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Cardiac imaging and electrophysiological measurements yield vast amounts

of data that typically need to be processed automatically. However, the

detection and segmentation of calcium transients or action potentials is

complicated by signal noise or signal drift, which may cause both false

positive and negative segmentation. This article presents a simple but

accurate ’comb’ algorithm for detection of calcium transients and action

potentials in such data where the pattern of activation is regular and its

frequency is known. This corresponds either to cases where the cardiac

preparation is paced externally, or where the preparation is beating in

a stable rhythm. The prior knowledge of the heart rate is leveraged to

overcome a broad range of artefacts and complications which arise in

experimental data, such as different types of noise, signal drift, or al-

ternans. The algorithm is simple to implement and has only a single

free parameter, which is furthermore simple to set. A Matlab/Octave

implementation of the comb algorithm is provided.
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1 Algorithm description

The basic version of the presented algorithm is designed for detection of calcium transients

in cardiac imaging data. It relies on finding the minima between adjacent calcium transients,

reporting these as calcium transient boundaries. We first provide an informal graphical in-

tuition of its principle when applied to calcium imaging. Second, the pseudocode is given.

Third, we describe how the algorithm can be adapted for detection of action potentials in

electrophysiological recordings or data from membrane potential imaging.

The code implementation of the algorithm (for Matlab and Octave) can be downloaded

from the following GitHub address: https://github.com/jtmff/comb. This also includes a script

which generates the figures used in this article.

1.1 Comb algorithm intuition for calcium imaging

The presented algorithm relies on prior knowledge of the basic cycle length (bcl) of the recording,

i.e., how many ms apart are the starting times of calcium transients. The central visual intuition

is that a ’comb’ is positioned over the calcium fluorescence signal, with its teeth bcl ms apart1

(Figure 1). The algorithm works in two stages: 1) comb positioning and 2) tooth refinement.

In comb positioning, the comb is slid over the signal, with the first tooth starting at 1 ms,

2 ms, ..., bcl ms2. In each position, the mean of signal under the comb teeth is computed, and

the minimum over these means is taken as the optimal comb position. Example of three comb

positions and corresponding means under the teeth are given in Figure 1. The strength of this

approach is that it utilizes information from the whole recording at once and the comb position

with minimum average value under its teeth naturally corresponds to locations very close to

signal minima.

In the second step, tooth refinement, each near-minimum identified as the location of one

of the comb’s teeth is taken as a starting point of a local search. The search finds the min-

imum within refinementWidth ms around the comb tooth, where refinementWidth is a

user-selected parameter. This step is designed for cases such as cardiac alternans or slightly

irregular heartbeat, where the minima are not spaced fully equidistantly. The optimal value of

refinementWidth depends on the degree of irregularity of the recording3.

1For clarity, we assume the recording is taken at 1 KHz equidistant sampling. The algorithm can be never-
theless naturally extended for any sampling rate.

2It is not necessary to go beyond bcl ms, given that the resulting comb would be identical to a previously
considered one.

3In our experience, 5 ms is sufficient for generally regular recordings, while 15 ms is enough even for recordings
with marked beat-to-beat variability.
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Figure 1: Comb algorithm illustration. An example of calcium imaging recording with
basic cycle length of 140 ms, with three distinct positions of a ’comb’. Means of values at
x-axis locations corresponding to each comb’s teeth are given in the legend.
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1.2 Comb algorithm pseudocode

A pseudocode is given in Algorithm 1, using Matlab-like notation. Therefore, the expression

x : y is the vector [x, x + 1, ..., y], and x : y : z is [x, x + y, x + 2y, ..., z], where z is the

largest number lower or equal to z. Furthermore, the expression a(b) where a, b are vectors

corresponds to those elements in a that are at positions specified in b.

Input: trace (calcium or membrane potential),

bcl (basic cycle length of activation),

refinementWidth (a free parameter determining the width of local search)

Output: toothPositions (vector of local minima in the trace)

// Comb positioning

for iFirstTooth = 1:bcl do
candidateTeeth = iF irstTooth:bcl:length(trace);

meanV alueUnderTeeth(iF irstTooth) = mean(trace(candidateTeeth));

end

positionF irstTooth = argmin(meanV alueUnderTeeth);

toothLocations = positionF irstTooth:bcl:length(trace);

// Tooth refinement

for iTooth = 1:length(positionFirstTooth) do
thisToothLocation = toothLocations(iTooth);

