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Abstract 
Glioblastoma cell ability to adapt their functioning to microenvironment changes is a source of the 

extensive intra-tumor heterogeneity characteristic of this devastating malignant brain tumor. A 

systemic view of the metabolic pathways underlying glioblastoma cell functioning states is lacking. 

We analyzed public single cell RNA-sequencing data from glioblastoma surgical resections, which 

offer the closest available view of tumor cell heterogeneity as encountered at the time of patients’ 

diagnosis. Unsupervised analyses revealed that information dispersed throughout the cell 

transcript repertoires encoded the identity of each tumor and masked information related to cell 

functioning states. Data reduction based on an experimentally-defined signature of transcription 

factors overcame this hurdle. It allowed cell grouping according to their tumorigenic potential, 

regardless of their tumor of origin. The approach relevance was validated using an independent 

dataset of glioblastoma tissue transcriptomes, patient-derived cell lines and orthotopic xenografts. 

Overexpression of genes coding for amino acid and lipid metabolism enzymes involved in anti-

oxidative, energetic and cell membrane processes characterized cells with high tumorigenic 

potential. Modeling of their expression network highlighted the very long chain polyunsaturated 

fatty acid synthesis pathway at the core of the network. Expression of its most downstream 

enzymatic component, ELOVL2, was associated with worsened patient survival, and required for 

cell tumorigenic properties in vivo. Our results demonstrate the power of signature-driven analyses 

of single cell transcriptomes to obtain an integrated view of metabolic pathways at play within the 

heterogeneous cell landscape of patient tumors.  
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Introduction 
Glioblastoma (GBM), the most common form of malignant brain tumors in adults, are 

characterized by extensive cell heterogeneity which results from irreversible processes - clonal 

selection of distinct mutations and differentiation of cancer stem cells - but also from the cells’ 

ability to adapt their functioning to variations in their environment and to therapies [2, 13, 32]. As a 

result, cancer cells coexist within GBM micro-territories in various functioning states, with respect 

to stem-like, proliferation, metabolic, migration, pro-angiogenic, drug resistance, or tumor-initiating 

(i.e. tumorigenic) capacities [9, 16, 47, 66]. Such heterogeneity in cell functioning defies 

therapeutic targeting. 

The changes in cell functioning state are accompanied by variations in cell metabolic 

activities. These variations are essential for GBM cells to exploit different sources of nutrients such 

as glucose, glutamine or acetate, and thereby cope with changes in oxygen and nutrient 

availabilities that occur throughout tumor development [45, 46, 49]. The significance of these 

metabolic variations for the cell behavior may extend beyond a passive response to environmental 

signals, as recent evidence support a role for metabolism as a driver of changes in cell functional 

status. Flavahan and colleagues demonstrated that up-regulation of the high-affinity glucose 

transporter GLUT3 promotes acquisition by GBM cells of tumorigenic properties [23]. Conversely, 

we found that decreased activity of the mitochondrial enzyme SSADH triggers GBM cell 

conversion into a less aggressive functioning state, by coupling enhanced levels of the GABA by-

product GHB to altered epigenetic regulations [18]. These metabolic variations have been found to 

take place within the patient tumors, and to be coherently linked with relevant phenotypic markers 

[18], or patients’ clinical course [12, 23]. Metabolism is also emerging as a player in GBM 

therapeutic resistance, as exemplified by escape from the anti-angiogenic Bevacizumab treatment. 

This escape has been linked to an increase in glycolysis and its uncoupling from oxidative 

phosphorylation in favor of lactate production in in vivo GBM models as well as in patients [19]. 

Metabolic enzymes are at the core of the molecular pathways controlling cell functioning states. 

Correcting their deregulation is therefore expected to be efficient to prevent acquisition and 

maintenance of aggressive cell functioning states shared by cell subpopulations in all GBM, 

regardless of their genomic specificities. Exploitation of metabolic targeting for therapies demands 

therefore to identify the metabolic pathways at play within the patient tumors in link with the 

heterogeneity of cell functioning states observed in GBM. Here, we used publicly available GBM 

single cell RNA-sequencing (scRNA-seq) data from four patients with EGFR amplification [14] for 

identifying metabolic pathways prevailing in GBM cell subpopulations in their most aggressive 

functioning state (Fig. 1A). 

