bioRxiv preprint doi: https://doi.org/10.1101/757088; this version posted September 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

MEALER SLC39A8 MANUSCRIPT

Title: A schizophrenia risk locus alters brain metal transport and plasma glycosylation

Authors: Robert G. Mealer'?3’, Bruce G. Jenkins*, Chia-Yen Chen'25, Mark J. Daly?®, Tian
Ge'2?#, Sylvain Lehoux?, Thorsten Marquardt?, Christopher D. Palmer”2, Julien H. Park®, Patrick
J. Parsons”®, Robert Sackstein®, Sarah E. Williams"?, Richard D. Cummings®, Edward M.

Scolnick?, and Jordan W. Smoller’-2

Affiliations:

'Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard
Medical School, Boston MA.

2The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT. Cambridge, MA.
3National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess
Medical Center, Harvard Medical School, Boston MA.

“Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard
Medical School, Charlestown MA.

SAnalytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical
School, Boston MA.

®Klinik und Poliklinik fir Kinder- und Jugendmedizin—Allgemeine Padiatrie, Universitatsklinikum
Munster, Mlnster, Germany.

"Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department
of Health, Albany, NY.

8Department of Environmental Health Sciences, School of Public Health, University at Albany,
Albany, NY.

®Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida

International University, Miami, FL.


https://doi.org/10.1101/757088
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/757088; this version posted September 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

MEALER SLC39A8 MANUSCRIPT

*Corresponding Author:

Robert Gene Mealer, M.D., Ph.D.
Richard B. Simches Research Center
185 Cambridge St, 6" Floor

Boston, MA 02114

Tel: 1 (617) 724-9076

Email: rmealer@partners.org

Competing interests: The authors have declared that no conflicts of interest exist.

Key words: SLC39A8, Manganese, MRI, Glycosylation, CDG


https://doi.org/10.1101/757088
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/757088; this version posted September 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

MEALER SLC39A8 MANUSCRIPT

Abstract:

A common missense variant (rs13107325 (C->T), A391T) in SLC39A8, a gene encoding a
transporter of divalent cations including manganese (Mn), is convincingly associated with
schizophrenia and has pleiotropic effects on several additional brain-related phenotypes.
Homozygous loss-of-function mutations in SLC39A8 result in undetectable serum Mn and a
Congenital Disorder of Glycosylation (CDG) due to the exquisite sensitivity of
glycosyltransferases to Mn concentration. Here, we identified Mn-related changes in human
carriers of the SLC39A8 missense allele. Analysis of structural brain MRI scans from the UK
Biobank showed a dose-dependent change in the ratio of T2w to T1w signal in several brain
regions, presumably from altered transport of paramagnetic cations including Mn. We confirmed a
specific reduction of serum Mn and showed through comprehensive profiling reduced complexity
and branching of the plasma protein N-glycome in both heterozygous and homozygous minor
allele carriers. N-glycome profiling of two individuals with SLC39A8-CDG showed similar but
more severe alterations in branching that improved with Mn supplementation, suggesting that
hypofunction of the common missense variant exists on a spectrum with potential for reversibility.
Characterizing the functional impact of this variant may enhance our understanding of

schizophrenia pathogenesis and identify novel therapeutic targets and biomarkers of disease.
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Introduction:

GWAS identify hundreds of disease and phenotype-associated variants, providing researchers
with new insights into the genetic architecture of complex human phenotypes including
schizophrenia. However, translating genetic associations into a mechanistic understanding of
disease and novel treatments remains a considerable challenge. One of the most pleotropic
variants in the human genome is rs13107325 (C->T), a missense variant in SLC39A8 that results
in a substitution of threonine for alanine at position 391 (A391T) in exon 8. The minor allele (T) is
associated with schizophrenia (1) as well as more than 30 unique traits including: changes in
immune and growth traits (2); increased HDL (3); increased risk of risk of inflammatory bowel
disease and severe idiopathic scoliosis (4); and decreased serum manganese (Mn), diastolic
blood pressure, fluid intelligence, grey matter volume in multiple brain regions, and Parkinson’s
disease risk (5—10). The minor allele (T) of rs13107325 occurs at a frequency of ~8% in those of
European descent, presumably from positive selection within this lineage following migration to

colder climates (11).

SLC39A8 (aka ZIP8) is a transmembrane protein that cotransports divalent cations with
bicarbonate; though it is capable of transporting Zn, Fe, Cu, Co, and Cd in cells, multiple studies
suggest the primary physiologic role in humans is the transport of Mn (12—-14). Manganese is an
essential trace element for human health and affects neuronal function and development of
dopaminergic neurons, although excess Mn is associated with disease (15—17). In the brain, Mn
is at highest concentrations in the striatum, and Mn toxicity, also known as manganism, is
characterized by a Parkinsonian phenotype resulting from dysfunction of the nigrostriatal pathway
(16). Manganese is a cofactor for many enzymes, including superoxide dismutase, glutamine
synthetase, pyruvate carboxylase, and arginase, as well as many glycosyltransferases such as
B(1,4)-galactosyltransferase (18). A large number of Golgi glycosyltransferases, generally those
containing a DxD metal-binding motif, uniquely require Mn as a cofactor (19, 20). Glycosylation is
a highly regulated, step-wise process of covalently attaching branched sugar polymers to proteins

and lipids, and is known to affect nearly all biological pathways (21). Glycosylation plays a critical
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role in human disease, with over 100 known Mendelian conditions, termed congenital disorders of
glycosylation (CDGs), associated with mutations in glycotransferases and related genes (22). On
proteins, glycans are most commonly attached to asparagine (N-linked) or serine/threonine (O-
linked) residues. Disorders of N-glycosylation are divided into two distinct groups (type | and type
Il CDG) based on the observed transferrin glycosylation pattern, with type | indicating a defect in
glycan assembly in the ER and type Il suggestive of impaired modification of the side chain in the

Golgi apparatus (23, 24).

