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ABSTRACT

Large-scale genome-wide analyses scans provide massive volumes of genetic variants
on large number of cases and controls that can be used to estimate the genetic effects.
Yet, the sets of non-genetic variables available in publicly available databases are often
brief. It is known that omitting a continuous variable from a logistic regression model can
result in biased estimates of odds ratios (OR) (e.g., Gail et al (1984), Neuhaus et al
(1993), Hauck et al (1991), Zeger et al (1988)). We are interested to assess what
information is needed to recover the bias in the OR estimate of genotype due to omitting
a continuous variable in settings when the actual values of the omitted variable are not
available. We derive two estimating procedures that can recover the degree of bias
based on a conditional density of the omitted variable or knowing the distribution of the
omitted variable. Importantly, our derivations show that omitting a continuous variable
can result in either under- or over- estimation of the genetic effects. We performed
extensive simulation studies to examine bias, variability, false positive rate, and power
in the model that omits a continuous variable. We show the application to two genome-

wide studies of Alzheimer’s disease.
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Data Availability Statement

The data that support the findings of this study are openly available in the Database of
Genotypes and Phenotypes at
[https://www.ncbi.nlm.nih.gov/projects/gap/cgibin/study.cgi?study_id=phs000372.v1.p1],
reference number [phs000372.v1.pl] and at the Alzheimer’s Disease Neuroimaging

Initiative http://adni.loni.usc.edu/.
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INTRODUCTION

Recent advances in genotyping technology generated volumes and variety of datasets
that are archived in massive publicly available databases (e.g. the Database of

Genotypes and Phenotypes https://www.ncbi.nim.nih.gov/gap/, the Cancer Genome

Athlas https://portal.gdc.cancer.qov/, the UK Biobank https://www.ukbiobank.ac.uk/).

These data provide valuable information that can be analyzed to improve our
understanding about the genetic predisposition to complex diseases, such as cancer,
diabetes, neurodegenerative disease. Such analyses of association might serve
multiple purposes one of which is to identify the genetic variants and rank them
according to strength of the evidence for an association with the complex diseases. As
the result we might obtain valuable clues to the underlying aeteologic mechanisms of
complex diseases. A commonly overseen complication is that omitting a variable from a
logistic regression model can substantially bias the genetic effect estimates. We are
interested to derive what types of information are needed to recover bias in settings

when the actual values of the omitted variable are not available to the researcher.

From the statistical literature (Gail et al (1984), Neuhaus et al (1993), Hauck et al
(1991), Zeger et al (1988)) we know that omitting variables associated with the disease
can cause bias in the odds ratio (OR) estimates, because the OR estimates reflect both
the effect size and variability in the error terms. Gail et al (1984), Neuhaus et al (1993),
Zeger et al (1988) derive the magnitude of bias in the estimate that is a function of the

OR of the omitted variable and the distribution of the omitted variable.
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Because the correct OR estimates of the omitted variable, i.e. the estimates from the full
model that includes both the genetic effects and the omitted variable, are rarely
available in the literature, we are interested to examine what other types of information
are needed for a researcher to be able to correct the bias. We are also interested to

assess what determines the directionality of the bias.

The setting we consider is unique. The model with an omitted variable is misspecified
for three reasons. First, the data are collected using retrospective design where the
cases and controls are sampled from their populations, while the data are analyzed in a
prospective logistic regression model. As pointed out in the seminal work by Prentice
and Pyke (1979), we know that this aspect of misspecification does not result in bias of
OR estimates because the OR can be estimated consistently from retrospective
likelihood-based methods. Secondly, model is misspecified because the variable is
omitted from the model, what also results in the third misspecification, namely that if the
true risk function is logistic, the link between the other variables and risk of the disease

with omitted variable might not be logistic.

The setting we consider is also unique in that usually the magnitude of the effect of a
genetic variant is estimated to be small to moderate, i.e. the range of effect sizes
somewhere between -log(1.5) and log(1.5) (Park et al, 2011). A few exceptions,
however, have been noted in the literature. For example, in the context of Alzheimer’s
disease, ApoE genotype is estimated to have OR of 3.1 for heterozygous ¢4 genotype

and 34.3 for homozygous €4 genotype (Kukull et al, 1996).
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Our paper is organized as follows. We first perform a series of simulation studies to
assess the problem empirically. The simulations are described in the Assessment of the
Problem section. Next, in the Estimates of the Reduced vs. Full Models section we
derive the relationships between parameters of the reduced model where the variable is
omitted and the parameters in the full model where the variable is included. We further
conduct simulation studies described in Simulation Studies section to assess how
various pieces of information can contribute to recovery of the bias. We show the
application to the studies of Alzheimer’s disease. And we conclude the paper by a brief

discussion.

