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Accelerating Protein Design Using Autoregressive Generative Models
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Abstract

A major biomedical challenge is the interpretation of ge-
netic variation and the ability to design functional novel
sequences. Since the space of all possible genetic vari-
ation is enormous, there is a concerted effort to develop
reliable methods that can capture genotype to phenotype
maps. State-of-art computational methods rely on mod-
els that leverage evolutionary information and capture com-
plex interactions between residues. However, current meth-
ods are not suitable for a large number of important applica-
tions because they depend on robust protein or RNA align-
ments. Such applications include genetic variants with in-
sertions and deletions, disordered proteins, and functional
antibodies. Ideally, we need models that do not rely on
assumptions made by multiple sequence alignments. Here
we borrow from recent advances in natural language pro-
cessing and speech synthesis to develop a generative deep
neural network-powered autoregressive model for biologi-
cal sequences that captures functional constraints without
relying on an explicit alignment structure. Application to
unseen experimental measurements of 42 deep mutational
scans predicts the effect of insertions and deletions while
matching state-of-art missense mutation prediction accura-
cies. We then test the model on single domain antibodies,
or nanobodies, a complex target for alignment-based mod-
els due to the highly variable complementarity determin-
ing regions. We fit the model to a naive llama immune
repertoire and generate a diverse, optimized library of 10°
nanobody sequences for experimental validation. Our re-
sults demonstrate the power of the ‘alignment-free’ autore-
gressive model in mutation effect prediction and design of
traditionally challenging sequence families.
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Figure 1. Autoregressive models of biological sequences. a. In-
stead of finding correlations between columns in a multiple
sequence alignment (left), the autoregressive model predicts a
residue given all the preceding positions (right). b. Causal dilated
convolutions are used to model the autoregressive likelihood.

1. Introduction

Designing and generating biomolecules with known func-
tion is a major goal of biotechnology and biomedicine. Ex-
perimental methods to characterize sequence variants are
expensive, labor-intensive, and time consuming because
the sequence space of potentially functional proteins is
astronomically large. High-throughput techniques have
opened up opportunities to phenotype thousands of variants
in a single experiment (Kosuri & Church, 2014; Fowler &
Fields, 2014), but the sampled diversity of sequences pales
in comparison to that found in nature. However, the infor-
mation contained in natural sequences can be used to intel-
ligently narrow the search space to bias library design for
functional biomolecules.

Across evolution, there are large amounts of genetic varia-
tion available for many protein families. These sequences
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contain information about what contributes to a stable,
functional protein. Generative models of protein sequences
are powerful tools in learning these constraints to pre-
dict structure, mutation effects, and residue-residue inter-
actions (Hopf et al., 2017; Mann et al., 2014; Riesselman
et al., 2018). Yet these methods to date are dependent
on alignments of homologous sequences, which impose a
forced structure on the data that can introduce artifacts and
exclude important information, particularly by alignment
gaps caused by insertions and deletions (indels). This is
especially a challenge for sequences with regions of high
variability or low complexity, including antibodies and dis-
ordered proteins.

Antibodies are valuable tools for molecular biology and
therapeutics because they can detect low concentrations of
target antigens with high sensitivity and specificity (Muyl-
dermans, 2013). Single-domain antibodies, or nanobodies,
are composed solely of the variable domain of the canon-
ical antibody heavy chain. Because of their many appli-
cations, there is demand for the rational design of novel
antibodies. Recently, phage and yeast display methods
have allowed for high-throughput screening of libraries of
antibodies and nanobodies (Sill et al., 2016; McMahon
et al., 2018). Although these synthetic libraries can be
used to isolate a high-affinity sequence, they often contain
a substantial fraction of non-functional proteins because
library construction methods lack higher-order sequence
constraints. Generative models can be applied to learn such
constraints from large repertoires of natural antibody and
nanobody sequences. These sequences contain four highly
conserved framework regions interspersed with three vari-
able length, hypermutated complementarity determining re-
gions (CDRs), which makes high-confidence alignments
difficult to construct (Muyldermans, 2013). Here, we apply
an autoregressive generative model to this family to predict
and generate probable protein sequences and design an op-
timized nanobody library by leveraging a model trained on
a natural immune repertoire.

