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Abstract

Motivation: Semantic annotation is a crucial step to assure reusability and reproducibility of biosimulation
models in biology and physiology. For this purpose, the COmputational Modeling in BIology NEtwork
(COMBINE) community recommend the use of the Resource Description Framework (RDF). The RDF
implementation provides the flexibility of model entity searching (e.g. flux of sodium across apical plasma
membrane) by utilising SPARQL. However, the rigidity and complexity of SPARQL syntax and the nature
of semantic annotation which is not merely as a simple triple yet forming a tree-like structure may cause
a difficulty. Therefore, the availability of an interface to convert a natural language query to SPARQL is
beneficial.
Results: We propose NLIMED, a natural language query to SPARQL interface to retrieve model entities
from biosimulation models. Our interface can be applied to various repositories utilising RDF such as the
PMR and Biomodels. We evaluate our interface by collecting RDF in the biosimulation models coded using
CellML in PMR. First, we extract RDF as a tree structure and then store each subtree of a model entity
as a modified triple of a model entity name, path, and class ontology into the RDF Graph Index. We also
extract class ontology’s textual metadata from the BioPortal and CellML and manage it in the Text Feature
Index. With the Text Feature Index, we annotate phrases resulted by the NLQ Parser (Stanford parser or
NLTK parser) into class ontologies. Finally, the detected class ontologies then are composed as SPARQL
by incorporating the RDF Graph Index. Our annotator performance is far more powerful compared to the
available service provided by BioPortal with F-measure of 0.756 and our SPARQL composer can find all
possible SPARQL in the collection based on the annotation results. Currently, we already implement our
interface in Epithelial Modelling Platform tool.
Availability: https://github.com/napakalas/NLIMED
Contact: ymun794@aucklanduni.ac.nz, d.nickerson@auckland.ac.nz

1 Introduction
The Resource Description Network (RDF) is a standard data model used in
almost all semantically annotated biosimulation models in the Physiome
Repository Model (PMR) (Yu et al., 2011) and BioModels (Chelliah
et al., 2015). These RDF annotated models, then, can be discovered for
its model entities such as variables, components, mathematical formula,
reactions, compartments, species, and events. Thus, this discoverability
supports communities in biology and physiology through reusability and
reproducibility. Currently, the utilisation of the RDF in biosimulation
models semantic annotation has been formalised as the only standard by the

COmputational Modeling in BIology NEtwork (COMBINE) community
(Neal et al., 2019).

We can now leverage SPARQL, a standard query language to retrieve
information from data encoded using RDF, to discover model entities.
SPARQL is a simple, easy-to-understand and good-performing language,
especially for triple (subject, predicate, and object) searches in the RDF
(Pérez et al., 2009). However, for our purpose, SPARQL becomes
complicated, since model entities can be annotated compositely by several
class ontologies connected by a series of predicates and objects, creating
a tree structure. Hence, knowledge in the class ontologies and tree
structure related to the model itself is critical, so maybe only experts can
create SPARQL that suits their information needs. Therefore, a simple
interface translating information needs in Natural Language Query (NLQ)
to SPARQL is required.
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To address the above challenge generally, NLQ to SPARQL translation
applies two processes: NLQ pre-processing and SPARQL generation
(Hamon et al., 2014; Zou et al., 2014; Yahya et al., 2012; Lopez et al.,
2013). The aim of NLQ pre-processing is to identify subjects or predicates
or objects and the intention of the question, while SPARQL generation
is to construct SPARQL based on NLQ pre-processing result. Most of
NLQ pre-processing has utilised Natural Language Processing (NLP) such
as in several works in Question Answering over Linked Data (QALD-
4) challenge focusing on biomedical, e.g. RO_FII (Unger et al., 2014),
GFMed (Marginean, 2014), and POMELO (Hamon et al., 2016) and
Multilanguage data, e.g. Xser (Xu et al., 2014). GFMed was based on
a set of self-determined grammar rules for a group of natural language
patterns, making it less suitable for NLQ that do not fit the patterns.
POMELO and Xser have provided a more flexible approach by exploiting
information from target RDF databases to abstract NLQ so that it can
handle a broader range of NLQ types. All these works are useful to
querying RDF databases consisting of simple triple or interlinked structure
such as DBPedia, Drugbank, Sider, Diseasome. For complex structure
such as in biosimulation models, we adapt NLP to recognised phrases
associated with class ontologies, rather than with subjects, predicates, and
objects.