MATERIALS AND METHODS

ASSESSMENT OF THE PROBLEM
We first perform a series of simulation studies to assess potential bias, variance, mean
squared error (MSE), false discovery rate (FDR), and power reduction due to omitting a
continuous variable that is associated with the disease status. We assume that the
omitted variable 0 and the genotype G are distributed independently in the population.
Setting 1: We first examine models with one genetic variant. We simulate the genetic
variant from Bernoulli(0.1) and an omitted variable 0 from Normal(0,6%). We set g = 1,2
and next simulate the disease status according to the full disease risk model
logit{prg(D = d|G,0)} = By + Bs X G+ By X O, Q)
where we let g, = —1,-5; B, =log(1),log(1.5),log(2),log(2.5),log(3),log(5),log(8),

and B, =log(1),log(1.5),log(2),log(2.5),log(3),log(5),log(8) across various settings.
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Generate 5,000 samples of 3,000/10,000 cases and 3,000/10,000 controls using
retrospective/case-control design.
We next estimate the parameters based on the reduced (and hence misspecified)
logistic regression model

logit{prr(D = d|G)} =y, + v X G. (2)
Shown in Supplementary Table 1 are probability of the disease in the population, bias
in 7, as the estimates of g; = 0, variance, MSE, and FDR. The estimates in this setting
are nearly unbiased with FDR that are nominal. Shown in Table 1 is the setting when
B¢ = log (1.5). Here bias becomes more pronounced what also reduces the power to
detect an effect. For example, when g, = log(3) = 1.0986, 8, = —1,0 = 2, biasin y; as
the estimate of 5, is -0.18, while power to detect the effect is 0.76. Frequency of the
disease in the population is 0.37. Shown in Table 2 and Supplementary Table 2 are
the settings when B; = log(2),log(2.5),log(3),log(5),log(8). Biases increase as the
magnitude of the coefficient increases, however the bias because of its direction does
not have impact on power to detect the effect. As illustrated in Supplementary Table 3
the biases noted in samples with 3,000 cases and 3,000 controls persist in samples with

10,000 cases and 10,000 controls.

Setting 2. We next conduct a simulation experiment to assess if the ratio of the
parameters is estimated correctly when a continuous variable is omitted from the model.
We simulate one genetic variant ¢; from Bernoulli(0.1) and the other one G, from
Bernoulli(0.25) and 0 from Normal(0,0%), where ¢ = 1,2. We simulate the true disease

status from the logistic model :
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logit{prs(D = 1|G,0)} = By + B, X Gy + B, X Gz + o X O, 3
where we let 5, = —1; —5 and we consider various pairs: f;, = log (1.5), B, = log(2);

Be, = log (3), B, = log(3.5); and we let B, =

log(2),log(2.5),log(3),log(5),log(8) across various settings.

Setting 3. We now examine a setting with many genetic variables and one omitted
environmental variable. The goal of this simulation is to see if the relative order of the

genetic variables is estimated correctly. We simulate G, ... Gy, ,,from Bernoulli(0.1) and

Guyz+1 - Gy from Bernoulli(0.25), and O from Normal(0,62), where ¢ = 1,2.

Moreover, we simulate the disease status according to the risk model:
logit{prs(D = 1|G,0)} = By + B, X Gy + -+ Bg,, X Gy + By X O,

where we let 8, = —1; =5; M = 10; B;~Normal(us, o), with u; = log(1),log(2),log(3),
log(5),log (8); a2 = log (1.5) and B, = log(1),log(1.5),log(2),log(2.5),log(3),log(5),
log(8). We next estimate the parameters based on misspecified logistic regression
model

logit{prr (D = d|G)} =yo + V6, X Gy + -+ V5, X Gy
We would like to assess if the order of the genetic effect estimates is preserved.
Suppose it does not matter what the magnitude of the estimate is, as long as the
relative ordering in maintained. We define the order of the genetic effect by 1) Value of
the coefficient; 2) P-value for the coefficient, that is, one ordering will be based just on

the value of the coefficient estimate, and the second ordering just based on the p-value.
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Shown in Table 3 and Supplementary Table 4 are the results based on 5,000 samples
of 3,000 cases and 3,000 controls. Shown in Table 3, the proportion of the genetic
variants for which the ranks are the same. As illustrated in Supplementary Table 4, the
proportion of the genetic variants for which the ranks are the same are very close to 1

when f, is small.

In summary, we conclude that in the context of the genetic association studies the issue
of bias due to omitting variables needs to receive more attention because it can be
pronounced, in either direction and can distort false positive rate and power to detect an

effect.

