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ABSTRACT 

 

Large-scale genome-wide analyses scans provide massive volumes of genetic variants 

on large number of cases and controls that can be used to estimate the genetic effects. 

Yet, the sets of non-genetic variables available in publicly available databases are often 

brief. It is known that omitting a continuous variable from a logistic regression model can 

result in biased estimates of odds ratios (OR) (e.g., Gail et al (1984), Neuhaus et al 

(1993), Hauck et al (1991), Zeger et al (1988)). We are interested to assess what 

information is needed to recover the bias in the OR estimate of genotype due to omitting 

a continuous variable in settings when the actual values of the omitted variable are not 

available. We derive two estimating procedures that can recover the degree of bias 

based on a conditional density of the omitted variable or  knowing the distribution of the 

omitted variable. Importantly, our derivations show that omitting a continuous variable 

can result in either under- or over- estimation of the genetic effects. We performed 

extensive simulation studies to examine bias, variability, false positive rate, and power 

in the model that omits a continuous variable. We show the application to two genome-

wide studies of Alzheimer’s disease. 

 

Key words: Alzheimer’s disease, bias, case-control study, omitted continuous variable, 

odds ratio 
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Data Availability Statement  
 

The data that support the findings of this study are openly available in the Database of 

Genotypes and Phenotypes at 

[https://www.ncbi.nlm.nih.gov/projects/gap/cgibin/study.cgi?study_id=phs000372.v1.p1], 

reference number [phs000372.v1.p1] and at the Alzheimer’s Disease Neuroimaging 

Initiative http://adni.loni.usc.edu/. 
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INTRODUCTION 
 
 
Recent advances in genotyping technology generated volumes and variety of datasets 

that are archived in massive publicly available databases (e.g. the Database of 

Genotypes and Phenotypes https://www.ncbi.nlm.nih.gov/gap/, the Cancer Genome 

Athlas https://portal.gdc.cancer.gov/, the UK Biobank https://www.ukbiobank.ac.uk/). 

These data provide valuable information that can be analyzed to improve our 

understanding about the genetic predisposition to complex diseases, such as cancer, 

diabetes, neurodegenerative disease. Such analyses of association might serve 

multiple purposes one of which is to identify the genetic variants and rank them 

according to strength of the evidence for an association with the complex diseases. As 

the result we might obtain valuable clues to the underlying aeteologic mechanisms of 

complex diseases. A commonly overseen complication is that omitting a variable from a 

logistic regression model can substantially bias the genetic effect estimates. We are 

interested to derive what types of information are needed to recover bias in settings 

when the actual values of the omitted variable are not available to the researcher. 

 

From the statistical literature (Gail et al (1984), Neuhaus et al (1993), Hauck et al 

(1991), Zeger et al (1988)) we know that omitting variables associated with the disease 

can cause bias in the odds ratio (OR) estimates, because the OR estimates reflect both 

the effect size and variability in the error terms. Gail et al (1984), Neuhaus et al (1993), 

Zeger et al (1988) derive the magnitude of bias in the estimate that is a function of the 

OR of the omitted variable and the distribution of the omitted variable.  
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Because the correct OR estimates of the omitted variable, i.e. the estimates from the full 

model that includes both the genetic effects and the omitted variable, are rarely 

available in the literature, we are interested to examine what other types of information 

are needed for a researcher to be able to correct the bias. We are also interested to 

assess what determines the directionality of the bias. 

 

The setting we consider is unique. The model with an omitted variable is misspecified 

for three reasons. First, the data are collected using retrospective design where the 

cases and controls are sampled from their populations, while the data are analyzed in a 

prospective logistic regression model. As pointed out in the seminal work by Prentice 

and Pyke (1979), we know that this aspect of misspecification does not result in bias of 

OR estimates because the OR can be estimated consistently from retrospective 

likelihood-based methods.  Secondly, model is misspecified because the variable is 

omitted from the model, what also results in the third misspecification, namely that if the 

true risk function is logistic, the link between the other variables and risk of the disease 

with omitted variable might not be logistic.  

 

The setting we consider is also unique in that usually the magnitude of the effect of a 

genetic variant is estimated to be small to moderate, i.e. the range of effect sizes 

somewhere between -log(1.5) and log(1.5) (Park et al, 2011). A few exceptions, 

however, have been noted in the literature. For example, in the context of Alzheimer’s 

disease, ApoE genotype is estimated to have OR of 3.1 for heterozygous �4 genotype 

and 34.3 for homozygous �4 genotype (Kukull et al, 1996). 
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Our paper is organized as follows. We first perform a series of simulation studies to 

assess the problem empirically. The simulations are described in the Assessment of the 

Problem section. Next, in the Estimates of the Reduced vs. Full Models section we 

derive the relationships between parameters of the reduced model where the variable is 

omitted and the parameters in the full model where the variable is included. We further 

conduct simulation studies described in Simulation Studies section to assess how 

various pieces of information can contribute to recovery of the bias. We show the 

application to the studies of Alzheimer’s disease. And we conclude the paper by a brief 

discussion. 

 

MATERIALS AND METHODS 

ASSESSMENT OF THE PROBLEM 

We first perform a series of simulation studies to assess potential bias, variance, mean 

squared error (MSE), false discovery rate (FDR), and power reduction due to omitting a 

continuous variable that is associated with the disease status. We assume that the 

omitted variable � and the genotype � are distributed independently in the population. 

