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Abstract
Nanopore sequencing has the potential to revolutionise genomics by realising portable, real-time
sequencing applications, including point-of-care diagnostics and in-the-field genotyping. Achiev-
ing these applications requires efficient bioinformatic algorithms for the analysis of raw nanopore
signal data. For instance, comparing raw nanopore signals to a biological reference sequence
is a computationally complex task despite leveraging a dynamic programming algorithm for
Adaptive Banded Event Alignment (ABEA)—a commonly used approach to polish sequenc-
ing data and identify non-standard nucleotides, such as measuring DNA methylation. Here,
we parallelise and optimise an implementation of the ABEA algorithm (termed f5c) to effi-
ciently run on heterogeneous CPU-GPU architectures. By optimising memory, compute and
load balancing between CPU and GPU, we demonstrate how f5c can perform ~3-5× faster than
the original implementation of ABEA in the Nanopolish software package. We also show that
f5c enables DNA methylation detection on-the-fly using an embedded System on Chip (SoC)
equipped with GPUs. Our work not only demonstrates that complex genomics analyses can
be performed on lightweight computing systems, but also benefits High-Performance Comput-
ing (HPC). The associated source code for f5c along with GPU optimised ABEA is available at
https://github.com/hasindu2008/f5c.

1 Introduction
Advances in genomic technologies have given rise to a new era in biomedical sciences, improv-
ing the feasibility and accessibility of rapid species identification, accurate clinical diagnostics,
and specialised therapeutics, amongst other applications. Whole genome sequencing involves
‘reading’ the entire DNA sequence of a cell, revealing the genetic variation that underlies bi-
ological diversity and the onset of disease. A human genome encompasses two copies of ∼3.2
billion DNA nucleotides, or ‘letters’. Therefore, analysing the data generated by contemporary
high-throughput sequencing technologies typically requires high-performance computing support.

The latest generation (third generation) of sequencing technologies can generate ultra-long
DNA ‘reads’ from single molecules in real-time. In particular, Oxford Nanopore Technologies
(ONT) manufacture a pocket-sized sequencer called MinION (Fig. 1), a relatively inexpensive
and portable sequencing device capable of sequencing in-the-field (e.g. remote area with no
network connectivity) or at the point-of-care (e.g. hospital, clinic, pharmacy).
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Figure 1: Nanopore portable sequencer and associated data analysis

In contrast to ‘second’ generation sequencers, which produce highly accurate short reads
through enzymatic synthesis of the complementary strand of DNA, nanopore sequencing measures
characteristic disruptions in the electric current (referred to hereafter as raw signal) when DNA
passes through a biological nanopore (Fig. 1). A consumable flowcell containing an array of
hundreds or thousands of such nanopores is loaded into the sequencing device (e.g. MinION),
which is coupled to a generic (e.g. laptop) or dedicated (e.g. MinIT) compute module to acquire
sequence data and base-call (the process of converting the raw signal to nucleotide characters) in
parallel.

Nanopore sequencing offers several benefits over other technologies, including ultra-long reads
(>1 Mbases), detection of non-standard DNA bases or biochemically modified DNA bases, and
real-time analysis, at the expense of a higher error-rate, which is predominantly caused by the
conversion of the raw signal into DNA bases via probabilistic models (referred to as ‘base-calling’).
To overcome base-calling errors, the raw signal can be revisited a posteriori (see the polishing
step in Fig. 1). Such a posteriori ‘polishing’ can correct for base-calling errors by aligning
raw signal to a biological reference sequence, thus identifying idiosyncrasies in the raw signal by
comparing observed signal levels to expected levels at all aligned positions. This process can also
reveal base substitutions (i.e. mutations) or base modifications such as 5-methylcytosine (5mC), a
dynamic biochemical modification of DNA that is associated with genetic activity and regulation.
Detecting 5mC bases is important for the study of DNA methylation in the field of epigenetics.

A crucial algorithmic component of polishing is the alignment of raw signal–a time series of
electric current to a biological reference sequence. One of the first raw nanopore signal alignment
is implemented in the popular tool Nanopolish [1], which employs a dynamic programming strat-
egy referred to as Adaptive Banded Event Alignment (ABEA). ABEA is one of the most time
consuming steps when analysing raw nanopore data. For instance, when performing methylation
detection with Nanopolish, the ABEA step consumes ~70% of the total CPU time. Consequently,
it is important to investigate strategies to reduce the runtime of ABEA to improve the turnaround
time of certain nanopore sequencing applications, such as real-time polishing or methylation de-
tection.

In this study, we dissect the ABEA algorithm to optimise and parallelise its use on diverse
hardware platforms, including Graphics Processing Units (GPUs). Adapting this ABEA algo-
rithm for the GPU is not a straight forward task due to three main factors: (i) Read lengths vary
significantly (from ~100 to >1M bases), thus requiring millions to billions of dynamic memory
allocations—an expensive operation in GPUs. (ii) Inefficient memory access patterns which are
not ideal for the GPUs having relatively less powerful and smaller caches (compared to CPUs)
result in frequent instruction stalls. (iii) Varying read lengths cause irregular utilisation of the
GPU cores.

We overcome the above mentioned challenges by: (i) employing a custom heuristic-based
memory allocation scheme; (ii) tailoring the algorithm and the GPU user-managed cache to
exploit cache-friendly memory access patterns; and, (iii) using a heuristic based work-partitioning
and load-balancing scheme between the CPU and GPU.

We demonstrate the utility of our GPU optimised ABEA by incorporating to a completely re-
engineered version of the popular methylation detection tool Nanopolish. First, we re-engineered
the original Nanopolish methylation detection tool to efficiently utilise existing CPU resources,
which we refer to as f5c. Then, we incorporated our GPU optimised ABEA algorithm into the
re-engineered f5c. We demonstrate how f5c enables DNA methylation detection using nanopore
sequencers in real-time (i.e. on-the-fly processing of the output) by using an embedded System
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on Chip (SoC) equipped with a GPU. We also demonstrate how f5c benefits a wide range of
computing systems from embedded systems and laptops to workstations and high performance
servers.

The key contributions of this paper are: (i) the first example of GPU acceleration and op-
timisation of raw signal alignment algorithm; (ii) f5c, a re-engineered and optimised version of
the popular DNA methylation detection tool Nanopolish; and, (iii) real-time detection of DNA
methylation using a lightweight and portable embedded system (previously only possible on high-
performance servers).

In the rest of the paper, we discuss the background of nanopore sequencing and ABEA al-
gorithm in Section 2, related work in Section 3, methodology in Section 4, results in Section 5,
followed by the discussion and future work in Section 6. The associated tool that includes the
GPU-based acceleration is available at https://github.com/hasindu2008/f5c.

2 Background
Basic terms and concepts of DNA sequencing and data analysis are given in Section 2.1. Section
2.2 briefly explains methylation calling, an example nanopore data analysis workflow. Section
2.3 explains the Adaptive Banded Event Alignment (ABEA) algorithm, the algorithm which is
optimised in this paper for execution on a CPU-GPU heterogeneous architecture. In Section 2.4,
a brief account of GPU architectures and the programming methods for GPUs.

2.1 Nanopore sequencing and analysis
2.1.1 Whole genome sequencing

The genome is a long sequence composed of four types of nucleotide bases: adenine (A), cytosine
(C), guanine (G) and thymine (T). Nucleotide bases will be simply referred to as bases hereafter.
The human genome is around 3.2 gigabases (Gbases) long and is composed of 23 pairs of chro-
mosomes (46 chromosomes in total), where each chromosome is a single molecule of continuous
deoxyribonucleic acid (DNA) polymer. The process of reading strings of contiguous bases is called
sequencing, and the resulting strings of bases are called reads. In order to be sequenced, DNA
molecules must be extracted and purified from cells before being biochemically prepared for se-
quencing. This library preparation process can fragment chromosomes (especially large ones) into
smaller segments–either intentionally or incidentally–which are ‘read’ by the sequencer. Given
that samples contain multiple cells, and thus several distinct DNA molecules, and that sequencing
may introduce errors, it is desirable to generate enough reads to cover a particular position several
times. The average number of reads at a given position is termed sequencing coverage. High cov-
erage facilitates the characterisation of genetic variation and correct for errors. A human genome
sequenced at around 20× average coverage corresponds to around 64 Gbases of sequencing reads.

2.1.2 DNA methylation

DNA undergoes naturally regulated biochemical modification through the addition of a methyl
group to certain bases. Methylation is reversible and can control the activity of a DNA segment,
such as turning the expression of genes on or off, without modifying the genetic code itself—a
process called epigenetic regulation. DNA methylation is dynamically regulated during normal
biological development and in function of environmental factors; it plays an important role in
disease aetiology and clinical diagnostics [2, 3, 4]. Methylation of cytosine (‘C’) bases is of
particular interest in human biology, where CpG dinucleotides ( ‘C’ base followed by a ‘G’ base)
are dynamically methylated in normal development and disease [5, 6, 7].

2.1.3 Nanopore sequencing and the raw signal

Nanopore sequencing is a third generation sequencing technology that involves physical observa-
tion of atomic properties of DNA fragments using a nanometer scale biological pore coupled to
an ammeter (see Fig. 1). The pore acts as a bottleneck to generate characteristic disruptions in
ionic current (in the range of pico-amperes) that are indicative of the molecules passing through
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the pore. The size and nature of the pore influence the measured instantaneous current and how
it is subsequently analysed. Oxford Nanopore Technologies (ONT) sequencing devices measure
DNA strand passing through biological nanopores composed of recombinant (or ‘designer’) pro-
teins at an average speed of ~450 bases/s while the current is sampled and digitised at ~4000
Hz1. The instantaneous current measured in ONT nanopore depends on 5-6 contiguous bases
[8]. The measured signal also presents stochastic noise due to several factors, such as homopoly-
mers (same base repeating multiple times) which produce constant current levels, contaminants
in the sample, entanglement of long DNA strands, depletion of ions, etc [9]. Additionally, the
movement speed of the DNA strand through the pore can vary, causing the signal to warp in the
time domain [9]. The raw signal is converted into character representations of DNA bases (e.g.
A,C,G,T) using artificial neural networks, generating a typical accuracy >90% for single reads
[10]. This conversion process is referred to as base-calling and the software tools that perform
this conversion are referred to as base-callers. Please refer to [8] for a detailed discussion of ONT
sequencing.

An example of a raw nanopore signal is shown in Fig. 2a using blue coloured line. Assume
that the signal is generated from the DNA sequence GAATACGAAAATCATTA which passed
through the nanopore. In this example, the instantaneous current of the signal is affected by
a string of 6 contiguous bases, known as a 6-mer (or a k-mer in general). Let us assume that
the annotation of the signal to the corresponding k-mers is known (the process of getting this
annotation is detailed in Section 2.2). The 6-mers in the sequence and the corresponding segments
in the raw signal are marked using vertical grey lines in Fig. 2a. When the DNA sequence
GAATACGAAAATCATTA moves through the pore, the first 6-mer is GAATAC. Similarly, the
subsequent 6-mers are AATACG, ATACGA, TACGAA, ..., TCATTA. True annotation (depicted
by dotted green coloured step function in Fig. 2a) corresponds to the ideal average level of
current for each k-mer. These ideal average values are obtained using the pore-model provided
by ONT, which is elaborated in Section 2.2. The red coloured step function corresponds to an
event—detailed in Section 2.2.

To deduce the sequence from the k-mers, the base at the centre (3rd base) of each k-mer is
taken, as shown on the bottom of Fig. 2a. For instance, we take A from GAATAC, T from
AATACG, C from TACGAA and etc. Hence, we obtain a sequence ATACGAAAATCA which is
a part of the original sequence GAATACGAAAATCATTA. Note that the beginning and the end
of the sequence (GA at the beginning and TTA at the end) are clipped.
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(a) An example nanopore raw signal and events
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Figure 2: Illustration of a nanopore raw signal, events and pore-model

2.1.4 Nanopore read length distribution

The length of the reads generated from nanopore sequencers can vary from several hundred bases
to even more than 2 million bases. A typical sequencing run of a particular sample (which com-
pletes after 48-64 hours) generates millions of such reads. The distribution of the read lengths
varies in function of DNA integrity, extraction protocols, and sample preparation methods. Ex-

1these are typical values at present which may vary in the future
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ample distributions for three different samples are shown in Fig. 3, where both x and y axes are
in logarithmic scale. The average read length of a sample typically falls between 8-20 Kilobases.
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Figure 3: example nanopore read length distributions

2.1.5 Sequence alignment/mapping in the base-space

Once a nanopore read is base-called, the sequence is aligned to a reference sequence (see Fig.
1). A reference sequence consists of a previously generated consensus sequence (such as the hu-
man genome reference). Sequence alignment involves global optimisation algorithms to identify
the most similar target and to compare any differences between sequences. Compared to biologi-
cally occurring variation in individual genomes (<1% difference to the reference), the error-rate of
nanopore sequencing is relatively high (5-10%). Thus, sequence alignments derived from nanopore
reads are distinct in nature from previous sequencing technologies (such as highly accurate short
reads). Consequently, unique analytic tools must be considered when aligning such reads. Align-
ment tools such as Minimap2 [11] that employ a hash table based genome index followed by a
base-level dynamic programming alignment step can successfully align long and noisy reads.