Transcriptomes obtained by scRNA-seq are endowed with the potential to deliver information 

on a cell functioning state and its underlying molecular networks. The current analytic methods of 

scRNA-seq from different tumors result in the predominant grouping of cancer cells according to 

the tumor from which the cells are isolated (hereafter designed as tumor of origin), whereas normal 

cells present in the tumor are grouped according to their lineage subtype (e.g. neural, immune, 

vascular), regardless of their tumor of origin [14, 54, 61]. Characterizing the source of this specific 
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influence of the tumor of origin on cancer cell grouping led to the development of a data reduction 

approach based on a molecular signature for identifying cell functioning states. Combining 

analyses of GBM unicellular and tissue transcriptomes with experimental assays, we highlighted a 

combination of metabolic pathways prevailing in cells with high tumorigenic potential. The 

analytical method developed is provided. 

 

Material and Methods 
All figures were prepared using Adobe Illustrator (Adobe Systems). All bioinformatics 

analyses were performed using the R software version 3.5.0 (https://cran.r-project.org/). All 

resources and materials, R packages, corresponding websites and references are listed in Table 

S1. Detailed methods are provided in Supplementary Information 1.  

Computational analyses 

Single cell transcriptomes of 1033 GBM and 2417 normal cells from four patients were used 

[14]. This dataset distinguishes cancer from normal cells on the basis of chromosome copy number 

variation (CNV) profiling, and further distinguishes normal cells according to their neural or immune 

lineage subtype [14]. Low complexity cell transcriptomes with less than 90000 transcript reads and 

less than 1700 detected genes were filtered out (Fig. S1A and B). We used log2-transformed 

Counts Per Million (log2(CPM+1)) to allow comparison of read abundance across libraries of 

different sizes, unless otherwise specified. In an analysis subset, tumor-per-tumor data 

standardization was achieved by centering and reducing the data on a gene-by-gene basis 

(Datafile S1). Normalization on the basis of the expression of a set of 17 HKG is detailed in 

Supplementary Information 1. Tissue transcriptomes corresponded to the TCGA RNA-seq dataset 

of 155 untreated GBM patients [5] (normalized counts, log2(TPM+0.5), Table S1). Grouping 

analyses were performed using the Hierarchical Clustering on Principal Components (HCPC) 

approach (Datafile S1). Results were visualized using Principal Component Analysis (PCA) or t-

distributed Stochastic Neighbor Embedding (tSNE). HCPC was also used to identify genes whose 

mean expression in one cluster differs from their mean across all cells (i.e. variables driving cell 

grouping). Mann-Whitney (Wilcoxon Rank Sum) test with p-values adjusted for multiple testing 

(Benjamini-Hochberg, p-value < 0.01) was used for differential gene expression analyses between 

cell or tissue groups [59]. R scripts used for unsupervised grouping and associated analyses are 

provided in Datafile S1. Normalized Mutual Information (NMI) scores were calculated to determine 

the contribution of cells issued from distinct tumors to each cluster. A NMI value of 1 implies that 

clusters gather objects (here, cells) corresponding to a single label (here, the tumor label) whereas 

a value of 0 denotes that all labels are split across all clusters (Table S1, [44]). Tumorigenic scores 

were obtained by computing the geometric mean of expression values of the signature genes per 

cell. When null, expression values were imputed a value of 1. Each gene was detected in at least 

25% of GBM cells. Gene ontology analysis was done using the human genome as background 

(Table S1). Functional gene network reconstruction was achieved using the information-theoretic 

method, MIIC (multivariate information-based inductive causation, Supplementary Information 1 

[58, 65]). Four independent datasets comprising 153 to 485 primary GBM transcriptomes were 
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used for patient survival analysis (Table S1). Construction of a principal curve was achieved with a 

PCA based on the expression of each component of the lipid subgroup (16 genes coding for 

enzymes of the lipid metabolism overexpressed in TumHIGH cells and tissues and detected in at 

least 25% of GBM cells, see results). Each cell was projected onto the curve using the Pathifier 

algorithm (Table S1, [17]). Lipid subgroup and vesicle scores (Table S1) were calculated as 

described for the tumorigenic score. 

Biological experiments 

Patient-derived cells (PDC) 6240**, R633 and 5706** were obtained from neurosurgical 

biopsy samples of distinct primary GBM, characterized and cultured as described [18, 57]. 

Lentiviral transduction (Table S1) was achieved as described [4, 18]. Viable cell counting, gene 

expression analysis, intracranial xenografts, and bioluminescence imaging (Table S1) were 

performed as described [4, 18]). All experiments were performed using independent biological 

samples, each independently repeated at least three times with the exception of the xenograft 

experiments. Prism 7.0 software (GraphPad) was used for statistical analyses with significance 

level set at p < 0.05. 