Setting 1: We first examine models with one genetic variant. We simulate the genetic 

variant from Bernoulli(0.1) and an omitted variable � from Normal(0,��). We set � � 1,2 

and next simulate the disease status according to the full disease risk model 

��
�������� � �|�, ��� � �� � �� � � � �� � �,                                 (1) 

where we let �� � �1, �5; �� � log�1� , log�1.5� , log�2� , log�2.5� , log�3� , log�5� , log�8�, 
and �� � log�1� , log�1.5� , log�2� , log�2.5� , log�3� , log�5� , log�8� across various settings. 
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Generate 5,000 samples of 3,000/10,000 cases and 3,000/10,000 controls using 

retrospective/case-control design.  

We next estimate the parameters based on the reduced (and hence misspecified) 

logistic regression model 

��
�������� � �|��� � $� � $� � �.                                  (2) 

Shown in Supplementary Table 1 are probability of the disease in the population, bias 

in $%� as the estimates of �� � 0, variance, MSE, and FDR. The estimates in this setting 

are nearly unbiased with FDR that are nominal. Shown in Table 1 is the setting when 

�� � log �1.5�. Here bias becomes more pronounced what also reduces the power to 

detect an effect. For example, when �� � log�3� � 1.0986, �� � �1, � � 2, bias in $%� as 

the estimate of �� is -0.18, while power to detect the effect is 0.76. Frequency of the 

disease in the population is 0.37. Shown in Table 2 and Supplementary Table 2 are 

the settings when �� � log�2� , log�2.5� , log�3� , log�5� , log�8�. Biases increase as the 

magnitude of the coefficient increases, however the bias because of its direction does 

not have impact on power to detect the effect. As illustrated in Supplementary Table 3 

the biases noted in samples with 3,000 cases and 3,000 controls persist in samples with 

10,000 cases and 10,000 controls. 

 

Setting 2. We next conduct a simulation experiment to assess if the ratio of the 

parameters is estimated correctly when a continuous variable is omitted from the model.  

We simulate one genetic variant �� from Bernoulli(0.1) and the other one �� from 

Bernoulli(0.25) and � from Normal(0,��), where � � 1,2. We simulate the true disease 

status from the logistic model : 
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��
�������� � 1|�, ��� � �� � ���
� �� � ���

� �� � �� � �,                               (3) 

where we let �� � �1; �5 and we consider various pairs:  ���
� log �1.5�, ���

� log�2� ; 
 ���

� log �3�, ���
� log�3.5� ;  and we let �� �

log�2� , log�2.5� , log�3� , log�5� , log�8� across various settings. 

 

Setting 3. We now examine a setting with many genetic variables and one omitted 

environmental variable. The goal of this simulation is to see if the relative order of the 

genetic variables is estimated correctly. We simulate �� … ��/�from Bernoulli(0.1) and  

��/�
� … �� from Bernoulli(0.25), and � from Normal(0,��), where � � 1,2. 
 

Moreover, we simulate the disease status according to the risk model: 

��
�������� � 1|�, ��� � �� � ���
� �� � + � ���

� �� � �� � �,                                
where we let �� � �1; �5; , � 10;  ��~.��/0��1� , ����,  with 1� � log�1� , log�2� , log�3�, 
log�5� , log �8�; ��� � log �1.5� and �� � log�1� , log�1.5� , log�2� , log�2.5� , log�3� , log�5�, 
log�8�. We next estimate the parameters based on misspecified logistic regression 

model 

��
�������� � �|��� � $� � $��
� �� � + � $��

� �� . 
We would like to assess if the order of the genetic effect estimates is preserved. 

Suppose it does not matter what the magnitude of the estimate is, as long as the 

relative ordering in maintained. We define the order of the genetic effect by 1) Value of 

the coefficient; 2) P-value for the coefficient, that is, one ordering will be based just on 

the value of the coefficient estimate, and the second ordering just based on the p-value. 
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Shown in Table 3 and Supplementary Table 4 are the results based on 5,000 samples 

of 3,000 cases and 3,000 controls. Shown in Table 3, the proportion of the genetic 

variants for which the ranks are the same. As illustrated in Supplementary Table 4, the 

proportion of the genetic variants for which the ranks are the same are very close to 1 

when �� is small. 

 

In summary, we conclude that in the context of the genetic association studies the issue 

of bias due to omitting variables needs to receive more attention because it can be 

pronounced, in either direction and can distort false positive rate and power to detect an 

effect.  

 

ESTIMATES OF THE REDUCED VS. FULL MODELS 

Suppose we obtained estimates of the genetic effects from a case-control study that 

omits a variable, i.e. the estimates based on the reduced model (2). The risk of the 

disease is, however, determined by both the genetic effects � and the omitted variable 

�, i.e. the full model (1). 

It can be easily seen that 

��
���|�,��

��
���|�,��
 = 

�
�|�,�������
���|��

�
�|�,�������
���|��
.                               (4) 

Hence 

��
�������� � 1|� � 
�� � �� � �� � � � �� � � � log 2�
�|���,����
�
�|���,����

3. (5) 

If the ratio 
�
�|���,����

�
�|���,����
 does not depend on 
, i.e. a constant of 
, then the estimate of 

$� is unbiased as the estimate of ��. Hence if the omitted variable and the genotype are 
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independent conditionally on the disease status �, then the reduced model yields 

unbiased estimates of the genetic effects. 

