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Abstract  

Isocitrate dehydrogenase (IDH) mutation status is an important marker in glioma diagnosis and 

therapy. We propose a novel automated pipeline for predicting IDH status noninvasively using 

deep learning and T2-weighted (T2w) MR images with minimal preprocessing (N4 bias correction 

and normalization to zero mean and unit variance). T2w MRI and genomic data were obtained 

from The Cancer Imaging Archive dataset (TCIA) for 260 subjects (120 High grade and 140 Low 

grade gliomas). A fully automated 2D densely connected model was trained to classify IDH 

mutation status on 208 subjects and tested on another held-out set of 52 subjects, using 5-fold cross 

validation.  Data leakage was avoided by ensuring subject separation during the slice-wise 

randomization. Mean classification accuracy of 90.5% was achieved for each axial slice in 

predicting the three classes of no tumor, IDH mutated and IDH wild-type. Test accuracy of 83.8% 

was achieved in predicting IDH mutation status for individual subjects on the test dataset of 52 

subjects. We demonstrate a deep learning method to predict IDH mutation status using T2w MRI 

alone. Radiologic imaging studies using deep learning methods must address data leakage (subject 

duplication) in the randomization process to avoid upward bias in the reported classification 

accuracy.  

Keywords: Isocitrate dehydrogenase (IDH), MRI, Convolutional networks, Deep learning, Tumor 

classification, Radiomics 
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1 Introduction 

In 2008 it was reported that some glioblastomas harbor a mutation in a gene coding for the citric 

acid cycle enzyme isocitrate dehydrogenase (IDH) (1).  Subsequent studies revealed that the 

majority of low grade gliomas possess a mutant form of IDH, and that the mutant enzyme catalyzes 

the production of the oncometabolite 2-hydroxyglutarate (2-HG) (2).  Although this product of the 

mutant form of IDH is believed to play a role in the initiation of the neoplastic process, it has been 

observed that gliomas that contain the mutant enzyme have a better prognosis than tumors of the 

same grade that contain only the wild type IDH.  This observation implies that IDH mutated and 

IDH wild type gliomas are biologically different tumors, and led the World Health Organization 

(WHO) to designate them as such in the latest revision of their classification of gliomas (3). 

Although a presumptive diagnosis of an IDH mutated glioma may be made on the basis of MR 

spectroscopy for 2-HG (4-7), at the present time, the only way to definitively identify an IDH 

mutated glioma is to perform immunohistochemistry or gene sequencing on a tissue specimen, 

acquired through biopsy or surgery. Because the differences between IDH mutated and IDH wild 

type gliomas may have implications for their treatment, especially if inhibitors of the mutant IDH 

enzyme currently in development prove to halt their growth, there is interest in attempting to 

distinguish between these two tumor types prior to surgery.  As noted above, one avenue of 

research involves using MR spectroscopy to measure levels of 2-HG in the tumor (5, 8-10).  More 

recent studies have attempted to utilize machine learning techniques to analyze diagnostic MR 

images and predict IDH mutation status in gliomas using anatomic differences between the two 

tumor types.   

 

Delfanti et al. demonstrated that genomic information with fluid attenuated inversion recovery 

(FLAIR) MRI could be used for the classification of patient images into IDH wild type, and IDH 

mutation with and without 1p/19q co-deletion (11). The main determinants for classification were 

tumor border and location, with IDH mutant tumors having well-defined or slightly ill-defined 

borders and predominantly a frontal localization; and IDH wild type tumors demonstrating 

undefined borders and location in non-frontal areas. Chang et al. developed a deep learning 

residual network model for predicting IDH mutation with preprocessing steps including 

resampling, co-registration of multiple sequences, bias correction, normalization and tumor 

segmentation (12).  Using a combination of imaging and age, the model demonstrated testing 
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accuracy of 89.1% and an area under the curve (AUC) value of 0.95 for IDH mutation for all image 

sequences combined. Zhang et al. used 103 low grade glioma (LGG) subjects for training a support 

vector machine (SVM) for classifying IDH mutation status, achieving an AUC of 0.83 on testing 

data (13).  In another approach, Chang et al (14) similarly demonstrated that IDH mutation status 

can be determined using T2-weighted (T2w), T2w- Fluid attenuated inversion recovery (FLAIR) 

and T1-weighted pre- and post-contrast images. Preprocessing steps in their work included co-

registration of all sequences, intensity normalization using zero mean and unit variance, 

application of a 3D convolutional neural network (CNN) based whole tumor segmentation tool for 

segmenting the lesion margins, cropping the output tumor mask on all input imaging sequences, 

and resizing individual image slices to 32 x 32 with 4 input sequence channels. The mean accuracy 

result from the model was 94% with a 5-fold cross validation accuracy ranging from 90% to 96% 