Two case reports in 2015 demonstrated the importance of SLC39A8 in human disease, as
individuals harboring rare homozygous mutations in SLC39A8 displayed a severe type I
congenital disorder of glycosylation (SLC39A8-CDG) and near total absence of blood Mn (25,
26). Other markers related to the Mn-dependent enzymes pyruvate carboxylase and glutamine
synthetase were normal, suggesting a unique vulnerability of glycosylation enzymes to Mn
concentration in SLC39A8-CDG. Importantly, a marker of impaired glycosylation and some
clinical phenotypes such as seizure activity improved following supplementation with
glycosylation precursors (galactose and uridine) or Mn (25, 27). A recent study by Rader and
colleagues showed that SLC39A8 regulated Mn homeostasis through uptake from bile in
inducible- and liver-specific-knockout mice (28). Serum protein N-glycans analyzed by MALDI-
TOF in these mice was suggestive of impaired N-glycosylation. Analysis of plasma N-glycans in
human rs13107325 homozygous minor allele carriers (n=12) showed a slight but significant
increase in one N-glycan precursor (monosialo-monogalacto-biantennary glycan, abbreviated

A2G1S1), though a complete N-glycan analysis was not reported (28).

The primary objective of our study was to measure Mn-related phenotypes with relevance to
schizophrenia risk and brain function in human carriers of the SLC39A8 missense variant. We
identified a dose-dependent association of the schizophrenia risk allele with changes in the
T2w/T1w ratio in several brain regions. Measurement of 23 serum trace elements confirmed the

specific reduction of only serum Mn observed in other studies on this variant, and plasma protein
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N-glycosylation was altered in both heterozygous and homozygous carriers characterized by
decreased branching and complexity of N-glycans. Analysis of SLC39A8-CDG plasma identified
similar but more severe changes in protein N-glycosylation that were improved with Mn therapy,

suggesting therapeutic intervention may be feasible in those carrying the SLC39A8 risk allele.
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Results:

T2w/T1w ratios are changed in globus pallidus (GPi), lateral putamen (LPut), and
substantia nigra (SN) in human A391T carriers.

Previous studies have linked the rs13107325 minor allele (T) with brain MRI changes attributed to
regional volumetric differences (8, 29). Given the paramagnetic properties of Mn and its known
effect on MRI relaxation time (30-32), we hypothesized that the signal change resulted from
changes in local concentrations of Mn and related ions. Decreased Mn would result in longer
relaxation times of both T1- and T2- weighted images (T1w, T2w); however, longer T1 leads to
lower signal intensity on T1w images, while longer T2 leads to increased signal on T2w images.
We predicted that the ratio between the signal intensity of T2w and T1w images (T2w/T1w) would
be a more sensitive parameter than either alone, with decreased Mn concentration in A391T
carriers increasing in the T2w/T1w ratio. As UK Biobank images do not include T1 or T2 mapping
as part of their protocol, comparing the ratio avoids problems with inter-subject normalization of

T1w and T2w signal intensities due, for instance, to different coil loading factors and body size.

Brain MRI data were downloaded from the UK Biobank for 48 participants with homozygous
minor allele genotype at rs13107325 (TT) along with 48 heterozygous minor (CT) and 48
homozygous major (CC) individuals matched on age, gender, smoking status, living area, BMI,
and Townsend Deprivation Index as a proxy for socioeconomic status (Supp. Table 1). Due to
problems with either the T1 or T2 images in some subjects, the final number of individuals with
both scans included in the analysis were 47, 45, and 44 subjects for CC, CT, and TT genotypes,
respectively. T2w/T1w ratios were compared between minor allele carriers (CT, TT) and controls
(CC) using a t-test corrected for a false discovery rate of 5% on a pixel by pixel basis. In TT
carriers, increased T2w/T1w ratios were observed in lateral putaminal (LPut) areas and diffusely
through white matter (Fig. 1a). Contrary to our prediction, a decrease in the T2w/T1w ratio was
observed in the globus pallidus interna (GPi) and substantia nigra (SN) of TT carriers, two areas
of the brain with links to Mn toxicity and high levels of the divalent metal ion transporter DMT-1

(SLC11A2) (33). CT carriers display changes in similar regions and in the same direction as TT
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carriers though with smaller effect size - only GPi and SN showed significant differences

compared to CC genotype.

Dot plots for regions of interest (ROIs) are shown for GPi, SN, and LPut (Fig. 1b), with ANOVA
analyses of the T2w/T1w ratios showing significant effects of genotype in GPi (F = 5.886; p =
0.0036; T2w/T1w ratio + SD: CC = 0.279 £ 0.031, CT = 0.273 £ 0.035, TT = 0.253 £ 0.034; post-
hoc Dunnett’s test: CCvs TT p = 0.0017; CCvs CT p=0.09,and CT v TT p = 0.267), SN (F =
7.086; p = 0.0012; T2w/T1w ratio £ SD CC = 0.279+.031; CT = 0.275+.035; TT = 0.265+.033;
Post-hoc Dunnett’s test: CC vs TT p = 0.0008; CCvs CT p=0.617 CT v TT p = 0.013), and GPi
(F= 4.72,p = 0.0105; T2w/T1w ratio + SD: CC = 0.399+.039; CT = 0.406+.039; TT =
0.423+.038: Post-hoc Dunnett’s test: CC vs TT p =0.0061; CCvs CT p=0.566; CTvTT p =
0.071). These effects were driven by changes in both T1w signal and T2w signal because both
were significantly different between CC vs TT genotypes, though the effect sizes were much
larger for T2w signal in the GPi and SN. Additional analyses using MRI data to classify by
genotype showed excellent separation of the CC and TT genotypes using only the T2w/T1w
ratios of GPi, SN, and LPut (Supp. Fig. 1a, 1b). We note that use of raw T1w or T2w signal is not
a useful comparator given the differences in BMI between the CC and TT genotypes. Regression
analysis of all demographic data and T2w/T1w ratios found a significant correlation only between

the LPut and BMI only in TT carriers (Supp. Fig. 1c).

Though our sample size is smaller than prior studies (8, 29), a preliminary analysis using

FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/) showed no detectable difference in

volume between genotypes in any brain region, suggesting that MRI signal changes in A391T
carriers likely result from differences in the concentrations of paramagnetic ions such as Mn (data

not shown).