 

Bias recovery from assuming 45|6 � 7, 8 � 9: Interestingly, we derive that if 

4�|� � �, � � 
: � .��/0��1� � 1� � 
 � 1� � �, ���, then it can be easily seen that  

��
�������� � 1|� � 
�� � �� � �� � � � �� � � � ��

��
� � � ��

��
� ;1� � 1� � 
< � ��

�

����
.     

(6) 

By equation (6), we can derive �� � ��

��
 and $� � �� � ����

��
. Therefore, the difference 

between $� and �� is positive if 1� � 1� = 0; and the difference between $� and �� is 

negative if 1� � 1� > 0. In particular, if �� � 0, or equivalently, 1� � 0, which means that 

given genotype �, the disease � is conditionally independent of the omitted variable �, 

then estimate of $�  is an unbiased estimate of �� . 
 

Bias recovery from  45: and ?@�6 � A� In the following, we propose an approach to 

derive unbiased estimates of ��, ��  and �� by solving a system of estimating equations 

when the auxiliary information of the omitted variable � is present and the rate of 

disease is known. Differently from the above discussions, we assume that the omitted 

variable � follows a normal distribution Normal(0,��) and � follows the Bernoulli 

distribution; and � and � are independent .  

 

Based on the true model (1) and the fact that the rate of disease ���� � 1� is known, 

we can obtain   
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                                           E F �����	
	���
�

�
�����	
	���
�G � ���� � 1�.                                         (7)    

 Suppose that what is available about the omitted variable � from the literature is the 

estimate from the following reduced model  

��
�������� � �|��� � H� � H� � �.                                       �8� 
Under the logistic regression model (8),  H� and H� are the solutions to the expected 

score equations and thus we can derive 

E 2� F �����	
	���
�

�
�����	
	���
� � ������
�

�
������
�G3 � 0.                                (9) 

In a similar way, under the logistic regression model (2), γ
�
 and γ

�
  are the solutions to 

the expected score equations and thus we can derive 

E I� F �����	
	���
�

�
�����	
	���
� � �γ��γ	 
	

�
�γ��γ	 
	GJ � 0.                               (10) 

Since H�, H� and ���� � 1� are known from the literature, we can calculate � by solving 

E F ������
�

�
������
�G � ���� � 1�.  Based on the observed samples of � and �, we can derive 

unbiased estimates for γ
�
 and ���� � 1� and then an unbiased estimate for γ

�
 can be 

obtained by solving  E F �γ��γ	 
	

�
�γ��γ	 
	G � ���� � 1�.  Applying numerical approximation to 

(7), (9) and (10),  we can derive three estimating equations that only involve three 

unknown parameters ��, ��   and ��. Consequently, we can derive unbiased estimates 

for  ��, ��   and �� by solving the three estimating equations. 

 
SIMULATION STUDIES 
 
The goal of the simulation studies is to assess bias in the estimates and the derivation 

(6) and the system of equations (7), (9) and (10). We simulate the genetic variable � 

from Bernoulli(0.1).  
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Setting 4: We are first interested to assess the equation (6). Hence simulated genotype 

from Bernoulli(0.1), then assumed  

1� � 0, 1� � log�1.5� , 1� � � log�1.5� , log�1� , log�1.5� , �� � 1, �� � �1, �3.5, �� �

� log�2.5� , � log�1.5� , log�1.5� , log �2.5� and �� � ��

��
. Next we generate the disease 

status according to model (4) for 5,000 datasets with 3,000 cases and 3,000 controls. 

Shown in Table 4 and Supplementary Table 5 are biases estimated based on (6), 

empirical bias, variance, MSE and power. The results suggest that the empirical bias is 

similar to the bias obtained through (6).  

Setting 5: We now assess the solution according to system of equations (9)-(11). We 

simulate the genetic variant from Bernoulli(0.1) and the omitted variable from 

Normal(0,1). And next we generate the disease status according to model (1) with 

coefficients �� � �1, �5; �� � log�2.5� , log�3� , log�5� , log �8�, �� � log�5� , log�8� for 

5,000 datasets with 3,000 cases and 3,000 controls. Results shown in Table 5 

demonstrate that the numerical solution to the system of equations (7), (9) and (10) is 

nearly unbiased. 

 

ALZHEIMER’S DISEASE STUDY 

 

We are interested to assess what happens to the genetic effect estimates when a 

continuous variable is omitted from the model, i.e. how well (6) informs bias and if the 

system of equations (9)-(10) is capable to restore the genetic estimates. We hence 

consider two datasets. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset 

includes more extensive evaluations on a smaller subset of cases and controls. We 
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hence assess how the genetic effect estimates change when continuous variables 

available in the dataset are omitted. Next, we consider a larger dataset generated by 

the Alzheimer’s Disease Genetics Consortium (ADGC) where extensive evaluations are 

available on a small subset. We hence assess how knowledge from the literature or 

from the ADNI data can be applied to inform how the genetic effect estimates change 

with omission of continuous variables.  

