

1 **Elevated exposure to prenatal thyroid hormones affects embryonic mortality but**
2 **has no effects into adulthood**

3

4

5

6 Tom Sarraude*^{1,2}, Bin-Yan Hsu¹, Ton G.G. Groothuis², Suvi Ruuskanen¹

7

8 ¹ Department of Biology, University of Turku, Finland

9 ² Groningen Institute for Evolutionary Life Sciences, University of Groningen, the
10 Netherlands

11 * Corresponding author: Tom Sarraude, t.sarraude@rug.nl

12

13 **Keywords:** maternal hormones; thyroid hormones; avian growth; hatching success; Japanese
14 quails; life-history strategies.

15

16 **Summary statement:** Thyroid hormones are important hormones in all vertebrates, although
17 overlooked in the context of maternal effect. We found short-term effects of prenatal THs but
18 no evidence of programming effects.

19 **Abstract**

20 Maternal thyroid hormones (THs) are known to be crucial in embryonic development in
21 humans, but their influence on other, especially wild, animals remains poorly understood. So
22 far, the studies that experimentally investigated the consequences of maternal THs focused on
23 short-term effects, while long-term organisational effects, as shown for other prenatal
24 hormones, could also be expected. In this study, we aimed at investigating both the short- and
25 long-term effects of prenatal THs in a bird species, the Japanese quail *Coturnix japonica*. We
26 experimentally elevated yolk TH content (the prohormone T₄, and its active metabolite T₃, as
27 well as a combination of both hormone) We analysed hatching success, embryonic
28 development, offspring growth and oxidative stress as well as their potential organisational
29 effects on reproduction, moult, and oxidative stress in adulthood. We found that eggs injected
30 with both hormones had a higher hatching success compared with control eggs, suggesting
31 conversion of T₄ into T₃ by the embryo. We detected no other short-term or organisational
32 effects of yolk THs. Unfortunately, sex-specific responses could not be properly tested due to
33 low sample sizes. These results suggest that yolk thyroid hormones are important in the
34 embryonic stage of precocial birds, but may not have other short and long-term consequences,
35 at least not in captivity. Research on maternal thyroid hormones will greatly benefit from
36 studies investigating how embryos use and respond to this maternal signalling. Long-term
37 studies on prenatal THs in other taxa in the wild are needed for a better understanding of this
38 hormone-mediated maternal pathway.

39 **Introduction**

40 Maternal effects represent all the non-genetic influences of a mother on her offspring and
41 have received increasing attention in evolutionary and behavioural ecology. Through maternal
42 effects, mothers can influence the fitness of their progeny by adapting their phenotype to
43 expected environmental conditions (“adaptive maternal effects” in Marshall and Uller, 2007;
44 Mousseau and Fox, 1998), and this view is now also incorporated in the human disease
45 literature (Gluckman et al., 2005). Maternal hormones transferred to the offspring can mediate
46 important maternal effects. Historically, research on maternal hormones has mostly focused
47 on steroid hormones (Groothuis et al., 2005; von Engelhardt and Groothuis, 2011). Recently,
48 thyroid hormones (THs) also received attention in the context of hormone-mediated maternal
49 effects (Ruuskanen and Hsu, 2018).

50 Thyroid hormones (THs) are metabolic hormones produced by the thyroid gland and
51 are present in two main forms: the prohormone thyroxine (T₄) and the biologically active
52 form triiodothyronine (T₃). THs play a crucial role in various aspects of an individual’s life,
53 e.g. development, metabolism and reproduction, across vertebrates, including humans
54 (Krassas et al., 2010; Morreale de Escobar et al., 2004). In humans, physiological variation of
55 maternal THs (i.e. no clinical symptoms in both mothers and foetuses) is found to be
56 associated with infant birth weight and IQ in older children (Korevaar et al., 2016; Medici et
57 al., 2013). In birds as well, THs play a role in brain development and neuronal turnover
58 (reviewed in McNabb, 2007). THs control the endothermic heat production, and are therefore
59 important in thermoregulation in juveniles and adults (McNabb and Darras, 2015).

60 THs can act, in concert with other hormonal axes, as mediators of life stage transitions
61 across vertebrates (e.g., reviewed in Watanabe et al., 2016). The interaction between thyroid
62 hormones and corticosteroids on amphibian metamorphosis is a well-known example of such
63 effect on life stage transition (Kikuyama et al., 1993; Wada, 2008). THs are involved in
64 gonadal development, and hyperthyroidism tends to fasten maturation (Holsberger and
65 Cooke, 2005), and coordinate the transition between reproduction and moult (McNabb and
66 Darras, 2015). Administration of exogenous THs is known to stop egg laying and induce
67 moult in birds (Keshavarz and Quimby, 2002; Sekimoto et al., 1987). THs are also involved in
68 photoperiodic control in seasonal breeding (Dardente et al., 2014). For example,
69 thyroidectomised starlings transferred to long photoperiods became insensitive to future
70 changes in photoperiod, and short photoperiod did not induce gonadal regression (Dawson,
71 1993).

72 While there has been recent research effort on the influence of maternal THs on
73 offspring traits across vertebrate taxa, there are still substantial knowledge gaps. First,
74 research on maternal thyroid hormones up to date has mainly investigated the short-term
75 effects of prenatal THs on developing fish (Brown et al., 1988; Raine et al., 2004) and
76 amphibians (Duarte-Guterman et al., 2010; Fini et al., 2012) and pre-fledging birds (Hsu et
77 al., 2017; Hsu et al., 2019; Ruuskanen et al., 2016). So far, only a study on rock pigeons has
78 looked at the influence of yolk THs on post-fledging survival and found no effect (Hsu et al.,
79 2017). None of these studies in any taxa investigated the potential organisational effects of
80 prenatal THs on life-history stage transitions in adult life.

81 Second, previous studies on prenatal THs in birds focused only on altricial species
82 (great tits, Ruuskanen et al., 2016; rock pigeons, Hsu et al., 2017; collared flycatchers, Hsu et
83 al., 2019). Embryonic development differs substantially between altricial and precocial
84 species. In the latter, embryonic development is more advanced than in the former. In
85 addition, precocial embryos start their endogenous production of TH around mid-incubation,
86 considerably earlier than their altricial counterparts, in which endogenous TH production
87 begins only after hatching (McNabb et al., 1998). While embryonic hormone production may
88 limit the influence of maternal hormones, prenatal hormones have been shown to affect chick
89 endogenous production and sensitivity (Pfannkuche et al., 2011). Overall, exposure to
90 maternal hormones may be of different importance in these two developmental modes.

91 Third, previous research has studied the effects of T_3 only (Fini et al., 2012; Raine et
92 al., 2004; Walpita et al., 2007) or a combination of T_3 and T_4 (Hsu et al., 2017; Hsu et al.,
93 2019; Ruuskanen et al., 2016), where the effects of the two forms cannot be separated.
94 Although T_3 is the biologically active form that binds to the receptors, both are deposited in
95 eggs (Prati et al., 1992) and T_4 may be converted to T_3 via deiodinases from the mother or the
96 developing embryo (Van Herck et al., 2015) or may still exert non-genomic actions (reviewed
97 in Davis et al., 2016). Manipulating yolk T_4 and T_3 independently would help understanding
98 the relative contribution of these two hormones.

99 In this study, we aimed at assessing the effects of maternal THs on development and
100 life-history traits in a precocial bird species, the Japanese quail (*Coturnix japonica*). To do so,
101 manipulated eggs received either an injection of T_4 or T_3 separately, a combination of both
102 hormones, or a control injection of the vehicle saline solution. This design allowed us to
103 explore the effects of T_4 and T_3 separately. The elevation in yolk THs remained within the
104 natural range of this species, a crucial condition to obtain relevant results for an eco-
105 evolutionary context. We measured traits known to be influenced by circulating and yolk THs:

106 hatching success, age at embryonic mortality, growth, transition between life-history stages
107 (i.e., reproductive state and moult) and oxidative stress. First, we hypothesise that elevation of
108 yolk THs in Japanese quails positively affects hatching success, as found in two studies on
109 collared flycatchers and rock pigeons (Hsu et al., 2017; Hsu et al., 2019, but see Ruuskanen et
110 al., 2016). Second, elevation of yolk THs is predicted to increase the proportion of well-
111 developed embryos before hatching, as found in rock pigeons (Hsu et al., 2017). We therefore
112 looked at the age at mortality in unhatched eggs. Third, we expect elevated yolk THs to affect
113 chick growth (in body mass, tarsus and wing length) either positively (Hsu et al., 2019;
114 Wilson and McNabb, 1997), negatively (Hsu et al., 2017), or in a sex-specific manner
115 (Ruuskanen et al., 2016). Fourth, we predict that yolk THs will have organisational effects on
116 life-history stage transitions; that is, age at sexual maturity and male gonadal regression
117 (using cloacal gland size as a proxy), and moult when birds are exposed to short photoperiod.
118 Based on the literature mentioned above we expect elevated yolk THs to advance the timing
119 of puberty, gonadal regression and moult. The rate of moult should also be influenced, with
120 birds receiving experimental TH elevation moulting faster. We also explored the effects of
121 yolk THs on reproductive investment in females, another important fitness aspect. Finally,
122 yolk THs may increase oxidative stress due to their stimulating effects on metabolism.