 

Results 
Unsupervised clustering analysis highlights first GBM cells’ tumor of origin 

We used the publicly available single cell transcriptome dataset from Darmanis and 

colleagues [14] after removing low-complexity cell transcriptomes. Genes detected in at least 3 

transcriptomes were retained for analysis (18577 genes for GBM cells and 19699 genes for normal 

cells). Previous analyses of GBM and other cerebral tumors scRNA-seq focused on the most 

dispersed [14] or most expressed genes [22, 50, 62, 64]. These analyses resulted in the 

identification of cell lineages and cell genomic anomalies rather than cell functioning states. We 

chose therefore to conserve all potential information by analyzing the full set of selected genes.  

Gene expressions were computed as log2(CPM+1). Hierarchical Clustering on Principal 

Components (HCPC) of gene expressions in the mixed pool of GBM and normal cells readily 

separated cancer from normal cells (Fig. S1C). This result obtained by analyzing all detected 

genes is similar to the one obtained previously by analyzing the top 500 overdispersed genes [14]. 

Separate HCPC of normal cells resulted in six cell groups of immune or neural subtypes 

(astrocytes, oligodendrocytes, oligodendrocyte precursor cells, neurons, myeloid cells, vascular 

cells, Fig. 1b1), each group mixing cells from different tumors (Fig. 1b2). In striking contrast, GBM 

cell clusters resulting from HCPC analysis were dominated by cells from a single patient tumor 

(Fig. 1c). Contribution of the different tumors to clusters was scored by computing Normalized 

Mutual Information (NMI) between clusters and tumor labels, NMI scores being expected null if 

each tumor contributes equally to each cluster (Supplementary Material). Fully supporting our 

observation, the NMI score of normal cell clustering was only of 0.12 whereas the one of tumor 

cells was of 0.55 (two first bars in Fig. 1d). This predominant grouping of cancer cells by their 

tumor of origin has been reported for a number of cerebral and non-cerebral tumors [11, 14, 33, 

37, 50, 54, 61].  For identifying traits common to all tumors, data can be analyzed tumor per tumor 
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[62, 63, 69], or merged and analyzed as a whole after standardization (i.e. subtracting from each 

expression value the gene expression mean and dividing by its standard deviation across cells 

within a given tumor) [48]. The numbers of cancer cells precluding confident per-tumor analysis, 

we turned to standardization. HCPC analysis of standardized data resulted in clusters mixing cells 

from different GBM (Fig. 1e), as shown by a NMI score similar to the one calculated for normal cell 

grouping (third bar in Fig. 1d). However, gene ontology analysis of the genes identified in the 

HCPC as driving the cell grouping (see methods) did not provide clear links between cell clusters 

and potential cell functioning states (Fig. 1f, Table S2).  

These results prompted us to further explore non-standardized data for minimizing the 

factors that might account for predominant grouping of cancer cells according to their tumor of 

origin. 

 

Tumor identity encoded by information dispersed through GBM cell transcript repertoires 

Two main factors can account for tumor-driven cell grouping: the technical variations in tumor 

sample scRNA-seq, collectively referred to as batch effect, and the biological tumor-specific 

variations. 

In scRNA-seq experiments, batch variations in RNA quality and sequencing efficiency, 

regardless of their origin, translate into variations in sample-dependent gene detection failures 

(referred to as dropouts) and in sample sequencing depth. Grouping of normal cells independently 

from their tumor of origin indicates that such batch variations are minor. We tested the influence of 

dropouts and of an additional normalization of the sequencing depth using a set of GBM-specific 

housekeeping genes (HKG) on the cell grouping (Table S3). Neither dropout imputation nor HGK 

normalization corrected tumor-driven cell grouping (Fig. 1d, Fig. S2A and B), confirming that batch 

effects are not major contributors of this grouping. Inter-tumor biological differences encompass 

genomic alterations known to vary greatly from one GBM to another, the tumor developmental 

stage, or the brain area and/or cells from which it developed [55]. We reasoned that differing 

biological characteristics, whatever their source, would translate into gene repertoires differing 

between tumors. To test this possibility, we considered binarization of the data by applying a value 

of one to all expressed genes regardless of their relative expression levels, and zero for non-

detected ones. Maintenance of cell grouping by tumor of origin following binarization of gene 

expression (Fig. 1d and Fig. S2C) showed that cell gene repertoires are more similar within a given 

tumor than between two different tumors. We therefore sought to better understand which genes 

contribute most to this variability between cell transcriptomic landscapes. We first tested the impact 

of chromosome CNV on the cell grouping by filtering out genes mapped to chromosomes with CNV 

as previously identified [14]. Taking into account CNV did not modify tumor-driven cell grouping 