ADNI: The set consists of 423 cases and 192 controls. We mapped the genetic variants 

to a set serving amyloid and tau proteins that are relevant to AD pathophysiology based 

on the Genecards database (https://www.genecards.org/). After preprocessing, the set 

contains 2,438 SNPs. The average (SD) age of cases is 74.29 (7.4), and 75.41 (4.91) in 

controls, p=0.058. 262(61.9%) of cases are ApoE �4 carriers and 49 (25.5%) of controls 

are ApoE �4 carriers, p<0.001. Supplementary Table 7A-7M further describe the sets 

of cases and controls and Web-based Supplementary Materials Section B provide 

extended details on the analyses of ADNI dataset. 

 

To assess what happens to the genetic effect estimates when a continuous variable is 

omitted from the model, we consider several possible models and the logistic regression 

results, including coefficient estimates (log(OR)), standard errors (SE) and p-values are 

reported in Supplementary Table 8. We first consider a full Model 1 with age, sex, 

education, ApoE �4 status, MMSE and a reduced model that omits MMSE (model 1A) 

and that omits ApoE �4 status (model 1B). We next considered a full model 2 where we 

added ratio of hippocampus volume to whole brain volume to model 1 with the 

corresponding reduced model that omits the ratio of brain volumes. We observed that 

the difference in log(OR) estimates between the reduced and full models were on the 
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order of ≥1*SE. For example, log(OR) for ApoE �4 status changed from 1.27 (SE=0.25) 

to 1.62 (SE=0.20) in full model 1 vs. reduced model 1A; and from 1.005 (SE=0.268) to 

1.27 (SE=0.25) in the full model 2 vs. reduced model 2A. 

 

We next assumed that the full includes age, gender, education ApoE �4 status, MMSE, 

and the ratio between hippocampus volume and whole brain volume, plus each of the 

genetic variants (Model 3). The reduced model 3A omits the ratio between brain 

volumes. On average, we observed that the difference in the log(OR) estimates of 

SNPs obtained in full model 3 vs. 3A is 0.006, with 25th percentile -0.001 and 75th 

percentile that is 0.005, minimum of -0.35 and maximum of 0.18.  

 

We observed in the following how the SNPs rank in the full model 3 and reduced model 

3A. Among the top 10 significant SNPs (ranked by p-value), 80% of the SNPs are the 

same in the full and reduced models, among the top 30 significant SNPs, 56.67% of the 

SNPs are the same and among the top 50 significant SNPs, 58% of the SNPs are the 

same. Hence overall, the conclusion about what SNPs should be carried to the 

validation set would be different based on these two models.  

 

We also note that for all the models the distribution of p-values across all SNPs did not 

differ significantly from Uniform(0,1), i.e. p-values for Kolmogorov-Smirnov test are 

>0.05. 

 
ADGC: The set consists of 2,794 cases and 667 controls (Set 1), where subsets 

contained data on  age, sex, education, ApoE �4 status (Set 2). We mapped the genetic 
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variants to a set serving innate immune system that are relevant to AD pathophysiology 

(Lobach et al, 2019). After processing, the set contains 157 SNPs. The average (SD) 

age of cases is 70.78 (8.82), and 75.19 (8.27) in controls, p<0.001. The average (SD) 

education of cases is 14.08 (3.38), and 15.93 (2.72) in controls, p<0.001.1005 (48.9%) 

of cases are men, 109 (32.8%) of controls are men, p<0.001. 1327 (64.6%) of cases are 

ApoE �4 carriers and 96 (28.9%) of controls are ApoE �4, p<0.001. The dataset and 

analyses are described in extensive details in Web-based Supplementary Materials 

Section C. 

We first assessed estimates in the full and reduced models based on a subset of data 

that includes age, sex, education, ApoE �4 . We observed that estimates of SNPs 

differed between the full (age, sex, education, ApoE �4, SNP) and reduced models 

(omits age) by on average 0.01, 25th percentile = -0.02, 75th percentile = 0.04, minimum 

of 0.17 and maximum of 0.58.  

We also note that for all the models the distribution of p-values across all SNPs did not 

differ significantly from Uniform(0,1), i.e. p-values for Kolmogorov-Smirnov test are 

>0.05. 

We are next interested to asses the degree and directionality to which estimates of 

ApoE �4 status change with the omission of age, MMSE, education, hippocampal 

volume and the ratio of the hippocampal volume to the whole brain volume. We 

therefore consider the set of 2,794 cases and 667 controls. We first estimate $�� from a 

univariable model to be 0.16 (SE=0.01), p<0.001. We next learn the conditional 

distributions 4�|� � �, �4: of each of the omitted variables from the ADNI dataset, where 

we define the set of cases to be the set with diagnosis dementia and the set of controls 
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to be the set with diagnosis of cognitively normal. Then we apply the relationship (6) to 

estimate the difference in the estimates due to omitting the variable as  
����

��
. As the 

result, we estimate that omission of age decreases the log(OR) for ApoE �4 status by 

0.10, omission of MMSE increases the estimate by 0.10, omission of education 

increases the estimate by 0.04, omission of hippocampal brain volume increases the 

estimate by 0.06, and omission of the ratio between hippocampal brain volume and 

whole brain volume increases the estimate by 0.06.  

We next assessed how the coefficient for ApoE �4 status changes when MMSE is 

omitted from the model using system of equations (7)-(10). From the literature, we 

assumed that MMSE is distributed normally with mean 27 and standard deviation of 1.8; 

frequency of the disease in the population that is 10% and OR for MMSE that is 0.8 

(95% CI: 0.55-1.1). In the reduced model the log(OR) for ApoE �4 status is 1.5 

(SE=0.13), p-value<0.001. Using the system of equations (7)-(10) we arrived at the 

log(OR) estimate that varied between 1.45 and 1.79 for various settings of the initial 

values that we considered. 