In biosimulation model communities, SemGen, a model annotation
tool (Neal et al., 2018), suggested the BioPortal service NCBO Annotator
(Jonquet et al., 2009), for easy and fast searching of class ontologies.
This approach works well, but by using NCBO Annotator only we do
not consider local data in biosimulation models that are likely to cause
misidentification. Another tool, Epithelial Modelling Platform (EMP), a
visual web interface to create a new epithelial transport model based on
the available models (Sarwar et al., 2019), utilised a template-based search
interface (Sarwar et al., 2018) to find the appropriate model entities. For
this specific type of searching, the template-based interface can perform
properly and is easy to deploy; however, for our purpose, it needs the
development of numerous templates for different biosimulation model
types.

Hence, we introduce here NLIMED (Natural Language Interface
for Model Entity Discovery), a natural language interface for searching
semantically annotated model entities from biosimulation models.
Initially, we develop NLQ Annotator for annotating NLQ to a set of
class ontologies by utilising NLQ parser and key information in BioPortal
(Whetzel et al., 2011) and biosimulation model. For fast annotation, we
organise the key information as global and local features in the Text Feature
Index. Then, we develop SPARQL Generator for generating SPARQL
from a set of class ontologies. The vital part of SPARQL Generator is the
RDF Graph Index storing the relationship of model entity’s predicates,
objects, class ontologies, and textual information. By the RDF Graph
Index, we can construct all possible SPARQL based on provided class
ontologies.

We evaluate NLIMED on the PMR collection (Yu et al., 2011) by
collecting all CellML files annotated using the RDF and then creating
the RDF Graph Index and the Text Feature Index. We demonstrate that
NLIMED translates NLQ to SPARQL that can be superior compared to
the existing approach and has faster execution time. NLIMED is ready
to be implemented and can accommodate different biosimulation model
platforms, such as CellML (Cuellar et al., 2003), and SBML (Hucka
et al., 2003) so it is possible to create generic model entities discovery
tool. Currently, we have implemented NLIMED in EMP to optimise its
user experience when searching for model entities (Sarwar et al., 2019).
We provide our implementation and experiment setup freely accessed at
https://github.com/napakalas/NLIMED.

2 Materials and methods
Our interface consists of two primary modules, NLQ Annotator and
SPARQL Generator (Figure 1). Both modules are based on data collected
from the PMR (Yu et al., 2011) and BioPortal (Whetzel et al., 2011).
We also utilise natural language parser provided by Stanford CoreNLP
(Manning et al., 2014) and NLTK (Bird et al., 2009).

2.1 The Physiome Model Repository and BioPortal

The PMR contains more than 800 CellML biosimulation models in which
around 20% have been semantically annotated with RDF. Within these
annotated models, there are 4,671 model entities, where each model entity
forms a tree structure with its name as root and description and class
ontologies as leaves (Figure 2). Further, we develop RDF Graph Index
(RGI) described at 2.3 based on model entity structure and Text Feature
Index (TFI) explained at 2.2 based on the description inside model entities
and information inside class ontologies.

The number of distinct leaves is 3,472, and the number of paths
between roots and leaves is 29,755. For each class ontology leaf, we
extract textual features from BioPortal. We choose BioPortal among other
ontology service providers because of its completeness covering all types
of ontology found in the PMR, e.g. Chemical Entities of Biological Interest
(ChEBI), Ontology of Physics for Biology (OPB), Foundational Model of
Anatomy (FMA), Protein Ontology (PR), Gene Ontology (GO), and Uber
Anatomy Ontology (UBERON). Moreover, BioPortal provides NCBO
Annotator (Jonquet et al., 2009), which is useful for NLIMED performance
comparator.