2.1.6 Polishing/Downstream processing using raw signal

The base-space alignment discussed previously in Section 2.1.5 is followed by ‘polishing’, a down-
stream processing step which utilises both the base-space alignment results and the raw signal
(see Fig. 1). The polishing step reuses the raw signal to recover the lost biological information
during base-calling. This polishing step can be to correct errors during base-calling or to detect
modified nucleotide bases (eg: DNA methylation).

Previous research has shown that identification of genetic variants can be improved up to an
accuracy of more than 99% by using raw signal data from multiple overlapping reads [12, 13].
Thus, the downstream analysis that reuses raw signal data could correct for base-calling errors.
It has also been shown that methylated C bases can be differentiated from non-methylated C
bases by the use of signal data, using algorithms such as the one implemented in the software
package Nanopolish [1]. Thus, the downstream analysis that reuses raw signal data could detect
modified nucleotide bases.

Signal-space alignment is one of the crucial steps performed in these downstream analyses
such as error correction and modified base detection. This signal alignment step is described in
the context of modified base detection in the following sections.

2.2 Methylation calling
As discussed above, important biological information is lost during base-calling. Some base-calling
models may not accommodate methylated data, either because they are trained on unmethylated
sequences, or because they abstract away non-canonical bases. Therefore, these molecules may
be erroneously classified as unmethylated bases. The process of identifying methylation is known
as methylation calling.
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As implemented in Nanopolish, methylation calling requires: 1, raw signals; 2, base-called
reads; and 3, base-space alignment to a reference genome (output of the sequence alignment
step described above). For a given read, the main steps for methylation calling are: 1, event
detection; 2, signal-space alignment; and 3, Hidden Markov Model (HMM) profiling. These steps
are performed for each individual read in the data set.

Event detection is the time series segmentation of the raw signal based on sudden signal level
changes. Each segment is called an event and is typically denoted using the mean (µx̄), standard
deviation (σx̄) and the duration of the raw signal samples (nx̄) pertaining to the particular
segment. The red step function in Fig. 2a denotes such detected events by plotting the mean
value of the samples (µx̄) corresponding to the segment. Note that in Fig. 2a, events (red line)
roughly match to the true annotation (dotted green line), nevertheless, are not exactly the same.
Mostly, the signal has been over-segmented (eg: portion corresponding to k-mer CGAAAA has
been segmented into 3 events) and seldom under-segmented (eg: k-mer AAATCA).

To obtain the true annotation in Fig. 2a, the events detected in the event detection step are
aligned to a generic k-mer model signal. This generic k-mer model signal is derived from the
base-called sequence and a pore-model provided by ONT. The pore-model corresponds to a table
of all possible k-mers matched to their mean signal value and standard deviation (46 k-mers if k
is 6, as shown in Fig. 2b)2. For each 6-mer in the base-called read, the corresponding entry in the
pore model (mean,sd) is obtained and these mean,sd pairs form the generic k-mer model signal.
Nanopolish aligns the events from the event detection step to this generic k-mer model signal by
using the algorithm named Adaptive Banded Event Alignment (ABEA) explained in Section 2.3.

ABEA above produces the alignment between the events and the k-mers in the base-called
read. The base-space sequence alignment then is used to deduce which event corresponds to a
given k-mer in the reference genome. Finally, this alignment between the events and the k-mers
in the reference genome are subjected to Hidden Markov Model (HMM) profiling to identify if a
given base is methylated or not.

2.3 Adaptive Banded Event Alignment (ABEA)
Algorithms to determine the optimal alignment between two biological sequences typically utilise
dynamic programming (DP). Very first of such algorithms, Needleman–Wunsch (NW) algorithm
dates back to the 1970s. NW and its variant, Smith–Waterman (SW) algorithm are of quadratic
time and space complexity. Both NW and SW were used extensively to perform fine alignment
of DNA sequences with high quality. However, due to its extended time consumption, several
heuristic improvements were made to improve the speed of alignment without losing quality.

Fig. 4a exemplifies an original SW based alignment (no heuristic) between two sequences,
target sequence t0t1t2t3t4t5 (6 bases long), and query sequence q0q1q2q3q4q5q6q7 (8 bases long).
The DP table (scoring matrix) contains 6x8 cells as shown. First, the initial values are set (shown
as 0 in the figure); second, the score for each cell (sx,y) is computed based on a scoring scheme;
and third, the trace-back (backtracking denoted by red arrows on the figure) starting from the
highest scoring cell and ending at a cell with 0 score, outputs the optimal alignment that yields
the highest score (please refer [14] for a detailed explanation of SW).

In the case of short read alignment, the sequences to be aligned are small (typically 100-500
bases). Two sequences (each sequence ~100 bases long) can be aligned by filling ~104 cells. While
a single such alignment can be quickly handled by a modern computer, it is very computationally
demanding when the number of alignments to be performed scales up to hundreds of millions
and billions, which is the case for short reads. To reduce the number of computations, banded
alignment approaches were introduced, where only the cells in the DP table along the left diagonal
band are computed as shown in Fig. 4b. The underlying assumption is that, the sequences that
are aligned to each other are essentially similar, thus the alignment (the trace-back arrows) should
lie close to the left diagonal. Note that in the figure, only the cells in a band of width (W) four
have been computed, yet has been sufficient to contain the alignment inside the band.

In contrast to short reads, the long reads which emanate from Nanopore, PacBio etc, have
lengths which are 100 to 1000 orders of magnitude bigger than short reads, are noisier (with

2there can be other values in addition to mean and standard deviation, which are not required for our methy-
lation calling
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(b) Banded sequence alignment (band-width=4)
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(c) Banded sequence alignment (band-width=3)
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(d) Adaptive banded sequence alignment

Figure 4: Evolution of dynamic programming based sequence alignment

greater number of errors) and are typically not suitable for such small static bands. The 10%
base-calling error rate would result in the alignment significantly deviating from the diagonal. A
major advantage of long reads is the detection of long indels (insertions and deletions occasionally
spanning lengths longer than short reads themselves). When aligning such reads, the alignment
path deviates significantly from the diagonal. The high errors and the large indels require the
bands to be of large width if they are to be static.

High band-width requirement causes processing times to be extremely high when aligning
millions of reads. To improve the speed of this processing, Suzuki-Kasahara (SK) heuristic algo-
rithm [15] was introduced in 2017. SK utilises an adaptive band scheme, letting a smaller band
to contain such an alignment within the band, which is exemplified as below.

Consider the same example in Fig. 4b (performed previously with a static band of size 4) is
now performed only with a band-width of size 3, as shown the Fig. 4c. Observe that the band is
no longer sufficient to contain the whole alignment, i.e. the cell s4,7 which previously contained
the maximum score is no longer computed, thus the trace-back would begin from the maximum
value within the band, which leads to a non-optimal alignment. This is remedied using an adaptive
band in Fig. 4d. The band moves either down or to the right (the band dynamically adapts) as
determined by the Suzuki-Kasahara heuristic, which is illustrated by blue arrows. Observe how
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the alignment is possible to be contained inside a band of width 3 which was previously infeasible
using a static band.

Modified versions of the SK algorithm are used for event-space alignment as exemplified in
Nanopolish and is referred to as Adaptive Banded Event Alignment (ABEA). In ABEA, the events
are aligned to the k-mers of the base-called read (as stated in Section 2.2). As typically there are
many more events than k-mers (usually by a factor 1.5-2) due to the frequent over-segmentation
of events (discussed in Section 2.2), event alignment is even more difficult than base-space long
read alignment if performed with static banding around the diagonal. Thus, an adaptive band is
essential for event alignment.

The scoring function for signal alignment uses a 32 bit floating point data type, as opposed to
8-bit integer data type in sequence alignment. Furthermore, the signal alignment scoring function
that computes the log-likelihood (which we elaborate shortly) is computationally expensive.

A simplified example of ABEA is shown in Fig. 5a. In Fig. 5a the horizontal axis represents the
events (results of the event detection step) and the vertical axis represents the ref k-mers (k-mers
of the base-called read). The dynamic programming table (DP table) in Fig. 5a is for 13 events,
indexed from e0-e12 vertically, and the ref k-mers, indexed from k0-k5 horizontally. As mentioned
previously for computational and memory efficiency, only the diagonal bands (marked using blue
rectangles) with a band-width of W (typically W=100 for nanopore signals) are computed. The
bands are computed along the diagonal from top-left (b0 ) to bottom-right (b17 ). Each cell score
is computed in function of five factors: scores from the three neighbouring cells (up, left and
diagonal); the corresponding ref k-mer; and, the event (shown for the cell e6, k3 via red arrows in
Fig. 5b, details of the computation is explained later). Observe that all the cells in the nth band
can be computed in parallel as long as the n−1th and n−2th bands are computed beforehand. To
contain the optimal alignment, the band adapts by moving down or to the right as shown using
blue arrows in Fig. 5a. The adaptive band movement is determined by the Suzuki-Kasahara
heuristic rule [15].

Algorithm 1 summarises the ABEA algorithm used in Nanopolish [1] and is explained with
the aid of the example in Fig. 5a.

The input to the Algorithm 1 are: 1, ref (the sequenced read in base-space—eg: GAAT-
ACG...); 2, events (the output of the event detection step mentioned in Section 2.2); and 3,
model (pore-model—Fig. 2b). As mentioned in Section 2.2, the ABEA algorithm (Algorithm 1)
attempts to align the events to the generic signal model (produced with the use of ref and the
model) and outputs the alignment as event-ref pairs. The algorithm requires three intermediate
arrays, namely score (2D floating point array), trace (2D byte array) and l l (1D pointer array)
to formulate the intermediate state during alignment computation, which is the DP table shown
in Fig. 5a). Note that, l l stands for lower-left, which holds the coordinate of the start point of
the band.

The initialisation of the first two bands (b0 and b1 ) in Fig. 5a is performed by line 20 of
Algorithm 1. Then, the outer loop (starting from line 3) iterates through rest of the bands from
top-left to bottom-right of the DP table. The inner loop (lines 11-15) iterates through each cell in
the current band bi. To ensure that only cells within the DP table are computed, the loop counter
j iterates from min_j to max_j, instead of 0 to W − 1. Lines 4-9 of Algorithm 1 correspond
to the movement of the band (corresponds to the blue arrows in Fig. 5a). Band movement is
actuated by proper placement of the band in the static 2D arrays, score and trace via the array
l l using the functions move_band_right and move_band_down.

Line 12 of the algorithm performs the cell score computation (explained in detail later) and
generates a score and a direction flag for subsequent backtracking, which are henceforth stored in
the arrays score and trace. When all the cells in the DP table are computed, the final operation
is to find the actual alignment (event-ref pairs) through the backtracking operation (line 17 of
Algorithm 1 and red trace-back arrows in Fig. 5c), which uses both the cell scores and the
direction flags stored in trace.