ESTIMATES OF THE REDUCED VS. FULL MODELS

Suppose we obtained estimates of the genetic effects from a case-control study that
omits a variable, i.e. the estimates based on the reduced model (2). The risk of the
disease is, however, determined by both the genetic effects G and the omitted variable
0, i.e. the full model (1).

It can be easily seen that

pr(D=1|6,0) _ f(0|6,0=1)xpr(D=1|6) )
pr(D=0|G,0) f(0|G,D=0)xpr(D=0|G)’

Hence

i@ =116 =)=+ o6+ 0 +1os ({25258, 0

If the ratio % does not depend on g, i.e. a constant of g, then the estimate of

¥ IS unbiased as the estimate of .. Hence if the omitted variable and the genotype are
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independent conditionally on the disease status D, then the reduced model yields

unbiased estimates of the genetic effects.

Bias recovery from assuming [0|D = d, G = g] Interestingly, we derive that if
[0ID =d,G = g] = Normal(uo + iy X g + pq X d, ), then it can be easily seen that

2
Hq
2x02’

(6)

logit{er(D=1|G=g)}=ﬁo+,86xG+ﬁox0—%xO+%x(Mo+MQXg)+

Hdllg
0-2

By equation (6), we can derive 8, = % and y; = f; + . Therefore, the difference
between y; and f; is positive if u; X u, > 0; and the difference between y; and g;; is
negative if ug X pgy < 0. In particular, if 8, = 0, or equivalently, u; = 0, which means that

given genotype G, the disease D is conditionally independent of the omitted variable 0,

then estimate of y is an unbiased estimate of S;.

Bias recovery from [0] and pr(D = 1) In the following, we propose an approach to
derive unbiased estimates of §,, 5; and 8, by solving a system of estimating equations
when the auxiliary information of the omitted variable O is present and the rate of
disease is known. Differently from the above discussions, we assume that the omitted
variable 0 follows a normal distribution Normal(0,62) and G follows the Bernoulli

distribution; and 0 and G are independent .

Based on the true model (1) and the fact that the rate of disease pr(D = 1) is known,

we can obtain
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( eBU+6GXG+-BOXO

E (< espearigms) = pr(D = 1). )
Suppose that what is available about the omitted variable O from the literature is the
estimate from the following reduced model
logit{pra(D = d|0)} = ay + ay X O. ®
Under the logistic regression model (8), a,and a, are the solutions to the expected

score equations and thus we can derive

E{O( eBo+BGXG+Box0 e®o+apx0 )} —0. (9)

14+eBo+BGXG+BoX0 — |1 ,Ga+apx0

In a similar way, under the logistic regression model (2), y, and y,. are the solutions to

the expected score equations and thus we can derive

E{G( T — T )} = 0. (10)

1+eBotBeXG+Box0 | o707t %G

Since a,, a, and pr(D = 1) are known from the literature, we can calculate ¢ by solving

( e®otagx0

1+ea0+110>(0

) = pr(D = 1). Based on the observed samples of ¢ and D, we can derive

unbiased estimates for y. and pr(¢G = 1) and then an unbiased estimate for y, can be

970+7G XG

obtained by solving E( ) = pr(D = 1). Applying numerical approximation to

1+e’0+76 %G
(7), (9) and (10), we can derive three estimating equations that only involve three
unknown parameters §,, B; and S,. Consequently, we can derive unbiased estimates

for By, B; and S, by solving the three estimating equations.

SIMULATION STUDIES
The goal of the simulation studies is to assess bias in the estimates and the derivation
(6) and the system of equations (7), (9) and (10). We simulate the genetic variable G

from Bernoulli(0.1).
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Setting 4: We are first interested to assess the equation (6). Hence simulated genotype

from Bernoulli(0.1), then assumed
to = 0,u, =1og(1.5),ug = —log(1.5),log(1),log(1.5),0% =1, By = —1,-3.5,8; =
—log(2.5),—1log(1.5),log(1.5),log (2.5) and S, = % Next we generate the disease

status according to model (4) for 5,000 datasets with 3,000 cases and 3,000 controls.
Shown in Table 4 and Supplementary Table 5 are biases estimated based on (6),
empirical bias, variance, MSE and power. The results suggest that the empirical bias is
similar to the bias obtained through (6).

Setting 5: We now assess the solution according to system of equations (9)-(11). We
simulate the genetic variant from Bernoulli(0.1) and the omitted variable from
Normal(0,1). And next we generate the disease status according to model (1) with
coefficients B, = —1, —5; B; = log(2.5),log(3),log(5),log (8), B, = log(5),log(8) for
5,000 datasets with 3,000 cases and 3,000 controls. Results shown in Table 5
demonstrate that the numerical solution to the system of equations (7), (9) and (10) is

nearly unbiased.