2.2 Natural Language Query (NLQ) Annotator

NLQ Annotator module comprises TFI, Natural Language Query
(NLQ) Parser, and Phrase Annotator. TFI holds a vector space
model (Salton et al., 1975) describing class ontologies such
as http://purl.obolibrary.org/obo/CHEBI_29103 (potassium(1+)) and
http://purl.obolibrary.org/obo/FMA_84666 (apical plasma membrane).
We apply terms in global metadata in BioPortal and local metadata in
the related model entity to represent every class ontology. From global
metadata, we differentiate terms into features of preferred label, synonym,
and definition, while from local metadata, we only have description feature.
These features, then, will be used to compute the weight of a term
associated with a class ontology. For fast retrieval, TFI adapts an inverted
index concept (Harman et al., 1992) to manage terms and its relationship
to class ontologies, and features.

The Natural Language Query (NLQ) annotation process is started
by parsing of an NLQ using NLQ Parser. In this work, we utilise and
compare the performance of Stanford parser (Manning et al., 2014) and
NLTK parser (Bird et al., 2009). NLQ Parser works to get candidate
phrases in NLQ; all of which are possible noun phrases. For example,
the NLQ ’the concentration of potassium in the portion of tissue fluid’,
if parsed using Stanford parser, the candidate phrases will be CP1 =
’concentration potassium portion tissue fluid’, CP2 = ’concentration’,
CP3 = ’potassium’, CP4 = ’portion tissue fluid’, CP5 = ’portion’, and
CP6 = ’tissue fluid’. The candidate phrases may overlap, whereas, we are
interested in finding a set of phrases associated with class ontologies with
the highest weight and most extended terms without overlapping terms and
fully cover the NLQ. Using Phrase Annotator, we calculate the association
weight of each candidate phrase to each candidate class ontology. First, we
have Equation (1) to get the global association weight between a phrase
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and a class ontology, Wglobal,

Wglobal =
n∑

i=term∈phrase
α

pi

lpi + nt
+β

si

lsi + nt
+γ

di

(ldi + nt)N

(1)
where pi, si, and di are the appearance of the term in features of preferred
label, synonym, and definition consecutively. The values of these variables
are 1 or 0 for present and absent, respectively. lpi + nt, lsi + nt, and
(ldi +nt)N are smoothing denominator to normalise the contribution of
occurred terms, lpi, lsi, and ldi are the number of terms in features of
preferred label, synonym, and definition, nt is the number of terms in the
phrase, and N is the number of class ontologies having the term. Then,
we compute local association weight, Wlocal, with Equation (2),

Wlocal =
n∑

i=term∈phrase
δ

fi

lfi + nt
. ln

S

S − tsi
(2)

where fi is indicating the appearance of the term in description feature,
lfi + nt is smoothing denominator, and lfi is the number of terms in

description feature. We implement Inverse Document Frequency (IDF)
ln S
S−tsi

, where S is the number of model entities in the collection and
tsi is the number of model entities having the term. The logic of IDF is
that a term occurring in many model entities is less important than other
terms with less occurrence (Salton and Yang, 1973). Finally, we total
Wglobal and Wlocal to get the association weight of a candidate phrase
to a candidate class ontology, Wco, as Equation (3).

Wco = Wglobal +Wlocal (3)

We apply multiple weighting scenario based on features (Ogilvie et al.,
2003; Robertson et al., 2004), so we have multipliers α, β, γ, and δ in
Equation (1) and Equation (2) to determine the level of importance of the
term in preferred label, synonym, definition, and description. The values
of these multipliers are decided empirically to get the best performance.
In our experiment, one of the best configuration for Stanford parser is
α = 4, β = 0.7, γ = 0.5, and δ = 0.8, while for NLTK parser is α = 3,
β = 0.1, γ = 0.1, and δ = 0.1. The number of class ontologies for each
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Fig. 1. NLIMED workflow. First, we create a Text Feature Index (TFI) and an RDF Graph Index (RGI) developed based on data on the PMR and BioPortal. Natural Language Query (NLQ),
initially, is annotated into class ontologies in Query Annotator module, then, translated into SPARQL in SPARQL Generator module.
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<rdf:Description rdf:about="#sc_potassium_flux.C_s_K"> 
  <semsim:isComputationalComponentFor> 
    <rdf:Description rdf:about="#property_24"> 
      <semsim:physicalPropertyOf> 

<rdf:Description rdf:about="#entity_11"> 
<ro:part_of> 
<rdf:Description rdf:about="#entity_10"> 