(14). Common to all of these previous methods is the involvement of preprocessing steps, typically 

including some form of brain tumor pre-segmentation or region of interest extraction, and utilizing 

multiparametric or 3D near-isotropic MRI data that is often not part of the standard clinical 

imaging protocol (12, 14).    

 

In this work, we propose a fully automated deep learning based pipeline using a densely connected 

network model, that involves minimal preprocessing and requires only standard T2w images. A 

similar approach has been previously used for the identification of the O6 – methylguanine-DNA 

methyltransferase (MGMT) methylation status and prediction of 1p/19q chromosomal arm 

deletion (15). Clinical T2-weighted images are acquired in a short time frame (typically around 2 

minutes), and are robust to motion with current acquisition methods.  Almost universally, high 

quality T2-weighted images are acquired during clinical brain tumor work-ups. The preprocessing 

steps preserve the original image information without the need for any resampling, skull stripping, 

region-of-interest, or tumor pre-segmentation procedures. The advantage of a dense network 

model is that it passes the weights from all the previous blocks to the subsequent blocks, preserving 

the information from the initial layer and aiding in the classification.   

 

The ability to quickly and accurately classify IDH status non-invasively can help with better 

planning, counseling, and treatment of brain tumor patients, especially in cases where biopsy is 

not feasible due to unfavorable tumor locations.  A methodologic contribution that we make 
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specifically to the radiologic deep learning literature is on the approach to data randomization for 

2D models. Furthermore, the deep learning approach is fully automated and can be easily 

implemented in the clinical workflow using only T2-weighted MR images. 

 

2 Materials and Methods 

2.1 Subjects 

260 subjects from The Cancer Imaging Archive (TCIA) (16) dataset were selected, including 120 

high grade gliomas (HGG) (17) and 140 low grade gliomas (LGG) (18), and based on their pre-

operative status from a pool of 461 subjects.  The genomic information was provided through the 

National Cancer Institute - Genomic Data Commons (GDC) Data Portal (19). The genomic data 

was available in the following 3 classes: IDH mutated, IDH wild type, and Not Available (N/A). 

The Genomic data of the N/A type was excluded from the pool of 461 subjects. MRI data was 

filtered for any visible artifacts in the images. The final dataset consisted of 260 subjects based 

on the available genomic information, MRI data, pre-operative status and lack of image artifacts 

on the T2w images.  

 

A standard 80:20 data split was employed with 80% training and 20% testing (held-out).  The 80% 

training was further split into a standard 80:20 split of 80% training and 20% validation.  The final 

dataset of 260 subjects was thus randomly divided into a training set (208 subjects, including 

approximately 96 HGG and 112 LGG) and a test set (52 subjects, including approximately 24 

HGG and 28 LGG). This process was repeated separately for each fold during the 5-fold cross 

validation.  

 

For each fold of the cross-validation, 208 subjects with, on average, 9,728 axial slices of T2w 

images were selected for training and validation (7177 slices – No tumor, 1110 slices – IDH 

mutated, 1441 slices– IDH wild type). The start and end slices of the tumor (edge slices) were 

manually labeled for each T2 dataset. These edge slices were excluded from training to provide 

more robust ground truth data. All slices were included for the testing set. Each T2w slice was 

manually assigned only one label (No Tumor, IDH mutated, or IDH wild type). In order to address 

any class imbalance due to the higher number of no tumor slices, class weights were assigned 

based on the labels in the training dataset.  Although this was a slice-wise training model, slices of 
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subjects in the testing set were not mixed into the training set. This is a critical step related to the 

data leakage problem in 2D networks, especially for radiologic deep learning studies (20, 21). This 

was necessary to avoid bias during testing and an over inflation of the measured accuracies.  Fifty 

two subjects with 2522 axial slices (1839 slices– No Tumor, 299 slices– IDH mutated, 384 slices– 