(Fig. 1d and Fig. S2D). Likewise, excluding genes detected in a single tumor or including only 

genes detected in all tumors did not change the outcome of HCPC analyses (Fig. 1d and Fig. S2E 

and F). We then tested the influence of inter-tumor variability in gene expression. Exclusion of the 

100 genes identified as differentially expressed between tumors by Darmanis and colleagues [14] 

did not modify the outcome of the analysis (Fig. 1d and Fig. S2G). We then considered the most 
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expressed genes, calculating the aggregate expression of each gene across cells, and retaining 

genes with the highest aggregate expression as described [62]. HCPC using the resulting 9505 

most expressed genes still grouped cells by their tumor of origin (Fig. 1d and Fig. S2H). Likewise, 

performing HCPC using the top 500 or 1000 genes with expression variability between cells higher 

than expected (i.e. overdispersed [20]), or after excluding them, resulted in a similar tumor-driven 

cell grouping (Fig. 1d and Fig. S2I-L). Altogether, these results indicate that tumor-driven cell 

grouping is not based on limited and tumor-specific sets of genes. This led us to envisage that 

primary grouping of cancer cells by tumor of origin could result from information dispersed 

throughout the whole cell transcriptome. We challenged this hypothesis by performing iterative 

HCPC analyses on decreasing numbers of genes randomly selected among the 18577 detected 

genes. Ten analyses of distinct sets of randomly selected genes were performed for each size of 

gene sets (n = 2000, 1000, 500, 250, 100, and 50). NMI scores of the clusterings remained 

unchanged for gene set sizes > 500 (Fig. 2a and b). Their gradual decrease below this threshold 

indicated a progressive reduction of the influence of the tumor of origin on cell grouping. This 

influence was suppressed only when reducing the number of analyzed genes to 50, as shown by 

NMI scores equivalent to that calculated from the grouping analysis of the 19699 genes detected in 

normal cells (Fig. 2a and c). Altogether, these results show that tumor-driven cell grouping is 

irreducible to differential expression of circumscribed gene groups. To the contrary, it is encoded 

by information dispersed throughout the cell transcript repertoires, which is retrieved as soon as a 

combination of expressions of more than 500 genes is included in the analyses. As a 

consequence, unsupervised analysis turns out to be inadequate for identifying cell functioning 

states common to all tumors. We thus turned towards an approach of data reduction based on a 

signature of a functionally coherent set of genes. 

 

GBM cell grouping according to their tumorigenic potential upon signature-driven reduction 

of scRNA-seq data 

We developed a grouping method based on a molecular signature we previously identified 

[4]. The signature is composed of five transcription factors, ARNT2, POU3F2, OLIG2, SOX9 and 

SALL2, with co-varied expression in GBM tissues and cells [4]. The POU3F2, OLIG2 and SOX9 

genes have regulatory elements with ARNT2 binding sites and are down-regulated upon ARNT2 

knockdown [4]. Each signature element was demonstrated to be required for GBM cell tumorigenic 

properties [4, 28, 41, 60]. We sought to use this signature to highlight subpopulations of cells in a 

tumorigenic state, expected to be present in all tumors. 

To obtain an index of the cells’ tumorigenicity, we calculated a tumorigenic score 

corresponding to the geometric mean of the expression of each signature element. The score 

distribution curve exhibited a main inflection point corresponding to the distribution’s mean (Fig. 

3a), which delineated two groups of 654 and 379 cells with low and high tumorigenic scores, 

respectively, hereafter designed as TumLOW and TumHIGH (Fig. 3a). Each of the four tumors 

contributed to each group (Fig. 3b, NMI score=0.057). TumHIGH GBM cells exhibited higher 

numbers of transcripts and genes than TumLOW GBM cells (Fig. S3A and B). We identified 6630 
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genes differentially expressed between both groups (Mann Whitney, BH-adjusted p-value < 0.01, 

Table S4), 98% of these genes being overexpressed in TumHIGH GBM cells. Of note, several items 

of the list of genes with enhanced expression in TumHIGH cells encoded proteins previously 

implicated in GBM cell aggressiveness (e.g. E2F1 [67], EGFR [1], HES1 and NOTCH1 [7], FABP7 

[15], PTPRZ1 [24]). Conversely, genes with known tumor-suppressor properties were identified 

among the genes overexpressed in TumLOW cells (e.g. TUSC3 [34], SERPINB1 [31]). The whole 

workflow is summarized in Fig. S4 and provided in Datafile S2. These results suggest that cell 

functioning state can be inferred from scRNA-seq data following signature-driven data reduction. 