2. Related Work

Many applications in text-to-speech (Graves et al., 2013;
Wang et al., 2017) and translation (Bahdanau et al., 2014;
Sutskever et al., 2014) tackle context dependent word and
audio prediction and generation using generative models
with an autoregressive likelihood (Sutskever et al., 2011;
LeCun et al., 2015). In this way, an audio clip is decom-
posed into discrete time steps, a sentence into words, and a
protein sequence into amino acid residues.

Recently, autoregressive models have been applied across
protein families to learn general features and predict mu-
tation effects in unaligned protein sequences (Alley et al.,
2019; Rives et al., 2019). However, accurate mutation ef-

fect prediction with these models require semi-supervised
training using a held-out fraction of labeled experimental
mutagenesis data. In contrast, our method is fully unsuper-
vised and does not require such data to make predictions or
generate sequences. Though the conditional generation of
protein sequences has been demonstrated on a small num-
ber of proteins (Costello & Martin, 2019), we present how
to leverage autoregressive models to design hundreds of
thousands of diverse, fit protein sequences using compu-
tationally tractable techniques.

3. Methods
3.1. Model

Sequences are represented by a 21 letter alphabet for pro-
teins or 5 letter alphabet for RNAs, one for each residue
type and a ‘start/stop’ character. The log-likelihood for a
sequence is the sum of the cross-entropy between the true
residue at each position and the predicted distribution over
possible residues, conditioned on the previous characters.
We adopt a residual causal dilated convolutional neural net-
work architecture with 6 blocks of 9 dilated convolutional
layers and both weight normalization (Salimans & Kingma,
2016) and layer normalization (Ba et al., 2016). To help
prevent overfitting, we use L2 regularization on the weights
and place Dropout layers (p = 0.5) immediately after each
of the 6 residual blocks (Srivastava et al., 2014). We use a
batch size of 30 and a channel size of 48 for all sequence
families tested. Six models are built for each family: three
replicates in both the N-to-C and C-to-N directions, respec-
tively. Each model is trained for 250,000 updates using
Adam with default parameters (Kingma & Ba, 2014), and
the gradient norm is clipped (Pascanu et al., 2013) to 100.

3.2. Data collection

Mutation effects, sequence families, and previous effect
predictions for validation were curated from published
work (Riesselman et al., 2018). The naive llama immune
repertoire was acquired from McCoy et al. (2014). Due to
the large number of sequences in the llama immune reper-
toire, sequence weights were approximated using Linclust
(Steinegger & Soding, 2018) by clustering sequences at
both 80% and 90% sequence identity thresholds.

3.3. Nanobody library generation

Using the N-to-C terminus model trained on llama
nanobody sequences, we generated 37,744,800 CDR3 se-
quences by ancestral sampling (Sutskever et al., 2011),
conditioned on the germline framework-CDR1-CDR2 se-
quence and continued until generation of the stop char-
acter. Duplicates of the training set or generated se-
quences and those not matching the reference final beta
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Figure 2. The autoregressive model predicts the effects of insertions, deletions, and missense mutations. a. The autoregressive model
matches state-of-art missense mutation effect prediction. Length normalized log probabilities predict the effects of insertions and dele-
tions in (b) PTEN phosphatase, (c) IGP dehydratase, and (d) snoRNA.

strand were excluded. CDR3 sequences were also re-
moved if they contained glycosylation (NxS and NxT)
sites, asparagine deamination (NG) motifs, or sulfur-
containing amino acids (cysteine and methionine), result-
ing in 3,690,554 sequences.