IDH wild type) were not included in the training or validation and were used for testing, for each 

fold.  Classification was done on a slice-wise basis (2D) followed by majority voting across all 

slices to provide a patient-level classification. Note that we use the term slice-wise to refer to 

classification of each 2D axial image for IDH status. Similarly, the term subject-wise is used for 

classification of IDH status for each subject. We used a straightforward majority voting scheme to 

determine subject-wise classification based on the majority IDH classification of the individual 

2D slices. Subjects classified with an equal number of IDH mutated and IDH wild-type tumor 

slices were assigned to the IDH wild type group. 

 

2.2 Image Processing 

Minimal standard preprocessing of the T2w images from the TCIA data set was performed prior 

to training (Figure 1). The images were converted from DICOM to nifti format using dcm2nii, bias 

corrected to remove RF inhomogeneity using the N4 bias correction algorithm, zero-mean 

intensity normalized to between -1 and 1, and resampled to 128 x 128 image dimensions to 

improve the computational efficiency during training.  The Inception V4 model however, required 

input image size of 299 x 299 as a design constraint of this model when originally constructed (22, 

23).  The total preprocessing time for each subject was less than 1 minute.   

 

2.3 Model Training 

The following models were used for classification of the T2w images into IDH mutated and IDH 

wild type classes: residual network (ResNet-50), Densely connected network (DenseNet-161), and 

Inception-v4. Our choice of network architectures was based on the best performers from the 

ImageNet challenge for 2015 (ResNET), and 2017 (DenseNet and Inception V4).  The DenseNet 

model, designed by Huang et al (24) received the best paper award at CVPR 2017.   The models 

were trained with the Pycharm and Python IDEs using the Keras python package with TensorFlow 

backend engines. Fine tuning of the 3 classes was performed on all models. The three-class labels 

for each slice were: no tumor, IDH mutated, and IDH wild type. The models were originally trained 
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on ImageNet data with 3 channels (RGB).  For our implementation the 3-channel input was 

provided as a central slice with the 2 immediate surrounding slices. If the central slice was the first 

or last slice, the surrounding slices were assigned as no value. 

 

2.4 ResNet-50 Model 

The residual network was implemented as proposed by He et al. (25). Each residual connection 

adds the input of the block to the output, helping to preserve the information from the previous 

block.  A deep residual network framework was added to the model while maintaining parameter 

numbers to address issues with convergence in the originally proposed model. The residual net 

used the kernel initializer as ‘He normal’ for weight initialization. On top of the residual network 

model, a flattened output was added and sent to the dense layer with the rectified linear unit (‘relu’) 

activation and a dropout of 0.5. The final layer of the model was the classification layer with a 

softmax activation and the number of classes as the output. The residual network model used for 

training was ResNet-50 (Figure 2). 

 

2.5 Inception-v4 Model 

The Inception model architecture was designed by the Google Research team (22, 23). The 

Inception-v4 model is a deep architecture with 41 million parameters and the model is designed 

with inception blocks and reduction blocks. The inception blocks are used in a sequential manner 

with reduction blocks except for the last inception block, which has an average pooling layer and 

a dropout layer before the classification layer.  

 

2.6 DenseNet-161 Model 

The DenseNet model was based on the design by Huang et al. (24). This model was inspired by 

the residual network model, which allows the residual connections to pass information from the 

previous layer to the subsequent layer. Dense networks have advantages over other networks by 

alleviating the vanishing gradient problem with feature propagation through the dense connection 

to the subsequent layers.  

 

The features passed to the subsequent layers in the DenseNet model are not added by summation, 

but are combined using concatenation.  Each block has connections from the previous block such 
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that L=number of blocks and the number of connections for each block is L×(L+1)/2, creating a 

dense connectivity pattern or DenseNet. The DenseNet-161 model architecture is shown in Figure 

3, which illustrates a 5 block approach where the 1st block is the Input layer and each of the 

subsequent 4 blocks are characterized by 2D convolution layers with filter size of (1 x 1) and (3 x 

3) respectively. The pre-trained model was used to transfer learning and used for classification 

based on the trained information. A 161 layer DenseNet model was used for model training. 