123 **Material and Methods**

124 ***Parental generation and egg collection***

125 The parental generation was composed of adult Japanese quails provided by Finnish private
126 local breeders that were kept in two acclimated rooms. Twenty-four breeding pairs were
127 formed by pairing birds from different breeders. Individuals were identified using metal leg
128 bands. The floor was covered with 3–5cm sawdust bedding. A hiding place, sand and calcium
129 grit were provided. Each pair was housed in a 1 m² pen. The temperature was set to 20°C with
130 a 16L:8D photoperiod (light from 06.00 to 22.00). Food (Poultry complete feed, “Kanan Paras
131 Täysrehu”, Hankkija, Finland) was provided *ad libitum* and water was changed every day.

132 Pairs were monitored every morning to collect eggs. Eggs were individually marked
133 (non-toxic marker), weighed and stored for 7 days in a climate-controlled chamber at 15°C
134 and 50% relative humidity. On the last day of collection, an average of 6.6 eggs per pair
135 (range = 4–8 eggs) were injected with a solution (see next section).

136 ***Preparation of the solution, injection procedure and incubation***

137 The preparation of hormone solution and the procedure of injection were based on previous
138 studies (Hsu et al., 2017; Ruuskanen et al., 2016). In brief, crystal T₄ (L-thyroxine, ≥ 98%
139 HPCL, CAS number 51-48-9, Sigma-Aldrich) and T₃ (3,3',5-triiodo-L-thyronine, > 95%
140 HPCL, CAS number 6893-02-3, Sigma-Aldrich) were first dissolved in 0.1M NaOH and then
141 diluted in 0.9% NaCl. The injection of thyroid hormones resulted in an increase of two
142 standard deviations (T₄ = 8.9 ng/egg; T₃ = 4.7 ng/egg), a recommended procedure for
143 hormone manipulation within the natural range (Hsu et al., 2017; Podmokla et al., 2018;
144 Ruuskanen et al., 2016). The control solution (CO) was a saline solution (0.9% NaCl). The
145 concentrations of the hormone solutions were based on previous measurements of 15 eggs
146 from the same flock (T₄ content per egg (SD) = 15.3 (4.4) ng, T₃ content per egg (SD) = 7.6
147 (2.3) ng).

148 Hormone injections were performed at room temperature in a laminar hood. Eggs
149 were put sideways, allowing yolks to float up to the middle position. Before injection, the
150 shell was disinfected with a cotton pad dipped in 70% EtOH. We used a 27G needle (BD
151 Microlance™) to pierce the eggshell and then used a 0.3 ml syringe to deliver 50 µl of the
152 respective hormone solution or control. After injection, the hole was sealed with a sterile
153 plaster (OPSITE Flexigrid, Smith&Nephew).

154 In total, 158 eggs were injected and divided as follows over the treatments: T₃
155 treatment (N = 39); T₄ treatment (N = 39); T₃+T₄ treatment (N = 40); and control, CO (N =
156 40). To balance the genetic background of the parents and the effect of storage, each egg laid
157 by the same female was sequentially assigned to a different treatment and the order of
158 treatments was rotated among females. After injection, eggs were placed in an incubator at
159 37.8°C and 55% relative humidity. Until day 14 after starting incubation, eggs were
160 automatically tilted every hour by 90°. On day 14, tilting was halted and each egg was
161 transferred to an individual container to monitor which chick hatched from which egg. On day
162 16 after injection, (normal incubation time = 17 days), the temperature was set to 37.5°C and
163 the relative humidity to 70%. Eggs were checked for hatching every 4 hours from day 16
164 onwards. Four days after the first egg hatched, all unhatched eggs were stored in a freezer and
165 dissected to determine the presence of an embryo. The age of developed embryos was
166 assessed according to Ainsworth et al. (2010).

167 ***Rearing conditions of the experimental birds***

168 In total, 66 chicks hatched (N = 10 CO, 15 T₃, 20 T₄ and 21 T₃T₄). The overall hatching

169 success was rather low (ca. 40%), partly due to the injection procedure itself (Groothuis and
170 von Engelhardt, 2005), although low hatching success in quails has also been reported in
171 unmanipulated conditions previously (e.g. Okuliarová et al., 2007). Among the unhatched
172 eggs, 33.7% (31 out of 92) had no developed embryos. Twelve hours after hatching, the
173 chicks were marked by a unique combination of coloured rings and nail coding and
174 transferred to two 1 m² cages (ca. 30 chicks/cage, sex and treatments mixed together). The
175 chicks were provided with heating mats and lamps as extra heat sources for the first two
176 weeks. The chicks were fed with sieved commercial poultry feed (“Punaheltta paras
177 poikanen”, Hankkija, Finland), and provided with Calcium and bathing sand. Two weeks after
178 hatching, the chicks were separated in four 1 m² cages of about 16 individuals. Around 3
179 weeks after hatching, coloured rings were replaced by unique metal rings. On week 4 after
180 hatching, birds were transferred to eight 1 m² pens (average of 7.1 birds/pen, range = 4–9),
181 under the same conditions as the parents. Around the age of sexual maturity (ca. 6–8 weeks
182 after hatching), the birds were separated by sex in twelve 1 m² pens (average of 4.8 birds/pen,
183 range = 4–5).

184 ***Monitoring of growth and reproductive maturation***

185 Body mass and wing length were measured twelve hours after hatching. Tarsus was not
186 measured because it bends easily, resulting in inaccurate measures and potential harm for the
187 young. From day 3 to day 15, these three traits were monitored every 3 days. From day 15 to
188 day 78 (ca. 12 weeks), chicks were measured once a week. Body mass was recorded using a
189 digital balance to the nearest 0.1 g. Wing and tarsus lengths were respectively measured with
190 a ruler and a calliper to the nearest 0.5 mm and 0.1 mm. From week 6 to week 10, we
191 monitored cloacal gland development and foam production in 28 males. Cloacal glands were
192 measured every other day with a calliper to the nearest 0.1 mm as a proxy for testes
193 development and sexual maturation (Biswas et al., 2007). Foam production (by gently
194 squeezing the cloacal gland) was assessed at the same time and coded from 0 (no foam) to 3
195 (high production of foam), as a proxy of cloacal gland function (Cheng et al., 1989a; Cheng et
196 al., 1989b). The same observer performed all measurements. We collected eggs produced by
197 10-week-old females over a 6-day period, and measured the short and long axes of the eggs
198 with a calliper to the nearest 0.01 mm and record their mass to the nearest 0.1 g. We collected
199 on average 5.7 eggs (range = 4–7) per female from 28 females.

200 ***Monitoring of cloacal gland regression and moult***

201 In Japanese quails, exposure to short photoperiod and cold temperature triggers reproductive
202 inhibition and postnuptial moult (Tsuyoshi and Wada, 1992). Thyroid hormones are known
203 to coordinate these two responses (see introduction). When the birds reached the age of ca. 7
204 months, we exposed birds to short photoperiod (8L:16D, i.e., light from 08.00 to 16.00) with a
205 12:12-h cycle of normal (20°C) and low (9°C) temperature (low temperature was effective
206 from 18.00 to 06.00). Cloacal gland regression (as a proxy for testes regression) was
207 monitored every other day for 2 weeks with a calliper by measuring the width and length to
208 obtain the area of the gland to the nearest 0.1 mm² (N = 26 males). Primary moult was
209 recorded from a single wing by giving a score to each primary from 0 (old feather) to 5 (new
210 fully-grown feather) following Ginn and Melville (1983) (N = 54 males and females). The
211 total score of moult was obtained by adding the score of all feathers.