From this large number of sequences, we then sought to
choose roughly 200,000 CDR3 sequences that are both
deemed fit by the model and as diverse from one another
as possible to cover the largest amount of sequence space.
First, we featurized these sequences into fixed length, L2
normalized kmer vectors with kmers of size 1, 2, and 3. We
then used BIRCH clustering (Zhang et al., 1996) to find di-
verse members of the dataset in O(n) time. We used a diam-
eter threshold of 0.575, resulting in 382,675 clusters. From
the cluster centroids, we chose the 185,836 most probable
sequences for final library construction.

4. Results

4.1. An autoregressive generative model of biological
sequences

Protein sequences observed in organisms today result from
mutation and selection for functional, folded proteins over
time scales of a few days to a billion years. Generative
models can be used to parameterize this view of evolu-
tion. Namely, they express the probability that a sequence
@ would be generated by evolution as p(x | @), where pa-
rameters 6 capture the constraints essential to functional
sequences.

We use an autoregressive model to obviate the need for
structured alignments. The probability distribution p(x | )
can be decomposed into the product of conditional proba-
bilities on previous characters along a sequence of length L
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(Figure 1a) via an autoregressive likelihood:

L

p(z|0) =p(x1]6) Hp(ﬂﬂz |z1,...,2i-150)
i=2

Many different neural network architectures can model an
autoregressive likelihood, including attention-based mod-
els (Vaswani et al., 2017) and recurrent neural networks
(Sutskever et al., 2011). However, we encountered explod-
ing gradients (Pascanu et al., 2013) during training on long
sequence families with LSTM (Hochreiter & Schmidhuber,
1997) or GRU (Cho et al., 2014) architectures. Instead, we
parameterize this process with dilated convolutional neu-
ral networks (Figure 1b), which are feed-forward deep neu-
ral networks that aggregate long-range dependencies in se-
quences over an exponentially-large receptive field (van
den Oord et al., 2016; Kalchbrenner et al., 2016; Gupta &
Rush, 2017). The causal structure of the model allows for
efficient training to a set of sequences, inference of muta-
tion effects, and sampling of new sequences.

4.2. The generative model predicts experimental
mutation effects

Once the model is fit to a family of protein sequences, the
log-ratio of likelihoods of individual sequences:

P (w(Mutant) | 9)
log —/————/+
P (m(Wlld—type) | 0)
can be used to estimate the plausibility of mutant sequence
aMuant) relative to its wild-type, un-mutated counterpart,
a(Wild-type) - Thig Jog-ratio has been shown to be predictive
of mutation effects (Hopf et al., 2017; Riesselman et al.,
2018). Importantly, this approach is fully unsupervised:
rather than learning from experimental mutation effects, we
can learn evolutionary constraints using only the space of
natural sequences.

We compare log-ratio predictions from our model to 40
deep mutational scans across 33 different proteins, totaling
690,257 individual sequences. The autoregressive model
is consistently able to predict the effects of mutations
across a wide array of proteins and experimental assays
(Figure 2a). When compared to other generative mod-
els trained on alignments of the same sequences, the au-
toregressive model is able to consistently match or out-
perform a model with only site-independent terms (30/40
datasets) and the EVmutation model with pairwise depen-
dencies (30/40 datasets; Hopf et al., 2017); and it competi-
tively matches the state-of-the-art results of DeepSequence
(19/40 datasets; Riesselman et al., 2018).

Previous alignment-based generative models are con-
strained to predicting the effects of missense mutations.
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Figure 3. The model predicts nanobody stability and is capable of
generating an optimized library. a. The model, trained on naive
sequences, predicts nanobody stability as measured by melting
temperature. b. Conditioned on the framework-CDR1-CDR?2 se-
quence, a diverse set of CDR3 sequences are generated and se-
lected. c. Generated sequences have similar biochemical proper-
ties to naive nanobody sequences. d. Cosine distances to nearest
neighbors within the designed library and from the designed li-
brary to the naive repertoire are greater than distances within the
naive repertoire (left). Average cosine distances within the de-
signed library, from the designed library to the naive repertoire,
and within the naive repertoire fall in a similar range (right).