<ro:part_of rdf:resource="#entity_6" /> 
<semsim:hasPhysicalDefinition 

rdf:resource="http://purl.obolibrary.org/obo/FMA_9673" /> 
</rdf:Description> 

</ro:part_of> 
<semsim:hasPhysicalDefinition 
rdf:resource="http://purl.obolibrary.org/obo/CHEBI_29103" /> 

</rdf:Description> 
      </semsim:physicalPropertyOf> 
      <semsim:hasPhysicalDefinition 

rdf:resource="http://identifiers.org/opb/OPB_00340" /> 
    </rdf:Description> 
  </semsim:isComputationalComponentFor> 
  <dcterms:description> 
      Concentration of potassium in the portion of tissue fluid in 
      epithelial cell of distal tubule compartment 
    </dcterms:description> 
</rdf:Description> 

A #sc_potassium_flux.C_s_K

#property_24
Concentration of potassium in the portion of tissue fluid

in epithelial cell of distal tubule compartment

#entity_11 http://identifiers.org/opb/OPB_00340

#entity_10 http://purl.obolibrary.org/obo/CHEBI_29103

#entity_6 http://purl.obolibrary.org/obo/FMA_9673

semsim:isComputationalComponentFor dcterms:description

semsim:physicalPropertyOf semsim:hasPhysicalDefinition

ro:part_of semsim:hasPhysicalDefinition

ro:part_of semsim:hasPhysicalDefinition

B

Fig. 2. An annotation of model entity of concentration of potassium located in a CellML describing a mathematical model of the renal distal tubule (Chang and Fujita, 1999). (A) An
RDF/XML code describing the model entity. (B) A tree structure representing the RDF code describing the model entity. The relevant information in this RDF code is the description and
all class ontologies.
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candidate phrase can be more than one, but in this work, we choose the
highest association weight, although we can also consider all classes.

Using the specified weighing formula, the candidate phrases
of the example NLQ are annotated into class ontologies CO in
http://purl.obolibrary.org/obo/ and weighed intoWco as (CO1,Wco1 ) =

(′FMA_9673′, 0.168), (CO2,Wco2 ) = (′OPB_00340′, 0.137),
(CO3,Wco3 ) = (′CHEBI_29103′, 0.145), (CO4,Wco4 ) =

(′FMA_9673′, 0.223), (CO5,Wco5 ) = (′FMA_66836′, 0.133),
(CO6,Wco6 ) = (′FMA_9673′, 0.188). Considering the highest
association weight, the longest phrase, and the completeness, CO2 =′

OPB_00340′ (concentration),CO3 =′ CHEBI_29103′ (potassium),
and CO4 =′ FMA_9673′ (portion tissue fluid) are selected to be
composed as SPARQL.

2.3 SPARQL Generator

Along with the result of NLQ Annotator, SPARQL Generator constructs
SPARQL utilising RGI and SPARQL Composer. RGI is a representation
of biologically annotated model entities using the RDF. As can be
seen in Figure 2, an RDF annotated model entity has a model entity
name as root and class ontologies or description objects as leaves.
Between root and leaves, there are other objects, e.g. ’#property_24’
and ’entity_11, and predicates, e.g. ’semsim:hasPhysicalDefinition’ and
’semsim:physicalPropertyOf’. However, to construct SPARQL for model
entity discovery, objects other than leaves are not necessarily important;
hence, we only consider a triple of a model entity name, set of predicates
assembling a path, and class ontology or description which further named
as root, path, and leaf consecutively. In general, RGI provides two map
structures, h1 : L→ R, where L is a set of leaves and R is a set of roots,
and h2 : (L,R)→ P , where (L,R) is a set of leaf and root pairs and P
is a set of paths. We find that there is a large amount of repetition of data
in paths and leaves such as namespaces, class ontologies, and predicates.
Therefore, we decided to fully normalize the maps by dividing it into
several maps to ensure data consistency and reduce space requirements.

Utilising RGI’s maps, SPARQL Composer compiles the class
ontologies resulted by NLQ Annotator, generating SPARQL. First, we look
for candidate roots R̄ having same class ontologies L̄, R̄ =

⋂
l∈L̄ h1(l).