212 ***Oxidative status biomarker analyses***

213 Two blood samples were drawn, when birds were 2 weeks (N = 51 chicks) and 4 months old
214 (N = 49 adults), respectively. 200 µl of blood was collected from the brachial vein in
215 heparinized capillaries and directly frozen in liquid nitrogen. Then, the samples were stored at
216 -80°C until analyses. We measured various biomarkers of antioxidant status; the antioxidant
217 glutathione (tGSH), the ratio of reduced and oxidised glutathione (GSH:GSSG) and activity
218 of the antioxidant enzymes glutathione peroxidase (GPx), catalase (CAT) and superoxide
219 dismutase (SOD) from the blood. It is important to measure multiple biomarkers of oxidative
220 and antioxidant status for a broader understanding of the mechanism. Also, the interpretation
221 of the results is more reliable if multiple markers show similar patterns. Of the measured
222 biomarkers, the ratio of GSH:GSSG represents the overall oxidative state of cells and
223 consequently, deviations in this ratio is often used as an indicator of oxidative stress
224 (Halliwell and Gutteridge, 2015; Hoffman, 2002; Isaksson et al., 2005; Lilley et al., 2013;
225 Rainio et al., 2013). GPx enzymes catalyse the glutathione cycle, whereas CAT and SOD
226 directly regulate the level of reactive oxygen species (ROS) (Ercal et al., 2001; Halliwell and
227 Gutteridge, 2015). The methodology for measuring each biomarker is described in detail in
228 Rainio et al. (2015). All analyses were conducted blindly of the treatment. Briefly, the
229 samples were analyzed using a microplate reader (EnVision, PerkinElmer-Wallac, Finland).
230 All antioxidant and enzyme activities were measured in triplicate (intra-assay coefficient of
231 variability [CV] < 10% in all cases) using 96-(CAT) or 384-well (GPx, SOD, tGSH and
232 GSH:GSSG) microplates. Three control samples were used with each plate, to be able to

233 correct inter-assay precision with the ratio specific to the particular plate. Overall protein
234 concentration (mg/ml) was measured according to the Bradford method (Bradford, 1976)
235 using BioRad stock (BioRad, Finland) diluted with dH₂O (1:5) and BSA (bovine serum
236 albumin, 1 mg/ml) (Sigma Chemicals, USA) as a standard. GPx-assay was conducted using
237 Sigma CGP1 kit, CAT-assay using SigmaCAT100 kit and SOD-assay using Fluka 19160 SOD
238 determination kit. Total GSH and the ratio of GSH:GSSG were measured with the ThioStar®
239 glutathione detection reagent (Arbor Assays, USA) according to kit instructions, using
240 reduced glutathione as a standard (Sigma Chemicals, USA).

241 ***Ethics***

242 The study complied with Finnish regulation and was approved by the Finnish Animal
243 Experiment Board (ESAVI/1018/04.10.07/2016).

244 ***Statistical analysis***

245 Data were analysed with the software R version 3.5.3 (R core team, 2019). In this study, two
246 different statistical approaches were used: null-hypothesis testing with Generalised Linear
247 Mixed Models (GLMMs) and Linear Mixed Models (LMMs), and multimodel inference with
248 Generalised Additive Mixed Models (GAMMs). GAMMs were used to analyse the data on
249 body and cloacal gland growth to account for its non-linear pattern (see *Growth*). In this
250 analysis, we preferred multimodel inference as GAMMs generate many candidate models that
251 cannot be directly compared (e.g., by the Kenward-Roger approach). Instead, candidate
252 models were ranked based on their Akaike Information Criterion (AIC) values. Models with a
253 $\Delta\text{AIC} \leq 2$ from the top-ranked model were retained in the set of best models. Akaike weights
254 of all models were calculated following (Burnham and Anderson, 2002), and evidence ratios
255 of the top-ranked models were calculated as the weight of a model divided by the weight of
256 the null model (Burnham et al., 2011). To estimate the effect of the predictors, we computed
257 the 95% confidence intervals from the best models using the *nlme* package (Pinheiro et al.,
258 2018). GLMMs and LMMs were fitted using the R package *lme4* (Bates et al., 2015), and
259 GAMMs were fitted using the package *mgcv* (Wood, 2017). P-values for GLMMs were
260 obtained by parametric bootstrapping with 1,000 simulations and p-values for LMMs were
261 calculated by model comparison using Kenward-Roger approximation, using the package
262 *pbkrtest* in both cases (Halekoh and Højsgaard, 2014). Post-hoc Tukey analyses were
263 conducted with the package *multcomp* (Hothorn et al., 2008). Due to our experiment design,
264 eggs injected with both hormones received a higher absolute amount of hormones than eggs

265 injected with T₄ or T₃ only. Therefore, we also tested a potential dose-dependent effect of the
266 treatment on the response variables when treatment groups showed significant differences.
267 Model residuals were checked visually for normality and homoscedasticity. Covariates and
268 interactions were removed when non-significant ($\alpha = 0.05$).

269 *Hatching success*

270 To analyse hatching success, each egg was given a binary score: 0 for unhatched egg and 1 for
271 hatched egg. A series of GLMMs were fitted with a binomial error distribution (logit link) and
272 mother identity as a random intercept. The first model included the 4-level treatment
273 (treatments: CO, T₃, T₄ and T₃T₄) as the predictor, while in a second model treatment was
274 converted into an ordered variable, following the increasing levels (i.e. CO, T₃, T₄ and T₃T₄).
275 The second model was meant to test for a potential dose-dependent effect as the eggs received
276 an increasing amount of total THs as a potential source of T₃, the most potent hormone. Egg
277 mass might affect hatchability and was therefore added as a covariate in both models. The
278 potential effect of storage duration on hatchability (Reis et al., 1997) was accounted for by
279 including laying order as a covariate in both models.

280 *Duration of embryonic period, age at embryonic mortality and mass at hatching*

281 Duration of embryonic period and mass at hatching were modelled with LMMs. Treatment,
282 sex of the individuals and egg mass were included as fixed factors. Laying order was added as
283 a covariate to account for potential effects of storage duration on hatching time and on chick
284 weight (Reis et al., 1997). Mother identity was included as a random intercept. In the model
285 for mass at hatching, duration of embryonic period was further added as a covariate.

286 The data for embryonic age had a skewed distribution and residuals were not normally
287 distributed and heterogenous, which violated LMM assumptions on residual distribution. We
288 therefore performed a simple Kruskal-Wallis test.

289 *Growth*

290 As growth curves typically reach an asymptote, we fitted non-linear GAMMs to these curves.
291 Growth in body mass, tarsus and wing length were analysed in separate GAMMs. Growth
292 was analysed until week 10 after hatching as all birds appeared to have reached their
293 maximum body mass and tarsus and wing length. The data are composed of repeated
294 measurements of the same individuals over time; therefore, we first corrected for temporal
295 autocorrelation between the measurements using an ARMA(1,1) model for the residuals (Zuur
296 et al., 2009). Second, as mothers produced several eggs, the models included nested random

297 effects, with measured individuals nested into mother identity, allowing for random intercepts.
298 GAMMs allow modelling the vertical shift of the curves (i.e., changes in intercepts) and their
299 shape. Treatment and sex were included as predictors. A smoothing function for the age of the
300 birds was included to model the changes in the growth curves, and was allowed to vary by sex
301 or treatment only, or none of these predictors. The interaction between sex and treatment was
302 not analysed due to low statistical power. Additive effect of treatment and sex was tested for
303 the intercept but could not be computed for curve shape. All combinations of the relevant
304 predictors were tested for both shape parameters (i.e., intercept and curve shape).

305 *Reproductive maturation, regression and investment*

306 Due to low sample sizes in sex-specific responses, we could not perform robust statistical
307 analyses. We therefore present these analyses and results in the supplementary material and
308 only briefly discuss them.

309 *Oxidative stress*

310 A principal component analysis (PCA) was first performed on measured antioxidant markers
311 (SOD, CAT, GPx, tGSH and GST), to reduce the number of metrics for subsequent analyses.
312 The first and the second principal components (PCs) explained together 60.2% of the variance
313 (Table 1). PC1 and PC2 were then used as dependent variables in separate LMMs. LMMs
314 included the treatment, sex and age of individuals (2 weeks and 4 months old) as fixed factors
315 and the 2-way interactions between treatment and sex, and treatment and age. Mother and
316 individual identities, to account for repeated measures, were added as random intercepts.
317 Malondialdehyde (MDA) is a marker of oxidative damage, which is a different measure from
318 antioxidant activity, and was therefore analysed in a separate LMM using the same parameters
319 as for PC1 and PC2, adding the batch of the assay as an additional random intercept. The
320 marker of cell oxidative status (GSH:GSSG ratio) was analysed with the same model used for
321 PC1 and PC2.