ALZHEIMER'S DISEASE STUDY

We are interested to assess what happens to the genetic effect estimates when a
continuous variable is omitted from the model, i.e. how well (6) informs bias and if the
system of equations (9)-(10) is capable to restore the genetic estimates. We hence
consider two datasets. The Alzheimer’'s Disease Neuroimaging Initiative (ADNI) dataset

includes more extensive evaluations on a smaller subset of cases and controls. We
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hence assess how the genetic effect estimates change when continuous variables
available in the dataset are omitted. Next, we consider a larger dataset generated by
the Alzheimer’s Disease Genetics Consortium (ADGC) where extensive evaluations are
available on a small subset. We hence assess how knowledge from the literature or
from the ADNI data can be applied to inform how the genetic effect estimates change
with omission of continuous variables.

ADNI: The set consists of 423 cases and 192 controls. We mapped the genetic variants
to a set serving amyloid and tau proteins that are relevant to AD pathophysiology based

on the Genecards database (https://www.genecards.org/). After preprocessing, the set

contains 2,438 SNPs. The average (SD) age of cases is 74.29 (7.4), and 75.41 (4.91) in
controls, p=0.058. 262(61.9%) of cases are ApoE &4 carriers and 49 (25.5%) of controls
are ApoE ¢4 carriers, p<0.001. Supplementary Table 7A-7M further describe the sets
of cases and controls and Web-based Supplementary Materials Section B provide

extended details on the analyses of ADNI dataset.

To assess what happens to the genetic effect estimates when a continuous variable is
omitted from the model, we consider several possible models and the logistic regression
results, including coefficient estimates (log(OR)), standard errors (SE) and p-values are
reported in Supplementary Table 8. We first consider a full Model 1 with age, sex,
education, ApoE &4 status, MMSE and a reduced model that omits MMSE (model 1A)
and that omits ApoE ¢4 status (model 1B). We next considered a full model 2 where we
added ratio of hippocampus volume to whole brain volume to model 1 with the
corresponding reduced model that omits the ratio of brain volumes. We observed that

the difference in log(OR) estimates between the reduced and full models were on the
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order of >1*SE. For example, log(OR) for ApoE ¢4 status changed from 1.27 (SE=0.25)
to 1.62 (SE=0.20) in full model 1 vs. reduced model 1A; and from 1.005 (SE=0.268) to

1.27 (SE=0.25) in the full model 2 vs. reduced model 2A.

We next assumed that the full includes age, gender, education ApoE ¢4 status, MMSE,
and the ratio between hippocampus volume and whole brain volume, plus each of the
genetic variants (Model 3). The reduced model 3A omits the ratio between brain
volumes. On average, we observed that the difference in the log(OR) estimates of
SNPs obtained in full model 3 vs. 3A is 0.006, with 25" percentile -0.001 and 75"

percentile that is 0.005, minimum of -0.35 and maximum of 0.18.

We observed in the following how the SNPs rank in the full model 3 and reduced model
3A. Among the top 10 significant SNPs (ranked by p-value), 80% of the SNPs are the
same in the full and reduced models, among the top 30 significant SNPs, 56.67% of the
SNPs are the same and among the top 50 significant SNPs, 58% of the SNPs are the
same. Hence overall, the conclusion about what SNPs should be carried to the

validation set would be different based on these two models.

We also note that for all the models the distribution of p-values across all SNPs did not
differ significantly from Uniform(0,1), i.e. p-values for Kolmogorov-Smirnov test are

>0.05.

ADGC: The set consists of 2,794 cases and 667 controls (Set 1), where subsets

contained data on age, sex, education, ApoE &4 status (Set 2). We mapped the genetic
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variants to a set serving innate immune system that are relevant to AD pathophysiology
(Lobach et al, 2019). After processing, the set contains 157 SNPs. The average (SD)
age of cases is 70.78 (8.82), and 75.19 (8.27) in controls, p<0.001. The average (SD)
education of cases is 14.08 (3.38), and 15.93 (2.72) in controls, p<0.001.1005 (48.9%)
of cases are men, 109 (32.8%) of controls are men, p<0.001. 1327 (64.6%) of cases are
ApOE &4 carriers and 96 (28.9%) of controls are ApoE €4, p<0.001. The dataset and
analyses are described in extensive details in Web-based Supplementary Materials
Section C.

We first assessed estimates in the full and reduced models based on a subset of data
that includes age, sex, education, ApoE ¢4 . We observed that estimates of SNPs
differed between the full (age, sex, education, ApoE ¢4, SNP) and reduced models
(omits age) by on average 0.01, 25" percentile = -0.02, 75" percentile = 0.04, minimum
of 0.17 and maximum of 0.58.

