracy for the LGG group was 78.6%. Additionally, our use of T2w-only images eliminates the

potential for the algorithm being a contrast-enhancement discriminator.

Our method provides high accuracy with minimal preprocessing steps as compared to previous
work. The preprocessing steps in our work only involve N4 bias field correction and intensity
normalization. Our method also involves no tumor segmentation or ROI extraction as described in
Chang et al.(12) , which helps in reducing the time, effort and potential sources of error. Our
method also does not require pre-engineered features to be extracted from the images or
histopathological data as described in Delfanti et al. (11). This general approach can be easily
incorporated into an automated clinical workflow for IDH classification. The minimal
preprocessing, and the use of standard T2w images alone makes it promising as a robust clinical

tool for noninvasively determining IDH mutation status.

5 Limitations

This is a retrospective study applying several neural network architectures to the TCIA HGG-LGG
database to generate a model predicting IDH genotype based only on T2-weighted MR imaging.
The data set, especially at the subject level, is small in terms of deep learning applications and may
not generalize well. Fluctuation of performance is also a concern with small data sets. However,

the TCIA dataset is the largest curated brain tumor dataset publicly available, and it uses data from

10
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multiple sites using different imaging protocols. This database consisted of data from 10 different
institutions out of which 8 institutions contributed GBM/HGG datasets and 5 institutions
contributed LGG datasets to the TCIA cohort. This provided a very heterogeneous dataset, and we
believe this is perhaps even better than using data from a single source for deep learning
applications. While our current study focused on the classification of T2w images into no tumor,
IDH mutated, an IDH wild type, future studies can extend this approach to classify IDH1 and IDH2
subtypes. Accuracies may be further improved with the inclusion of multiparametric imaging data
in the training model. Our approach, however, is much more straightforward using T2-weighted
images alone without the requirement of additional imaging sequences. Clinically, T2-weighted
images are typically acquired within 2 minutes, and are robust to patient motion. The multi-
sequence input required by previous approaches can be compromised due to patient motion from
lengthier examination times, and the need for gadolinium contrast, especially as the post-contrast
images are typically acquired at the end of an already lengthy examination time. For a potential
clinical solution, the use of T2-weighted images is a significant strength, as these images are almost

uniformly acquired without artifacts from patient motion.

6 Conclusion

We demonstrate a deep learning method to predict IDH mutation status using T2-weighted MR
images alone. The proposed model requires minimal preprocessing to obtain high accuracies,
without the need for tumor segmentation or extraction of regions of interest, making it promising

for robust clinical implementation.
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Tables

Table 1. Slice-wise accuracy comparisons between the ResNet-50 Model, Inception-v4, and DenseNet-161 model
averaged for 5 fold cross validation

Results averaged for 5 fold cross validation
Model Training Validation Testing accuracy
accuracy (%) accuracy (%) (%)
Inception-v4 64.8 72.2 1916/2522 (76.1)
ResNet-50 97.9 96.5 2265/2522 (89.7)
DenseNet-161 97.9 96.4 2282/2522 (90.5)
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Table 2. Slice-wise and subject-wise comparison of accuracy, precision, recall, F1 score and AUC parameters
averaged for 5 fold cross validation for ResNet-50, Inception-v4 and DenseNet-161

Results averaged for 5 fold cross validation
Accuracy | Precision Recall / Specificity F1 score
Parameters e AUC
(%) (%) Sensitivity (%) (%) (%)
Slice wise
Inception-v4 76.1 59.4 59.2 84.5 58.2 0.86
ResNet-50 89.7 79.3 81.7 94.1 80.2 0.95
DenseNet-161 90.5 79.9 83.1 94.8 81.3 0.95
Subject wise
Inception-v4 64.2 65.8 65.1 65.1 64.0 0.65
ResNet-50 81.4 81.5 81.5 81.5 81.4 0.81
DenseNet-161 83.8 84.1 83.5 83.5 83.5 0.84
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Table 3. Slice-wise and subject-wise comparison of accuracy, precision, recall, F1 score and AUC parameters for
each of the 5 fold cross validations for the DenseNet-161 model.

DenseNet-161 model
Fold Accuracy | Precision Recall / Specificity | F1 score AUC
(%) (%) Sensitivity (%) (%) (%)
Slice wise
1 91.7 83.3 86.0 94.9 84.4 0.95
2 91.0 82.7 84.4 95.1 83.5 0.95
3 90.1 79.3 81.5 94.5 80.2 0.95
4 88.7 73.7 77.6 93.9 75.5 0.91
5 90.9 80.3 86.0 95.4 82.8 0.95
Subject wise
1 84.6 84.8 84.0 84.0 84.2 0.84
2 86.5 87.2 87.5 87.5 86.5 0.87
3 78.8 79.1 77.9 77.9 78.2 0.78
4 82.7 83.1 81.8 81.8 82.2 0.82
5 86.5 86.3 86.6 86.6 86.4 0.87
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Fig 1 Flowchart of preprocessing steps prior to training the deep learning model
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Fig 4. Confusion Matrix and equations for calculating accuracy, precision, sensitivity, specificity, and F1 score
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