A391T is associated with a specific reduction of serum Mn
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We next measured peripheral markers of Mn-related phenotypes A391T carriers from samples
matched for age and gender across genotypes available in the Partners Biobank

(https://biobank.partners.org). Demographic characteristics of the sample are shown in Supp.

Table 1. Serum concentrations of 23 trace elements were measured using Inductively Coupled
Plasma-Mass Spectrometry (ICP-MS) and analyzed based on rs13107325 genotype. The method
detection limit (MDL) for each element was determined on seven independent runs of the low-
level quality control sample (Supp. Table 2). Measurements below the MDL are not
distinguishable from background and have no quantitative confidence, limiting the reliability of
detecting differences in concentration in this range. Of the trace elements measured, 16 had a
mean across all samples above the MDL and were included in the analysis (As, Ba, Co, Cr, Cu,
Cs, Hg, Mn, Mo, Pb, Sb, Se, Sn, U, V, and Zn), while 7 had a mean below the MDL and were

excluded (Be, Cd, Ni, Pt, Te, Tl, and W) (Fig.2, Supp. Fig. 2)

ANOVA analyses each element showed that only Mn was statistically different between
genotypes (F = 6.472, p = 0.0022, DF = 2). Heterozygous carriers of A391T showed a reduction
of Mn concentration by 10% (CC 0.814 ng/L vs CT 0.732 pg/L, p = 0.027), whereas homozygous
carriers had a reduction of 18% (CC 0.814 ng/L vs TT 0.669 pg/L, p = 0.0004) (Fig. 2a). The
additional reduction of Mn in homozygous minor carriers suggests a dose-dependent effect of the
mutation, though the difference between CT and TT groups fell short of statistical significance
(CT vs TT p = 0.098). No difference was seen in the serum concentrations of other trace
elements previously shown to be transported by SLC39A8 including Co, Cu, and Zn (Fig. 2b, 2c,

and 2d, respectively).

Secondary sex-stratified analysis of genotype-related changes in serum Mn concentration
showed a similar pattern but fell short of statistical significance in males (CT and TT)and TT
females, likely due to the reduced sample size and the small effect size of the variant on Mn

concentrations (5) (Supp. Fig. 3). There was no overall significant difference in serum Mn by sex,
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and linear regression showed no correlation between serum Mn concentration and age or BMI

(Supp. Fig. 4).

Analysis of plasma protein N-glycosylation showed reduced branching in CT and TT
carriers

After confirming decreased serum Mn in A391T carriers from the Partners Biobank, we sought
measure the plasma protein N-glycome based on rs13107325 genotype in the same individuals.
N-glycans of plasma proteins were measured from 5 uL samples following peptide:N-glycosidase
F (PNGaseF) cleavage and permethylation, and analyzed using MALDI-TOF MS based on
standard protocols (34, 35). Plasma was studied in lieu of serum given the abundance of
literature on human plasma glycosylation (36), and because our pilot analysis of serum and
plasma from the same donors found no substantial differences (data not shown). Fifty-seven
individual N-glycans were quantified after normalization for percent abundance within each
sample. The overall N-glycome pattern, as illustrated by the 20 most abundant plasma N-glycans,
was consistent with previous reports and similar between genotypes (Fig. 3a) (36). Several
individual glycans differed significantly based on genotype, and the direction of change was the
same for the majority of individual N-glycans in CT and TT carriers (Supp. Table 3). A heat map
of percent change (relative to CC) showed that larger glycans (m/z > 2851) consistently trend

towards decreased abundance in CT and TT carriers (Fig. 3b).

To determine whether specific enzymatic machinery is uniquely affected by genotype and Mn
levels, glycans sharing structural similarities (such as branching, fucosylation, sialylation, etc.)
were analyzed together, providing a more comprehensive evaluation than a single N-glycan. For
example, bisection of N-glycans is performed by a single enzyme, MGAT3; analysis of all
bisected N-glycans would be a more accurate readout of MGAT3 function than a single bisected
N-glycan. Classification of each glycan by category is included in supplementary material (Supp.

Table 4).

10
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Branching of N-glycans, or antennarity, is defined as the number of N-acetylglucosamine
(GIcNAc) linkages to core mannose (Man) residues, and is a proxy for the complexity of N-
glycans (37). We observed reduced branching in CT and TT carriers compared to CC (Fig. 4;
Table 1). In both CT and TT genotypes, there is a statistically significant increase in bi-antennary
N-glycans (CC 88.0% vs CT 90.2%, p =0.0017; CC vs TT 90.1%, p =0.0082) and decrease in tri-
antennary N-glycans (CC 6.77% vs CT 4.99%, p =0.0118; CC vs TT 4.91%, p =0.0126). Tetra-
antennary glycans show a similar reduction in CT and TT carriers, though it did not reach
statistical significance (CC 0.574% vs CT 0.420%, p =0.107; CC vs TT 0.457%, p =0.192). No
change was observed in mono-antennary N-glycans and high-mannose structures (N-glycan
precursors lacking antenna). Sex-stratified analysis revealed a greater effect on branching in

male CT and TT carriers, though both sexes show a similar pattern (Supp. Fig. 5, Supp. Table 5).

No significant change was observed in hybrid, bisecting, or core-fucosylated N-glycans (Supp.
Table 6). Fucosylation of antenna, shown to be primarily tri- and tetra-antennary N-glycans (as
opposed to core-fucosylation primarily on mono and bi-antennary structures) (36), was reduced in
both CT and TT carriers relative to CC, though only significantly in the TT group (CC 2.09% vs
CT 01.56%, p =0.146; CC vs TT 1.43%, p =0.037). Analysis based on terminal monosaccharides
showed no significant changes across any category, though there was a trend towards less
sialylated species in CT and TT carriers (Supp. Table 6). Analysis stratified on the number of
each residue showed a similar pattern of reduced abundance of larger and more complex
structures in CT and TT carriers relative to CC. Finally, there was no change in the overall
representation of each individual monosaccharide in the total protein N-glycan pool between
genotypes, suggesting that differences in branching are not due to altered availability of the

enzymatic substrate (UDP-Gal, UDP-GIcNAc, etc.) (Supp. Table 6).