Then, using the pairs of L̄ and R̄, we extract paths P̄ connecting L̄ and R̄,
P̄ = h2(L̄, R̄). Next, we construct the SPARQL syntax for each p ∈ P̄ ,
and finally, combine the constructed syntax with the same r into a new
SPARQL. Hence, this approach may result in zero or more SPARQL based
on the number of R̄.

3 Experiments and results
We ran experiments to measure the performance of NLIMED in translating
NLQ into SPARQL. We prepare data test examined by experts consisting
of 51 NLQs with different complexity, having one to 28 terms and one
to six phrases. All NLQs have been separated into phrases and annotated
into class ontologies. We aim to provide more NLQ with the number of
terms between one and five and the number of phrases between one and
three; this is because, naturally, queries with natural language tend to be
short (Jansen et al., 2000; Yi et al., 2006). SPARQL Generator is able to
generate all possible SPARQL based on class ontologies provided by NLQ
Annotator as long as all class ontologies found in at least one model entity.

3.1 NLQ Annotator performance

We measure the performance of NLQ Annotator using precision, recall,
and F-Measure. Precision shows the proportion of correct annotation
to the entire annotated phrases, while recall presents the proportion of
correct annotation to the whole phrases should be annotated. F-measure,
on the other hand, harmonises precision and recall by its mean. Another

Table 1. The values of precision, recall, F-Measure, query accuracy, and rate
of execution time for data test of 51 NLQ in second of NLQ Annotator using
Stanford parser and NLTK parser, and NCBO Annotator.

Method Precision Recall F-measure Query accuracy Exec time

NLQ Annotator +
Stanford parser 0.744 0.768 0.756 0.549 0.532
NLQ Annotator +
NLTK parser 0.591 0.728 0.652 0.333 0.101
NCBO Annotator 0.402 0.376 0.388 0.196 36.697

measurement is query accuracy, where NLQ annotation is considered
correct if all related class ontologies are found. The final measurement
is execution time averaging from ten runs of all NLQs in data test. To get
the best results from NCBO Annotator, we limit this annotator to recognise
only seven ontologies at the PMR and prioritise the most prolonged- phrase.

From Table 1 we see that NLQ Annotator has a better performance
than NCBO Annotator in all measurement types. The use of the Stanford
parser is superior to the use of the NLTK parser, which shows that our
approach is fully working, although it depends on the accuracy of the
parser. However, the query accuracy value is still relatively low, 0.333 and
0.549 for the use of NLTK parsers and Stanford parser, respectively. We
find that this imperfection happens for a complex or long NLQ containing
more than three phrases. However, annotation imperfection is not directly
related to the failure of SPARQL compilation, the shortcomings and the
excess number of recognised class ontologies only cause changes in the
restrictiveness of SPARQL. In terms of execution time, the use of Stanford
parser requires five times more time than NLTK Parser. Notwithstanding,
the use of Stanford parser is still relatively fast because for one NLQ it
takes about 0.01 seconds. NCBO Annotator’s slow performance is due to
the need to access the BioPortal server using the Internet.

Considering the NLQ complexity, we present F-measure graphs for
NLQ Annotator and NCBO Annotator in Figure 3. Generally, F-measure of
NLQ Annotator is higher than NCBO Annotator except when the number
of terms is five and twelve. It is because NCBO Annotator works well
for NLQ with one phrase having many terms, whereas, NLQ Annotator
tends to divide this NLQ into several phrases. Nevertheless, the use of
high-performance parsers, such as Stanford parser, may overcome this
problem. As many studies have shown that queries with natural language
are generally short (Jansen et al., 2000; Yi et al., 2006), we believe that
this tendency also applies to the search for model entities, therefore,
paying attention to this NLQ type is a practical choice. Furthermore, NLQ
Annotator performance declines when implementing NLTK parser and
annotating NLQ with six phrases while NCBO Annotator suffers deficient
performance when annotating NLQ with two phrases or two until three
terms.