 

DISCUSSION 

 

In the genetic association studies, we interested to accurately estimate either the 

parameters or the order of the magnitude of the parameters, because the estimates 

would determine our understanding about the underlying pathophysiologic mechanisms, 

risk prediction and can lead to the estimates of heritability, population attributable risk to 

the genetics, etc. Massive amounts of genetic data available in various databases can 
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be utilized to estimate the genetic associations. Yet, the set of non-genetic variables is 

often brief. 

 

 We show that omitting a continuous variable associated with the disease status can 

result in substantial bias of parameter estimates in either direction. We derived two 

possible approaches for understanding the bias. The fist is explicit and is based on 

knowing 4�|� � �, � � 
:. The second is numerical and requires knowing the estimates 

from a univariable model with the omitted variable as the predictor (8) and knowing rate 

of the disease in the population. The two approaches that we developed differ in their 

assumptions. One assumes a Normal distribution for the conditional density of the 

omitted variable 4�|� � �, � � 
:, i.e. assumes that the distribution of the omitted 

variable is a mixture of normals. The second in the system of equations assumes that 

the distribution of the omitted variable is normal.  

 

Both of the approaches that we considered require knowing the set of variables in the 

full (true) model, what might not be feasible practically in many settings. In the analyses 

of Alzheimer’s disease studies we assumed various models to be the true (full) models 

and based on these assumptions assessed the directionality and magnitude of bias. 

Overall, the main contribution of our work is the justification that omitting a continuous 

variable from the logistic regression model can result in bias in either direction. 

 

In some settings it is of interest to correctly estimate the order of the magnitude of the 

genetic effects to be able to rank the genetic markers according to strength of their 
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association. In these settings, if the bias affects the estimates proportionally, then the 

bias would not change the ordering of the genetic effect estimates. 

 

We found that if the genetic variable and the omitted variable are independent 

conditionally on the disease status, then omitting the variable does not result in bias of 

the genetic effects. This assumption is not equivalent to independence between the 

genotype and the omitted variable in the population.  

 

The arguments that we’ve developed are based on the logistic link model and normality 

of the omitted variable. These derivations do not naturally extend to other link functions 

and other forms of the omitted variable. 

 

Pirinen et al (2012) showed that for rare diseases inclusion of the key covariates can 

reduce power, while for common diseases inclusion of the key covariates can increase 

power. Our findings are similar in that the bias can either reduce or increase the 

magnitude of the effect. Specifically, if the omitted variable is normally distributed with 

4�|� � �, � � 
: � .��/0��1� � 1� � 
 � 1� � �, ��� then the bias is a function of 1�, 

1� and ��. Based on this relationship we also see that a rare disease is not immune to 

the bias.  

 

ACKNOWLEDGEMENTS 

 

Dr. Lobach is supported by 5R21AG043710-02.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/756015doi: bioRxiv preprint 

https://doi.org/10.1101/756015
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 

MD. The primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological markers, and 

clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For 

up-to-date information, see www.adni-info.org. 

Genotyping is performed by Alzheimer's Disease Genetics Consortium (ADGC), U01 

AG032984, RC2 AG036528. Phenotypic collection is coordinated by the National 

Alzheimer's Coordinating Center (NACC), U01 AG016976 

 Samples from the National Cell Repository for Alzheimer’s Disease (NCRAD), which 

receives government support under a cooperative agreement grant (U24 AG21886) 

awarded by the National Institute on Aging (NIA), were used in this study. We thank 

contributors who collected samples used in this study, as well as patients and their 

families, whose help and participation made this work possible.  

 Data for this study were prepared, archived, and distributed by the National Institute on 

Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University of 

Pennsylvania (U24-AG041689-01) 

Data collection and sharing for this project was funded by the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and 

DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is 

funded by the National Institute on Aging, the National Institute of Biomedical Imaging 

and Bioengineering, and through generous contributions from the following: AbbVie, 

Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; 

BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai 

Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La 

Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO 

Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & 

Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & 

Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/756015doi: bioRxiv preprint 

https://doi.org/10.1101/756015
http://creativecommons.org/licenses/by-nc-nd/4.0/


Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda 

Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of 

Health Research is providing funds to support ADNI clinical sites in Canada. Private 

sector contributions are facilitated by the Foundation for the National Institutes of Health 

(www.fnih.org). The grantee organization is the Northern California Institute for 

Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic 

Research Institute at the University of Southern California. ADNI data are disseminated 

by the Laboratory for Neuro Imaging at the University of Southern California. 