SLC39A8-CDG patients have increased precursor N-glycans and decreased complex N-

glycans that are reversed following Mn supplementation

11
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After completing glycome analysis of a common variant with a small effect, we sought to
determine if more intolerant mutations in SLC39A8 result in a similar but larger effect. Advances
in next-generation DNA sequencing has resulted in an expansion of the known congenital
disorders of glycosylation to more than one-hundred (22). A pair of case studies in 2015 (25, 26)
and a recent report in 2017 (38) have identified multiple individuals with congenital disorders of
glycosylation resulting from intolerant mutations in SLC39A8 inherited in a recessive manner. The
clinical phenotypes are dramatic and overlap in intellectual disability, seizures, brain structural
abnormalities, low to undetectable Mn, and impaired transferrin glycosylation. Transferrin N-
glycosylation is a common screening test for CDGs, though recent efforts have focused on
performing mass spectrometry (MS) based methods given the more complete and sensitive

nature of the test (34).

We performed plasma protein N-glycan profiling of two individuals with CDGs caused by
homozygous SLC39A8 mutations before and after Mn supplementation. A full characterization of
the clinical presentations as well as Mn supplementation protocol is described elsewhere (27). In
brief: Subject A is an 8-month-old female with a more severe phenotype, harboring two mutations
in highly conserved sites of SLC39A8 (Gly38Arg, lle340Asn), treated for ~1 year with Mn-sulfate
after a cross-titration from galactose supplementation; Subject B is a 19-year-old female with a
milder phenotype found to have 3 mutations in SLC39A8 (Val33Met/Ser335Thr, Gly204Cys)
treated with Mn-sulfate for ~1 year. The full plasma protein N-glycan profile and spectra for each
individual pre- and post-Mn therapy is included in the supplementary material (Supp. Fig. 6,
Supp. Table 7). Each sample was analyzed twice and produced similar results. We highlight
specific glycans and groups of glycans which: 1) changed in the same direction in both subject A
and subject B; 2) were similar to changes observed in other CDGs using MALDI-TOF; 3) changed
with Mn treatment; and 4) showed parallel changes relative to those observed in A391T carriers.
Similar to prior studies on CDGs, identification of a single or few individuals with a particular CDG
limits direct and statistical comparison to meaningful matched control populations due to small

sample size, age differences, and clinical variability. We include values for CC carriers using as

12


https://doi.org/10.1101/757088
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/757088; this version posted September 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

MEALER SLC39A8 MANUSCRIPT

comparators for our experimental protocols. As described in our methods, only serum from

subject A pre-Mn supplementation was available and analyzed in lieu of plasma.

Relative abundance of A2G1S1, a monosialo-monogalacto bi-antennary N-glycan with
permethylated m/z of 2227, is consistently elevated in plasma/serum across multiple CDGs (34),
and was the only N-glycan reported as significantly elevated by Rader and colleagues in A391T
homozygotes (28). Both subject A and subject B show increased A2G1S1 at baseline that
decreased following Mn treatment (A 2.246% -> 0.652% with Mn; B 1.650% -> 0.622% with Mn;
CC 0.439%) (Supp. Table 7). Two of the most abundant large N-glycans, A3G3S3 and A3FG3S3
(m/z 3603 and 3777, respectively) are consistently reduced in multiple CDGs (34). Both subject A
and subject B have decreased A3G3S3 and subject A has lower A3FG3S3 at baseline; following
Mn supplementation both A3G3S3 and A3FG3S3 increase in both individuals (A3G3S3: A 3.25%
-> 8.03% with Mn; B 2.24% -> 5.71% with Mn; CC 3.68%), (A3FG3S3: A 0.662% -> 0.725% with

Mn; B 3.81% -> 6.72% with Mn; CC 1.58%) (Supp. Fig. 7, Supp. Table 7).

Grouped analysis of antennarity showed a decrease in mono- and bi-antennary structures and a
dramatic increase in tri- and tetra-antennary structures following Mn treatment in both individuals
(mono-antennary: A 1.49% -> 1.11% with Mn; B 1.06% -> 0.61% with Mn; CC 1.09%) (bi-
antennary: A 88.8% -> 84.9% with Mn; B 87.7% -> 82.8% with Mn; CC 88.0%) (tri-antennary: A
5.48% -> 10.8% with Mn; B 8.22% -> 14.4% with Mn; CC 6.77%) (tetra-antennary: A 0.46% ->
0.78% with Mn; B 0.72% -> 0.89% with Mn; CC 0.57%) (Table 2, Fig. 5). High-mannose
precursors were reduced following Mn treatment in both subjects (A 3.76% -> 2.39% with Mn; B
2.28% -> 1.31% with Mn; CC 3.59%). Bisecting N-glycans, synthesized only by MGAT3, which
harbors a Mn-binding DxD motif, were markedly increased following Mn treatment (A 1.10% ->
3.90% with Mn; B 3.26% -> 4.35% with Mn; CC 7.83%) (Fig. 5). Analysis based on terminal
monosaccharides showed more variable differences between the subjects without any clear
trends in both subjects (Supp. Table 8). Analysis stratified by residue shows a similar pattern of

increased abundance of more complex structures following Mn treatment, and the overall
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representation of each monosaccharide in the total N-glycan pool remained similar before and
after Mn treatment aside from a 50% increase in fucose in subject A (Supp. Table 8). In
summary, the MALDI-TOF N-glycan profiles of two individuals with SLC39A8-CDG showed

reduced complexity of N-glycans, which was increased after one year of Mn supplementation.
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Discussion:

In our study, we found several Mn-related changes in human carriers of a missense variant in
SCL39A8 associated with schizophrenia. In samples unaffected by schizophrenia, analysis of
brain MRI data identified several regions of altered T2w/T1w signal based on rs13107325
genotype, consistent with changes in paramagnetic metal concentration. Both heterozygous and
homozygous minor allele (A391T) carriers had a specific reduction of serum Mn and decreased
branching of plasma protein N-glycans. Patients with SLC39A8-CDG showed a similar pattern of
N-glycome changes that were reversed after a year of treatment with Mn, suggesting that
glycome alterations and associated phenotypes in A391T carriers may be amenable to Mn
supplementation. In particular, given the robust association of this variant with schizophrenia (1),
our results raise the intriguing possibility that Mn supplementation might have therapeutic benefit

for patients with this disorder.