We also note that for all the models the distribution of p-values across all SNPs did not
differ significantly from Uniform(0,1), i.e. p-values for Kolmogorov-Smirnov test are
>0.05.

We are next interested to asses the degree and directionality to which estimates of
ApoE &4 status change with the omission of age, MMSE, education, hippocampal
volume and the ratio of the hippocampal volume to the whole brain volume. We
therefore consider the set of 2,794 cases and 667 controls. We first estimate y,, from a
univariable model to be 0.16 (SE=0.01), p<0.001. We next learn the conditional
distributions [0O|D = d, 4] of each of the omitted variables from the ADNI dataset, where

we define the set of cases to be the set with diagnosis dementia and the set of controls
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to be the set with diagnosis of cognitively normal. Then we apply the relationship (6) to

estimate the difference in the estimates due to omitting the variable as 289 As the

o2

result, we estimate that omission of age decreases the log(OR) for ApoE &4 status by
0.10, omission of MMSE increases the estimate by 0.10, omission of education
increases the estimate by 0.04, omission of hippocampal brain volume increases the
estimate by 0.06, and omission of the ratio between hippocampal brain volume and
whole brain volume increases the estimate by 0.06.

We next assessed how the coefficient for ApoE ¢4 status changes when MMSE is
omitted from the model using system of equations (7)-(10). From the literature, we
assumed that MMSE is distributed normally with mean 27 and standard deviation of 1.8;
frequency of the disease in the population that is 10% and OR for MMSE that is 0.8
(95% CI: 0.55-1.1). In the reduced model the log(OR) for ApoE ¢4 status is 1.5
(SE=0.13), p-value<0.001. Using the system of equations (7)-(10) we arrived at the
log(OR) estimate that varied between 1.45 and 1.79 for various settings of the initial

values that we considered.

DISCUSSION

In the genetic association studies, we interested to accurately estimate either the
parameters or the order of the magnitude of the parameters, because the estimates
would determine our understanding about the underlying pathophysiologic mechanisms,
risk prediction and can lead to the estimates of heritability, population attributable risk to

the genetics, etc. Massive amounts of genetic data available in various databases can
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be utilized to estimate the genetic associations. Yet, the set of non-genetic variables is

often brief.

We show that omitting a continuous variable associated with the disease status can
result in substantial bias of parameter estimates in either direction. We derived two
possible approaches for understanding the bias. The fist is explicit and is based on
knowing [O|D = d,G = g]. The second is numerical and requires knowing the estimates
from a univariable model with the omitted variable as the predictor (8) and knowing rate
of the disease in the population. The two approaches that we developed differ in their
assumptions. One assumes a Normal distribution for the conditional density of the
omitted variable [0|D = d, G = g], i.e. assumes that the distribution of the omitted
variable is a mixture of normals. The second in the system of equations assumes that

the distribution of the omitted variable is normal.

Both of the approaches that we considered require knowing the set of variables in the
full (true) model, what might not be feasible practically in many settings. In the analyses
of Alzheimer’s disease studies we assumed various models to be the true (full) models
and based on these assumptions assessed the directionality and magnitude of bias.
Overall, the main contribution of our work is the justification that omitting a continuous

variable from the logistic regression model can result in bias in either direction.

In some settings it is of interest to correctly estimate the order of the magnitude of the

genetic effects to be able to rank the genetic markers according to strength of their
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association. In these settings, if the bias affects the estimates proportionally, then the

bias would not change the ordering of the genetic effect estimates.

We found that if the genetic variable and the omitted variable are independent
conditionally on the disease status, then omitting the variable does not result in bias of
the genetic effects. This assumption is not equivalent to independence between the

genotype and the omitted variable in the population.

The arguments that we've developed are based on the logistic link model and normality
of the omitted variable. These derivations do not naturally extend to other link functions

and other forms of the omitted variable.

Pirinen et al (2012) showed that for rare diseases inclusion of the key covariates can
reduce power, while for common diseases inclusion of the key covariates can increase
power. Our findings are similar in that the bias can either reduce or increase the
magnitude of the effect. Specifically, if the omitted variable is normally distributed with
[0ID =d,G = g] = Normal(u, + pg X g + pq x d,0*) then the bias is a function of u,,
1, and o2, Based on this relationship we also see that a rare disease is not immune to