 
LITERATURE CITATIONS 
 
Gail MH, Wieand S, Piantadosi S (1984) Biased estimates of treatment effect in 
randomized experiments with nonlinear regressions and omitted covariates, Biometrika, 
71, 3, 431-44 
 
Hauck WW, Neuhaus JM, Kalbfleisch JD, Anderson S (1991) A consequence of omitted 
covariates when estimating odds ratios, Journal of Clinical Epidemiology, 44(1):77-81 
 
Neuhaus JM, Jewell NP (1993) A geometric approach to assess bias due to omitted 
covariates in generalized linear models, Biometrika, 80 (4), 807-815 
 
Pirinen M, Donnelly P, Spencer CA (2012) Including known covariates can reduce 
power to detect genetic effects in case-control studies, Nature Genetics, 44(8) 848-851 
 
Prentice KL and Pyke DA (1979) Logistic disease incidence models and case-control 
studies, Biometrika, Vol 66, 3, 403-411 
 
Park JH, Gail MH, Weinberg CR, Carroll RJ, Chung CC, Wang Z, Chanock SJ, 
Fraumeni JF, Chatterjee N (2011) Distribution of allele frequencies and effect sizes and 
their interrealtionships for commen genetic susceptibility variants, PNAS, Vol 208, no 44 
 
Kukull WA, Schellenberg GD, Bowen JD, McCormick WC, Yu CE, Teri L< Thompson 
JD, O’Meara ES, Larson EB (1996) Apolipoprotein E in Alzheimer’s disease risk and 
case detection: a case-control study, Journal of Clinical Epidemiology, 49(10):1143-8 
 
[dataset] Alzheimer’s Disease Genetics Consortium (ADGC) Genome-Wide Analyses 
Association Study – NIA Alzheimer’s Disease Centers Cohort, 
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000372.v1.p1 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/756015doi: bioRxiv preprint 

https://doi.org/10.1101/756015
http://creativecommons.org/licenses/by-nc-nd/4.0/


and Alzheimer’s Disease Neuroimaging Initiative http://adni.loni.usc.edu 
 
�� � log�1� 

(��, �) ����� � 1) Bias Variance MSE power 
(-1,1) 0.28  0.008 0.007 0.007 1 
(-1,2) 0.28  0.008 0.007 0.007 1 
(-5,1) 0.007  -0.03 0.005 0.006 1 
(-5,2) 0.007 -0.03 0.005 0.006 1 

�� � log�1.5� =0.4055 
(��, �) ����� � 1) Bias Variance MSE power 
(-1,1) 0.28  -0.009 0.007 0.007 1 
(-1,2) 0.30  -0.05 0.007 0.01 1 
(-5,1)   0.008  -0.01 0.006 0.006 1 
(-5,2) 0.01  -0.03 0.006 0.006 1 

�� � log�2�=0.6931 
(��, �) ����� � 1) Bias Variance MSE power 
(-1,1) 0.30  -0.03 0.008 0.009 0.99 
(-1,2) 0.33  -0.10 0.007 0.02 0.95 
(-5,1) 0.02  -0.03 0.006 0.007 1 
(-5,2) 0.03  -0.03 0.006 0.007 1 

�� � log�2.5�=0.9163 
(��, �) ����� � 1) Bias Variance MSE power 
(-1,1) 0.31  -0.06 0.007 0.01 0.98 
(-1,2) 0.35  -0.15 0.008 0.03 0.86 
(-5,1) 0.01  -0.02 0.006 0.006 1 
(-5,2) 0.03   -0.06 0.006 0.01 0.99 

�� � log�3�=1.0986 
(��, �) ����� � 1) Bias Variance MSE power 
(-1,1) 0.32   -0.07 0.007 0.01 0.98 
(-1,2) 0.37  -0.18 0.007 0.04 0.76 
(-5,1) 0.01  -0.01 0.006 0.006 1 
(-5,2) 0.04  -0.11 0.006 0.02 0.96 

�� � log�5� � 1.6094 
(��, �) ����� � 1) Bias Variance MSE power 
(-1,1) 0.34   -0.13 0.007 0.02 0.92 
(-1,2) 0.40  -0.23 0.007 0.06 0.54 
(-5,1) 0.02  -0.04 0.006 0.007 1 
(-5,2) 0.09  -0.19 0.007 0.04 0.73 

    �� � log�8� � 2.0794 
(��, �) ����� � 1) Bias Variance MSE power 
(-1,1) 0.36  -0.17 0.007 0.03 0.80 
(-1,2) 0.42  -0.27 0.007 0.08 0.37 
(-5,1) 0.04  -0.10 0.007 0.02 0.97 
(-5,2) 0.14  -0.25 0.007 0.07 0.48 
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Table 1: Bias, variance and mean square error (MSE) of genetic effect estimates obtain 

using reduced model (2) when the data are simulated using full model (1). Shown is 

also probability of the disease in the population, i.e. ����� � 1), and false discovery rate 

(FDR). The genotype is simulated to be Bernoulli(0.1), the omitted variable is simulated 

from Normal(0, ��). We simulated the disease status from model (1) with parameters 

�� � �1, �5; �� � log�1.5� , �� � log�1� , log�1.5� , log�2� , log�2.5� , log�3� , log�5� , log�8�. 
The results are based on 5,000 datasets of 3,000 cases and 3,000 controls. 