The compute function (called at line 12 of Algorithm 5a) is elaborated in Algorithm 2. A
number of heuristically determined constants suitable for Nanopore data, which are used during
subsequent calculations are listed at the beginning of this algorithm. The first step of this
algorithm is the computation of lp_emission, a log probability value (likelihood of the particular
signal event being the particular ref k-mer), performed using the function elaborated in Algorithm
3. This computed lp_emission is used in lines 4-5 of Algorithm 2 along with the heuristically
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Algorithm 1 Adaptive Banded Event Alignment

Input:
ref[] : the base-called read (1D char array)
model : pore-model (Fig. 2b)
events[] : event table containing {µx̄,σx̄,nx̄} of each event—1D {float,float,float} array

Output:
alignment[] : alignment denoted by a list of {event index,k-mer index}—1D {int,int} array

Intermediate:
score[][] : scores of the cells in banded area—2D float array
trace[][] : back-track flags of the cells in banded area—2D char array
l l_idx[] : {event index,k-mer index} for each band’s lower left cell—1D {int,int} array

1: function align(ref,model,events)
2: initialise_first_two_bands(score,trace,ll_idx) . band b0 and b1 in Fig. 5a, see line 20
3: for i ← 2 to n_bands do . Iterate from b2 to b17 in Fig. 5a
4: dir ← suzuki_kasahara_rule(score[i-1]) . score[i-1] is of the previous band
5: if dir == right then
6: l l_idx[i] ← move_band_to_right(ll_idx[i - 1]) . see line 28
7: else
8: l l_idx[i] ← move_band_down(ll_idx[i - 1]) . see line 33
9: end if

10: min_j,max_j ← get_limits_in_band(ll_idx[i]) . get index bounds in current band*

11: for j ← min_j to max_j do . Iterates through each cell in band i
12: s,d ← compute(score[i-1],score[i-2],ref,events,model) . see Algorithm 2
13: score[i,j] ← s
14: trace[i,j] ← d
15: end for
16: end for
17: alignment ← backtrack(score, trace. l l) . the trace-back red arrows in Fig. 5c.
18: end function
19:
20: function initialise_first_two_bands(score,trace,ll_idx)
21: score[0,*], trace[0,*] ← −∞, 0 . Initialise first band b0
22: score[1,*], trace[1,*] ← −∞, 0 . Initialise second band b1
23: l l_idx[0] ← {ei0,ki0} . ei0 = 1 and ki0 = −1 in Fig. 5a**

24: l l_idx[1] ← {ei1,ki1} . ei1 = 1 and ki1 = 0 in Fig. 5a**

25: score[0,si0] ← 0 . si0 is 0 is Fig. 5a***

26: end function
27:
28: function move_band_to_right(l l_previous)
29: l l_current.event_idx ← l l_previous.event_idx + 1
30: l l_current.kmer_idx ← l l_previous.kmer_idx
31: end function
32:
33: function move_band_down(l l_previous)
34: l l_current.event_idx ← l l_previous.event_idx
35: l l_current.kmer_idx ← l l_previous.kmer_idx+1
36: end function
*For instance, in Fig. 5a min_j=1,max_j=1 for b0 and b17; min_j=0,max_j=1 for b1; min_j=1,max_j=2 for
b16; and, min_j=0,max_j=2 for the rest
**these initial event and k-mer indices corresponding to the lower left of the band are computed with respect to
band-width W
***the score of cell that corresponds to k-mer index -1 in band b0 is initiliased to 0
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determined constants (lp_skip,lp_stay,lp_step) to compute three scores from the diagonal, left
and up (score_d, score_u, score_l). The maximum of the three scores and direction from which
the max score came (flags pertaining to diagonal, up or left) are returned as outputs from this
function. The line 3 of Algorithm 2 refers to accessing the scores of the upward, left and diagonal
cells which was previously mentioned with respect to cell e6,k3 and the red arrows in Fig. 5b.

The log probability computation in Algorithm 3 involves floating point log probability com-
putations. For the k-mer at the specific ref position, the pore-model table (Fig. 2b) is accessed
to obtain the corresponding model values. This model_kmer (mean and the standard deviation
of the particular model k-mer) and the mean value of the event is used for the log probability
computation as shown in the Algorithm 3. Note that for event alignment neither the standard
deviation or the duration of the event are used.
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Figure 5: Adaptive Banded Event Alignment

Algorithm 2 Adaptive Banded Event Alignment - cell score computation

Constants:
events_per_kmer = n_events

n_kmers
ε = 1−10

lp_skip = ln(ε)
lp_stay = ln(1− 1

events_per_kmer+1 )
lp_step = ln(1.0− elp_skip − elp_stay)

1: function computation(score_prev,score_2ndprev,ref,events,model)
2: lp_emission ← log_probability_match(ref,events,model) . see Algorithm 3
3: up,diag,left ← get_scores(score_prev,score_2ndprev) . see red arrows in Fig. 5b
4: score_d ← diag + lp_step + lp_emission
5: score_u ← up + lp_stay + lp_emission
6: score_l ← left + lp_skip
7: s ← max(score_d,score_u,score_l)
8: d ← direction from which the max score came
9: end function

The above elaboration covers the ABEA algorithm to a sufficient enough level to explain our
GPU implementation and optimisations. Therefore, implementation details of checking out of
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Algorithm 3 Adaptive Banded Event Alignment - log probability computation
1: function log_probability_match(ref,events,model)
2: event,kmer ← get_event_and_kmer(ref,events) . see red arrows in Fig. 5b
3: x← event.mean
4: model_kmer ← get_entry_from_poremodel(kmer,model)
5: µ← model_kmer.mean
6: σ ← model_kmer.stdv
7: z ← x−µ

σ
8: lp_emission ← ln( 1√

2π )− ln(σ)− 0.5z2

9: end function

bound array accesses and the backtracking process were not discussed. Furthermore, the concept
of the ‘trim state’ and ‘event scaling’ were not discussed as the control flow of the algorithm
are not affected by them. Thus, those details not vital for the elaboration GPU implementation.
However, for the sake of completeness, a brief account of this ‘trim state’ and ‘read-model scaling’
are given below.

The raw signal may contain samples at the beginning/end that may be ignored by the base-
caller and hence does not contribute to the base-called sequence. These samples may be open
pore signal immediately before or after the DNA molecule is detected (i.e. the electric current
when nothing is in the nanopore), or perhaps part of the adaptor (molecules bounds to the ends
of the DNA molecules to enable sequencing). The ‘trim states’ allow the alignment to ignore
these samples, since such samples should not be considered to be part of the base-called read.

Due to reasons such as slight variations between different nanopores and characteristic changes
of the same nanopore with time, an event will not directly match the pore-model in Fig. 2b [16].
Therefore, to account for these variations either the events or the pore-model should be scaled on
a per-read basis. In Nanopolish, two scaling parameters namely shift and scale are estimated on
a per-read basis, prior to ABEA algorithm, using a ‘Method of Moments’ approach [16]. Then,
during ABEA, the pore-model mean values are scaled using these two parameters. The scaling
should be performed at line 5 of Algorithm 3 as µ← model_kmer.mean× scale+ shift instead
of directly assigning model_kmer.mean to µ.

2.4 GPU architecture and programming
Graphics Processing Units (GPUs) were originally designed as co-processors for graphics process-
ing and rendering. Graphics processing and rendering algorithms involve pixel-wise operations
which expose fine-grained parallelism, thus GPUs consists of hundreds of compute cores to per-
form parallel processing. Eventually, the concept of general purpose graphics processing units
(GPGPU) emerged where the GPUs were exploited to accelerate compute intensive, yet highly
parallelism portions of general purpose algorithms. GPUs are quite popular in scientific computa-
tions due to the significant speedup when used for common matrix manipulation which contains
fine-grained parallelism. From around a decade ago, GPUs which are explicitly designed for high
performance computers are available (e.g., Tesla GPUs from NVIDIA).

GPUs are of Single Instruction Multiple Data (SIMD) architecture (or more accurately Single
Instruction Multiple thread, as stated by NVIDIA), where multiple threads run the same stream
of instructions in parallel yet on different data. Conversely, CPUs are of Multiple Instruction
Multiple Data (MIMD) architecture, where each thread runs its own instruction sequence and
own data stream, independent of the others. GPUs have hundreds or even thousands of processing
cores while a CPU would maximally have a few dozen cores. However, the GPU cores are relatively
less complex (fewer instructions, smaller caches, no sophisticated branch prediction units etc.)
and run at a lower clock speed when compared to a CPU. Due to these significant differences
between CPU and GPU architectures, serial algorithms designed and developed for the CPUs are
not suitable for execution on GPUs. Such algorithms have to be adapted and parallelised in a
way that the GPU architectural features are efficiently used.

NVIDIA provides a programming model/framework for programming their GPUs for general
purpose computations, called Compute Unified Device Architecture (CUDA). CUDA includes
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CUDA C/C++ (extended C/C++ syntax) and an Application Programming Interface (API) to
provide a platform to write programs for the NVIDIA GPU. We used this CUDA C/C++ for our
GPU implementation of the Adaptive Banded Event Alignment algorithm.

We will now briefly give GPU/CUDA related terms. Readers are advised to refer to [17] and
[18] for further information.

A GPU kernel is a function that is executed on a GPU. A GPU kernel is written from the
execution perspective of a single GPU thread. These GPU kernels will run in parallel, based on
the parameters specified with the function call, known as the thread configuration. This thread
configuration in CUDA is an abstraction which employs a hierarchy of threads. In the thread
hierarchy, a group of threads are known as a block. A group of blocks form a grid. Instances of a
single kernel are executed in a single grid. Blocks and grids can be 1 dimensional, 2 dimensional
or 3 dimensional. The presence of this thread hierarchy lets the programmer organise and map
the threads conveniently to a grid. These logical threads would be mapped to the hardware cores
automatically by the underlying driver software and hardware.

A thread block consists of one or more thread warps. A warp is a group of threads sharing the
same program counter. A data dependent conditional branch inside a warp causes the threads to
execute each code path while disabling threads that are not in the path, known as warp divergence.
The warp divergence affects the performance and should be minimised.

The occupancy is the percentage of the number of active warps to the maximally supported
warps on the GPU. A lesser occupancy leads to under utilisation of GPU resources. Thus, a
higher occupancy is preferable for better utilisation of GPU resources.

GPUs also employ a memory hierarchy. Relatively larger but slow Dynamic Random Access
Memory (DRAM) that forms the lowest level in the memory hierarchy is known as global memory.
Global memory is typically allocated using cudaMalloc() API function. Memory allocated in this
global memory can be exclusively accessed by all the threads in the grid. The next level in the
memory hierarchy which is made of relatively fast, yet smaller SRAM is called shared memory.
Shared memory is allocated on a per-thread-block basis and is shared by all the threads in the
block. Shared memory can be called user managed cache (more accurately a programmer managed
cache) as the programmer is expected to identify and load frequently accessed data to the shared
memory. In addition, there are one or more levels of SRAM caches managed by the hardware.
The registers are the fastest and highest in the hierarchy and are allocated by the compiler on a
per-thread basis.

The global memory can be easily saturated when hundreds of threads compete to access
the memory at the same time. Thus, memory accesses should be batched such that contiguous
threads access contiguous memory locations. This process is referred to as memory coalescing and
reduces global memory requests thus reducing the impact on performance compared to scattered
memory accesses. Additionally, the programmer could utilise the shared memory to load and
store frequently accessed data, which also reduces global memory traffic.

3 Related work
An algorithm to call methylation using the raw signal from ONT sequencers was introduced by
Simpson et al. [1]. The associated C++ based implementation of this algorithm is a sub-module
under the open source tool Nanopolish. Nanopolish was designed to run on high-performance
computers and is not lightweight or suitable for deployment on embedded systems.

The signal-space alignment algorithm, termed Adaptive Banded Event Alignment (ABEA),
used in Nanopolish is a customised version of the Suzuki-Kasahara alignment algorithm [15]
for base-level sequence alignment. According to the best of our knowledge, neither of these
algorithms (ABEA or Suzuki-Kasahara) have GPU accelerated versions. The root origins of these
algorithms are dynamic programming sequence alignment algorithms, such as Smith-Waterman
and Needleman-Wunsch. A number of GPU accelerated versions for Smith-Waterman exist in
previous research [19, 20, 21] [20] [21]. However, the Smith-Waterman algorithm has a compute
complexity of O(n2) and is most practical when the sequences are short, especially when millions
of sequences need to be aligned. As nanopore sequencers can produce reads >1 million bases
long, computing the full DP table for such reads using SW would require >1012 computations
and hundreds of gigabytes of RAM—and even more if aligning raw nanopore signals.
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Algorithm 4 Outline of execution flow
1: for batch of n reads do
2: ... . CPU processing steps before the Adaptive Banded Event Alignment eg: event

detection
3: memcpy_ram_to_gpu(...) . copy inputs of the Adaptive Banded Event Alignment to

the GPU memory
4: gpu_alignment(...) . Perform the event alignment on the GPU
5: memcpy_gpu_to_ram(...) . copy results back to the RAM
6: ... . CPU processing steps after the alignment eg: HMM
7: end for

Heuristic approaches such as banded Smith-Waterman attempt to reduce the search space
by limiting computation along the diagonal of the DP table. While the approach is suitable
for Illumina short reads, it is less so for noisy long nanopore reads as substantial band-width
is required to contain the alignment within the band. The Suzuki-Kasahara algorithm uses a
heuristic that allows the band to adapt and move during the alignment, thus containing the
optimal alignment within the band but allowing large gaps in the alignment. Modified versions
of the adaptive banded alignment algorithm are used for signal-space alignment, as exemplified
in Nanopolish. The band-width (width of the band) used for signal-space alignment is typically
higher (~100) compared to other banded algorithms used for sequence alignment. In addition, the
scoring function for signal alignment uses a 32 bit floating point data type, as opposed to 8-bit
integers in sequence alignment. Furthermore, the signal alignment scoring function that computes
the log-likelihood is computationally expensive. Taken together, these reasons motivated us to
consider using GPUs to speedup the computation of signal-space alignment.