322 *Moult*

323 Two parameters of moult were analysed in separate LMMs: the timing of moult (i.e., the
324 moult score after one week of short photoperiod), and the rate of moult (i.e., how fast birds
325 moulted). Both models included treatment and sex as fixed factors, and mother identity as a
326 random intercept. The rate of moult was tested by fitting an interaction between treatment and
327 age. This model also included the main effect of age and individual identity, nested within
328 mother identity, as a random intercept to account for repeated measures. Estimated marginal

329 means and standard errors (EMMs \pm SE) were derived from the model using the package
330 *emmeans* (Lenth, 2019).

331 **Results**

332 ***Effects of prenatal THs on hatching success and age of embryo mortality***

333 There was a significant effect of elevated prenatal THs on hatching success (GLMM, $p =$
334 0.05, Fig. 1). Tukey post-hoc analysis revealed that hatching success in the T_3T_4 group was
335 significantly higher than in the CO group (Estimate \pm SE = 1.24 ± 0.50 , Tukey $z = 2.46$, $p =$
336 0.05). The other groups (T_3 and T_4) were not different from the control group (all $z < 2.22$ and
337 $p > 0.09$). The data suggested a dose-dependent effect that we tested by changing the
338 treatment factor to an ordered variable, as the eggs received an increasing amount of TH from
339 T_3 to T_3T_4 injections ($T_3 < T_4 < T_3T_4$). We found a linear positive dose-dependent effect of
340 yolk TH elevation (GLMM, Estimate \pm SE = 0.96 ± 0.36 , $z = 2.69$, $p = 0.007$), but no quadratic
341 or cubic effects ($p > 0.53$).

342 Dissection of the unhatched eggs showed that age of embryo mortality did not differ
343 between the treatments (Kruskal-Wallis $\chi^2 = 7.22$, $df = 3$, $p = 0.07$). Finally, the manipulation
344 of yolk THs did not affect the duration of embryonic period (LMM, $F_{3,42.0} = 0.57$, $p = 0.64$,
345 Fig. S1). Sex of the embryo or egg mass (LMM sex, $F_{1,49.7} = 2.63$, $p = 0.11$; LMM egg mass,
346 $F_{1,19.3} = 0.01$, $p = 0.92$) were also not associated with the duration of the embryonic period.

347 ***Effects of prenatal THs on growth***

348 Mass at hatching was not influenced by the elevation of prenatal THs (LMM, $F_{3,35.0} = 0.81$, p
349 = 0.50, Fig. S2). Mass at hatching was positively correlated with egg mass (LMM,
350 Estimate \pm SE = 0.72 ± 0.10 g, $F_{1,24.1} = 46.9$, $p < 0.001$), while duration of embryonic period
351 was negatively correlated with mass at hatching (LMM, Estimate \pm SE = -0.008 ± 0.003 g,
352 $F_{1,46.7} = 4.49$, $p = 0.04$).

353 Regarding body mass growth, the top-ranked model showed that the curve shape and
354 the intercept differ according to sex (Table 2). After 10 weeks, females had a larger body mass
355 than males (mean \pm SE females = 214.4 ± 5.7 g, males = 172.4 ± 4.5 g, Fig. 2), which was
356 supported by the 95% CIs (Table 3). Based on model selection we conclude that the treatment
357 had no effect on body mass growth (Table 2).

358 For wing length, the top-ranked model ($\Delta AIC \leq 2$) included sex in the intercept, while
359 treatment was not included in the best supported model (Table S1). The 95% CIs (Table 3)

360 confirmed that males had a lower wing length than females (Fig. S3).

361 Concerning tarsus length, the models within $\Delta\text{AIC} \leq 2$ included no predictors for the
362 curve shape but included treatment for the intercept (Table S2). The 95% CIs of the parameter
363 estimates from these models suggested that there was a slight negative effect of T_3T_4
364 treatment on tarsus growth (Table 3, Fig. S4). However, as the estimates were close to 0
365 (Table 3) and evidence ratios showed that the model with treatment as a predictor was only
366 3.5 times more supported than the null model (Table S2), we conclude that the effect of THs
367 on tarsus length is likely to be very small. Likewise, the second model for tarsus length
368 included sex as a predictor for the intercept, but its 95% CIs overlapped with 0 (Table 3). We
369 therefore conclude that sex had no effect on tarsus growth.

370 ***Effects of prenatal THs on postnuptial moult***

371 As expected, birds started to moult soon after being exposed to short photoperiod, with an
372 average increase of moult score by 6 per week ($\text{SE} = 0.2$, $F_{1,254.0} = 827.4$, $p < 0.001$, Fig. 3).
373 The first moult score (assessed one week after switching to short photoperiod) was not
374 affected by the treatment (LMM, $F_{3,42.7} = 0.36$, $p = 0.78$), but was influenced by sex, with
375 females having a higher score than male (EMMs $\pm \text{SE}$: female = 21.4 ± 1.6 , male = 7.2 ± 1.7 ;
376 LMM $F_{1,45.3} = 41.9$, $p < 0.001$). Yolk TH elevation did not affect the rate of moult (LMM
377 interaction treatment \times time, $F_{3,251.0} = 0.59$, $p = 0.62$, Fig. 3).

378 ***Effects of prenatal THs on oxidative stress***

379 The elevation of yolk THs had no effect on PC1 or PC2 of antioxidants at either 2 weeks
380 (“chicks”) or 4 months (“adults”) old (LMM on PC1, $F_{3,40.3} = 2.40$, $p = 0.08$; LMM on PC2,
381 $F_{3,42.2} = 0.92$, $p = 0.44$, treatment \times age, $F < 0.91$, $p > 0.44$). The age of the birds had a highly
382 significant effect on PC1, with chicks generally having higher antioxidant capacities (CAT,
383 GST and tGSH) than adults (LMM, Estimate $\pm \text{SE} = -1.34 \pm 0.19$, $F_{1,49.2} = 52.1$, $p < 0.0001$). All
384 the other predictors had no effect on either PC1 or PC2 (all $F < 2.93$ and all $p > 0.09$).

385 The marker of oxidative damage, MDA, was affected by the elevation of yolk THs
386 (LMM, $F_{3,43.6} = 3.08$, $p = 0.04$, Fig. 4). Tukey post-hoc analysis showed that the T4 group had
387 higher MDA values than the T3 group (Estimate $\pm \text{SE} = 0.01 \pm 0.004$, Tukey contrast $p = 0.01$),
388 but none of the groups differed from the control (Tukey p-values > 0.19). However, this result
389 became non-significant when removing the outlier in the T4 group (LMM, $F_{3,43.1} = 2.68$, $p =$
390 0.06). MDA levels were not affected by the age or the sex of individuals (LMM age, $F_{1,54.4} =$
391 0.30 , $p = 0.59$; LMM sex, $F_{1,42.0} = 1.47$, $p = 0.23$).

392 The marker of cell oxidative balance, GSH:GSSG, was not influenced by the yolk THs
393 nor by the sex of the birds (LMM treatment, $F_{3,33.0} = 0.85$, $p = 0.48$; LMM sex, $F_{1,40.6} = 0.57$,
394 $p = 0.45$). However, chicks had a higher GSH:GSSG ratio than adults (LMM, Estimate \pm SE =
395 0.17 ± 0.04 , $F_{1,50.0} = 18.3$, $p < 0.0001$).

396 **Discussion**

397 The aim of this experimental study was to investigate the short-term and organisational effects
398 of maternal thyroid hormones (THs) in a precocial species, the Japanese quail, by
399 experimental elevation of THs in eggs. Our study is the first to investigate the effects of yolk
400 T_3 and T_4 separately, within the natural range of the study model. In addition we studied both
401 short and long term effects on embryonic development, growth, life stage transitions and
402 oxidative stress. We only detected a positive effect of yolk THs on hatching success. All other
403 response variables studied were not affected by elevated prenatal THs.