However, in-frame insertions and deletions can also have
large phenotypic consequences for protein function, yet
these changes have proved difficult to model. We com-
pare the length-normalized probabilities (bits-per-residue)
calculated by the autoregressive model to experimental as-
says for the fitness of mutated biomolecules, using rank
correlation (p) and area under the receiver-operator curve
(AUC), identifying the two groups with a two-component
Gaussian mixture model. The model is able to capture
the effects of single amino acid deletions on PTEN phos-
phatase (p=0.67, AUC=0.83, N=340; Figure 2b; Mighell
et al., 2018), multiple amino acid insertions and deletions
in imidazoleglycerol-phosphate (IGP) dehydratase (p=0.68,
AUC=0.92, N=6102; Figure 2c; Pokusaeva et al., 2018),
and insertions and deletions in yeast snoRNA (p=0.51,
AUC=0.76, N=14736; Puchta et al., 2016).
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4.3. Generating an efficient library of functional
nanobodies

Natural nanobody sequences are selected against unfavor-
able biochemical properties such as instability, polyspeci-
ficity, and aggregation during affinity maturation (Muyl-
dermans, 2013). We sought to learn the constraints that
characterize functional nanobodies by fitting the autore-
gressive model to a set of 1.2 million nanobody se-
quences from the llama immune repertoire (McCoy et al.,
2014). Using this model, we find that length-normalized
log-probability calculations predict the thermostability of
new llama nanobody sequences (p=0.53, N=17; Figure 3a;
Kunz et al., 2017).

Conditioning on the germline framework-CDRI1-CDR2
nanobody sequence, we then generate a library of 185,836
highly diverse, biochemically well-behaved, “fit” CDR3 se-
quences that have a similar distribution of properties as the
naive llama immune repertoire (Methods; Figure 3c). The
generated sequences are diverse from the naive repertoire
and are more distant from one another than sequences in
the naive repertoire (Figure 3d). Globally, the generated se-
quences are similarly distant to the naive llama immune
repertoire as the naive sequences themselves, indicating
that we have not entered an uncharacterized region of se-
quence space. Initial experiments to characterize this li-
brary confirm the functional diversity of even this small set
of sequences.

5. Discussion

Here we show how neural network-powered autoregressive
models can predict the effects of mutations in an unsuper-
vised manner from evolutionary sequences alone. These
models are capable of predicting the effects of insertions
and deletions that would otherwise be ignored by previous
methods. We then use this model to generate a diverse syn-
thetic nanobody library with improved biochemical prop-
erties. Our streamlined library enables rapid, efficient dis-
covery of candidate antibodies, quickly providing a starting
point for affinity maturation to enhance binding affinity.

We anticipate advances in machine learning will greatly
enhance both sequence modeling and rational library de-
sign. The addition of latent variables will allow controlled
generation of desirable sequences (Bowman et al., 2015;
Costello & Martin, 2019). Though others have reported
difficulty training these models (Killoran et al., 2017), new
machine learning techniques may make these models prac-
tical in the future (Kim et al., 2018; Yang et al., 2017; van
den Oord & Vinyals, 2017). We also anticipate better strate-
gies to explore diverse yet fit regions of sequence space
during generation, either by exploiting variance explained
by latent variables (Greener et al., 2018) or diverse beam

search strategies (Vijayakumar et al., 2016). Finally, in-
corporating protein structural information may further im-
prove the power of autoregressive models (Ingraham et al.,
2019).

Due to their flexibility, deep autoregressive models will
also open the door to new opportunities in probabilistic bi-
ological sequence analysis. Unlike alignment-based tech-
niques, since no homology between sequences is explic-
itly required, generative models with autoregressive like-
lihoods can be applied to disordered proteins, multiple
protein families, promoters and enhancers, or even entire
genomes. For example, classical tumor suppressor genes,
such as p53, BRCAI, and VHL, include long disordered
regions where these models may prove particularly use-
ful. With the increased number of available sequences and
growth in both computing power and new machine learning
algorithms, autoregressive sequence models will be indis-
pensable for biological sequence analysis into the future.
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