The portable compute module, MinIT, manufactured by ONT is composed of a NVIDIA SoC
[22] that exploits GPUs for performing live base-calling, which can perform base-calling at a speed
of ~150 Kbases per second, thus keeping up with the MinION sequencer’s output. In addition, our
previous work has optimised the popular Minimap2 [11] sequence alignment tool (which typically
requires ~16GB memory) for reduced peak memory usage, enabling the software to be executed
on embedded processors [23]. The data processing steps required for methylation calling are thus
possible to run on embedded processors, therefore supporting the implementation of a portable,
offline DNA methylation detection application that would facilitate such analyses in the field.

Load balancing between the CPU and GPU for heterogeneous processing has been explored
for areas such as fluid dynamics [24] and conjugate gradient method [25]. However, nanopore
data have different characteristics compared to aforementioned applications which are predom-
inately based on matrices. Furthermore, the signal-space alignment algorithm is different from
linear algebra algorithms used in these fields. We exploit characteristics of Nanopore data and
algorithms to perform memory, compute and load balancing optimisations.

4 Methodology
To optimise the performance on GPUs, we process a batch of reads (original source code pro-
cesses a read at a time) at a time. Such batch processing minimises data transfer initialisation
overhead (between RAM and GPU memory); reduces the GPU kernel invocation overhead; and,
allows parallelism which sufficiently occupies all available GPU cores. The execution flow follows
the typical GPU programming paradigm, which is elaborated in Algorithm 4. In Algorithm 4,
gpu_alignment(...) refers to the GPU implementation of the Adaptive Banded Event Alignment
(CPU algorithm is elaborated in Algorithm 1). We present our methodology in three steps: par-
allelisation and compute optimisations in Section 4.1; memory optimisation in Section 4.2; and,
the resource optimisation through heterogeneous processing in Section 4.3.

4.1 Parallelisation and compute optimisations
The GPU implementation of the Adaptive Banded Event Alignment (ABEA) algorithm is broken
into three GPU kernels. Breaking down into the three GPU kernels allows for efficient thread
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assignment based on the workload type, synchronisation of all GPU threads (a GPU kernel
execution is inherently a synchronisation barrier [17]) and minimising warp divergence compared
to a big all-in-one GPU kernel.

The three GPU kernels are:

• pre-kernel - Initialising the first two bands of the dynamic programming table (corresponds
to line 2 of algorithm 1) and pre-computing frequently accessed values by the next GPU
kernel;

• core-kernel - The filling of dynamic programming table which is the compute intensive
portion of the ABEA algorithm (corresponds to line 3-16 of Algorithm 1 composed of
nested loop); and,

• post-kernel - Performs backtracking (corresponds to line 17 of algorithm 1)

4.1.1 pre-kernel

The pre-kernel initialises the first two bands of the dynamic programming table (initialisation
performed at line 2 of Algorithm 1 on CPU). The pre-kernel also pre-computes the values in a
data structure called kcache, a newly introduced data structure in the GPU implementation that
improves cache hits during the subsequent execution of the core-kernel.

A simplified version of the pre-kernel is in Algorithm 5 and thread configuration for the
invocation of the pre-kernel is in Fig. 6. Note that the GPU kernel is presented (as is always the
case) from the perspective of a single GPU thread in Fig. 6.

Each cell in Fig. 6 represents a GPU thread denoted as t, where the subscripts x and y
denotes the thread index along the x-axis and the y-axis respectively. The thread grid in Fig. 6
is composed of n thread blocks, where n is the number of reads in the batch. Each thread block
contains WX threads where WX is the nearest upper ceiling multiple of 32 to the band-width W
(band-width of the ABEA algorithm); i.e. WX = (int)W+31

32 × 32 For instance, if W=100, WX
is 128. The reason for taking a multiple of 32 is due to performance attributed by a thread block
size that a multiple of the warp size (warp size is 32 currently) [18] . As shown in Fig. 6, a single
thread block composed of WX threads is assigned to a single read.

tx=0,y=0 tx=1,y=0 tx=WX-1,y=0 block0  read0

tx=0,y=1 tx=1,y=1 tx=WX-1,y=1 block1  read1

tx=0,y=2 tx=1,y=2 tx=WX-1,y=2 block2  read2

tx=0,y=3 tx=1,y=3 tx=WX-1,y=3 block3  read3

tx=0,y=4 tx=1,y=4 tx=WX-1,y=4 block4  read4

tx=0,y=n-2 tx=1,y=n-2 tx=WX-1,y=n-2 blockn-2  readn-2

tx=0,y=n-1 tx=1,y=n-1 tx=WX-1,y=n-1 blockn-1  readn-1

WX (bandwidth W to the nearest upper 32) 

)hctab eht ni sdaer fo reb
mun( n

Figure 6: Thread configuration of pre-kernel

In the Algorithm 5, lines 2-3 get the thread index of the thread being executed, i.e. the thread
indices denoted as x and y in Fig. 6. Line 4 obtains the memory pointers of the input array ref ;
intermediate arrays score and trace; and the kcache, the use in which is explained in the memory
optimisation Section (Section 4.2).

Lines 5-8 of Algorithm 5 initialises the first two bands of the dynamic programming table
(which was performed at line 2 of original CPU Algorithm 1). The kernel is in from the perspective
of a single thread and thus a single cell is initialised by a single thread. The collective execution
of all the threads in Fig. 6, effectively sets a band for all the reads in the batch in parallel, which
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tx=0,y=0 tx=1,y=0 tx=WX-1,y=0 block0  read0

tx=0,y=1 tx=1,y=1 tx=WX-1,y=1 block1  read1
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tx=0,y=3 tx=1,y=3 tx=WX-1,y=3 block3  read3

tx=0,y=4 tx=1,y=4 tx=WX-1,y=4 block4  read4

tx=0,y=n-2 tx=1,y=n-2 tx=WX-1,y=n-2 blockn-2  readn-2
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Figure 7: Thread assignment of pre-kernel. The assignment for the first two reads are shown.
Each thread block has a read assigned to it (block0 refers to threads tX=0,y=0 to tx=WX−1,y=0,
and read0 is processed by all threads in block0; similarly, block1 refers to tX=0,y=1 to tx=WX−1,y=1
and read1 is processed by threads in block1).

is illustrated in Fig. 7. Note that, only the first two reads are elaborated in Fig. 7, and in reality
each thread block has a read assigned to it. In Fig. 7, each cell in band0 (marked as iteration
1) contains the index of the thread which performs the initialisation at line 6 of Algorithm 5.
Similarly, iteration 2 corresponds to line 7 of Algorithm 5.

The if condition on line 5 of Algorithm 5 is to limit the threads to the width of the band
W , a consequence of selecting WX which is a multiple of 32 (as stated previously). Note that
there is a 1024 thread limit for a block [17] in current NVIDIA CUDA/GPU architecture, thus
our implementation will only work for a maximum band-width of 1024. This limit is more than
sufficient for a typical W of 100 in ABEA.

Line 10-11 of Algorithm 5 initialises the index of the lower left band which corresponds to line
23-24 of Algorithm 1. Note that this initialisation is executed by one thread per read (thread id 0
along y-axis). Lines 13-16 in Algorithm 5 initialises kcache. As stated previously kcache is a newly
introduced array for the GPU implementation to minimise random accesses to the GPU memory
during the core-kernel and will be explained in Section 4.1.2. Note that, this kcache initialisation
in line 13-16 is also executed by one thread per read (thread id 0 along y-axis). The loop in 13-16
can be further parallelised; however, as the time spent on pre-kernel is comparatively negligible
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Algorithm 5 Adaptive Banded Event Alignment - pre-kernel
1: function align_pre(...,model) . ... refers to other arguments which are later explained

Section 4.2
2: j ← thread index along x . the x subscript of a thread Fig. 6
3: i ← thread index along y . the y subscript of a thread Fig. 6
4: (ref,score,trace,ll_idx,kcache) ← get_cuda_pointers(i,...) . get memory pointers of the

arrays corresponding to read i (explained in Section 4.2)
5: if j < W then . Though a block is WX wide (Fig. 6) only W threads should execute
6: score[0,j], trace[0,j] ← −∞, 0 . corresponds to line 21 of Algorithm 1
7: score[1,j], trace[1,j] ← −∞, 0 . corresponds to line 22 of Algorithm 1
8: end if
9: if j==0 then . only thread 0 process this Section

10: l l_idx[0] ← {ei0,ki0} . corresponds to line 23 of Algorithm 1
11: l l_idx[1] ← {ei1,ki1} . corresponds to line 24 of Algorithm 1
12: score[0,si0] ← 0 . corresponds to line 25 of Algorithm 1
13: for k=0 to numkmers do . Iterate through each kmer in ref from left to right
14: kmer ← get_kmer_at(ref,k) . k-mer at position k in ref
15: kcache[k] = get_entry_from_poremodel(kmer,model)
16: end for
17: end if
18: end function

(see results), further parallelising this loop is superfluous.

4.1.2 core-kernel

A simplified version of the core-kernel which fills the dynamic programming table in Fig. 5a
(corresponds to line 3-16 of the original Algorithm 1) is in Algorithm 6. This kernel is executed
with the same kernel thread configuration as pre-kernel in Fig. 6. Thus, a batch of reads are
processed in parallel with a block of threads assigned to a single read in a similar way to that in
pre-kernel (Fig. 7). The only difference in Fig. 7 for the core-kernel is that the third band to the
last band are processed instead of the first two bands.

All the W cells in a given band (Fig. 5a) are computed by W number of GPU threads in
parallel (lines 26-30 of Algorithm 6), thus the inner loop of Algorithm 1 (lines 11 and 15) is now
no longer present. However, the outer loop of Algorithm 1 cannot be parallelised due to band
n depending on n− 1 and n− 2 bands as explained the background. The movement/placement
of the band (described in background) is performed by a single thread using the condition given
on line 13 Algorithm 6 that limits the code segment to thread 0. In addition, synchronisation
barriers per-thread-block basis (__syncthreads) in Algorithm 6 prevent any data hazards due to
multiple threads assigned to a single read.

Another notable difference in the GPU implementation is the use of GPU shared memory [17]
(user-managed cache or more accurately programmer-managed cache) for exploiting the temporal
locality in the memory accesses to the dynamic programming table (nth band in Fig. 5a is
computed using bands n-1 and n-2 ). Shared memory is allocated for three bands (current,
previous band and second previous) by line 6-7 of Algorithm 6 which are then initialised at
lines 9-10 of Algorithm 6. These initialised memory locations are used during band direction
computation (lines 14-21 of Algorithm 6) and the cell score computation (lines 27-28 of Algorithm
6), eliminating any accesses to the slow GPU global memory (shared memory-SRAM vs global
memory-DRAM). The cell score is written to the global memory at the end of the iteration (line
32 of of Algorithm 6) as scores are later required for backtracking. Finally, current, previous and
second previous bands are set for the next iteration (lines 33-36 of Algorithm 6).

As stated under Section 4.1.1, the data structure kcache introduced to the GPU implemen-
tation facilitates memory coalescing by minimising random memory accesses to the model array
(pore-model array in Fig. 2b). If kcache did not exist, access pattern by contiguous threads in
the core-kernel (shown for the iteration 5 of read 0) would look like in Fig. 8a where accesses to
the ref are shown in green colour arrows and the subsequent accesses to the pore-model are in
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red colour arrows. The green arrows (relates to getting the k-mer at line 2 of Algorithm 3 in the
CPU version) are spatially local and would facilitate memory coalescing in the GPU. However,
red arrows (relates to line 4 of Algorithm 3 in the CPU version) to the model array are random
accesses. Note that such random accesses would occur during each iteration (iteration 3 to the
last band iteration). Such multiple threads accessing random GPU memory locations degrade
the performance due to smaller and less powerful GPU caches (compared to CPU), for instance,
32KB pore model array is larger than 8KB GPU constant cache [17].

These random accesses are eliminated by the kcache constructed in pre-kernel (stated under
Section 4.1.1) which is then passed as an argument to the compute function at line 27 in Algorithm
6). This kcache is then passed on to the log_probability_match function (at line 2 of Algorithm
7) which is then used at line 4 of Algorithm 8. The construction of the caches in the pre-kernel
requires random accesses to the model as shown in Fig. 8b, which happens only once. However,
this kcache is utilised by the core-kernel in every iteration and facilitates memory coalescing (see
green arrows in Fig. 8c which are spatially local accesses to the kcache by contiguous threads in
iteration 5).