the bias.
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Bo = log(1)
(Bo,0) prg(D =1) Bias Variance MSE power
(-1,2) 0.28 0.008 0.007 0.007 1
(-1,2) 0.28 0.008 0.007 0.007 1
(-5,1) 0.007 -0.03 0.005 0.006 1
(-5,2) 0.007 -0.03 0.005 0.006 1
Bo = log(1.5) =0.4055
(Bo,0) prg(D =1) Bias Variance MSE power
(-1,2) 0.28 -0.009 0.007 0.007 1
(-1,2) 0.30 -0.05 0.007 0.01 1
(-5,1) 0.008 -0.01 0.006 0.006 1
(-5,2) 0.01 -0.03 0.006 0.006 1
Bo =log(2)=0.6931
(Bo,0) prg(D =1) Bias Variance MSE power
(-1,2) 0.30 -0.03 0.008 0.009 0.99
(-1,2) 0.33 -0.10 0.007 0.02 0.95
(-5,1) 0.02 -0.03 0.006 0.007 1
(-5,2) 0.03 -0.03 0.006 0.007 1
Bo =1log(2.5)=0.9163
(Bo,0) prg(D =1) Bias Variance MSE power
(-1,2) 0.31 -0.06 0.007 0.01 0.98
(-1,2) 0.35 -0.15 0.008 0.03 0.86
(-5,1) 0.01 -0.02 0.006 0.006 1
(-5,2) 0.03 -0.06 0.006 0.01 0.99
Bo =log(3)=1.0986
(Bo,0) prg(D =1) Bias Variance MSE power
(-1,2) 0.32 -0.07 0.007 0.01 0.98
(-1,2) 0.37 -0.18 0.007 0.04 0.76
(-5,1) 0.01 -0.01 0.006 0.006 1
(-5,2) 0.04 -0.11 0.006 0.02 0.96
Bo =log(5) = 1.6094
(Bo,0) prg(D =1) Bias Variance MSE power
(-1,2) 0.34 -0.13 0.007 0.02 0.92
(-1,2) 0.40 -0.23 0.007 0.06 0.54
(-5,1) 0.02 -0.04 0.006 0.007 1
(-5,2) 0.09 -0.19 0.007 0.04 0.73
Bo =log(8) = 2.0794
(Bo,0) prg(D =1) Bias Variance MSE power
(-1,2) 0.36 -0.17 0.007 0.03 0.80
(-1,2) 0.42 -0.27 0.007 0.08 0.37
(-5,1) 0.04 -0.10 0.007 0.02 0.97
(-5,2) 0.14 -0.25 0.007 0.07 0.48
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Table 1: Bias, variance and mean square error (MSE) of genetic effect estimates obtain
using reduced model (2) when the data are simulated using full model (1). Shown is
also probability of the disease in the population, i.e. prgz (D = 1), and false discovery rate
(FDR). The genotype is simulated to be Bernoulli(0.1), the omitted variable is simulated
from Normal(0, o%). We simulated the disease status from model (1) with parameters

Bo = —1,-5; Bs =log(1.5), By = log(1),log(1.5),log(2),log(2.5),log(3),log(5),log(8).

The results are based on 5,000 datasets of 3,000 cases and 3,000 controls.

Bo =1log(1)=0
(Bo,0) prg(D =1) Bias Variance RMSE power
(-1,2) 0.32 -0.008 0.01 0.01 1
(-1,2) 0.32 -0.008 0.01 0.01 1
(-5,1) 0.01 -0.004 0.005 0.005 1
(-5,2) 0.01 -0.004 0.005 0.005 1
Bo = log(1.5) =0.4055
(Bo,0) prg(D =1) Bias Variance RMSE power
(-1,2) 0.32 -0.07 0.01 0.02 1
(-1,2) 0.34 -0.25 0.01 0.07 1
(-5,1) 0.01 -0.02 0.005 0.005 1
(-5,2) 0.02 -0.06 0.005 0.009 1
Bo = log(2)=0.6931
(Bo,0) prg(D =1) Bias Variance RMSE power
(-1,2) 0.33 -0.20 0.01 0.05 1
(-1,2) 0.36 -0.53 0.001 0.29 1
(-5,1) 0.01 -0.05 0.005 0.007 1
(-5,2) 0.02 -0.23 0.005 0.06 1
Bo =log(2.5)=0.9163
(Bo, 0) prg(D = 1) Bias Variance RMSE power
(-1,2) 0.34 -0.31 0.01 0.10 1
(-1,2) 0.38 -0.74 0.009 0.56 1
(-5,1) 0.016 -0.07 0.005 0.01 1
(-5,2) 0.04 -0.45 0.005 0.21 1
fo =1log(3)=1.0986
By, 0) prg(D =1) Bias Variance RMSE power
(-1,2) 0.35 -0.40 0.01 0.17 1
(-1,2) 0.39 -0.87 0.01 0.77 1
(-5,1) 0.019 -0.12 0.005 0.02 1
(-5,2) 0.05 -0.64 0.006 0.41 1
Bo = log(5) = 1.6094
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(Bo, 0) prg(D =1) Bias Variance RMSE power
(-1,2) 0.37 -0.64 0.009 0.42 1
(-1,2) 0.41 -1.17 0.008 1.37 1
(-5,1) 0.03 -0.34 0.005 0.12 1
(-5,2) 0.10 -1.04 0.006 1.09 1
Bo =log(8) = 2.0794
(Bo,0) prg(D = 1) Bias Variance RMSE power
(-1,2) 0.39 -0.83 0.009 0.70 1
(-1,2) 0.43 -1.34 0.008 1.81 1
(-5,1) 0.05 -0.59 0.006 0.34 1
(-5,2) 0.15 -1.28 0.006 1.63 1