3.2 The role of features

There are four features used to measure the weight of a phrase to a class
ontology, including preferred label, synonym, definition, and description
found inside the PMR. We find that preferred label is the most important
feature; its use only could reach F-measure of 0.466 and 0.365 for the
NLIMED with Stanford parser or NLTK parser, respectively. Hence, our
attention shift to the role of other features used together with preferred label
(α = 4) with Stanford parser, which shows that features of description,
synonym, and description increase F-measure to more than 0.7, 0.519, and
0.566 respectively (Figure 4). Further, the use of all features might increase
the F-measure to 0.756 when the synonym multiplier (δ) is between 0.6 and
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A B

Fig. 3. The comparison of F-Measure of the use of Stanford parser and NLTK parser, and NCBO Annotator based on NLQ complexity. (A) F-measure based on the number of terms inside
NLQ. (B) F-measure based on the number of phrases inside NLQ.

1.0, the definition multiplier (γ) is between 0.0 and 0.4, and the description
multiplier (δ) is between 0.6 and 1.0 (Figure 4).

4 Discussion

4.1 NLQ to SPARQL evaluation

Although NLIMED can translate NLQ to SPARQL with excellent
performance, there are some conditions where NLIMED does not work
optimally and needs improvement. In the other side, the use of NCBO
Annotator is promising for very long NLQ; however, it lacks the
contribution of biosimulation model repositories, so it solely use is
insufficient for model entity discovery. Further, we discuss the NLIMED
based on the NLQ complexity.

Short NLQ (1-3 terms, 1-2 phrases): NLIMED can reach high F-
measure. NLQ Annotator correctly annotates NLQs such as ’potassium’,
’apical plasma membrane’, ’basolateral membrane’, and ’flux of sodium’,
’van’t Hoff law’. However, it failed to annotate ’sodium flux’ which is
similar to ’flux of sodium’. The problem is that while ’flux of sodium’
can be divided into two phrases, ’flux’ and ’sodium’, ’sodium flux’ is
recognised as a single phrase. The use of NCBO Annotator even worse
because it tends to ignore phrases related to OPB ontology such as
’flux’ and ’concentration’. Furthermore, for phrases with monoatomic
monocation meaning such as sodium (Na+) or potassium (K+) related
to ChEBI, NCBO Annotator more often associates it with atomic meaning
such as sodium atom or potassium atom.

Complex NLQ (4-6 terms, 1 phrase): the F-measure of NLQ
Annotator cannot compete NCBO Annotator. The low performance of
NLQ Annotator is mostly due to the absence of NLQ’s phrase in the
PMR. For example, ’sodium/glucose cotransporter 4 (mouse)’ which is
not contained by the PMR is annotated incorrectly to ’Protein Ontology:
PR_000015165’ describing ’sodium/glucose cotransporter 1’ while NCBO
Annotator can annotate correctly to ’Protein Ontology: PR_000015175’.
However, this inaccuracy is not a weakness; instead, this is an advantage
that shows that NLQ Annotator can adjust to the availability of data,
whereas, the accuracy of NCBO Annotator can cause the inability of
SPARQL Generator to find the appropriate SPARQL.

Long NLQ (> 2 phrases): NLQ Annotator’s performance is far better
than NCBO Annotator for NLQ with three to five phrases, but it is almost
similar for NLQ with six phrases. Generally, long NLQ can be annotated
appropriately, e.g. ’concentration of sodium in the portion of tissue fluid
in epithelial cell of distal tubule’ and ’flux of IP3 receptor through P2Y2

purinoceptor and apical plasma membrane’. The incorrect annotation
usually is partial for one or two phrases by the division of a phrase into
two phrases or the ignoration of a phrase. While the division of a phrase
implicates to the generation of more specific or inaccurate SPARQL, the
ignoration of a phrase leads to the generation of more general SPARQL.

Question type NLQ: NLQs such as ’I want a model of SGLT1 in
apical membrane’ and ’give me a model of glucose transporter’ are
correctly annotated, but there is an additional class ontology related to
’a model’ phrase. The ’a model’ is the intention of the question, so
by applying another NLP approach, this can be handled appropriately
and implemented for question and answer system. Nevertheless, for our
purpose, since ’a model’ is frequently found in biosimulation models, we
may consider terms in this phrase as stop words. Alternatively, preventing
the same problem with different phrases, we may apply an IDF threshold
to determine whether or not to annotate a phrase.