It is noteworthy to mention that allocating one thread block per read is critical (in the kernel
configuration) to: use lightweight block synchronisation primitives __syncthreads (instead of ex-
pensive kernel invocations as synchronisation barriers [17]); minimise warp divergence (otherwise
the longest read in the thread block would consume the longest time which corresponds to the
band filling loop); and, use shared memory per read (shared memory is allocated per block).

4.1.3 post-kernel

The backtracking operation performed by this post-kernel (one thread assigned to one read) does
not expose fine grained parallelism as in previous kernels and thus not ideal for the GPU. However,
performing this on GPU is still advantageous when compared to transferring huge intermediate
arrays (scores and trace—size in order of GB) from GPU to the RAM. In addition, no additional
memory in the RAM is required, thus reducing peak RAM usage.

Allocating one thread block per read (as in core-kernel to reduce warp divergence) is not ideal
for this post-kernel due to the lack of fine grained parallelism (i.e. 1 block having 1 thread), which
results in reduced GPU occupancy (occupancy will be limited by the maximum thread blocks
that can simultaneously reside in a GPU multi-processor). This is remedied without affecting the
warp divergence by allocating a large number of threads per block (eg: 1024) and then limiting
only the first thread in the warp (a warp is composed of 32 contiguous threads [17] and thus
thread with indices 0, 32, 64, 96 ... etc) to perform the actual computation (backtracking for a
read).
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(a) Random accesses to the model array (red arrows) when kcache is not employed
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(c) Spatially local memory accesses (green
arrows) when kcache is employed

Figure 8: Utility of kcache in the core-kernel to improve memory coalescing
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Algorithm 6 Adaptive Banded Event Alignment - core-kernel
1: function align_kernel_core(...) . ... refers to the arguments which are later explained

in Section 4.2
2: j ← thread index along x . the x subscript of a thread Fig. 6
3: i ← thread index along y . the y subscript of a thread Fig. 6
4: (events,score,trace,ll_idx,kcache) ← get_cuda_pointers(i,...) . get memory pointers of

the arrays corresponding to read i (explained in Section 4.2
5: n_bands ← n_events + read_len
6: __shared__ c_score[W], p_score[W], pp_score[W] . allocate space in fast shared

memory for scores of current, previous and 2nd previous bands
7: __shared__ c_ll_idx, p_ll_idx, pp_ll_idx . allocate space in fast shared memory for

indexes of lower left cells of current, previous and 2nd previous bands
8: if (j<W) then . similar behaviour as in pre-kernel
9: p_score[j],pp_score[j] ← score[1,j],score[0,j] . copy initialised b0 and b1 scores

10: p_ll_idx,pp_ll_idx ← l l[1],ll[0] . copy initialised b0 and b1 indexes
11: __syncthreads() . synchronise threads in the block
12: for i ← 2 to n_bands do . similar to Algorithm 1
13: if (j==0) then . only thread 0 process this
14: dir ← suzuki_kasahara_rule(p_score) . similar to Algorithm 1
15: if dir == right then
16: c_ll_idx ← move_band_to_right(p_ll_idx) . similar to Algorithm 1
17: l l[i] ← c_ll_idx . store to global memory
18: else
19: c_ll_idx ← move_band_down(p_ll_idx) . similar to Algorithm 1
20: l l[i] ← c_ll_idx . store to global memory
21: end if
22: end if
23: __syncthreads() . synchronise threads in the block
24: min_j,max_j ← get_limits_in_band(c_ll_idx) . similar to Algorithm 1
25: __syncthreads() . synchronise threads in the block
26: if (j ≥ min_j AND j < max_j) then . fill the cells in band i in parallel
27: s,d ← compute(p_score,pp_score,kcache,events,model) . see Algorithm 7
28: c_score[j] ← s . store score to shared memory
29: trace[i,j] ← d . store backtrack flag directly to global memory
30: end if
31: __syncthreads() . synchronise threads in the block
32: score[i,j] ← c_score[j] . store the scores in global memory
33: pp_score[j], p_score[j], c_score[j] ← p_score[j], c_score[j], −∞ . update band

scores for the next iteration
34: if j==0 then
35: pp_ll_idx, p_ll_idx ← p_ll_idx, c_ll_idx . update band indexes for the

next iteration
36: end if
37: __syncthreads() . synchronise threads in the block
38: end for
39: end if
40: end function
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Algorithm 7 Adaptive Banded Event Alignment - core-kernel - cell score computation

Constants:
events_per_kmer = n_events

n_kmers
ε = 1−10

lp_skip = ln(ε)
lp_stay = ln(1− 1

events_per_kmer+1 )
lp_step = ln(1.0− elp_skip − elp_stay)

1: function computation(score_prev,score_2ndprev,kcache,events)
2: lp_emission ← log_probability_match(kcache,events) . see Algorithm 8
3: up,diag,left ← get_scores(score_prev,score_2ndprev) . see red arrows in Fig. 5b
4: score_d ← diag + lp_step + lp_emission
5: score_u ← up + lp_stay + lp_emission
6: score_l ← left + lp_skip
7: s ← max(score_d,score_u,score_l)
8: d ← direction from which the max score came
9: end function

Note: Changes to Algorithm 2 are highlighted in blue

Algorithm 8 Adaptive Banded Event Alignment - core-kernel - log probability computation.
1: function log_probability_match(kcache,events)
2: event ← get_event(events) . see red arrow in Fig. 5b
3: x← event.mean
4: model_kmer ← get_entry_from_kcache(kcache)
5: µ← model_kmer.mean
6: σ ← model_kmer.stdv
7: z ← x−µ

σ
8: lp_emission ← ln( 1√

2π )− ln(σ)− 0.5z2

9: end function

Note: Changes to Algorithm 3 are highlighted in blue
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4.2 Memory optimisation
CPU version of the Adaptive Banded Event Alignment (ABEA) algorithm performs dynamic
memory allocations (malloc) on a per read basis. The number of reads in a dataset is in the
order of millions and thus incur millions of malloc calls. However, dynamic memory allocations
(malloc performed inside GPU kernels) are extraordinarily expensive in terms of execution time
[17]. In-fact, our initial GPU kernel implementation which performed such memory allocations
was more than 100× slower than the CPU implementation. An intuitive approach of statically
allocating memory at the compile time is not practical as nanopore read lengths vary significantly
(~100 bases to >1 Mbases as explained previously) and thus the associated data structures vary
from ~200 KB to >1.5 GB. We present a methodology that significantly reduces the number of
memory allocations by pre-allocating large chunks of contiguous memory at the beginning of the
program to accommodate a batch of reads, which are then reused throughout the life-time of the
program. The sizes of these large chunks are determined by the available GPU memory and the
average number of events per base (i.e. average value of the number of events divided the by the
read length). For a given batch of reads, we assign reads to the GPU until the allocated GPU
memory chunks saturate, and the rest of the reads are assigned to the CPU.

We describe the memory allocation technique in two steps: in Section 4.2.1 how the memory
allocation for a batch of reads at a time is performed; and, in Section 4.2.2, how the method in
Section 4.2.1 can be expanded to reuse large chunks of memory, allocated at the beginning of the
program.

4.2.1 Data array serialisation

In the three GPU kernels elaborated in Section 4.1, the associated data arrays per each read are
ref, kcache, events, score, trace, l l_idx and alignment (final output from the post-kernel). If any
of these arrays are allocated inside the GPU kernels on a per-read basis, for instance if score
and trace arrays are allocated at line 4 of Algorithm 5 using malloc), the performance will be
degraded.

We identified that the sizes of all the aforementioned data arrays are dependent only on the
read length (known at run-time during file reading) and the number of events for the read (known
after event detection described in Section 2). Thus, the sum of read lengths and the number of
events for a batch of n reads (GPU processes a batch of n reads at a time) is used to calculate the
sizes of memory allocations required for the particular batch according to the formulation below.

Let n be the number of reads loaded to the RAM (from the disk) at a time. Let r[] be the read
length and e[] be the number of events for all the reads in batch of n reads. Column 1 of Table
1, lists the data arrays. The size of arrays ref and kcache depends only on read lengths r; events
and alignment depend on number of events e; and, score, trace and l l_idx depend on both read
length r and number of events e. Based on these dependencies, the arrays are categorised in Table
1 by horizontal separators. The second column of Table 1 states the data-type size of each array,
denoted by constants of the form cx. Typical values of these constants (in our implementation)
are given inside the brackets. For instance, the data type for ref is char and thus Cr is 1 byte.
The data type for events is a struct of size Ce that is 20 bytes. Note that, the exact values
may depend on the implementation and the underlying processor architecture, nevertheless are
constants known at compile time. The third column of Table 1 shows the size required for the
particular array for a single read, i.e. the size for the ith read (assume 0 based index origin) in
the batch of n reads. For instance, ref depends on the read length of the particular read and the
datatype, thus the size is Crr[i]. Score depends on read length, number of events, data type size
and band-width (W ), thus WCs(r[i] + e[i]). The last column of Table 1 is the total size required
for a batch of reads (based on sum of r and e). For instance, the sum of all the ref arrays for the
batch is the product of data type size Cr and sum of all read lengths in the batch

∑n−1
i=0 r[i].

Based on the total array sizes in the last column Table 1, we can allocate seven big chunks
of linear contiguous memory in the GPU. Let the base address of those chunks be represented
by uppercase letters: REF ; KCACHE ; EVENTS etc. These memory allocations are performed
using cudaMalloc() API calls, just before the kernel invocations and are deallocated after the
kernels. Note that for now, we do these allocations and deallocations for each batch of reads.

The GPU arrays REF, KCACHE, EVENTS etc, allocated using cudaMalloc above are 1D ar-
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Table 1: Data arrays associated with ABEA and their sizes

Array Data type size Size for read i in batch Size per batch
(bytes)

ref[] Cr (1) Crr[i] Cr
∑n−1
i=0 r[i]

kcache[] Ck (12) Ckr[i] Ck
∑n−1
i=0 r[i]

events[] Ce (20) Cee[i] Ce
∑n−1
i=0 e[i]

alignment[] Ca(8) 2Cae[i] 2Ca
∑n−1
i=0 e[i]

score[][] Cs (4) WCs(r[i] + e[i]) WCs
∑n−1
i=0 (r[i] + e[i])

trace[][] Ct (1) WCt(r[i] + e[i]) WCt
∑n−1
i=0 (r[i] + e[i])

l l_idx[] Cl(8) Cl(r[i] + e[i]) Cl
∑n−1
i=0 (r[i] + e[i])

Table 2: GPU data arrays, pointer computation and heuristically determined sizes

(a) Computation of pointer for the read i

1D GPU array Offset to element
(base address) i in the batch
REF Crp[i]
KCACHE Ckp[i]
EVENTS Ceq[i]
ALIGNMENT 2Caq[i]
SCORE WCs(p[i] + q[i])
TRACE WCt(p[i] + q[i])
LL_IDX Cl(p[i] + q[i])

(b) Heuristic allocation

1D GPU array Allocated size
(base address) per batch
REF CrX
KCACHE CkX
EVENTS CeY
ALIGNMENT 2CaY
SCORE WCs(X + Y )
TRACE WCt(X + Y )
LL_IDX Cl(X + Y )

rays, thus multi-dimensional arrays in the RAM (eg: an array of pointers—each pointer pointing
to a string/char array) must be serialised/flattened. One option is to save a series of pointers
associated to each above array during the serialisation and then utilising those pointers for ad-
dressing a particular element later. However, this can be performed better by storing only two
offset arrays of length n each: read offset array p[], which is the cumulative sum of read lengths in
the batch (p[i] =

∑i−1
j=0 r[j]); and, event offset array q, which is the the cumulative sum of events

in the batch (q[i] =
∑i−1
j=0 e[j]). Note that, r and e have the same definitions as before. These

two offset arrays p and q can be used to deduce the associated pointer to a given element when
required, by computing the array offset as shown in Table 2a. The first column of Table 2a is the
base address of the large GPU arrays we allocated above. The offset of the element pertaining to
the ith read (assume 0-indexing) in the particular array is given in the second column of Table 2a.
The definition of constants Cx and W are the same as for the previous Table 1. These 1D array
base addresses in the first column of Table 2a and the two associated offset arrays p[] and q[], are
passed as arguments to the GPU kernels (Algorithm 5 and Algorithm 6). These arguments are
used for the the memory pointer computation inside the GPU kernels (line 4 of Algorithm 5 and
line 4 of Algorithm 6) based on the second column of Table 2a.