Table 2: Bias, variance and mean square error (MSE) of genetic effect estimates obtain
using reduced model (2) when the data are simulated using full model (1). Shown is
also probability of the disease in the population, i.e. prz(D = 1), and false discovery rate
(FDR). The genotype is simulated to be Bernoulli(0.1), the omitted variable is simulated
from Normal(0, a2). We simulated the disease status from model (1) with parameters

Bo = —1,-5; B; =1log(8), B, =log(1),log(1.5),log(2),log(2.5),log(3),log(5),log(8).

The results are based on 5,000 datasets of 3,000 cases and 3,000 controls.

te =log(1)
(Bo0) | pra(D = d) Ranks based on OR Ranks based on p values
0.9) | PTpiY = ALL | TOP 10% | TOP 20% | ALL TOP 10% TOP 20%
(-1,1) 0.33 0.89 1 0.99 0.74 0.89 0.89
(-1,2) 0.37 0.77 0.98 0.93 0.58 0.81 0.75
(-5,1) 0.01 0.89 1 0.99 0.75 0.89 0.87
(-5,2) 0.05 0.79 0.98 0.95 0.57 0.69 0.71
ue =log(2) = 0.693
(Bo0) | pra(D = ) Ranks based on OR Ranks based on p values
o Prelt = ALL TOP 10% | TOP 20% | ALL TOP 10% TOP 20%
(-1,1) 0.56 0.84 0.87 0.9 0.85 0.74 0.79
(-1,2) 0.55 0.71 0.73 0.77 0.70 0.53 0.61
(-5,1) 0.07 0.86 0.87 0.90 0.86 0.75 0.80
(-5,2) 0.12 0.74 0.73 0.79 0.73 0.53 0.62
ue =log(3) = 1.099
(Bo,0) | pra(D = d) Ranks based on OR Ranks based on p values
09} | Pl = ALL |TOP 10% | TOP20% | ALL | TOP10% | TOP 20%
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(-1,2) 0.66 0.82 0.85 0.88 0.87 0.92 0.95
(-1,2) 0.63 0.70 0.73 0.77 0.76 0.74 0.83
(-5,1) 0.13 0.85 0.84 0.88 0.92 0.77 0.88
(-5,2) 0.18 0.73 0.73 0.77 0.80 0.62 0.79
ue =log(5) = 1.6
(Bo,0) | pry(D = d) Ranks based on OR Ranks based on p values
09} | Pl = ALL TOP 10% | TOP 20% | ALL TOP 10% TOP 20%
(-1,2) 0.75 0.81 0.83 0.87 0.84 0.91 0.81
(-1,2) 0.71 0.69 0.71 0.76 0.72 0.84 0.74
(-5,1) 0.24 0.84 0.86 0.89 0.91 0.94 0.96
(-5,2) 0.28 0.71 0.72 0.77 0.80 0.85 0.88
U =log(8) =2.0
(Bo0) | pra(D = d) Ranks based on OR Ranks based on p values
0.9} | PTslY = ALL TOP 10% | TOP 20% | ALL TOP 10% TOP 20%
(-1,2) 0.79 0.79 0.79 0.84 0.86 0.87 0.88
(-1,2) 0.76 0.67 0.66 0.72 0.74 0.78 0.68
(-5,1) 0.35 0.83 0.86 0.89 0.88 0.96 0.88
(-5,2) 0.37 0.71 0.71 0.77 0.77 0.89 0.77

Table 3: Proportions of genetic variants that received the same rank based on the full

and reduced genetic models across all variants (ALL), top 10% and top 20%. We

simulated 5,000 datasets with 3,000 cases and 3,000 controls. We simulated 10 genetic

variants from Bernoulli(0.1) and disease status from the full model with coefficients

Bo = log (3) and p; = log(1),log(2),10g(3),log(5),log (8).