404 ***Effects of prenatal THs on hatching success and embryonic development***

405 We found that hatching success increased when the eggs received an injection of both T_4 and
406 T_3 . Previous similar studies reported comparable effects of yolk THs in rock pigeons (Hsu et
407 al., 2017) and in collared flycatchers (Hsu et al., 2019). In these studies, injections consisted
408 of a mixture of both T_3 and T_4 . Our results point towards a dose-dependent effect of yolk THs,
409 as found previously of androgen hormones (e.g., Muriel et al., 2015). Importantly, given that
410 only T_3 binds to receptors, these results also suggest that embryos must express deiodinase
411 enzymes to convert T_4 to T_3 , and/or yolk may contain maternally derived deiodinase mRNA.
412 Indeed, precocial embryos start to produce endogenous T_3 and deiodinase expression has
413 previously been characterised in chicken embryos (Darras et al., 2009; Van Herck et al.,
414 2012). In contrast with our study, a similar study in great tits detected no increased hatching
415 success due to the injection of THs (Ruuskanen et al., 2016). The dissimilarities between the
416 studies may come from inter-specific differences in terms of utilisation of yolk THs by the
417 embryos or from context-dependent effects (e.g. due to other egg components). Further
418 comparative and mechanistic studies could help understanding the dynamic of yolk THs
419 during incubation.

420 Increased yolk THs did not improve age of embryo mortality. Similar to our study,
421 Ruuskanen et al. (2016) did not find any difference in the timing of mortality in great tit
422 embryos. Conversely, the study on rock pigeons found that yolk THs increased the proportion
423 of well-developed embryos (Hsu et al., 2017). Similarly to our result on hatching success,

424 yolk THs' effects on embryonic development may differ in a species-specific manner.

425 ***Effects of prenatal THs on growth***

426 We found no influence of yolk THs on growth, contrary to our expectations based on the
427 recent literature. Other comparable studies found either a positive (Hsu et al., 2019), a
428 negative (Hsu et al., 2017) or a sex-specific effect (Ruuskanen et al., 2016) of yolk THs on
429 growth. This notable difference may be due to the captive conditions experienced by the
430 Japanese quails in our study, with unrestricted access to food and water. Although the pigeon
431 study also provided ad libitum food, parents still needed to process food before feeding their
432 nestlings in the form of crop milk, whereas precocial quails have no such limitation. In
433 addition, the Japanese quail has been domesticated for many generations, and probably
434 selected for rapid growth for economic reasons. Whole-genome sequencing in chickens
435 showed that domestication induced a strong positive selection on genes associated with
436 growth (Rubin et al., 2010). Interestingly, that study also found a strong selection for a locus
437 associated with thyroid stimulating hormone (TSH) receptor. TSH controls most of the TH
438 production by the thyroid gland (McNabb and Darras, 2015), and this artificial selection may
439 overshadow the effects of natural variations of prenatal THs on growth. Besides, the low
440 number of individuals in the control and T₃ groups (7 and 11, respectively) may have limited
441 statistical power to detect differences between the treatments. Repeating the study with a
442 larger sample size may allow us to ascertain the effects of yolk THs on growth in precocial
443 study models. Research on the influences of prenatal THs on growth will also benefit from
444 experimental studies on wild precocial species.

445 ***Effects of prenatal THs on postnuptial moult***

446 Short photoperiod in combination with cold temperature triggered primary moult, as expected.
447 However, we detected no effect of yolk THs on the timing or speed of moult. Thyroid
448 hormones are important in moult and feather growth (reviewed in Dawson, 2015). For
449 example, thyroidectomised birds fail to moult after being exposed to long photoperiods
450 (Dawson, 2015). In addition, thyroidectomised nestling starlings failed to grow normal adult
451 plumage and grown feathers presented an abnormal structure (Dawson et al., 1994). By
452 removing the thyroid gland, these two studies implemented extreme pharmacological
453 protocols that differ drastically from our injection of physiological doses. In addition, our
454 experimental design, increasing TH exposure (vs decreased TH exposure in the above-
455 mentioned studies), may have different consequences. For example, there may be a threshold

456 above which any additional hormones may not affect moult.

457 Overall, our results show no support for the hypothesis of programming effect of
458 prenatal THs on life stage transitions. Yet, due to small sample sizes in sex-specific analyses
459 (i.e., male gonadal maturation and regression, and female reproductive investment), there
460 remains a relatively high uncertainty about the potential programming effects of prenatal THs.
461 Replicate studies with larger samples sizes and different study models will reduce this
462 uncertainty.

463 ***Effects of prenatal THs on oxidative stress***

464 In contrast to our predictions, elevated yolk THs did not affect oxidative status during chick or
465 adult phase. We found no changes in antioxidant activities in relation to yolk THs and no
466 imbalance in the oxidative cell status. Nevertheless, T₄ birds had a higher level of oxidative
467 damage on lipids than T₃ birds, but this was a weak effect driven by one outlier. The lack of
468 effects on chick oxidative status among the treatment groups could be explained by the
469 absence of treatment effects on growth, given that high growth rates usually result in higher
470 oxidative stress and damage (e.g. Alonso-Alvarez et al., 2007). In turn, the lack of treatment
471 effects on adult oxidative status may suggest no organisational effects of prenatal THs on
472 adult metabolism. A recent study in an altricial species also found no influence of yolk THs on
473 nestling oxidative stress (Hsu et al., 2019). Our study shows for the first time that prenatal
474 THs have no influence on adult oxidative stress either. The previous study focused on a
475 limited set of biomarkers: one antioxidant enzyme, oxidative damage on lipids and oxidative
476 balance. In the present study, we measured 7 biomarkers, thus providing broader support to
477 the absence of effects of prenatal THs on oxidative stress.

478 ***Conclusion***

479 To our knowledge, this study is the first one to experimentally investigate the consequences of
480 natural variations of maternal THs not only early but also in adult physiology and postnuptial
481 moult in any vertebrate. Furthermore, this study explored for the first time the effects of
482 maternal T₃ and T₄ separately. We found no evidence for differential effects of maternal T₄
483 and T₃, while a dose-dependent effect on hatching success suggests that T₄ is converted into
484 T₃, the biologically active form during embryonic development. Contrary to similar studies on
485 wild altricial species, we found no influence of maternal THs on growth. Further research on
486 embryos utilisation of maternal THs may help understand the differences observed between
487 precocial and altricial species. Studies in other vertebrates are urgently needed to understand

488 the potential for long-term organising effects of maternal THs.

List of symbols and abbreviations

- CAT: catalase
- CO: control treatment
- GP: glutathione peroxidase
- tGSH: oxidised glutathione
- GSSG: reduced glutathione
- GST: Glutathione S-transferase
- MDA: malonaldehyde
- RMR: resting metabolic rate
- SOD: super-oxide dismutase
- T₃: triiodothyronine
- T₄: thyroxine
- THs: thyroid hormones

Acknowledgements

We thank Sophie Michon for her help on setting up the parental generation. We also thank Ido Pen for consultation and help with statistical analysis, and Esther Chang for her help throughout the writing phase.

Competing interests

We declare no competing interests.

Funding

The study was funded by the Academy of Finland (grant no. 286278 to SR), the Finnish National Agency for Education (grant no. TM-15-9960 to TS) and the University of Groningen (grant to TS).

References

Ainsworth, S. J., Stanley, R. L. and Evans, D. J. R. (2010). Developmental stages of the Japanese quail. *J. Anat.* **216**, 3–15.

Alonso-Alvarez, C., Bertrand, S., Faivre, B. and Sorci, G. (2007). Increased susceptibility to oxidative damage as a cost of accelerated somatic growth in zebra finches. *Funct. Ecol.* **21**, 873–879.

Bates, D., Mächler, M., Bolker, B. and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. *J. Stat. Softw.* **67**, 1–48.

Biswas, A., Ranganatha, O. S., Mohan, J. and Sastry, K. V. H. (2007). Relationship of cloacal gland with testes, testosterone and fertility in different lines of male Japanese quail. *Anim. Reprod. Sci.* **97**, 94–102.

Brown, C. L., Doroshov, S. I., Nunez, J. M., Hadley, C., Vaneenennaam, J., Nishioka, R. S. and Bern, H. A. (1988). Maternal triiodothyronine injections cause increases in swimbladder inflation and survival rates in larval striped bass, *Morone saxatilis*. *J. Exp. Zool.* **248**, 168–176.

Burnham, K. P. and Anderson, D. R. (2002). *Model selection and multimodel inference: a practical information-theoretic approach*. 2nd ed. New York: Springer.

Burnham, K. P., Anderson, D. R. and Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. *Behav. Ecol. Sociobiol.* **65**, 23–35.