Algorithm 9 elaborates how the above mentioned strategy is integrated into the previous
execution flow depicted in Algorithm 4. Lines 3-7 of Algorithm 9 show how the offset arrays p
and q are computed for each batch of reads. Line 8 of Algorithm 9 performs the serialisation of
the multi-dimensional arrays with the use of offset arrays p and q. Line 9 of Algorithm 9 allocates
GPU arrays based on sizes in last column of Table 1. Then, the serialised arrays are copied to
allocated GPU memory (line 10 of Algorithm 9), GPU kernels (the three kernels discussed in
Section 4.1) are executed (line 11) and the alignment result is copied back from the GPU (line
12). At the end, the alignment result is converted back to multi-dimesional arrays (line 13) and
then the GPU memory (allocated at line 9) is deallocated (line 14).

The offset arrays p and q (and also REF, KCACHE, EVENTS, etc.) are passed onto the
GPU kernels and are utilised inside the GPU kernels to compute the memory pointers (line 4 of
Algorithms 5 and 6) through the equations listed on the second column of Table 2a.

The limitation of this strategy is the GPU memory allocation and de-allocation (line 9 and
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Algorithm 9 Memory allocation—data structure serialisation
1: for batch of n reads do
2: ... . CPU processing steps before the ABEA eg: event detection
3: rs, es← 0, 0 . cumulative sum of read lengths and no of events
4: for each read i do
5: p[i], q[i]← rs, es . save current read and event offsets
6: rs← rs+ r[i]; es← es+ e[i]
7: end for
8: serialise_ram_arays(p, q, ...) . flatten multi dimensional arrays in RAM to 1D arrays
9: allocate_gpu_arrays(rs,es,...) . GPU arrays REF, KCACHE, EVENTS, etc.

10: memcpy_ram_to_gpu(...) . copy inputs of the ABEA to the GPU memory
11: gpu_alignment(p, q...) . Perform ABEA on the GPU
12: memcpy_gpu_to_ram(...) . copy alignment result back to the RAM
13: deserialise(p, q, ....) . convert 1D result array to multi dimensional array
14: free_gpu_arrays() . free GPU arrays REF, KCACHE, EVENTS, etc.
15: ... . CPU processing steps after ABEA eg: HMM
16: end for

14 of Algorithm 9) performed for each batch of reads (which is expensive on certain GPUs, see
Section 5.2.2). This limitation is remedied by the heuristic based pre-allocation strategy explained
in the next subsection.

4.2.2 Heuristic based memory pre-allocation

The GPU memory allocations in the previous section which were performed for each batch could
be eliminated by pre-allocating all the available GPU memory at the startup of the program
and then re-using for subsequent batches of reads). If the sizes of the arrays depended only
on the read length, the total read length accommodable into the available GPU memory can
be derived. Then, the available memory can be allocated among the seven large arrays (REF ,
KCACHE, EV ENTS etc) in correct proportion. However, these array sizes depend both on
the read length and the number of events which are unknown at the beginning of the program;
thus, memory cannot be partitioned among the data arrays. Therefore, We present a heuristic
approach which exploits characteristic of nanopore data to estimate the proportion to maximally
utilise the available GPU memory. In summary, we obtain the average number of events per
base (average of the number of events divided by read length), use this average to determine the
maximum read length that can be accommodated to the GPU, and proportionally allocate the
GPU arrays. This approach is formulated as follows.

Sum of all the cells in column 4 of Table 1 is total memory required for a batch of n reads.
This sum simplifies to equation 1 (due to the properties of constants) where CR = Cr + Ck +
WCs +WCt +Cl and CE = Ce + 2Ca +WCs +WCt +Cl. This sum represents the total size of
all array (for adapted banded event alignment algorithm) for a batch of n reads.

S = CR

n−1∑
i=0

r[i] + CE

n−1∑
i=0

e[i] (1)

If µ̄ is the average number of events per base (total number of events divided by the total read
length for all reads in the batch), we can write as

∑n−1
i=0 e[i] = µ̄

∑n−1
i=0 r[i]. Now substituting

this in equation 1 gives S = (CR + µ̄CE)
∑n−1
i=0 r[i]. We observed that for a sufficient batch size

(>64), µ̄ is stable ~2.5 (on more than 10 datasets we tested). Let this estimated value for µ̄
be represented by the constant µ. Thus, the total memory required for a batch of reads can be
estimated using equation 2.

M = (CR + µCE)
n−1∑
i=0

r[i] (2)
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Algorithm 10 heuristic memory allocation scheme
1: allocate_gpu_arrays(X,Y) . pre-allocate GPU arrays REF, KCACHE, EVENTS, etc.
2: for batch of n reads do
3: ... . CPU processing steps before the ABEA eg: event detection
4: rs, es← 0, 0 . cumulative sum of read lengths and no of events
5: for each read i do
6: if (rs+ r[i] ≤ X and es+ e[i] ≤ Y ) then . check if GPU arrays have adequate free

space
7: p[i], q[i]← rs, es . save current read and event offsets
8: rs← rs+ r[i]; es← es+ e[i]
9: assign_to_gpu(i) . GPU arrays have space, thus assign read to the GPU

10: else
11: assign_to_cpu(i) . a GPU arrays is already full, thus assign the read to the CPU
12: end if
13: end for
14: serialise_ram_arays(p, q, ...) . flatten multi dimensional arrays in RAM to 1D arrays
15: memcpy_ram_to_gpu(...) . copy inputs of the ABEA to the GPU memory
16: gpu_alignment(p, q...) . Perform ABEA on the GPU
17: process_rest_on_cpu() . execute on the CPU in parallel to the GPU kernels
18: memcpy_gpu_to_ram(...) . copy alignment result back to the RAM
19: deserialise(p, q, ....) . convert 1D result array to multi dimensional array
20: ... . CPU processing steps after ABEA eg: HMM
21: end for
22: free_gpu_arrays() . free GPU arrays REF, KCACHE, EVENTS, etc.

Note: Changes to Algorithm 9 are highlighted in blue

Equation 2 can be used to estimate the maximum number of bases (sum of read lengths) that
a given amount of GPU memory can accommodate. Let M in equation 2 be the available GPU
memory. Then, the approximate maximum number of bases X that fits available GPU memory
M can be computed via equation 3. Then, the associated total number of total events Y which
the GPU memory can accommodate, is found by equation 4.

X = floor

(
M

CR + µCE

)
(3)

Y = floor(µX) (4)

These X and Y allow the available GPU memory to be allocated among the seven large
arrays (REF , KCACHE, EV ENTS etc) with approximately correct proportions, as shown in
the second column of Table 2b. The values in the second column of Table 2b are obtained by
substituting

∑n−1
i=0 r[i] with X and

∑n−1
i=0 e[i] with Y in the last column of Table 1.

By incorporating the above heuristic based memory allocation strategy to Algorithm 9, we
get the execution flow in Algorithm 10. The major changes to the previous Algorithm 9 are
highlighted in blue text. Now the GPU memory is allocated at the beginning of the program
based on the estimated X and Y on line 1 of Algorithm 10. As X and Y are approximations,
the GPU arrays may saturate for certain batches of reads. Line 6 of Algorithm 10 checks if GPU
arrays are saturated and assigns the read to either GPU (line 9) or CPU (line 11), accordingly.
Only a few reads are assigned to the CPU and these few reads are processed on the CPU in
parallel to the GPU kernel execution, and thus no additional execution time is incurred.

With the heuristic based memory pre-allocation strategy described in this section, cudaMalloc
operations are invoked only at the beginning of the program and thus no additional memory allo-
cation overhead during the processing. Note that, our implementation is future proof; i.e. µ is a
user specified parameter (that is initialised to 2.5 by default) in case nanopore data characteristics
change in future.
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4.3 Heterogeneous processing
If all the reads were of similar length, GPU threads that process the reads would complete
approximately at the same time, and thus GPU cores will be busy throughout the execution.
However, as stated in Section 2, there can be a few reads which are significantly longer than the
other reads (we will refer to them as very long reads). When the GPU threads process reads in
parallel, presence of such very long reads will cause all other GPU threads to wait until the GPU
threads processing the longest read complete. This thread waiting leads to under utilisation of
GPU cores. Thus, we process these very long reads on the CPU while the GPU is processing the
rest in parallel. However, there can be exceptionally long reads (we will refer to them as ultra
long reads) which the CPU would take longer time than what the GPU took to process the whole
batch. Such reads would lead the GPU to idle until the CPU completes. Thus, ultra long reads
will be skipped and will be processed separately at the end by the CPU. Similarly, there can be
a few over segmented reads (i.e. reads with a significantly higher events per base ratio than the
others) which cause GPU under utilisation. These over-segmented reads will also be processed
on the CPU.

We discuss these problems of very long reads and ultra long reads in detail with examples in
Section 4.3.1, along with the solutions. Then, in this Section 4.3.2, we discuss the problem of over
segmented reads and the respective solution. Then, in Section 4.3.3, we discuss another factor
that affects performance, the batch size (number of reads loaded to the RAM at a time). Finally,
in Section 4.3.4, we describe a method to detect and prompt the user of any drastic impacts on
performance along with suggestions to tune parameters to minimise the impact.

4.3.1 Very long reads and ultra long reads

Consider a batch of reads where ~90% of the reads are less than 30 Kbases in length. Assume
the longest read in the batch is 90 Kbases. Assume that the GPU is processing all the reads (in
the batch) in parallel. Suppose that GPU threads processing reads of length <30 Kbases (90%
of the threads) would complete in <300ms while GPU threads processing the longest 90 Kbases
read would take 900ms. As a result, the completed GPU threads will have to wait for additional
600ms. Similarly, the few very long reads consume a significant time to process on the GPU in
comparison to other reads in the batch. Majority of the GPU threads will have to wait and this
causes under-utilisation of GPU compute-cores. Furthermore, very long reads negatively affects
the GPU occupancy by occupying a significant portion of GPU memory. For instance, a read
of size ~10 Kbases requires only ~18 MB of GPU memory while a read with 90 Kbases requires
~160MB memory. Hence, very long reads occupy a significant portion of GPU memory, limits
the number of reads that could be processed in parallel. This reduces the amount of parallelism
and the occupancy of the GPU is reduced.

Fortunately, very long reads being few (see the typical read length distribution under results),
the CPU (core frequency faster than on GPU) could process those reads while GPU is processing
the rest of the reads. In the above example, selecting a static threshold (eg: processing reads
of length <30Kbases on GPU and rest on CPU) would give reasonable performance. However,
selecting such a static threshold is not ideal due to variations in the read length distributions
based on the dataset (see background). Thus, we use the product of max-lf and the average read
length in the batch to determine the threshold dynamically, where max-lf is a user-parameter
that defaults to 5.0. This threshold was empirically determined.

Now assume amongst the very long reads processed on the CPU, a few ultra long reads (eg:
read >100 Kbases in a dataset where >99% of the reads are <100 Kbases). Such ultra long reads
could cause a severe load imbalance between the CPU and the GPU. For instance, assume that
there exists a read which is 1 Mbases in a given read batch. Despite the high core frequency,
the CPU will take a few seconds to process such an ultra long read. The GPU meanwhile would
process the whole batch in less than 1s (see results for empirical evidence). Such ultra long reads
being <1%, are skipped during the processing (while being written to a separate file) and are
separately processed by the CPU at the end. In our implementation, the threshold for ultra long
reads is a user defined parameter which defaults to 100 Kbases. There is an additional advantage
of processing ultra long reads later. Ultra long reads usually require a significant amount of
RAM (a few gigabytes) and may crash on limited memory systems. In the end, it is possible to
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process these reads with a limited amount of threads to reduce the peak memory consumption,
particularly if the size of the RAM is limited.

4.3.2 Over segmented reads

Once the very long reads and ultra long reads are processed as in Section 4.3.1, the performance
impact due to the over-segmented events become prominent. While majority of the reads have a
number of events per base that is close to the average µ(= 2.5), a few reads can have a very large
value. For instance, a few reads with a number of events per base being more than eight times
the average µ(= 2.5) can violate the suitability of our partitioning of GPU memory as X and Y
(X and Y are derived in equations 3 and 4). These over-segmented reads lead to the GPU arrays
that are proportional to Y be full, while the arrays proportional to X are left under-utilised. For
instance, arrays proportional to Y can become 100% while arrays proportional to X are only filled
to <70%. Hence, over segmented reads lead to under-utilisation of GPU memory and results in
limiting the number of reads which are processed in parallel. We process the over-segmented
reads on the CPU based on a user specifiable threshold max-epk which defaults to 5.0.