The rs13107325 variant is associated with a diverse array of heritable traits and conditions. At the

time of this manuscript preparation, the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/)

lists 33 unique traits associated with rs13107325. Numerous associations relate to developmental
processes, such as growth and immune traits, inflammatory bowel disease, scoliosis, intelligence,
and schizophrenia, suggesting there may be critical windows of susceptibility to altered Mn

concentration resulting from the missense variant.

We hypothesized that lower plasma Mn levels would be associated with lower brain Mn levels in
rs13107325 minor allele carriers, leading to increased T1 and T2 relaxation times with higher T2w
signal and lower T1w signal. We identified increased T2w/T1w ratios in putamen (primarily lateral
putamen) and white matter tracts consistent with this hypothesis. In contrast, the GPi and SN
showed decreased T2w/T1w ratios in both CT and TT carriers, suggestive of increased
paramagnetic metal ion deposition. Mn transport in the brain is complex, regulated by numerous
transporters and pathways with significant overlap between iron (Fe) and Mn homeostasis (15,

16, 33, 39, 40). Both increased and decreased Fe lead to increased Mn transport into the brain
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(41, 42). We suspect that low levels of Mn lead to increased uptake of Fe in some regions,
particularly those with high affinity for divalent cations such as the GPi and SN. The GPi has high
levels of DMT-1 expression and the highest rate of Mn deposition in welders exposed to Mn (32).
Studies in primates have demonstrated that the pallidum is uniquely susceptible to Mn
accumulation (43, 44), and manganese toxicity results in a Parkinsonian phenotype (16,17).
Interestingly, A391T is protective against Parkinson disorder, presumably from reduced uptake of
Mn in to the pallidum or SN (10). Two recent studies associated A391T with brain MRI signal
changes attributed to volumetric differences including increased gray matter in the caudate,
putamen and cerebellum (8, 29). MRI signal is affected by any factor influencing the magnetic
field including Fe and Mn concentrations (45). Voxel-based morphometry (VBM) detects intensity
changes between brain regions and is often interpreted as changes in grey matter density and
volume. In contrast to VBM techniques, our preliminary studies measured volume using
FreeSurfer and found no volumetric difference in any brain region based on rs13107325
genotype. We conclude that the direction of the T2w/T 1w signal change in A391T carriers

resulted from regional changes in Mn, Fe, or both.

Our study confirms that the A391T missense mutation selectively lowers serum Mn levels in both
heterozygous and homozygous carriers. No differences were detected in any of the other trace
elements transported through SLC39A8 (Zn, Co, and Cu), though effects on Cd could not be
assessed as levels were below our method of detection limit. Fe was not measured in our study,
though GWAS on Fe levels and Fe-related traits have not identified any associations with the
A391T missense variant, and two recent studies show no difference in Fe concentration in A391T

carriers, suggesting that serum Fe is not affected (9, 46)

Multiple studies demonstrate the importance of SLC39A8 to health and disease. Hypomorphic
mice expressing 10-15% of basal SLC39A8 show severe growth stunting, dysmorphogenesis,
and anemia (47, 48). SLC39A8 is required during cardiac development and regulates zinc

transport in endothelium (49). Recent studies also highlight a role for the SLC39A8 common
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variant in regulation of the gut microbiome and metal homeostasis in Crohn’s disease (4, 50, 51).
Two case series from 2015 identified individuals with severe mutations in SLC39A8 presenting
with a constellation of severe symptoms including intellectual disability, developmental delay,
cerebellar atrophy, growth abnormalities, and seizures (25, 26). A more recent report identified a
pair of siblings presenting with a Leigh-like syndrome of intellectual disability, dystonia, seizures,
cortical atrophy and basal ganglia T2 hyperintensities (38). Importantly, these studies
demonstrate that the glycosylation deficits and some of the clinical phenotypes can be improved
by oral supplementation of galactose and uridine to yield UDP-Gal, the key enzymatic substrate
for B(1,4)-galactosyltransferase, as well as the attendant obligatory cofactor for this activity, Mn

(25, 27, 38).

Human plasma protein N-glycosylation is an extensive area of research, with detailed
descriptions of the abundance of each glycan, identification of proteins harboring each glycan,
and how these glycans affect protein function (36). The plasma N-glycome is increasingly
explored as a potential biomarker in a variety of settings including depression (52—-54), pregnancy
(55), IBD (56), Down syndrome (57), inflammation and metabolic health (58), and post-surgical
changes (59). Given the repeated association of SLC39A8 with glycosylation defects in prior
studies (25-28, 38), and the exquisite sensitivity of certain glycosyltransferases for Mn as an

irreplaceable co-factor, we focused our study on glycosylation changes in A391T carriers.

Plasma protein N-glycome changes were similar in individuals carrying one or two copies of the
hypo-functioning allele, suggesting a dominant effect. The most notable findings in individuals
carrying the missense mutation were reduced branching and decreased complexity of large N-
glycans. Rader and colleagues describe a small but significant increase in the abundance of the
monosialo-monogalacto-biantennary precursor glycan A2G1S1 (m/z 2227) in a group of A391T
homozygotes carriers (TT) but did not report the abundance of other plasma N-glycans (28).
A2G1S1 is commonly increased in CDGs and suggestive of decreased 3(1,4)-

galactosyltransferase activity (60). We observed a ~20% increased abundance of A2G1S1 in
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both CT and TT carriers, though it did not reach statistical significance. We hypothesize that
reduced Mn availability in mutation carriers results in a modest but broad reduction of
glycosyltransferase activity in glycosyltransferases containing DxD domains including $(1,4)-
galactosyltransferase and the numerous N-acetylglucosaminyltransferases (MGATSs) that control
N-glycan branching. In addition, the activity of some glycosyltransferases lacking a classic DxD
domain are also affected by variations in Mn concentration including sialyltransferases and may

be affected (61).