o =—3.5
Be Ug HZ# prg(D =1) Bias Variance | MSE | power
—log(2.5) | —log(1.5) | -0.16 0.03 -0.19 0.003 0.04 1
—log(2.5) | log(1) 0 0.03 0.01 0.003 0.003 1
—log(2.5) | log(1.5) 0.16 0.03 0.17 0.003 0.03 1
log(2.5) | —log(1.5) | -0.16 0.04 -0.16 0.002 0.03 1
log(2.5) log(1) 0 0.03 0.01 0.002 0.002 1
log(2.5) log(1.5) 0.16 0.04 0.17 0.002 0.03 1
Bo=—1
Hallg ; i
Be Ug 7 prg(D =1) Bias Variance | MSE | power
—log(2.5) | —log(1.5)| -0.16 0.27 -0.17 0.003 0.03 1
—log(2.5) | log(1) 0 0.25 0.01 0.003 0.003 1
—log(2.5) | log(1.5) 0.16 0.27 0.18 0.003 0.03 1
log(2.5) | —log(1.5)| -0.16 0.30 -0.16 0.002 0.03 1
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log(2.5) log(1) 0 0.29 0.002 0.002 0.002 1
log(2.5) log(1.5) 0.16 0.31 0.17 0.002 0.03 1
Bo =—-3.5
Hallg ; i
Be U 7 prg(D =1) Bias Variance | MSE | power
—log(1.5) | —log(1.5) | -0.16 0.03 -0.13 0.002 0.02 1
—log(1.5) | log(1) 0 0.03 0.02 0.002 0.003 1
—log(1.5) | log(1.5) 0.16 0.03 0.18 0.002 0.04 1
log(1.5) | —log(1.5)| -0.16 0.03 -0.15 0.002 0.02 1
log(1.5) log(1) 0 0.03 0.01 0.002 0.002 1
log(1.5) log(1.5) 0.16 0.03 0.17 0.002 0.03 1
Bo=—1
Haltg ; i
Be U 7 prg(D =1) Bias Variance | MSE | power
—log(1.5) | —log(1.5) | -0.16 0.27 -0.17 0.002 0.03 1
—log(1.5) | log(1) 0 0.26 0.01 0.002 0.003 1
—log(1.5) | log(1.5) 0.16 0.28 0.18 0.002 0.03 1
log(1.5) | —log(1.5)| -0.16 0.29 -0.17 0.002 0.03 1
log(1.5) log(1) 0 0.28 0.005 0.002 0.002 1
log(1.5) log(1.5) 0.16 0.30 0.17 0.002 0.031 1
Haltg

Table 4: Bias approximation obtained using (6), i.e. —

2 1

rate of the disease in the

population prgz (D = d), bias, variance and mean squared error (MSE) of the estimates

obtained from the reduced model. We simulated 5,000 datasets with 3,000 cases and

3,000 controls. We simulated genotype from Bernoulli(0.1), then assumed u, = 0,u, =

log(1.5),u; = —log(1.5),log (1.5),0% =1, B, = —1,—-3.5,; =

—log(2.5),—1log(1.5),log(1.5),log (2.5).

B = log(2.5)

(Bo,Bo) prg(D =d) Bias Variance MSE
(-1,l09(5)) 0.35 -0.006 0.02 0.02
(-5,l09(5)) 0.02 0.005 0.01 0.01
(-1,l09(8)) 0.37 0.009 0.03 0.03
(-5,l00(8)) 0.04 0.02 0.02 0.02

Bc = 1og(3)

(Bo, Lo) prg(D =d) Bias Variance MSE
(-1,l09(5)) 0.35 0.002 0.02 0.02
(-5,l09(5)) 0.02 0.007 0.01 0.01
(-1,l09(8)) 0.37 -0.002 0.03 0.03
(-5,l09(8)) 0.04 0.004 0.02 0.02

B = log(5)
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(Bo, Bo) prg(D =d) Bias Variance MSE
(-1,log(5)) 0.36 0.01 0.02 0.02
(-5,lo0g(5)) 0.03 0.006 0.02 0.02
(-1,l0g(8)) 0.38 -0.02 0.03 0.03
(-5,l0g9(8)) 0.04 -0.003 0.02 0.02

B = log(8)

(Bo,Bo) prg(D = d) Bias Variance MSE
(-1,log(5)) 0.37 0.002 0.03 0.03
(-5,l0g(5)) 0.03 0.03 0.02 0.02
(-1,log(8)) 0.39 -0.008 0.04 0.04
(-5,l0g9(8)) 0.05 0.02 0.03 0.03

Table 5: Bias, Variance and Mean Squared Error (MSE) for the genetic effect estimates
corrected based on the system of equations (9)-(11). We simulated 5,000 datasets of
3,000 cases and 3,000 controls. The genetic variant is simulated Bernoulli (0.10), the
omitted variable is simulated from Normal(0,1) and the disease status is simulated
based on model (2) with coefficients g, = —1,—5; B; = log(2.5),log(3),log(5),log (8),

Bo = log(5),1og(8).
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