 

2.7 Training, Testing and Statistical Analysis 

Model training was performed on a Nvidia Tesla P100, P40, K40/K80 GPU with 384 GB RAM 

and the model accuracy was assessed for 200 Epochs. The optimizer used for training was the 

Stochastic Gradient Descent (26) as described in Zhang et al.(27) and the learning rate was set to 

10-5, with a decay of 10-7 and momentum of 0.8.  Data augmentation was performed on the training 

dataset, which included vertical and horizontal flip, random rotation, translation, shear, zoom shifts 

and elastic transformation to minimize overfitting the data. The results were analyzed by assessing 

accuracy, precision, sensitivity, specificity, and F-1 score values.  Figure 4 shows the confusion 

matrix and the equations for calculating the testing parameters. Slice-wise model testing was 

performed based on the output from the 2D model. Subject-wise classification was performed 

based on majority voting across IDH mutated and IDH wild type tumor slices. This classification 

accuracy was computed on the independent test dataset that was separate from the testing and 

validation data sets.  

 

2.8 Model training times 

The DensetNet-161 model took approximately 110 hours for training, while the ResNet-50 model 

and the Inception V4 model took approximately 56 hours and 32 hours, respectively.  Testing time 

for individual subject classification was less than 30 seconds for all models. 

 

3 Results 

3.1 Training, validation, and testing accuracy 

Table 1 shows the accuracy comparison between the ResNet-50, DenseNet-161 and Inception-v4 

models.  The DenseNet-161 model was superior in training, validation, and testing accuracy 

compared to ResNet-50 and Inception-v4. Averaged across the five folds, the slice-wise accuracy 
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of the DenseNet-161 model was 90.5 ±1.0% (standard deviation) with an AUC of 0.95 on the held 

out test dataset of 52 subjects.  

 

3.2 Accuracy, Precision, Recall/Sensitivity, Specificity, F1 score and AUC Comparison 

Average metrics were computed across folds and classes. The classification accuracy, precision, 

recall/sensitivity, specificity, F1 score and AUC for slice-wise IDH classification with the 

DenseNet-161 model were 90.5 ±1.0%, 79.9 ±3.4%, 83.1 ±3.2%, 94.8 ±0.5%, 81.3 ±3.2% and 

0.95, respectively.  For subject-wise IDH classification, accuracy, precision/positive predictive 

value, recall/sensitivity, specificity, F1 score and AUC were 84.1 ±2.9%, 83.5 ±3.5%, 83.5 ±3.5%, 

83.5 ±3.1%, and 0.84 (Table 2). Slice-wise and subject-wise comparisons of accuracy, precision, 

recall/sensitivity, specificity, F1 score and AUC for each of the 5 fold cross validations for the 

DenseNet-161 model are shown in Table 3. 

 

3.3 Slice-wise comparison:  

The precision for the DenseNet-161 model across 5 fold cross validation was 97.7 ±0.5% for the 

“no tumor” classification, 71.7 ±6.8% for IDH mutation, and 70.3 ±5.5% for IDH wild type. 

 

3.4 Subject-wise comparison: 

For the DenseNet-161 model, the sensitivity and specificity for subject-wise IDH mutation 

classification was 80.9 ±9.4% and 86.2 ±3.8%, respectively. The positive and negative predictive 

values were 82.5 ±2.8% and 85.7 ±6.3%, respectively.  

 

4 Discussion 

The results from Tables 1 and 2 show that the ResNet-50 model performed better than the 

Inception-v4 model. The ResNet-50 architecture has residual connections which preserve 

information from the previous layer in the residual block. The DenseNet-161 model performed the 

best of all the three models tested.  Unlike the ResNet-50 model, the DenseNet-161 model 

architecture carries the information from all previous layers and adds the information to the next 

layer. This helped in learning the information from different layers and transferring to the next 

layers. The slice-wise classification AUC results were 0.95 for DenseNet-161, 0.95 for ResNet-

50, and 0.86 for Inception-v4.  
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Chang et al. (14) demonstrated a high classification accuracy for IDH mutation status using T2w, 

FLAIR, T1w pre- and post-contrast images.  Preprocessing steps included coregistration across 

multiple sequences, intensity normalization to zero mean and unit variance, segmentation of the 

brain tumor and cropping the images and resizing slices to 32 x 32. A 94% mean accuracy on 5-

fold cross validation was reported.  The approach to classification was slice-wise, similar to our 

model.  In designing the slice-wise classification model, it is important to ensure that none of the 

slices of subjects from the testing set are inadvertently included in the training set.  This can easily 

be overlooked in 2D slice-wise models during the slice randomization process that generate the 

training slices, validation slices, and testing slices.   This can introduce bias in the testing phase 

artificially boosting accuracies by including slices from subjects in the training set that share 

considerable information with different slices but from the same subjects in the testing set.  It is 

not clear in the previously reported 2D models whether this caveat was adhered to. 