On rare occasions, reads with >100 events per base were observed. Such severely over-
segmented reads can be processed separately at the end or ignored totally as such rare reads
amongst millions of other reads are unlikely to affect the final polishing result.

4.3.3 Batch size

Selection of proper batch size (reads loaded to RAM from the disk at a time) is another important
parameter that affects performance. If the batch size is too small compared to what the GPU
memory can accommodate, the number of reads to be processed in parallel is limited, thus leads
to in-adequate occupancy. Conversely, if the batch is too large to fit the GPU, CPU will have to
process many surplus reads that could not be accommodated into the GPU. The batch size in
our implementation is determined by two user specified parameters: K which is the maximum
number of reads; and, B which is the maximum number of total bases. When reading from the
disk to RAM, the true batch size (n-number of reads and b-number of total bases are capped by
K and B) is determined by the first value (n or b) reaching the cap (K or B) first. Having such
a limit B allows to cap peak RAM due to adjacent very long reads. The suitable value for B is
dependent on the available GPU memory, which can be estimated via the equation 3 discussed
in Section 4.2.

4.3.4 Detection of performance anomalies

While we have empirically determined typical parameters/thresholds (associated with above
strategies), an unusual situation (for instance, a big gap between the CPU and GPU specifi-
cations or a data set that severely deviates from the heuristics we use) may cause performance
anomalies. We employ the following method to detect a severe performance anomaly caused by
such an unusual scenario.

We measure the quantities representing resource utilisation during run time, which are listed
in Table 3. These quantities are measured per batch of reads loaded to the RAM at a time.
We use those measured quantities to determine any severe performance issues and suggest suit-
able parameter adjustments to the user. The adjustable parameters (or thresholds) that can be
tweaked to improve the resource utilisation are defined in Table 4. Determination of performance
issues and suggestions are done via two decision trees, one that corresponds to GPU memory
usage (Fig. 9a) and another which corresponds to balancing the load between CPU and GPU
(Fig. 9b).

Fig. 9a shows the decision tree that detects any imbalance in the proportions X and Y
associated with GPU arrays allocation (X and Y derived in equations 3 and 4). The objective
of this decision tree is to detect any GPU memory wastage and to increase the number of reads
which the GPU gets to process in parallel.

As shown in Fig. 9a, if both Xutil and Yutil (rs as a percentage of X and es as a percentage
of Y in Algorithm 10) are more than 70%, the utilisation of GPU arrays is considered reasonable.
Note that 70% is an empirically determined value that provides adequate performance. If Xutil
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quantity description
tCPU processing time on CPU
tGPU processing time on GPU
Xutil utilisation percentage of the arrays proportional to X (rs as a percentage of X

in Algorithm 10)
Yutil utilisation percentage of the arrays proportional to Y (es as a percentage of Y

in Algorithm 10)
Nmemout number of reads assigned to CPU due to GPU memory getting prematurely

full (corresponds to line 11 of Algorithm 10)
Nlong number of very long reads assigned on to the CPU (corresponds to user param-

eter max-lf )
Nevents number of reads with too many events per read assigned onto the the CPU

(corresponds to user parameter max-epk)
n the number of reads actually loaded to the RAM
b the number of bases actually loaded to the RAM

Table 3: measured quantities

parameter description
max-lf reads with length ≤ max-lf × average_read_length are assigned to GPU and

rest to CPU
avg-epk average number of events per base used for allocating GPU arrays as discussed

previously (µ)
max-epk reads with events per base ≤ max-epk are assigned to GPU, rest to CPU
K upper limit of the batch size with respect to the number of reads
B upper limit of the batch size with respect to the number of bases
t number of CPU threads
ultra-thresh threshold to skip ultra long reads

Table 4: adjustable user parameters
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Xutil >70%

Yutil >70%

Yutil >70%

no action

no action

Xutil-Yutil >30%

Yutil-Xutil >30%

S1: ↑ max-epk ↓avg-epk

S2 :  ↓ max-epk ↑ avg-epkyes

no action

no action

S4 : ↑ K

n<K

b<B

S3: ↑ B

b<B

no action

yes

no

yes

no

yes

no

(a) memory balancing

tCPU >=< tGPU

Nmemout or Nlong 
or Nevents>10%

do nothing

T4: ↓ ultra-thresh ↑ threads

T5 : ↓ max-lf  ↓ max-epk  
       ↑ ultra-thresh

Nmemout>10%

Nlong>10%

T1: ↓ K 

T2: ↑ max-lf

T3: ↑ max-epktCPU>>tGPU

tGPU>>tCPU

tGPU==tCPU

(b) load balancing

Figure 9: Decision trees for resource optimisation

is reasonable (>70%) and Yutil is unreasonable (<70%), we inspect for any significant imbalance
between Xutil and Yutil (Xutil-Yutil>30%). Such a significant gap suggests an under-utilisation,
which should be remedied through the increase ofmax-epk (the threshold at which over-segmented
reads are offloaded to the CPU) or reducing Y by decreasing average-epk (node S1 in Fig. 9a).
In contrast, if Yutil is reasonable and the Xutil is unreasonable, the strategy is the opposite, i.e,
either decrease max-epk or increase average-epk (follow up to the node S2 in Fig. 9a).

If both Xutil and Yutil are less than 70%, a likely cause is an inadequate batch size to fill the
GPU memory. The actual batch size (n,b) is determined by both K and B as stated previously.
As shown in Fig. 9a, we check which limit out of K and B was reached first. If both n < K
and b < K, the currently processed batch being the last batch in the dataset (end of input data
reached) is the likely cause. Thus, no parameter tuning action is necessary. If B was reached first
(n < K and not b < B), B is the limitation and should be increased (S3 in Fig. 9a). If K was
reached first (not n < K and b < B), K should be increased (S4 in Fig. 9a).

Fig. 9b shows the decision tree for CPU-GPU workload balancing. For a particular batch, if
the CPU takes significantly more time than the GPU, the decision tree first inspects whether the
CPU is assigned with an excessive workload. An excessive workload on the CPU can be attributed
by: an extensively over-sized batch size (in comparison to the available GPU memory), which
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results in a majority of the reads being assigned to the CPU (Nmemout>10%); excessive number
of very long reads assigned to the CPU (Nlong>10%); and, excessive number of over-segmented
reads events assigned to the CPU (Nevents>10%). If Nmemout>10%, K is reduced (node T1 in
Fig. 9b); if Nlong>10%, max-lf is increased (T2 in Fig. 9b); and, if Nevents>10%, max-epk is
increased (T3 in Fig. 9b).

If the cause for higher CPU time is not the aforementioned excessive workload, a likely cause
is ultra long reads, where a single ultra long reads processed on the CPU taking more time than
the time taken by GPU for the whole batch. In such an event, ultra-thresh threshold is reduced
so that more ultra long reads are skipped. Another likely cause is that the program was executed
with inadequate threads (if the CPU had more hardware threads than the program was launched),
which is to be remedied by increasing the number of CPU threads. Another cause might be that
the CPU is not sufficiently powerful to match with the GPU and thus no action can be taken
(except upgrading the CPU). These actions are denoted by T4 in Fig. 9b.

The ideal case is when the CPU and GPU take similar times which requires no intervention.
Conversely, if the GPU takes significant time than the CPU, the likely causes are very long

reads or over-segmented reads. In such event, the thresholds max-lf and max-epk are decreased
so that more very long reads and over-segmented reads are assigned to the CPU. Another likely
cause is the ultra long read which can be remedied by increasing ultra-thresh threshold. Another
cause might be an insufficiently powerful GPU (less compute cores or less memory) compared to
the CPU and no action is taken (except to upgrade the GPU).

To reduce false positives due to incidental under utilisation, a suggestion is provided to the
user, only if the same condition (condition that led to the decision in the decision tree, S1 to S4
T1 in Fig. 9a and T1 to T4 in Fig. 9b) consecutively repeats more than a few times (eg: >3
times).

Note that the above mentioned strategy is to warn and suggest of potential parameter adjust-
ments in the event of drastic performance degradation, rather than to obtain optimal performance
or to determine the exact parameter values.

5 Results
Experimental setup is given in Section 5.1. In Section 5.2, we present experimental evidence that
justify the selection of steps presented in Section 4. Next in Section 5.3, we compare the GPU
implementation of the Adaptive Banded Event Alignment (ABEA) algorithm to its CPU imple-
mentation. Finally, we show the overall speedup of the GPU implementation when incorporated
into an actual work-flow (i.e. detection of methylated bases).

5.1 Experimental setup
We re-engineered the Nanopolish methylation calling tool (existing methylation detection tool
discussed in Section 2) to: one, load a batch of n reads from disk to RAM at a time, instead of
on-demand loading; two, synchronise CPU threads prior to GPU kernel invocation (Nanopolish
assigns a thread dynamically to a particular thread, thus each read follows its own code path);
and three, optimise the CPU implementation which otherwise would result in an apparent un-
fair speedup (when the optimised GPU version is compared to an un-optimised CPU version).
Re-engineered Nanopolish employs a fork-join multi-threading model (with work stealing) imple-
mented using C POSIX threads. ABEA algorithm for the GPU was implemented using CUDA
C. This re-engineered Nanopolish will be hitherto referred to as f5c.

We used publicly available NA12878 (human genome) Nanopore WGS Consortium sequencing
data [12] for the experiments. The datasets used for the experiments, their statistics (number of
reads, total bases, mean read length and maximum read length) and their source are listed in
Table 5. Dsmall which is a small subset, is used for running on a wide range of systems (all systems
in Table 6: embedded system, low-end and high-end laptops, workstation and high-performance
server). Two complete MinION data sets (Dligation and Drapid) are only tested on three systems
due to large run-time and incidental access to the other two systems. Dligation and Drapid represent
the two existing nanopore sample preparation methods (ligation and rapid [26]) that affects the
read length distribution.
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Table 5: Information of the datasets

Dataset Number of
reads

Number
of bases
(Gbases)

Mean read
length
(Kbases)

Max read
length
(Kbases)

Source / SRA
accession

Dsmall 19275 0.15 7.7 196 [27]
Dligation 451020 3.62 8.0 1500 ERR2184733
Drapid 270189 2.73 10.0 386 ERR2184734

Table 6: Different systems used for experiments

System
Name

Info CPU CPU
cores
/
threads

RAM
(GB)

GPU GPU
mem
(GB)

GPU
arch

SoC NVIDIA Jetson
TX2 embedded
module

ARMv8 Cortex-
A57 + NVIDIA
Denver2

6 / 6 8 Tegra shared
with
RAM

Pascal
/ 6.2

lapL Acer F5-573G lap-
top

i7-7500U 2/4 8 Gefore
940M

4 Maxwell
/ 5.0

lapH Dell XPS 15 laptop i7-8750H 6/12 16 Gefore
1050 Ti

4 Pascal
/ 6.1

ws HP Z640 worksta-
tion

Xeon E5-1630 4/8 32 Tesla
K40

12 Kepler
/ 3.5

HPC Dell PowerEdge
C4140

Xeon Silver 4114 20/40 376 Tesla
V100

16 Volta /
7.0

Dsmall dataset was used for experiments under Sections 5.2.2, 5.2.1 and 5.3.1. For experiments
under Sections 5.3.2 and 5.4, the datasets Drapid and Dligation were used.

To obtain the results for Section 5.2.3, first we grouped the reads in dataset Drapid based on
their read lengths. We grouped the read into 10 Kbases bins (i.e., 0K-10K,10K-20K...90K-100K).
Reads with >100 Kbases were grouped into larger bins (100K bin sizes; 100K-200K, 200K-300K
and 200K-300K) as the read count is very little in the range that certain 10K bins would contain
no reads at all. Then, we ran f5c with only CPU and f5c with GPU acceleration on each group
of the reads separately. Then, we computed the speedup of ABEA for each group of reads:
the kernel only speedup (GPU kernel time / time on CPU ); and, the speedup with overheads
(overheads such as memory copy, data structure serialisation). This experiment was performed
on the system lapH.

For Sections 5.2 and 5.3, time measurements were obtained by inserting gettimeofday function
invocations directly into the C source code. Total execution time and the peak RAM usage in
Section 5.4 were measured by running the GNU time utility with the verbose option.

5.2 Effect of individual optimisations
5.2.1 Compute optimisations

Fig. 10a shows the time consumed by the three GPU kernels after applying the compute op-
timisation techniques discussed in Section 4.1. Time taken by each of the three GPU kernels
(pre-kernel, core-kernel and post-kernel) is plotted for each different GPU. It is observed that the
core-kernel, which computes the dynamic programming table (compute-intensive portion), still
consumes the majority of the GPU compute time. The pre-kernel which performs data structure
initialisation consumes much lesser time and shows that there is no need to further parallelise
the loop in Algorithm 5 (explained in Section 4.1). Despite the lack of fine-grained parallelism in
post-kernel (which performs backtracking), the elapsed time is still considerably lesser than the
core-kernel. Thus, any future optimisations should still mainly focus on the core-kernel, followed
by the post-kernel.