We find that the Phrase Annotator can choose the correct class ontology
almost excellently when provided with the correct phrases. It means that
using the features of preferred label, synonym, definition, and description
together with our weighing scenario can work satisfactorily. We also find
that SPARQL Generator may generate all possible SPARQL based on the
available class ontologies. Besides, to improve NLIMED performance, it
is necessary to create a special parser for the discovery of biosimulation
models and model entities with specific data models.

4.2 Possible implementation

Currently, we develop NLIMED over CellML in the PMR (Yu et al., 2011)
and implement it in EMP (Sarwar et al., 2019) as an additional interface
discovering model entities and being able to meet EMP requirements.
We are confident that NLIMED may also be developed over BioModels
(Chelliah et al., 2015) since it contains models richly annotated with the
RDF utilising class ontologies. NLIMED is potential to applied on EMP
like tools such as the Cardiac Electrophysiology Web Lab (Cooper et al.,
2016), eSolv (de Boer et al., 2017), and PhysioMaps (Cook et al., 2013).
Present annotation tools, e.g. SemGen (Neal et al., 2018), OpenCOR
(Garny and Hunter, 2015), and Saint (Lister et al., 2009), which can provide
class ontologies suggestion based on the available ontology databases may
take advantage of NLIMED. Following the COMBINE recommendation
about standardisation of biosimulation model annotation (Neal et al.,
2019), this work can be directed to provide a comprehensive search
interface to discover model entities from various biosimulation model
repositories .
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A B

Fig. 4. The role of features of synonym (β), definition (γ), and description (δ) when used with preferred label (α = 4) and Stanford Parser in NLQ Annotator measured using F-Measure.
(A) NLIMED performance when uses two features, pair of preferred label and another feature. (B) NLIMED performance when uses all features.

4.3 Limitations and future directions

There are several limitations of NLIMED, some of which will direct our
future work. While NLIMED can identify the logical-semantics in NLQ
and then classify into class ontologies, we are not yet exploring the lexical-
semantics; consequently, we cannot differentiate between NLQ such as
’flux of potassium to the portion of cytosol’ and ’flux of potassium from
the portion of cytosol’. We suppose that the lexical-semantic in NLQ is
closely related to the model entity’s tree structure, i.e. paths connecting
root and leaves. Therefore, it will be beneficial to understand semantic
concepts related to paths and use them with the lexical-semantic of NLQ.

Another limitation is that SPARQL Generator produces all possible
SPARQL without any selection criteria, so NLIMED presents all model
entities retrieved by all generated SPARQL ignoring relevancy order. We
may adapt text-based ranking approaches such as weighing in Phrase
Annotator, BM25 (Robertson et al., 2004), and term-weighting (Salton
and Buckley, 1988) for SPARQL selection and model entities ranking.
However, for this purpose, the ranking approaches should consider
non-textual features, such as class ontologies and semantic concepts.

In the future, we anticipate improving NLIMED performance by
accommodating lexical-semantic of NLQ along with model entitiesâŁ™
semantic concepts.

5 Conclusion
We demonstrated NLIMED, an interface to translate NLQ into SPARQL
consisting of NLQ Annotator and SPARQL Generator, for model entities
discovery. NLQ Annotator can identify class ontologies in NLQ utilising
global features extracted from BioPortal (preferred label, synonym, and
definition) and local feature extracted from biosimulation models’ RDF
(definition). The class ontologies identification performance is quite high,
reaching F-measure of 0.756, but it can be further improved by applying
better NLQ Parser. We also showed that NLIMED could handle a wide
range of NLQ types containing one or many terms with one or many
phrases. Our SPARQL Generator storing RDF graph as indexes can
generate all possible SPARQL based on provided class ontologies. The
execution time of NLIMED is reasonably fast, takes around 0.002 to
0.01 second for a single NLQ depend on the type of parser (NLTK
parser or Stanford parser). NLIMED presently has been implemented
in EMP for model entities searching from the PMR and is possibly
applied as a generic search interface exploring model entities from
numerous biosimulation model repositories, e.g. the PMR and BioModels.

Further, we interest to explore lexical-semantic inside NLQ and semantic
concept inside model entities to increase NLIMED performance and its
use for question and answer system. We believe that NLIMED will be
useful for biosimulation model communities and support reusability and
reproducibility of biosimulation models.
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