An important methodologic contribution that we make specifically to the radiologic deep learning 

literature is on the approach to data randomization for 2D models.  It is critical that imaging 

researchers are aware of the data leakage and subject duplication issue.  This is perhaps unique to 

radiology where multiple slices of pathology are acquired in MRI or CT, with considerable overlap 

in feature content from slice to slice.  Widely used deep learning tools provide the ability to 

perform data randomization using a simple flag in the called routine (e.g., in Keras, or Scikit-

learn(28)).  Use of this flag in 2D imaging based CNNs can lead to bias in the results by 

inadvertently including slices from the same subject in both training and testing cohorts. This is a 

significant concern, as it can lead to data leakage in which examples of the same subject (albeit 

different slices of the same tumor) can appear in the training set and the test set.  The problem of 

data leakage in medical images was discussed by Wegmayr et. al. (29) and Feng et. al.(20) and has 

been referred to as subject duplication in training and testing sets.    In our initial studies, we did 

not account for the data leakage problem and achieved accuracies of 95% with the T2 images 

alone, slightly higher than that of Chang et al (14).  When appropriately accounting for the data 

leakage issue, our accuracies were reduced to the 83.8% reported here.  One of the major 

contributions of our work is in making the radiology community aware of the data leakage 
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problem, as it is very easy to overlook when 2D networks are considered that use image slices as 

input. 

The majority of HGG tumors are IDH wild type (up to 90%).  An algorithm that merely 

distinguishes between HGG and LGG for determination of IDH status is likely of limited value as 

this can be done subjectively with fairly high accuracy on the basis of contrast enhancement.  For 

example, previous studies that used multiparametric MR data for determination of IDH status in 

HGG and LGG may have demonstrated high accuracy predominantly on the basis of contrast 

enhancement features.  The more valuable distinction from a clinical standpoint would be between 

IDH mutated and IDH wild type low grade gliomas in which contrast enhancement is usually 

absent. Our training and testing samples were weighted towards LGG, and there were a significant 

number of IDH wild type LGG in both the training and validation sample (~ 30%).  Our testing 

accuracy for the LGG group was 78.6%.  Additionally, our use of T2w-only images eliminates the 

potential for the algorithm being a contrast-enhancement discriminator. 

 

 Our method provides high accuracy with minimal preprocessing steps as compared to previous 

work. The preprocessing steps in our work only involve N4 bias field correction and intensity 

normalization. Our method also involves no tumor segmentation or ROI extraction as described in 

Chang et al.(12) , which helps in reducing the time, effort and potential sources of error. Our 

method also does not require pre-engineered features to be extracted from the images or 

histopathological data as described in Delfanti et al. (11). This general approach can be easily 

incorporated into an automated clinical workflow for IDH classification. The minimal 

preprocessing, and the use of standard T2w images alone makes it promising as a robust clinical 

tool for noninvasively determining IDH mutation status.  

 

5 Limitations 

This is a retrospective study applying several neural network architectures to the TCIA HGG-LGG 

database to generate a model predicting IDH genotype based only on T2-weighted MR imaging.  