The efficacy of our compute optimisations on the compute intensive core-kernel can be elab-
orated using the reported statistics from the NVIDIA profiler (instruction level profiling—PC
sampling in NVIDIA visual profiler [28]). The profiler reports the percentage distribution of rea-
sons that caused the thread warps to stall, based on the number of clock cycles. The percentage
of the number of clock cycles that a warp was stalled due to a memory dependency (waiting for
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a previous memory accesses to complete), improved from 59.10% to 44.81% after the use of GPU
shared memory. After exploiting the kcache for improving memory coalescing, this percentage
further improved to 28.62%.

5.2.2 Memory optimisations

As stated in Section 4.2.1, the data array serialisation technique eliminated all memory alloca-
tions inside GPU kernels (malloc); still, required memory allocations per each batch of reads
(cudaMalloc). The overhead due to these cudaMalloc calls are plotted in Fig. 10b along with the
time for kernel execution and data transfer to/from the GPU (using cudaMemcpy). Observe that
on certain GPUs (Jetson TX2, GeForce 940M and Tesla K40), the overheads due to cudaMalloc
operations are significant in comparison to the compute kernels (even higher than the compute
kernels in Jetson TX2). Such significant overheads justify why we proposed a heuristic based
memory pre-allocation technique (Section 4.2.2) which completely eliminates this overhead.

Interestingly, Tesla K40 and Gefore 940M which incurred high cudaMalloc overheads are
of relatively older GPU architectures in comparison to GeForce 1050 and Tesla V100, where the
overheads were minimal. This is probably due to hardware supported memory allocation in latest
GPU architectures. However, the aforementioned observation seems to be valid only for GeForce
GPUs (targeted for gaming on PC/laptops) and Tesla GPUs (targeted for high performance
computing). On Tegra GPUs (SoC targeted for embedded devices) the overhead seems to be
significant in spite of the latest architectures (Jetson TX2 is the same Pascal architecture as
GeForce 1050). We additionally tested on a Jetson AGX Xavier (the most recent Tegra GPU
based SoC — Volta architecture) and cudaMalloc was yet expensive (40s on GPU kernels and 44s
on cudaMalloc, not shown in figure). Thus, our memory pre-allocation strategy (in Section 4.2.2)
which totally eliminates this cudaMalloc overhead is specifically beneficial for GPU on SoCs.

5.2.3 Heterogeneous processing

We stated in Section 4.3 that very long reads if processed on the GPU, limits the GPU occupancy.
Fig. 10c provides experimental evidence and shows the need to process very long reads on CPU
(explained in Section 4.3). Fig. 10c plots the variation of the speedup (GPU compared to CPU
for ABEA) as the read length varies. The x-axis labels the range of the read length for which the
speedup was computed (explained in the experimental setup). For instance, 0-10 on the x-axis
refers to the group of reads with read length 0-10Kbases. Note that in Fig. 10c the bins are
100K wide from 100K-200K on-wards, due to less number of reads of those lengths (explained in
the experimental setup). The speedup of computations (GPU kernel time / CPU time) and the
speedup including overheads (GPU kernel time + overheads such as memory copy, data structure
serialisation) are plotted in Fig. 10c. Speedup of more than 4X was observed for smaller read
lengths (0-10K). speedup drops with increasing read-length and is less than 3X from 50K-60K.
The longer the reads are, the lesser number of reads can be processed in the GPU in parallel
(reduced occupancy), thus the reduced speedup. Hence, very long reads that significantly affects
the performance should be performed on the CPU while the GPU is processing the rest.

Fig. 10d shows the need for processing ultra long reads separately (explained in Section 4.3).
The x-axis in the figure is the read-length (similar to Fig. 10c). The blue bars (with reference
to the right y-axis) denote the average time consumed by the GPU to process a batch of reads
(1.5 Mbases), for each group of read lengths from 0 bases to 50Kbases. The orange bars (with
reference to the right y-axis) denote the average time consumed by the CPU (1 thread) to process
a single read in the particular group of reads. The read length distribution (left y-axis) is shown
shaded in green colour to depict the abundance of reads in each read length. Observe that CPU
takes >1.6s for a single read of 300K-400K length while the GPU completes a whole 40K-50K
batch in <0.4s. Thus, the GPU would idle for >1.2s until the CPU completes processing. Hence,
such ultra long reads (eg : >100 Kbases) must be skipped and processed separately at the end.
Note that such ultra long reads are very few (green coloured read length distribution in Fig. 10d).
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Figure 10: Effect of individual optimisations

5.3 Speedup of Adaptive Banded Event Alignment
In this subsection, we present the performance of the GPU ABEA implementation when all the
optimisations in Section 4 are applied together. Note that we compare this optimised GPU
version with optimised CPU version in f5c (not the CPU version in original Nanopolish). The
CPU version was run with maximum supported threads on the system. The optimised CPU
version will be hitherto referred to as CPU-opti and the optimised GPU version will be referred
to as GPU-opti. First, we compare the run-time of CPU-opti and GPU-opti on a wide range of
different computer systems in Section 5.3.1, and then on the two big datasets in Section 5.3.2.

5.3.1 Across different devices

Fig. 11a shows the time for CPU-opti (left bars) and the GPU-opti (right bars) for the Dataset
Dsmall, for each system listed in Table 6. The run-time for the GPU has been broken down in to:
compute kernel time; different overheads (memory copying to/from the GPU, data serialisation
time); and, the extra CPU time due to reads processed in the CPU. The compute kernel time
includes the sum of time for all the three kernels (pre-kernel, core-kernel and post-kernel). The
extra CPU time is the additional time spent by the CPU to process the reads assigned to the
CPU (excluding the processing time that overlaps with the GPU execution, i.e. only the extra
time which the GPU has to wait after the execution is included). Note that the ultra long reads
were not separately processed on the CPU as the Dsmall contains a minuscule number of ultra
long reads.

Speedups (including all the overheads) observed for CPU-opti compared to GPU-opti are:
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~4.5× on the low-end-laptop and the workstation; ~4× on Jetson TX2 SoC; and ~3× on high-
end-laptop and HPC. Note that only ~3× speedup on high-end-laptop and HPC (in comparison
to >=4× on other systems) is due to the CPU on those particular systems having comparatively
a higher number of CPU threads (12 and 40 respectively).
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Figure 11: Speedup of ABEA on GPU compared to CPU

5.3.2 Benchmark on big datasets

Time taken for CPU-opti compared to GPU-opti for the two big datasets (Dligation and Drapid)
is shown in Fig. 11b. Experiments were performed only on three systems due to the limited
availability of other devices (mentioned previously). The graph is similar to the previous Fig.
11a, except the extra CPU time has been further broken down to: CPU very-long reads; and,
CPU ultra long reads. CPU very long reads refers to the additional time spent by the CPU
to process very long reads and, CPU ultra long reads refer to the ultra long reads (reads >100
Kbases) processing time performed separately on the CPU. A speedup up of ~3× was observed
for all three systems. Due to more ultra long reads in Dligation and Drapid than in Dsmall, the
overall speedup for SoC is limited to around ~3× compared to ~4× for Dsmall.

5.4 Total run-time of f5c compared with original Nanopolish
In this section, we demonstrate the overall performance when the GPU accelerated ABEA is
incorporated into an actual methylation detection work-flow. As stated in the experimental setup,
we re-engineered Nanopolish to overcome the limitations of original Nanopolish. We compare the
total run-time for methylation calling using original Nanopolish against f5c (both CPU only and
GPU accelerated versions).

We refer to original Nanopolish (version 0.9) as nanopolish-unopti, f5c run only on the CPU
as f5c-cpu-opti and GPU accelerated f5c as f5c-gpu-opti. We executed nanopolish-unopti, f5c-
cpu-opti and f5c-gpu-opti for the full datasets Drapid and Dligation. Note that all the executions
were performed with the maximum number of CPU threads supported on each system.

The run-time results are shown in Fig. 12. The reported run-times are for the whole methy-
lation calling (all steps mentioned in Section 2.2) and also includes disk I/O time. As each read
executes on its own code path in original Nanopolish (as mentioned in the experimental setup)
the time for individual components (eg: ABEA) cannot be accurately measured, thus we only
compare the total run-times.

f5c-cpu-opti for Drapid dataset was: ~2× faster on SoC and lapH; and, ~4× faster on HPC.
nanopolish-unopti crashed on SoC (8GB RAM) and lapH (16GB RAM) when run for Dligation
dataset due to Linux Out Of Memory (OOM) killer [29]. When run for Dligation on HPC, f5c-
cpu-opti was not only 6× faster than original Nanopolish, but also consumed only ~15 GB RAM
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Figure 12: Comparison of f5c to Nanopolish

opposed to >100 GB by original Nanopolish (both run with 40 threads). Hence, it is evident that
CPU optimisations alone can do significant improvements.

As per Fig. 12 for the whole methylation-calling process (including disk I/O), f5c-gpu-opti
(only ABEA is performed on GPU) compared to f5c-cpu-opti was 1.7× faster on SoC, 1.5-1.6×
on the lapH and <1.4× on HPC. On HPC the speedup was limited to <1.4× due to file I/O
being the bottleneck.

When the execution time of f5c-gpu-opti for Drapid is compared with original Nanopolish,
it is ~4×, ~3× and ~6× faster on SoC, laptop and HPC, respectively. On HPC for Dligation,
f5c-gpu-opti was ~9× faster.

Note that we used Nanopolish v0.9 for comparison as the re-engineering was done on this
particular version. As we incorporated a number of CPU optimisations identified during the
re-engineering into the subsequent version of Nanopolish (only those that did not require major
code refactoring), latest Nanopolish v0.11 should be faster than v0.9 used in this paper.
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Figure 13: Human genome processing on-the-fly
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6 Discussion
With the method discussed in this paper, the complete methylation calling of a human genome
can now be performed on-the-fly (process in real-time while the nanopore sequencer is operating)
on an embedded system (e.g., an SoC equipped with ARM processor and an NVIDIA GPU)
as shown in Fig. 13 (four Oxford Nanopore MinION devices sequencing in parallel or a single
Oxford Nanopore GridION, is capable of sequencing a human genome at an adequate coverage).
f5c powered by GPU accelerated ABEA can process the output from the rest of the pipeline on a
single NVIDIA TX2 SoC, at a speed of (>600 Kbases per second) to keep up with the sequencing
output (~600 Kbases per second [22]) as shown in Fig. 13. Conversely, if the original Nanopolish
was executed on the NVIDIA TX2 SoC, the processing speed is limited to ~256 Kbases per
second. Our work will not only reduce the associated costs of Nanopore data processing and data
transfer, but will also improve turnaround time of the final test outcome.

In addition to embedded systems, our work benefits systems with or without GPU. Due to
reduced peak memory usage, methylation calling can be performed on laptops with <16GB of
RAM. Furthermore, post sequencing methylation calling execution on high performance comput-
ers also benefit from a significant speedup in processing.

A limitation of our implementation is that the parameter tuning cannot be performed au-
tomatically, which instead prompts the user when an un-optimal parameter is detected. This
limitation is expected to be addressed in a future version by automatically tuning the parameters
at run-time; or, by the use of pre-set parameter profiles for different types of datasets and/or
computer systems.

7 Conclusion
Adaptive Banded Event Alignment algorithm is one of the key components in nanopore data
analysis. Despite this algorithm being not embarrassingly parallel, we presented an approach
that makes this algorithm efficiently execute on GPUs. The high variability of the read lengths
was one of the main challenges, which was remedied through a number of memory optimisations
and a heterogeneous processing strategy that uses both CPU and GPU. Our optimisations yield
around 3-5× performance improvement on a CPU-GPU system when compared to a CPU. We
incorporated the optimised Adaptive Banded Event Alignment algorithm into a methylation
detection workflow and demonstrated that an embedded SoC equipped with an ARM processor
(with six cores) and NVIDIA GPU (256 cores) is adequate to process data from a portable
nanopore sequencer in real-time.

This work not only benefits embedded SoC, but also a wide range of systems equipped with
GPUs from laptops to servers. The re-engineered version of the Nanopolish methylation detection
module, f5c that employs the GPU accelerated Adaptive Banded Event Alignment was not only
around 9× faster on an HPC, but also reduced the peak RAM by around 6× times. The source
code of f5c is made available at https://github.com/hasindu2008/f5c.
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