     �� � log�1�=0 
(��, �) ����� � 1) Bias Variance RMSE power 
(-1,1) 0.32  -0.008 0.01 0.01 1 
(-1,2) 0.32  -0.008 0.01 0.01 1 
(-5,1) 0.01  -0.004 0.005 0.005 1 
(-5,2) 0.01  -0.004 0.005 0.005 1 

�� � log�1.5� =0.4055 
(��, �) ����� � 1) Bias Variance RMSE power 
(-1,1) 0.32  -0.07 0.01 0.02 1 
(-1,2) 0.34  -0.25 0.01 0.07 1 
(-5,1) 0.01  -0.02 0.005 0.005 1 
(-5,2) 0.02  -0.06 0.005 0.009 1 

�� � log�2�=0.6931 
(��, �) ����� � 1) Bias Variance RMSE power 
(-1,1) 0.33  -0.20 0.01 0.05    1 
(-1,2) 0.36  -0.53 0.001 0.29 1 
(-5,1) 0.01  -0.05 0.005 0.007 1 
(-5,2) 0.02  -0.23 0.005 0.06 1 

�� � log�2.5�=0.9163 
(��, �) ����� � 1) Bias Variance RMSE power 
(-1,1) 0.34  -0.31 0.01 0.10 1 
(-1,2) 0.38  -0.74 0.009 0.56 1 
(-5,1) 0.016  -0.07 0.005 0.01 1 
(-5,2) 0.04 -0.45 0.005 0.21 1 

�� � log�3�=1.0986 
(��, �) ����� � 1) Bias Variance RMSE power 
(-1,1) 0.35 -0.40 0.01 0.17 1 
(-1,2) 0.39 -0.87 0.01 0.77 1 
(-5,1) 0.019 -0.12 0.005 0.02 1 
(-5,2)  0.05  -0.64 0.006 0.41 1 

�� � log�5� � 1.6094 
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(��, �) ����� � 1) Bias Variance RMSE power 
(-1,1) 0.37 -0.64 0.009 0.42 1 
(-1,2) 0.41  -1.17 0.008 1.37 1 
(-5,1) 0.03  -0.34 0.005 0.12   1 
(-5,2) 0.10 -1.04 0.006 1.09 1 

  �� � log�8� � 2.0794 
(��, �) ����� � 1) Bias Variance RMSE power 
(-1,1) 0.39  -0.83 0.009 0.70 1 
(-1,2) 0.43  -1.34 0.008 1.81 1 
(-5,1) 0.05  -0.59 0.006 0.34 1 
(-5,2) 0.15 -1.28 0.006 1.63 1 

Table 2: Bias, variance and mean square error (MSE) of genetic effect estimates obtain 

using reduced model (2) when the data are simulated using full model (1). Shown is 

also probability of the disease in the population, i.e. ����� � 1), and false discovery rate 

(FDR). The genotype is simulated to be Bernoulli(0.1), the omitted variable is simulated 

from Normal(0, ��). We simulated the disease status from model (1) with parameters 

�� � �1, �5; �� � log�8� , �� � log�1� , log�1.5� , log�2� , log�2.5� , log�3� , log�5� , log�8�. 
The results are based on 5,000 datasets of 3,000 cases and 3,000 controls. 

 
1� � log�1� 

(��, �) ����� � �) Ranks based on �LM  Ranks based on p values 
ALL TOP 10% TOP 20% ALL TOP 10% TOP 20% 

(-1,1) 0.33  0.89      1      0.99   0.74 0.89    0.89 
(-1,2) 0.37 0.77      0.98 0.93 0.58   0.81 0.75 
(-5,1) 0.01 0.89 1 0.99   0.75  0.89  0.87 
(-5,2) 0.05     0.79  0.98 0.95   0.57  0.69 0.71 

1� � log�2� � 0.693 

(��, �) ����� � �) Ranks based on �LM  Ranks based on p values 
ALL TOP 10% TOP 20% ALL TOP 10% TOP 20% 

(-1,1) 0.56  0.84 0.87 0.9    0.85 0.74  0.79 
(-1,2) 0.55  0.71  0.73      0.77 0.70 0.53 0.61 
(-5,1) 0.07  0.86 0.87     0.90   0.86 0.75   0.80 
(-5,2) 0.12      0.74 0.73  0.79   0.73 0.53 0.62 

1� � log�3� � 1.099 

(��, �) ����� � �) Ranks based on �LM  Ranks based on p values 
ALL TOP 10% TOP 20% ALL TOP 10% TOP 20% 
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(-1,1) 0.66 0.82 0.85 0.88  0.87 0.92 0.95 
(-1,2) 0.63  0.70 0.73      0.77  0.76 0.74 0.83 
(-5,1) 0.13 0.85    0.84  0.88   0.92 0.77   0.88 
(-5,2) 0.18 0.73    0.73     0.77  0.80 0.62   0.79 

1� � log�5� � 1.609 

(��, �) ����� � �) Ranks based on �LM  Ranks based on p values 
ALL TOP 10% TOP 20% ALL TOP 10% TOP 20% 

(-1,1) 0.75 0.81 0.83  0.87 0.84 0.91 0.81 
(-1,2) 0.71 0.69  0.71  0.76 0.72 0.84   0.74 
(-5,1) 0.24  0.84 0.86      0.89 0.91 0.94   0.96 
(-5,2) 0.28 0.71 0.72      0.77   0.80 0.85   0.88 

1� � log�8� � 2.079 

(��, �) ����� � �) Ranks based on �LM  Ranks based on p values 
ALL TOP 10% TOP 20% ALL TOP 10% TOP 20% 

(-1,1) 0.79 0.79      0.79 0.84 0.86 0.87  0.88 
(-1,2) 0.76 0.67      0.66 0.72 0.74   0.78 0.68 
(-5,1) 0.35      0.83  0.86     0.89 0.88   0.96 0.88 
(-5,2) 0.37  0.71      0.71 0.77 0.77 0.89  0.77 
Table 3: Proportions of genetic variants that received the same rank based on the full 

and reduced genetic models across all variants (ALL), top 10% and top 20%. We 

simulated 5,000 datasets with 3,000 cases and 3,000 controls. We simulated 10 genetic 

variants from Bernoulli(0.1) and disease status from the full model with coefficients 