The data set, especially at the subject level, is small in terms of deep learning applications and may 

not generalize well. Fluctuation of performance is also a concern with small data sets. However, 

the TCIA dataset is the largest curated brain tumor dataset publicly available, and it uses data from 
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multiple sites using different imaging protocols.   This database consisted of data from 10 different 

institutions out of which 8 institutions contributed GBM/HGG datasets and 5 institutions 

contributed LGG datasets to the TCIA cohort. This provided a very heterogeneous dataset, and we 

believe this is perhaps even better than using data from a single source for deep learning 

applications.   While our current study focused on the classification of T2w images into no tumor, 

IDH mutated, an IDH wild type, future studies can extend this approach to classify IDH1 and IDH2 

subtypes. Accuracies may be further improved with the inclusion of multiparametric imaging data 

in the training model.  Our approach, however, is much more straightforward using T2-weighted 

images alone without the requirement of additional imaging sequences.  Clinically, T2-weighted 

images are typically acquired within 2 minutes, and are robust to patient motion.  The multi-

sequence input required by previous approaches can be compromised due to patient motion from 

lengthier examination times, and the need for gadolinium contrast, especially as the post-contrast 

images are typically acquired at the end of an already lengthy examination time.  For a potential 

clinical solution, the use of T2-weighted images is a significant strength, as these images are almost 

uniformly acquired without artifacts from patient motion. 

 

6 Conclusion 

We demonstrate a deep learning method to predict IDH mutation status using T2-weighted MR 

images alone. The proposed model requires minimal preprocessing to obtain high accuracies, 

without the need for tumor segmentation or extraction of regions of interest, making it promising 

for robust clinical implementation. 
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Tables 

  

  

Table 1. Slice-wise accuracy comparisons between the ResNet-50 Model, Inception-v4, and DenseNet-161 model 

averaged for 5 fold cross validation 

Results averaged for 5 fold cross validation  

Model 
Training 

accuracy (%) 
Validation 

accuracy (%) 
 Testing accuracy 

(%) 

Inception-v4 64.8 72.2 1916/2522 (76.1) 

ResNet-50  97.9 96.5 2265/2522 (89.7) 

DenseNet-161 97.9 96.4 2282/2522 (90.5) 
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Results averaged for 5 fold cross validation 

Parameters 
Accuracy 

(%) 
Precision 

(%) 
Recall / 

Sensitivity (%) 
Specificity 

(%) 
F1 score 

(%) 
AUC 

Slice wise 

Inception-v4 76.1 59.4 59.2 84.5 58.2 0.86 

ResNet-50 89.7 79.3 81.7 94.1 80.2 0.95 

DenseNet-161 90.5 79.9 83.1 94.8 81.3 0.95 

Subject wise 

Inception-v4 64.2 65.8 65.1 65.1 64.0 0.65 

ResNet-50 81.4 81.5 81.5 81.5 81.4 0.81 

DenseNet-161 83.8 84.1 83.5 83.5 83.5 0.84 

 

Table 2. Slice-wise and subject-wise comparison of accuracy, precision, recall, F1 score and AUC parameters 

averaged for 5 fold cross validation for ResNet-50, Inception-v4 and DenseNet-161 
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DenseNet-161 model  

Fold 
Accuracy 

(%) 
Precision 

(%) 
Recall / 

Sensitivity (%) 
Specificity 

(%) 
F1 score 

(%) 
AUC 

Slice wise 
1 91.7 83.3 86.0 94.9 84.4 0.95 

2 91.0 82.7 84.4 95.1 83.5 0.95 

3 90.1 79.3 81.5 94.5 80.2 0.95 

4 88.7 73.7 77.6 93.9 75.5 0.91 

5 90.9 80.3 86.0 95.4 82.8 0.95 

Subject wise 

1 84.6 84.8 84.0 84.0 84.2 0.84 

2 86.5 87.2 87.5 87.5 86.5 0.87 

3 78.8 79.1 77.9 77.9 78.2 0.78 

4 82.7 83.1 81.8 81.8 82.2 0.82 

5 86.5 86.3 86.6 86.6 86.4 0.87 

 

Table 3. Slice-wise and subject-wise comparison of accuracy, precision, recall, F1 score and AUC parameters for 

each of the 5 fold cross validations for the DenseNet-161 model. 
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Figures 

 

  

Fig 1 Flowchart of preprocessing steps prior to training the deep learning model 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2019. ; https://doi.org/10.1101/757344doi: bioRxiv preprint 

https://doi.org/10.1101/757344
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

 

  

Fig. 2. Architecture of ResNet-50 (50 layers) Model used for IDH classification 
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Fig 3. Architecture of the DenseNet-161 (161 layers) Model used for IDH classification. 
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Fig 4. Confusion Matrix and equations for calculating accuracy, precision, sensitivity, specificity, and F1 score 
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