We report the first plasma N-glycome analysis using MALDI-TOF MS of two individuals with
severe SLC39A8 mutations causing CDGs before and after Mn supplementation (25, 27). In
plasma from these patients, we observed an elevation of the precursor A2G1S1 (m/z 2227) and a
reduction of larger, more complex glycans including A3G3S3 and A3FG3S3 (m/z 3603 and 3777,
respectively), similar to what has been reported in other type-ll CDGs (34). The abundance of
these three individual glycans normalized following Mn supplementation, and grouped analysis
showed a dramatic increase in branched N-glycans and reduced high-mannose precursors
following treatment. These changes parallel the reduced complexity of N-glycans in A391T
carriers and suggest that such changes could be targeted with Mn supplementation. When and
how to safely and effectively administer such a treatment remains to be determined. However,
tracking of the branching of N-glycans could be a useful biomarker of treatment response and

dose titration in CDGs and conditions associated with the A391T variant such as schizophrenia.

Glycosyltransferases associated with common, complex diseases tend to have specific tissue-
specific expression profiles, isoenzymes with redundant activity, and function across multiple
pathways, whereas glycosyltransferases associated with CDGs tend to have diffuse expression,
lack redundant isoenzymes, and function within specific glycosylation pathways (62). A minority
of glycosyltransferases are associated with both common diseases and CDGs, similar to what is
observed with SLC39A8. GWAS have identified loci influencing the glycosylation of specific

plasma proteins such as IgG as well as the total glycome (63—65). These studies do not report an
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association of rs13107325 with plasma and IgG N-glycosylation patterns and primarily identify
SNPs near glycosyltransferase genes. This may result from differences in methodologies
employed between studies (MALDI-TOF vs UPLC (65) and LC-ESI-MS (64)), minor allele
frequency between cohorts, power/sample size, and effect size; rs13107325 may not be a major
regulator of total plasma N-glycosylation relative to all genetic variation in glycosylation-related
genes. Large, branched N-glycans are not generally found on IgG (36), thus it is less likely
changes associated with rs13107325 would be identified in such studies. Though MALDI-TOF
MS is a standard tool in the study of glycosylation disorders, the semi-quantitative of this assay
only allows determination of abundance changes within each sample after normalization. In
addition to quantitative assays, future studies of SLC39A8-A391T should include analysis of
protein O-glycans and glycolipids, as well as disease-relevant systems including primary tissue,

cell lines, and murine models to determine how this variant elicits such pleotropic effects.

In summary, we have demonstrated that a common missense variant in SLC39A8 is associated
with multiple Mn-related phenotypes in both heterozygous and homozygous carriers, including
changes in brain MRI T2w/T 1w signals, reduced serum Mn levels, and decreased branching and
complexity of plasma N-glycans. In addition, we identify parallel changes in the plasma N-
glycome of SLC39A8-CDG patients that are reversed following Mn supplementation. Although the
effect size of the common variant in SLC39A8 on glycosylation is relatively modest, translation of
validated genetic variants to functional biologic pathways can provide critical insight for a disease.
For example, common variants in HMGCR (gene for 3-hydroxy-3-methylglutaryl-CoA reductase)
result in a modest effect on LDL levels despite this protein being the target for the majority of
lipid-lowering medications (66—69), and a common variant in DRD2, the gene encoding the
dopamine receptor D2 and the site of action for anti-psychotic medications (70, 71), results in
only a small increase in the risk of schizophrenia (1). Our observations provide mechanistic
insights across a broad range of conditions including schizophrenia and may have implications for

the development of novel diagnostic and therapeutic biomarkers.
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Methods:
MRI data (T1 and T2 images) were downloaded from the UK Biobank 2018 release of ~15,000

participants’ imaging data (https://www.ukbiobank.ac.uk). The UK Biobank imaging protocol has

been described previously (8). Equal numbers (n = 48) of individuals with each of the three
rs13107325 genotypes and brain imaging data were identified after matching for age, sex,
smoking status, living area, body mass index (BMI) and Townsend Deprivation Index as a proxy
for socioeconomic status. Ratio images were created by dividing the T2-weighted images (T2w)
by the T1-weighted (T1w) images. Ratio images in TT and CT carriers were compared to CC
subjects on a pixel-by-pixel basis using a t-test corrected for a false discovery rate of 5% using

standard tools in the AFNI image analysis program (https://afni.nimh.nih.gov). Regions of

interest (ROI), including the substantia nigra (SN), globus pallidus interna (GPi) and lateral
putamen (LPut), were drawn after averaging all the images from the CC cohort, and then
propagated to each individual ratio image. Values determined over the whole ROI were then

compared using ANOVA analyses as described in Statistical Analysis, below.

Serum and plasma samples were obtained from the Partners Biobank, a biorepository
containing serum, plasma, DNA, and buffy coats from 80,000 participants linked to the electronic
health records (EHRs) and consented for broad-based research including 20,000 participants

with genome-wide genotype data (https://biobank.partners.org). De-identified samples of serum

and plasma were selected from 25 participants with the homozygous minor TT genotype
independent of clinical phenotype, along with age- and sex-matched samples of the CC and CT
genotype (46 each). Samples from each individual were analyzed by ICP-MS for trace elements
concentration. Plasma N-glycomics analysis were processed in batches of 12, with each batch
including at least 3 samples from each genotype. This resulted in the total number of analyzed
samples reaching 33, 31, and 25 for CC, CT, and TT, respectively, when all TT samples had
been analyzed. Serum and plasma samples were coded and blinded for all experiments with
genotype revealed only for analysis. Demographic characteristics based on genotype are shown

in Supplementary Table 1. Plasma and serum were provided by Drs. Park and Marquardt from
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two individuals with a CDG associated with mutations in SLC39A8, as described previously (25,
27). Of note, the plasma sample provided for Subject A pre-Mn supplementation did not produce
an interpretable N-glycan profile despite two repeat analyses as the signal intensity was too low,
presumably due to a problem with storage or transfer of the sample. An available serum sample
of Subject A pre-Mn supplementation was analyzed in lieu of plasma and produced a reliable and
replicable N-glycan profile. Given the limited quantity of samples available from these rare-
disease cases, and our observation that serum and plasma have similar N-glycan profiles as

described above, the serum sample from Subject A was included in our report.