�� � log �3� and 1� � log�1�, log�2�, log�3� , log�5�, log �8�. 
�� � �3.5 

��  1� 
1�1�

��
 ����� � 1) Bias Variance MSE power 

� log�2.5� � log�1.5� -0.16 0.03        -0.19  0.003     0.04 1 
� log�2.5� log�1� 0 0.03       0.01       0.003     0.003 1 
� log�2.5� log�1.5� 0.16 0.03      0.17       0.003     0.03     1 

log�2.5� � log�1.5� -0.16 0.04        -0.16   0.002     0.03 1 
log�2.5� log�1� 0 0.03 0.01 0.002 0.002 1 
log�2.5� log�1.5� 0.16 0.04 0.17 0.002 0.03 1 

�� � �1 

��  1� 
1�1�

��
 ����� � 1) Bias Variance MSE power 

� log�2.5� � log�1.5� -0.16 0.27      -0.17      0.003     0.03 1 
� log�2.5� log�1� 0 0.25       0.01       0.003     0.003 1 
� log�2.5� log�1.5� 0.16 0.27       0.18       0.003     0.03 1 

log�2.5� � log�1.5� -0.16 0.30      -0.16      0.002     0.03 1 
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log�2.5� log�1� 0 0.29 0.002 0.002 0.002 1 
log�2.5� log�1.5� 0.16 0.31 0.17 0.002 0.03 1 

�� � �3.5 

��  1� 
1�1�

��
 ����� � 1) Bias Variance MSE power 

� log�1.5� � log�1.5� -0.16 0.03      -0.13 0.002     0.02 1 
� log�1.5� log�1� 0 0.03       0.02 0.002     0.003 1 
� log�1.5� log�1.5� 0.16 0.03       0.18 0.002     0.04 1 

log�1.5� � log�1.5� -0.16 0.03      -0.15 0.002     0.02 1 
log�1.5� log�1� 0 0.03 0.01 0.002 0.002 1 
log�1.5� log�1.5� 0.16 0.03 0.17 0.002 0.03 1 

�� � �1 

��  1� 
1�1�

��
 ����� � 1) Bias Variance MSE power 

� log�1.5� � log�1.5� -0.16 0.27     -0.17 0.002     0.03 1 
� log�1.5� log�1� 0 0.26       0.01 0.002     0.003 1 
� log�1.5� log�1.5� 0.16 0.28       0.18 0.002     0.03     1 

log�1.5� � log�1.5� -0.16 0.29      -0.17 0.002     0.03     1 
log�1.5� log�1� 0 0.28 0.005 0.002 0.002 1 
log�1.5� log�1.5� 0.16 0.30 0.17 0.002 0.031 1 

Table 4: Bias approximation obtained using (6), i.e. 
����

��
,  rate of the disease in the 

population ����� � �), bias, variance and mean squared error (MSE) of the estimates 

obtained from the reduced model. We simulated 5,000 datasets with 3,000 cases and 

3,000 controls. We simulated genotype from Bernoulli(0.1), then assumed  1� � 0, 1� �
log�1.5� , 1� � � log�1.5�, log �1.5� , �� � 1, �� � �1, �3.5, �� �
� log�2.5� , � log�1.5� , log�1.5� , log �2.5�. 

�� � log�2.5� 
���, ��� ����� � �) Bias Variance MSE 

(-1,log(5)) 0.35 -0.006     0.02     0.02 
(-5,log(5)) 0.02 0.005       0.01       0.01 
(-1,log(8)) 0.37 0.009 0.03 0.03 
(-5,log(8)) 0.04 0.02       0.02       0.02 

�� � log�3� 
���, ��� ����� � �) Bias Variance MSE 

(-1,log(5)) 0.35 0.002    0.02   0.02 
(-5,log(5)) 0.02 0.007       0.01       0.01 
(-1,log(8)) 0.37 -0.002       0.03       0.03 
(-5,log(8)) 0.04 0.004       0.02       0.02 

�� � log�5� 
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���, ��� ����� � �) Bias Variance MSE 
(-1,log(5)) 0.36 0.01    0.02       0.02 
(-5,log(5)) 0.03 0.006       0.02       0.02 
(-1,log(8)) 0.38 -0.02       0.03       0.03 
(-5,log(8)) 0.04 -0.003       0.02       0.02 

�� � log�8� 
���, ��� ����� � �) Bias Variance MSE 

(-1,log(5)) 0.37 0.002      0.03     0.03 
(-5,log(5)) 0.03 0.03       0.02       0.02 
(-1,log(8)) 0.39 -0.008       0.04       0.04 
(-5,log(8)) 0.05       0.02       0.03 0.03 
Table 5: Bias, Variance and Mean Squared Error (MSE) for the genetic effect estimates 

corrected based on the system of equations (9)-(11). We simulated 5,000 datasets of 

3,000 cases and 3,000 controls. The genetic variant is simulated Bernoulli (0.10), the 

omitted variable is simulated from Normal(0,1) and the disease status is simulated 

based on model (2) with coefficients �� � �1, �5; �� � log�2.5� , log�3� , log�5� , log �8�, 
�� � log�5� , log�8�. 
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