Cheng, K. M., McIntyre, R. F. and Hickman, A. R. (1989a). Proctodeal Gland Foam Enhances Competitive Fertilization in Domestic Japanese Quail. *The Auk* **106**, 286–291.

Cheng, K. M., Hickman, A. R. and Nichols, C. R. (1989b). Role of the proctodeal gland foam of male Japanese Quail in natural copulations. *The Auk* **106**, 279–285.

Dardente, H., Hazlerigg, D. G. and Ebling, F. J. P. (2014). Thyroid Hormone and Seasonal Rhythmicity. *Front. Endocrinol.* **5**, 19.

Darras, V. M., Van Herck, S. L. J., Geysens, S. and Reynolds, G. E. (2009). Involvement of thyroid hormones in chicken embryonic brain development. *Gen. Comp. Endocrinol.* **163**, 58–62.

Davis, P. J., Goglia, F. and Leonard, J. L. (2016). Nongenomic actions of thyroid hormone. *Nat. Rev. Endocrinol.* **12**, 111–121.

Dawson, A. (1993). Thyroidectomy progressively renders the reproductive system of starlings (*Sturnus vulgaris*) unresponsive to changes in daylength. *J. Endocrinol.* **139**, 51–55.

Dawson, A. (2015). Chapter 38 - Avian Molting. In *Sturkie's Avian Physiology (Sixth Edition)* (ed. Scanes, C. G.), pp. 907–917. San Diego: Academic Press.

Dawson, A., McNaughton, F. J., Goldsmith, A. R. and Degen, A. A. (1994). Ratite-like

neoteny induced by neonatal thyroidectomy of European starlings, *Sturnus vulgaris*. *J. Zool.* **232**, 633–639.

Duarte-Guterman, P., Langlois, V. S., Pauli, B. D. and Trudeau, V. L. (2010). Expression and T3 regulation of thyroid hormone- and sex steroid-related genes during *Silurana* (*Xenopus*) tropicalis early development. *Gen. Comp. Endocrinol.* **166**, 428–435.

Ercal, N., Gurer-Orhan, H. and Aykin-Burns, N. (2001). Toxic Metals and Oxidative Stress Part I: Mechanisms Involved in Metal-induced Oxidative Damage. *Curr. Top. Med. Chem.* **1**, 529–539.

Fini, J. B., Mével, S. L., Palmier, K., Darras, V. M., Punzon, I., Richardson, S. J., Clerget-Froidevaux, M. S. and Demeneix, B. A. (2012). Thyroid Hormone Signaling in the *Xenopus laevis* Embryo Is Functional and Susceptible to Endocrine Disruption. *Endocrinology* **153**, 5068–5081.

Ginn, H. and Melville, D. (1983). *{Moult in birds (BTO guide)}*. Thetford: British Trust for Ornithology.

Gluckman, P. D., Hanson, M. A. and Spencer, H. G. (2005). Predictive adaptive responses and human evolution. *Trends Ecol. Evol.* **20**, 527–533.

Groothuis, T. G. G. and von Engelhardt, N. (2005). Investigating Maternal Hormones in Avian Eggs: Measurement, Manipulation, and Interpretation. *Ann. N. Y. Acad. Sci.* **1046**, 168–180.

Groothuis, T. G. G., Müller, W., von Engelhardt, N., Carere, C. and Eising, C. (2005). Maternal hormones as a tool to adjust offspring phenotype in avian species. *Neurosci. Biobehav. Rev.* **29**, 329–352.

Halekoh, U., Højsgaard, S. 2014. A Kenward-Roger Approximation and Parametric Bootstrap Methods for Tests in Linear Mixed Models - The *R* Package pbkrtest. *J. Stat. Softw.* **59**.

Halliwell, B. and Gutteridge, J. M. C. (2015). *Free Radicals in Biology and Medicine*. Oxford University Press.

Hoffman, D. J. (2002). Role of selenium toxicity and oxidative stress in aquatic birds. *Aquat. Toxicol.* **57**, 11–26.

Holsberger, D. R. and Cooke, P. S. (2005). Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis. *Cell Tissue Res.* **322**, 133–140.

Hsu, B.-Y., Dijkstra, C., Darras, V. M., de Vries, B. and Groothuis, T. G. G. (2017). Maternal thyroid hormones enhance hatching success but decrease nestling body mass in the rock pigeon (*Columba livia*). *Gen. Comp. Endocrinol.* **240**, 174–181.

Hsu, B.-Y., Doligez, B., Gustafsson, L. and Ruuskanen, S. (2019). Transient growth-enhancing effects of elevated maternal thyroid hormones at no apparent oxidative cost during early postnatal period. *J. Avian Biol.*

Isaksson, C., Örnborg, J., Stephensen, E. and Andersson, S. (2005). Plasma Glutathione

and Carotenoid Coloration as Potential Biomarkers of Environmental Stress in Great Tits. *EcoHealth* **2**, 138–146.

Keshavarz, K. and Quimby, F. W. (2002). An Investigation of Different Molting Techniques with an Emphasis on Animal Welfare. *J. Appl. Poult. Res.* **11**, 54–67.

Kikuyama, S., Kawamura, K., Tanaka, S. and Yamamoto, K. (1993). Aspects of Amphibian Metamorphosis: Hormonal Control. In *International Review of Cytology*, pp. 105–148. Elsevier.

Korevaar, T. I. M., Muetzel, R., Medici, M., Chaker, L., Jaddoe, V. W. V., de Rijke, Y. B., Steegers, E. A. P., Visser, T. J., White, T., Tiemeier, H., et al. (2016). Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study. *Lancet Diabetes Endocrinol.* **4**, 35–43.

Krassas, G. E., Poppe, K. and Glinoer, D. (2010). Thyroid Function and Human Reproductive Health. *Endocr. Rev.* **31**, 702–755.

Lenth, R. (2019). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.2.

Lilley, T. M., Ruokolainen, L., Meierjohann, A., Kanerva, M., Stauffer, J., Laine, V. N., Atosuo, J., Lilius, E.-M. and Nikinmaa, M. (2013). Resistance to oxidative damage but not immunosuppression by organic tin compounds in natural populations of Daubenton's bats (*Myotis daubentonii*). *Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.* **157**, 298–305.

Marshall, D. J. and Uller, T. (2007). When is a maternal effect adaptive? *Oikos* **116**, 1957–1963.

McNabb, F. M. A. (2007). The Hypothalamic-Pituitary-Thyroid (HPT) Axis in Birds and Its Role in Bird Development and Reproduction. *Crit. Rev. Toxicol.* **37**, 163–193.

McNabb, F. M. A. and Darras, V. M. (2015). Thyroids. In *Sturkie's Avian Physiology*, pp. 535–547. Elsevier.

McNabb, F. M. A., Scanes, C. G. and Zeman, M. (1998). Endocrine control of development. In *Avian Growth and Development: Evolution Within the Altricial-precocial Spectrum*, pp. 174–202. New York: Starcj, J.M., Ricklefs, R.E.

Medici, M., Timmermans, S., Visser, W., de Muinck Keizer-Schrama, S. M. P. F., Jaddoe, V. W. W., Hofman, A., Hooijkaas, H., de Rijke, Y. B., Tiemeier, H., Bongers-Schokking, J. J., et al. (2013). Maternal Thyroid Hormone Parameters during Early Pregnancy and Birth Weight: The Generation R Study. *J. Clin. Endocrinol. Metab.* **98**, 59–66.

Morreale de Escobar, G., Obregon, M. and Escobar del Rey, F. (2004). Role of thyroid hormone during early brain development. *Eur. J. Endocrinol.* U25–U37.

Mousseau, T. A. and Fox, C. W. (1998). *Maternal Effects As Adaptations*. New York: Oxford University Press.

Muriel, J., Perez-Rodriguez, L., Puerta, M. and Gil, D. (2015). Diverse dose-response effects of yolk androgens on embryo development and nestling growth in a wild passerine. *J. Exp. Biol.* **218**, 2241–2249.

Okuliarová, M., Škrobánek, P. and Zeman, M. (2007). Effect of Increasing Yolk Testosterone Levels on Early Behaviour in Japanese Quail Hatchlings. *Acta Vet. Brno* **76**, 325–331.

Pfannkuche, K. A., Gahr, M., Weites, I. M., Riedstra, B., Wolf, C. and Groothuis, T. G. G. (2011). Examining a pathway for hormone mediated maternal effects – Yolk testosterone affects androgen receptor expression and endogenous testosterone production in young chicks (*Gallus gallus domesticus*). *Gen. Comp. Endocrinol.* **172**, 487–493.