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Trace Element Analysis was
performed at the Wadsworth Center, New York State Department of Health (Albany, New York).
For each of the 23 trace elements measured, the MDLs were determined on seven independent
runs and appropriate, multi-level quality control (QC) samples included with each run. The QC
data are shown in Supplementary Table 2 and are represented on each graph by a hashed line in
Figure 1 and Supplemental Figure 1. For each sample, 200 pL of serum was diluted with a
reagent containing appropriate internal standards for the analysis. Because serum samples in the
Partners Biobank were obtained in BD-red top vacutainer tubes and aliquoted into cryovials for
storage (as opposed to the BD-Royal Blue trace elements tubes), we performed a pilot study of
four serum samples drawn simultaneously into red-top and royal blue top tubes, and then
aliquoted into either cryovials or metal-free specimen vials. There was no difference in the
measured Mn content between these two sample tubes, which suggests that archived sera in the

Biobank is suitable for trace Mn measurements (d.n.s).

Purification of plasma protein N-glycans was performed using standard protocols consistent
with prior studies on CDGs (34) and are available through The National Center for Functional

Glycomics website. (www.ncfg.hms.harvard.edu). In brief, 5 uL of plasma was lyophilized and

resuspended in 20 uL 1X Rapid PNGaseF buffer (NEB #P0710S) and incubated for 15 minutes

at 70°C to denature proteins. After cooling to room temperature, 1 uL of Rapid PNGaseF (NEB
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#P0710S) was added and incubated at 50°C for 1 hour to cleave N-glycans from proteins.
PNGaseF treated samples were resuspended in 100 ul of 5% acetic acid and added to a C18
Sep-Pak (50 mg) column (Waters, #WWAT054955) preconditioned with one column volume each
of methanol, 5% acetic acid, 1-propanol, and 5% acetic acid. The reaction tube was washed with
another 100 pL of 5% acetic acid and added to the C-18 column, followed by 1 mL of 5% acetic
acid, and the entire flow-through was collected in a microcentrifuge tube (~1.2 mL). Samples
were placed in a speed vacuum for two hours to reduce the volume to ~300 L, covered in

parafilm and lyophilized overnight.

N-glycan permethylation was performed using a fresh slurry of NaOH/DMSO daily. Seven
pellets of NaOH (Sigma-Aldrich, #S8045) were dissolved in four glass pipettes volumes (~3 ml) of
DMSO (Sigma-Aldrich, #D8418) and ground using a clean/dry mortar and pestle. 200 yL of the
NaOH/DMSO slurry was added to the lyophilized N-glycans in addition to 100uL iodomethane
(Sigma-Aldrich, #289566) and placed in on a vortex shaker for 20 minutes at room temperature
with a microtube cap to prevent the lid from opening due to increased gas pressure. After the
mixture became white, semi-solid and chalky, 200 uL ddH20 was added to stop the reaction and
dissolve the sample. 200 pL chloroform and an additional 400 yL ddH20 were added for
chloroform extraction and vortexed followed by brief centrifugation. The aqueous phase was
discarded, and the chloroform fraction was washed three additional times with 800 uL ddH20.
Chloroform was then evaporated by 20 minutes in a speed vacuum. Permethylated N-glycans
were resuspended in 200 pL of 50% methanol and added to a C18 Sep-Pak (50 mg) column
preconditioned with one column volume each of methanol, ddH20, acetonitrile, and ddH20. The
reaction tube was washed with 1mL 10% acetonitrile and added to the column, followed by an
additional 2 ml wash of 10% acetonitrile. Columns were placed in a 15 mL glass tube, and
permethylated N-glycans were eluted with 3 mL 50% acetonitrile. The eluted fraction was placed
in a speed vacuum for one hour to remove the acetonitrile, covered in parafilm and lyophilized

overnight.
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MALDI-TOF analysis of purified glycans was performed on permethylated N-glycans
resuspended in 25 pL of 75% methanol and spotted in a 1:1 ratio with DHB matrix on a metal 384
spot. Spectra from the samples were obtained in a Bruker MALDI-TOF instrument using
FlexControl Software in the Reflection Positive mode with a mass/charge (m/z) range of 1,500-
5,000 kD. Twenty independent captures (representing 1,000 shots each) were obtained from
each sample and averaged to create the final spectra file and exported in .msd format for

analysis.

N-Glycan analysis. 57 N-glycans of known structure corresponding to the correct isotopic mass
were annotated in each spectra using mMass software (72). The relative abundance of each N-
glycan was calculated as the signal intensity for each peak divided by the signal intensity for all
57 measured N-glycans within a spectrum. N-glycans were grouped into different categories
based on shared components such as monosaccharide composition, antennarity, or class based
on deductive reasoning and prior MS/MS data where available(36) (Supp. Table 4). Absolute
change and relative change compared either to CC genotype or pre-Mn supplementation is
shown. Heat maps are scaled from dark blue — white — bright red representing (-5.0 > 0 —»
+5.0) for absolute abundance change and (-50.0% — 0 — +50.0%) for relative change. The
contribution of each monosaccharide was determined by taking the percentage of each
monosaccharide in a N-glycan multiplied by the abundance of the glycan, and then summated for

the five monosaccharides present in human plasma N-glycans.

Statistical Analysis. Brain MRI data of T2w/T1w ratios from TT and CT carriers were compared
to CC subjects on a pixel by pixel basis using a t-test corrected for a false discovery rate of 5%

using AFNI Image Analysis Tools (https://afni.nimh.nih.gov) and StatistiXL Version 2 Software.