/* We look to the left and right of the current tooth position;

max/min are present to avoid looking outside the signal. */

leftSearchBoundary = max(thisToothLocation - refinementWidth, 1);

rightSearchBoundary = min(thisToothLocation + refinementWidth,

length(trace));

toothPositions(iTooth) =

min(trace(leftSearchBoundary:rightSearchBoundary));

end

Algorithm 1: Comb algorithm pseudocode.
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1.3 Algorithm adaptation for membrane potential recordings

Whereas in calcium imaging data, the local minima generally correspond to boundaries between

calcium transients, this may not hold in optical or electrophysiological recordings of membrane

potential, where an action potential is followed by diastolic interval where the signal is relatively

flat (Figure 2). A local minimum may lie relatively anywhere within the diastolic interval,

which complicates the optimal comb placement. For such case, we suggest the following:

1. Flip the signal so that the peaks of action potentials point down.

2. Find minima using the baseline algorithm (the minima now correspond to peaks of action

potentials).

3. Assume a sensible maximum duration of action potential upstroke (e.g., 20-30 ms) and

place boundaries this long before the flipped signal minima. Therefore, one obtains signal

boundaries that start right before the start of an action potential (Figure 2).

One exception when this approach could fail is extremely rapid pacing, where the diastolic

interval is virtually nonexistent. In such a case, putting an action potential boundary 30 ms

before an action potential peak could, in theory, hit the repolarization phase of the previous

action potential. However, when the diastolic interval is extremely short, the basic version of

the algorithm may be used instead.

Another approach to detection of action potentials may be to use the comb on upside-down

flipped vector of derivatives of the signal; in this case, the comb position corresponds to the

locations of action potential upstrokes.

Figure 2: Membrane potential recording illustration. Sample recording of rat action
potentials with boundaries between these highlighted. In larger mammals, the flat diastolic
intervals are typically longer than action potentials themselves.

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2019. ; https://doi.org/10.1101/757294doi: bioRxiv preprint 

https://doi.org/10.1101/757294
http://creativecommons.org/licenses/by/4.0/


2 Algorithm demonstration

Here are shown several examples of the algorithm’s performance, demonstrating how various

signal artefacts are tackled. The experimental data were collected in a previous study in whole-

heart imaging of rat Langendorff hearts [1].

2.1 Linear and nonlinear baseline drift, steps, and bleaching

Signal drift is a common finding in experimental recordings. It can result from gradual dye

loading (leading to an increase in signal baseline over time), dye bleaching (reducing the signal

baseline and amplitude over time), or more prosaic events such as the researcher bumping into

the table with the imaging setup, or a droplet of solution passing over the imaged preparation,

causing a transient change in signal intensity. The nonlinear drift is especially problematic for

simpler algorithms for detection of calcium transients, given that it renders thresholding nearly

useless unless the drift can be automatically learned and subtracted.

Both linear and nonlinear drift are processed correctly by the comb algorithm (Figure

3A,B). In addition, we tested the performance on very abrupt step-like change in the signal

baseline; this arises during optogenetic experiments, when the preparation is illuminated by

stepwise pulses [2, 3]. The algorithm functions well even when the step boundary falls within

a calcium transient (Figure 3C).

Ultimately, we simulated photobleaching by reducing the baseline and amplitude, which did

not present an obstacle to the algorithm (Figure 3D).

One type of drift-like behaviour which might prove problematic to the algorithm is peri-

odic signal perturbation, e.g., arising from from contraction-induced motion artefacts in tissue

mapping. In such a case, it is possible that there are signal minima that reflect tissue contrac-

tion rather than starts of cellular activation. Given that the frequency of contraction will be

identical to the frequency of tissue activation, the artefact-induced minima may be detected as

boundaries by the comb algorithm.
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Figure 3: Drift artefacts. A) Linear baseline drift. B) Nonlinear baseline drift. C) Step-wise
baseline perturbation. D) Baseline drift and amplitude reduction mimicking dye photobleach-
ing.
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2.2 Gaussian noise

Gaussian noise is frequently found in optical and electrophysiological recordings. It may confuse

thresholding algorithms by producing falsely positive objects of short duration. Approaches

based on upstroke velocity may be also confused if the noise amplitude is high enough to

mimick a segment of upstroke. The comb algorithm presented here can deal with low to very

high amount of noise (Figure 4A-C), which follows from the global nature of the approach. If

the recording is interpreted as the sum of true signal plus zero-mean noise, the noise component

under the comb teeth is averaged over the teeth. Given that the noise is zero-mean, the longer

the recording, the more teeth are present, making the average converge to zero, reducing the

impact of noise on tooth positioning. However, this holds predominantly for initial positioning

of the comb; the fine-tuning via local search around the initial tooth positions is vulnerable to

noise to a greater degree. Therefore, not using excessively wide local search window is advisable

for high-noise scenarios.