Pinheiro, J. C., Bates, D. M., Sarkar, D. and R Core Team (2018). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-137.

Podmokla, E., Drobniak, S. M. and Rutkowska, J. (2018). Chicken or egg? Outcomes of experimental manipulations of maternally transmitted hormones depend on administration method - a meta-analysis: Maternal hormones and manipulation methods. *Biol. Rev.* **93**, 1499–1517.

Prati, M., Calvo, R., Morreale, G. and Morreale de Escobar, G. (1992). L-thyroxine and 3,5,3'-triiodothyronine concentrations in the chicken egg and in the embryo before and after the onset of thyroid function. *Endocrinology* **130**, 2651–2659.

Raine, J. C., Cameron, C., Vijayan, M. M., Lamarre, J. and Leatherland, J. F. (2004). The effect of elevated oocyte triiodothyronine content on development of rainbow trout embryos and expression of mRNA encoding for thyroid hormone receptors. *J. Fish Biol.* **65**, 206–226.

Rainio, M. J., Kanerva, M., Salminen, J.-P., Nikinmaa, M. and Eeva, T. (2013). Oxidative status in nestlings of three small passerine species exposed to metal pollution. *Sci. Total Environ.* **454–455**, 466–473.

Rainio, M. J., Eeva, T., Lilley, T., Stauffer, J. and Ruuskanen, S. (2015). Effects of early-life lead exposure on oxidative status and phagocytosis activity in great tits (*Parus major*). *Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.* **167**, 24–34.

Reis, L. H., Gama, L. and Soares, M. (1997). Effects of short storage conditions and broiler breeder age on hatchability, hatching time, and chick weights. *Poult. Sci.* **76**, 1459–1466.

Rubin, C.-J., Zody, M. C., Eriksson, J., Meadows, J. R. S., Sherwood, E., Webster, M. T., Jiang, L., Ingman, M., Sharpe, T., Ka, S., et al. (2010). Whole-genome resequencing reveals loci under selection during chicken domestication. *Nature* **464**, 587–591.

Ruuskanen, S. and Hsu, B.-Y. (2018). Maternal Thyroid Hormones: An Unexplored Mechanism Underlying Maternal Effects in an Ecological Framework. *Physiol. Biochem. Zool.* **91**, 904–916.

Ruuskanen, S., Darras, V. M., Visser, M. E. and Groothuis, T. G. G. (2016). Effects of experimentally manipulated yolk thyroid hormone levels on offspring development in a wild bird species. *Horm. Behav.* **81**, 38–44.

Sekimoto, K., Imai, K., Suzuki, M., Takikawa, H., Hoshino, N. and Totsuka, K. (1987). Thyroxine-Induced Molting and Gonadal Function of Laying Hens. *Poult. Sci.* **66**, 752–756.

Tsuyoshi, H. and Wada, M. (1992). Termination of LH secretion in Japanese quail due to high- and low-temperature cycles and short daily photoperiods. *Gen. Comp. Endocrinol.* **85**, 424–429.

Van Herck, S. L. J., Geysens, S., Delbaere, J., Tylzanowski, P. and Darras, V. M. (2012). Expression profile and thyroid hormone responsiveness of transporters and deiodinases in early embryonic chicken brain development. *Mol. Cell. Endocrinol.* **349**, 289–297.

Van Herck, S. L. J., Delbaere, J., Bourgeois, N. M. A., McAllan, B. M., Richardson, S. J. and Darras, V. M. (2015). Expression of thyroid hormone transporters and deiodinases at the brain barriers in the embryonic chicken: Insights into the regulation of thyroid hormone availability during neurodevelopment. *Gen. Comp. Endocrinol.* **214**, 30–39.

von Engelhardt, N. and Groothuis, T. G. G. (2011). Maternal Hormones in Avian Eggs. In *Hormones and Reproduction of Vertebrates*, pp. 91–127. Elsevier.

Wada, H. (2008). Glucocorticoids: Mediators of vertebrate ontogenetic transitions. *Gen. Comp. Endocrinol.* **156**, 441–453.

Walpita, C. N., Van der Geyten, S., Rurangwa, E. and Darras, V. M. (2007). The effect of 3,5,3'-triiodothyronine supplementation on zebrafish (*Danio rerio*) embryonic development and expression of iodothyronine deiodinases and thyroid hormone receptors. *Gen. Comp. Endocrinol.* **152**, 206–214.

Watanabe, Y., Grommen, S. V. H. and De Groef, B. (2016). Corticotropin-releasing hormone: Mediator of vertebrate life stage transitions? *Gen. Comp. Endocrinol.* **228**, 60–68.

Wilson, C. M. and McNabb, F. M. A. (1997). Maternal Thyroid Hormones in Japanese Quail Eggs and Their Influence on Embryonic Development. *Gen. Comp. Endocrinol.* **107**, 153–165.

Wood, S. N. (2017). Generalized Additive Models: An Introduction with R, Second Edition. *CRC Press*.

Zuur, A. F., Ieno, E. N., Walker, N. J., Savaliev, A. A. and Smith, G. M. (2009). *Mixed effects models and extensions in ecology with R*. New York, NY: Springer.

Figure legends

Figure 1: Percentage of hatching success according to yolk TH manipulation treatments: CO (N = 40), T₃ (N = 39), T₄ (N = 39), T₃T₄ (N = 40). CO = control, T₄ (thyroxine) = injection of T₄, T₃ (triiodothyronine) = injection of T₃, T₃T₄ = injection of T₃ and T₄.

Figure 2: Growth curves in body mass of Japanese quails hatching from eggs treated with either T₃, T₄, a combination of both hormones, or a control solution. See Fig. 1 for a description of the treatments. Each line represents an individual bird, while thick coloured lines represent mean values. A: Growth curve according to yolk TH manipulation. N = 7 CO, 11 T₃, 18 T₄ and 21 T₃T₄. B: Growth curve according to sex. N = 29 females and 28 males.

Figure 3: Primary moult score in 7-month old Japanese quails according to yolk TH manipulation treatments: CO (N = 7), T₃ (N = 11), T₄ (N = 16), T₃T₄ (N = 20). See Fig. 1 for a description of the treatments. Measures were taken once a week after switching from long photoperiod (16L:8D) to short photoperiod (8L:16D, switch = time point 0 on x-axis). Each line represents an individual bird, while thick coloured lines represent group mean values.

Figure 4: MDA concentration according to yolk TH manipulation treatments, samples from two ages pooled: CO (N = 7 individuals), T₃ (N = 11), T₄ (N = 17), T₃T₄ (N = 20). See Fig. 1 for a description of the treatments.