Regions of interest were compared as ratios of T2w/T1w signal intensities using a one-way
ANOVA followed by a post-hoc comparison using a Dunnett’s test, with the CC as a control (or
TT for comparisons between TT and CT). Metal data was analyzed using GraphPad Prism

Version 7 and included an initial ANOVA analysis (degrees of freedom, DF = 2) followed by
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individual unpaired t-tests assuming unequal variance between each genotype (CC vs CT, CC vs
TT, CT vs TT), followed by linear regression between Mn concentration, age, and BMI.
Glycosylation data was analyzed using Microsoft Excel Version 16.27. The abundance of
individual glycans and glycan classes were compared between genotypes using unpaired t-tests
assuming unequal variance between genotypes, with significance thresholds applied at p *<0.05,

**<0.01, and ***<0.001.

Study Approval was obtained from the Massachusetts General Hospital/Partners Human
Research Committee IRB. Informed consent and approval for Mn supplementation in subjects
with SLC39A8-CDG were obtained and described in prior publications (25, 27). Brain MRI scans

were downloaded from the UK Biobank under an approved data request (ref: 32568).
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Figure 1. Dose-dependent effects of the A391T variant on regional T2w/T1w ratio. (a)
Representative maps of the T2w/T1w ratio in CT and TT carriers overlaid on CC controls where
ratio is either increased or decreased with a p-value of <0.05 on a pixel-by-pixel basis via
student’s t-test. Heat map corresponds to the direction of change of the T2w/T1w ratio relative to
the CC group, with yellow/orange representing an increase and blue representing a decrease. (b)
Quantification of ROIs including globus pallidus (GPi), lateral putamen (LPut), and substantia
nigra (SN) based on rs13107325 genotype, compared using post-hoc Dunnett’s test. Data points
are shown for each individual, with the black horizontal line representing mean for each genotype.

CC (white circles) n =47, CT (gray circles) n =45, TT (black circles) n = 44.
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Figure 2. A391T results in a specific reduction of serum manganese in heterozygous and
homozygous carriers. (a) Mn, (b) Co, (c) Cu, and (d) Zn are all trace elements previously
shown to be transported by SLC39A8. Data points are shown for each individual, with the black
horizontal line representing mean for each genotype. Method Detection Limit (MDL) for each
trace element shown as grey dashed line on each graph. Genotypes compared using student’s t-

test. CC (white circles) n = 46, CT (gray circles) n = 46, TT (black circles) n = 25. *p <0.05, **p
<0.01, ***p <0.001.
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Figure 3. Analysis of plasma protein N-glycans based on rs13107325 genotype. (a)
Summary data for the 20 most abundant plasma protein N-glycans sorted by rs13107325
genotype. Data presented as mean +/- standard error of the mean (SEM) for the percent (%)
abundance of each N-glycan relative to the total N-glycan pool. Corresponding N-glycan
structures are shown above each predicted m/z (mass/charge ratio) including a key for individual
monosaccharide components of human N-glycans. (b) Heat map illustrating percent change of
each individual glycan in CT and TT relative to CC; scaled from dark blue — white — bright red
as -50.0% — 0% — +50.0%. Genotypes compared using student’s t-test. Individual N-glycans
that are significantly different in CT and TT compared to CC are marked with an asterisk; *p

<0.05. CC (white bars) n = 33, CT (gray bars) n = 31, TT (black bars) n = 25.
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Figure 4. A391T carriers have reduced branching of plasma protein N-glycans. Data
presented as mean +/- SEM for the % abundance of N-glycans with (a) one (mono-), (b) two (bi-),
(c) three (tri-) or (d) four (tetra-) antennas, defined as the number of GIcNAc attachments to core
Man residues (Supp. Table 3). Genotypes compared using student’s t-test. CC (white bars) n =

33, CT (gray bars) n = 31, TT (black bars) n = 25.
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Figure 5. Plasma protein N-glycan changes in severe loss-of-function SLC39A8 mutation
carriers after manganese treatment. Data presented as percent abundance of (a) tri-antennary,
(b) tetra-antennary, (c) high-mannose, and (d) bisecting N-glycans before and after ~ 1 year of
Mn supplementation in Subjects A and B with congenital disorders of glycosylation due to severe
SLC39A8 homozygous mutations. Samples from each individual were replicated twice with

similar results.
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Tables:
% Abundance % Change vs CCA Relative Change to CC®
Antennarity CC(n=33) CT(n=31) TT (n=25) CcT T CT T
High-mannose 3.59 341 3.60 -0.18 0.01 95 100
Mono-antennary 1.09 1.01 0.94 -0.08 -0.15 93 86
Bi-antennary 87.98 90.16** 90.09** 2.18 211 102 102
Tri-antennary 6.77 4.99* 4.91* -1.77 -1.86 74 73
Tetra-antennary 0.57 0.42 0.46 -0.15 -0.12 73 80

Table 1. Plasma protein N-glycan branching based on rs13107325 genotype. Heat maps

scale: dark blue -> white -> bright red representing -5.0 -> 0 -> +5.0 for absolute abundance”*

change and -50.0% -> 0 -> +50.0% for relative change®. *p <0.05, **p <0.01 for % abundance of

CT and TT vs CC genotype.
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% Abundance % Change + Mn? Relative Change + Mn®
Antennarity A A+ Mn B B+ Mn A+ Mn B+ Mn
High-mannose 3.76 2.39 2.28 1.31 -1.37 -0.96
Mono-antennary 1.49 111 1.06 0.61 -0.38 -0.45
Bi-antennary 88.81 84.87 87.72 82.84
Tri-antennary 5.48 10.84 8.22 14.35
Tetra-antennary 0.46 0.78 0.72 0.89

Table 2. Plasma protein N-glycan branching following Mn supplementation in severe
SLC39A8 mutation carriers. Heat maps scale: dark blue -> white -> bright red representing -5.0

-> 0 -> +5.0 for absolute abundance change” and -50.0% -> 0 -> +50.0% for relative change®.
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