Figure 4: Gaussian noise. A-C) The calcium imaging recording from Figure 1 with Gaussian
noise of standard deviation 10, 25, and 50 added, respectively.
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2.3 Salt-and-pepper noise

Salt-and-pepper noise, also known as impulse noise, presents as sharp and sudden jump in

a pixel’s intensity, which is typically sparse. This can be handled implicitly by the comb

algorithm in many cases, such as Figure 5A. A case of salt-and-pepper which confuses the

comb algorithm can be constructed, when a single extremely low value is present (Figure 5B).

This acts as an attractor which forces the comb to put one of its teeth at this location. If such

artefacts are present in data, the comb algorithm could be modified to minimize median of

values under comb teeth, rather than the mean. Alternatively, median filtering may be applied

to the signal, as it is usually an effective countermeasure against salt-and-pepper noise.

Figure 5: Salt-and-pepper noise. A) Sparse medium-amplitude salt-and-pepper noise. B)
Extremely sparse large-amplitude salt-and-pepper noise.
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2.4 Calcium alternans

One phenomenon which is not an artefact, but which may nevertheless prove troublesome, is

calcium alternans, the periodic oscillation of large and small calcium transient at rapid pacing

[4, 1]. The comb algorithm can easily detect separate transients when alternans is present

(Figure 6A), even when it is severe (Figure 6B). Particularly the latter case of very severe

alternans highlights why such data are hard to process e.g., via thresholding approaches, given

that the range of thresholds which would detect the smaller calcium transients is narrow (and

it may vary between different cells).

Particularly the case of severe alternans (Figure 6B) is one of motivations for the inclusion

of the parameter allowing local search around initial comb tooth position. Given that the large

calcium transients are longer than the short ones, a completely rigid comb with teeth 85 ms

apart could not find transient boundaries accurately.

Figure 6: Calcium alternans. A) Medium-degree calcium alternans. B) very severe calcium
alternans. Both cases were recorded at 85 ms bcl.
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3 Discussion

Here we have presented a simple ’comb’ algorithm for detection of calcium transients or action

potentials in recordings of regularly activated cardiac preparations. The algorithm uses prior

knowledge of the activation frequency to find all objects of interest at the same time, utilizing

global information to overcome potential pitfalls in experimental data. It has the following

advantages:

• It is resistant to noise and/or drift of signal, unlike simple alternative approaches based

on thresholding or detection of rapid upstroke velocity.

• It does not need any reference data (like template matching), nor annotations (like ma-

chine learning). The independence on precise shape of the segmented object makes it

readily applicable for other objects of interest (such as traces of ionic current measure-

ments), as long as these have reasonably obvious minima or maxima.

• It is generally very simple, easy to implement in any language, also offering fast compu-

tational performance. In addition, it has only a single free parameter which furthermore

has a very clear graphical intuition and is thus simple to set.

The fact that the algorithm requires an approximately fixed heart rate is a limitation, but

it still covers a range of widely used scenarios in cardiac research. Fixed-rate pacing is often

employed in experiments, e.g., to control for unwanted drug-induced changes in heart rate, or

when alternans is elicited via the ’S1’ protocol. In addition, the ’S1-S2’ protocol used to study

action potential duration restitution [5] can also be processed automatically. Furthermore, it is

often the case that even an unpaced cardiac preparation has a stable-enough heart rate, making

it suitable for processing by the comb algorithm. The accurate detection of action potential or

calcium transient boundaries then greatly facilitates reliable extraction of biomarkers such as

action potential duration, calcium transient duration, calcium transient amplitude (which then

may be used to estimate the degree of calcium alternans), or area under a curve (e.g., calcium

transient or ionic current measurement). The algorithm may be further adapted to achieve

even greater flexibility:

• The basic algorithm uses equidistant comb teeth. However, the general approach can be

used for any pattern of pacing as long as this is known in advance. E.g., a pacing protocol

that employs pacing at gradually increasing rate corresponds to a comb with gradually

reducing distance between teeth. Alternatively, alternans measurements typically employ

pacing using blocks of fixed-rate stimuli, with the rate increasing between the blocks.

This again may be fitted with a comb with corresponding blocks of teeth, where each

block has equidistant teeth, but the distance is changed between blocks.

• The generation of non-equidistant comb teeth as in the previous point could be in theory

automated via approaches detecting signal frequency over time. Additionally, ECG mea-
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surements are often employed as an additional feature in whole-heart recordings, which

can be used to extract heart rate over time, and this could be used to generate an appro-

priate comb for a parallel imaging recording.
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