Figures

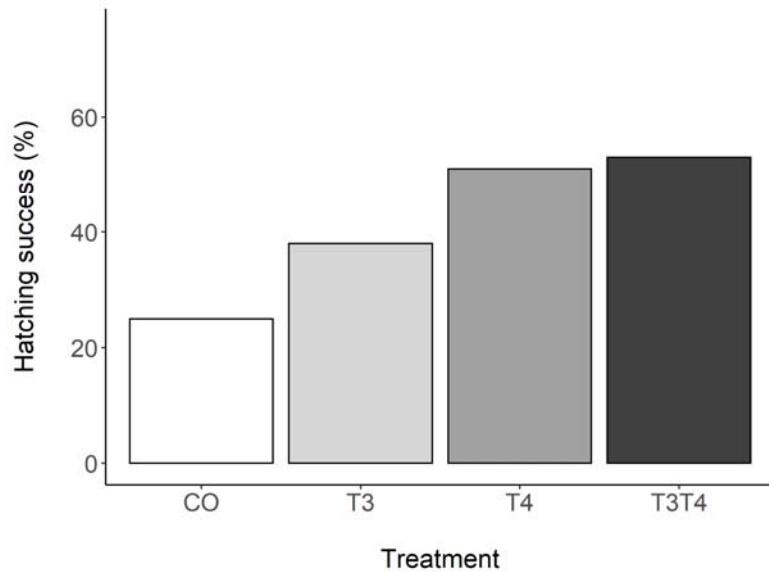


Figure 1

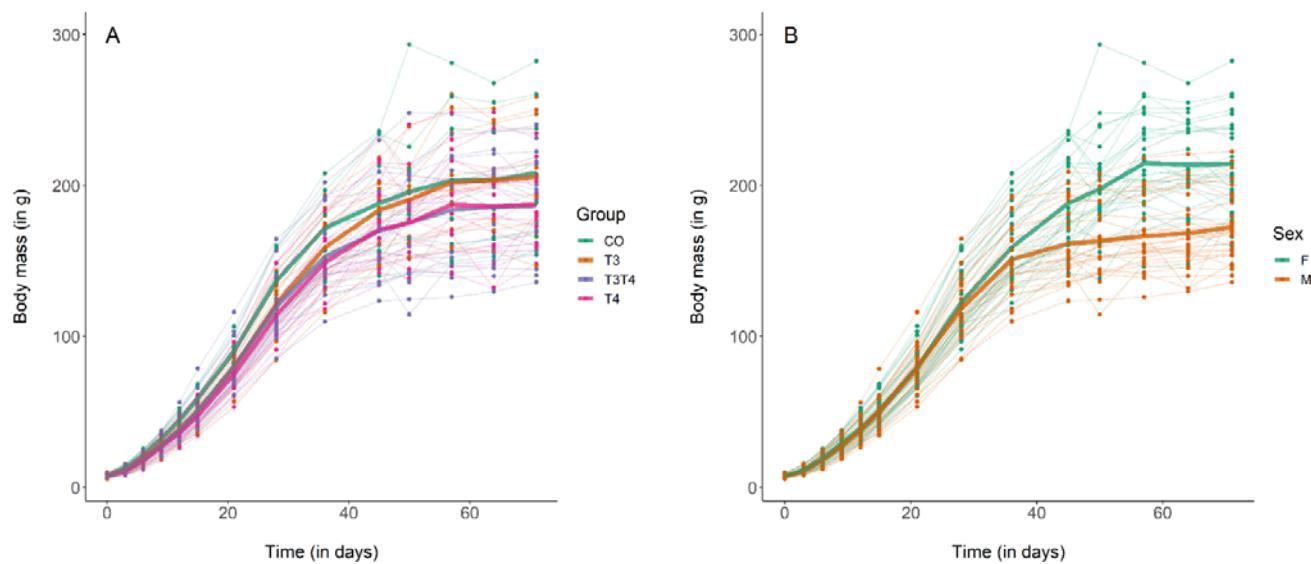


Figure 2

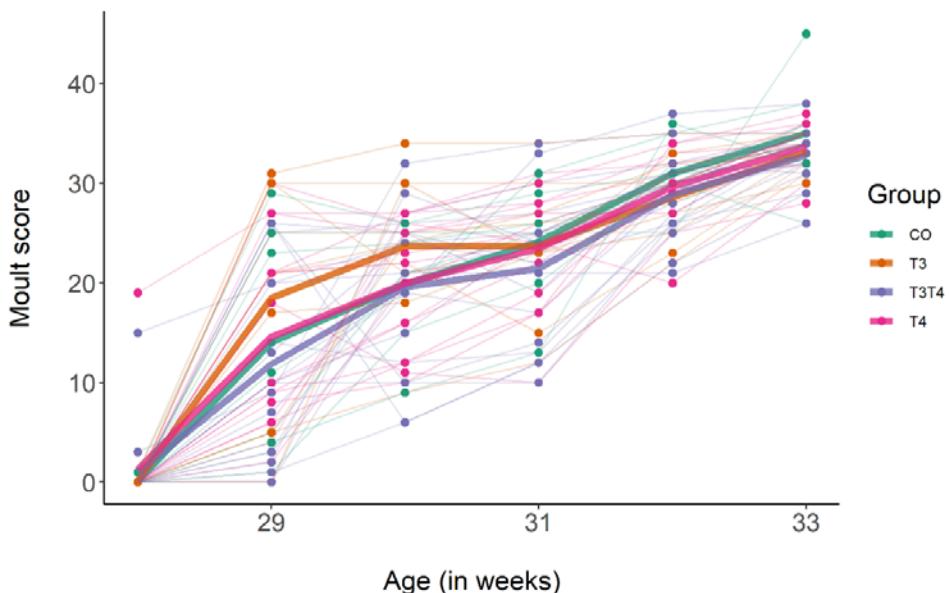


Figure 3

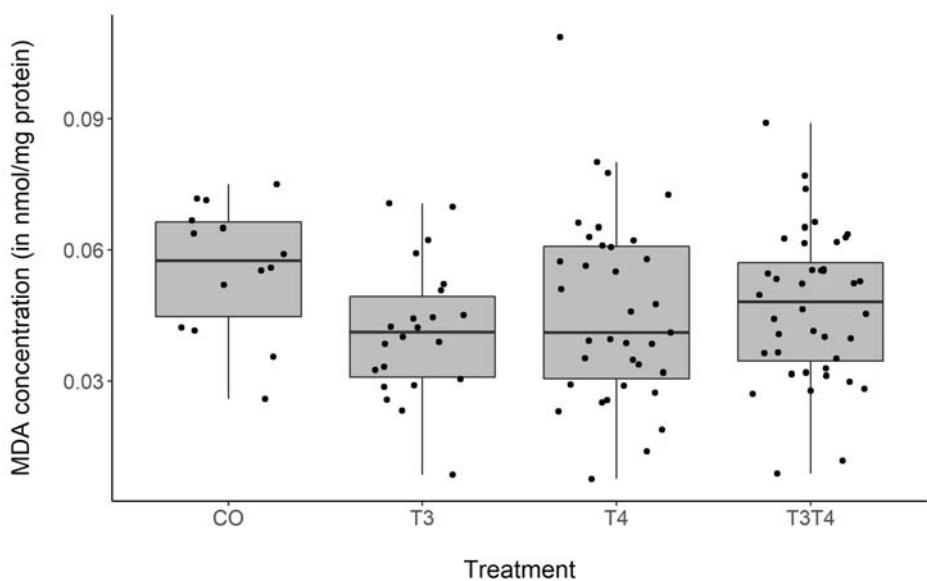


Figure 4

Tables

Table 1: Loadings of the different antioxidant biomarkers on the principal components 1 and 2.

Factor loadings	PC1 (34.0%)	PC2 (26.2%)
CAT	-0.49	0.14
SOD	0.20	-0.71
GST	-0.65	-0.10
GP	0.04	-0.63
tGSH	-0.60	-0.26

Table 2: Results of the Generalised Additive Mixed Models (GAMMs) on body mass growth, with sex and treatment fitted either as intercept, curve shape or both (all combinations tested). A total of 12 GAMMs were fitted and ranked based on their AIC, from the lowest to the highest. Weight: Akaike's weights.

Model	Intercept	Curve shape	ΔAIC	df	Weight
1	Sex	Sex	0.0	11	0.8430
8	Treatment + sex	Sex	3.5	14	0.1497
3	-	Sex	9.9	10	0.0061
2	Treatment	Sex	13.2	13	0.0012
11	Sex	-	77.6	9	<0.001
9	Treatment + sex	-	81.6	12	<0.001
12	-	-	91.2	8	<0.001
10	Treatment	-	95.0	11	<0.001
5	Sex	Treatment	147.9	15	<0.001
7	Treatment + sex	Treatment	151.7	18	<0.001
6	-	Treatment	161.2	14	<0.001
4	Treatment	Treatment	165.5	17	<0.001

Table 3: 95% confidence intervals of the predictors in the top-ranked models according to AIC values (see Tables 2, S1 and S2). Predictors in bold have confidence intervals that do not overlap with 0. For the intercept, the reference groups are female and CO for the predictors sex and treatment, respectively.

Curve parameter	Predictors	Lower limit	Estimate	Upper limit
(A) Body mass (Model 1)				
Intercept	Sex (M)	-19.7	-12.6	-5.5
Curve shape	Sex (F)	9.9	20.0	30.0
Curve shape	Sex (M)	14.3	24.5	34.7
(B) Wing length (Model 11)				
Intercept	Sex (M)	-2.3	-1.2	-0.1
Curve shape	Age	26.4	28.7	31.0
(C) Tarsus length (Model 10)				
Intercept	Treatment (T_3)	-0.8	0.02	0.8
Intercept	Treatment (T_3T_4)	-1.5	-0.8	-0.1
Intercept	Treatment (T_4)	-1.3	-0.6	0.2
Curve shape	Age	10.5	11.1	11.8
Tarsus length (Model 9)				
Intercept	Treatment (T_3)	-0.9	-0.07	0.7
Intercept	Treatment (T_3T_4)	-1.5	-0.8	-0.1
Intercept	Treatment (T_4)	-1.4	-0.6	0.1
Intercept	Sex (M)	-0.8	-0.3	0.3
Curve shape	Age	10.5	11.1	11.7