We next challenged the relevance of this approach by applying it to an independent dataset and 

using in vitro and in vivo GBM models. 

 

Specific amino acid and lipid metabolic pathways distinguish GBM cells and tissues with 

high tumorigenic potential 

To probe the biological relevance of our approach, we first applied the same analytical 

strategy to an independent dataset. Additional GBM single cell transcriptome datasets equivalent 

to the one published by Darmanis and colleagues and including several patients are not publicly 

available. We therefore turned to the TCGA collection of transcriptomes obtained by sequencing 

the RNA extracted from 155 patients’ GBM tissue fragments. As expected with respect to the 

heterogeneous nature of GBM tumors where cancer cells with differing properties co-exist with 

normal neural, vascular and immune cells, we observed a smoother distribution curve of the 

tumorigenic score across GBM tissues than across GBM cells (Fig. 3c). We therefore used 

quartiles to delineate two GBM tissue groups with low and high tumorigenic scores, respectively 

(Fig. 3c). Differential expression analysis between these two groups yielded a list of 6565 genes, 

44% of them being overexpressed in TumHIGH GBM tissues (Mann Whitney, BH-adjusted p-value < 

0.01, Table S4). The list of genes overexpressed in TumHIGH GBM tissues showed a 65.5% overlap 

with the list of genes overexpressed in TumHIGH cells (Fig. 3d, Table S4). This result was 

remarkable considering that it was obtained by confronting a dataset derived from 4 tumors to 

another derived from 155 tumors, and that tissue transcriptomes correspond to gene expression 

levels averaged over several hundred thousands of cells. Of the 1688 genes overexpressed in 

TumHIGH GBM cells and tissues, 78 encoded metabolic enzymes (Table S5). We further selected 

the 66 of them significantly correlated to the tumorigenic score across all GBM cells as well as 

across all GBM tissues (Pearson correlation, p-value <0.01, Table S5). Gene ontology analysis 

highlighted a 15 to 45-fold enrichment first in components of the lipid metabolism (27 genes) and 

second in components of the amino acids metabolic pathways (18 genes) (Fig. 4a, Table S5 and 

Fig. S5). Seven of the components of the amino acid metabolism belonged to the glycine, serine 

and threonine metabolism (Fig. 4b) whereas the lipid metabolism components were distributed 

among eight subpathways (Fig. 4b).  Modeling of the regulatory gene network from the single cell 

expression data of the 66 metabolism genes using the MIIC algorithm singled out very long chain 

polyunsaturated fatty acid (VLC-PUFA) synthesis by highlighting ELOVL2 as the densest node of 

the network (Fig. 4c). 
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Functional association of the lipid metabolism enzyme ELOVL2 to patient clinical outcome 

and GBM development  

ELOVL2 is a fatty acid elongase involved in the elongation of 22- to 24-carbon VLC-PUFA 

[27]. In agreement with ELOVL2 overexpression in TumHIGH cells, we observed ELOVL2 

overexpression in cells with tumorigenic properties in an independent transcriptome dataset of 

human GBM cells in culture [38] (Fig. Fig. S6A). In addition, we observed a higher expression of 

ELOVL2 in GBM than in normal brain tissues (Fig. S6B), as well as in single GBM cells compared 

to single normal cells (Fig. S6C). Its expression was also higher in primary GBM characterized by a 

wild-type form of IDH1 compared to diffuse glioma, which are characterized by a mutant form of 

IDH1 (Fig. S6D). Of note, ELOVL2 levels were also higher in GBM bearing an amplified EGFR 

gene than in GBM with non-amplified EGFR (Fig. S6E). Finally, ELOVL2 high expression was 

found to be associated with worse patient survival in independent patient cohorts (Fig. 5a and Fig. 

S6F). Knocking down ELOVL2 expression in patient-derived cells (PDC) using lentiviral 

transduction of small hairpin (sh) RNA (Fig. 5b) resulted in a sharp decrease in cell proliferation 

(Fig. 5c). ELOVL2 role in the control of GBM cell tumorigenicity was evaluated in vivo using 

orthotopic xenografts of PDC stably expressing luciferase and either shControl or shELOVL2. 

Tumor development monitoring with bioluminescent imaging showed delayed tumor formation and 

reduced tumor burden in mice grafted with shELOVL2-PDC, compared to mice grafted with 

shControl-PDC (Fig. 5d and e). Of note, tumors that developed in a delayed manner from 

xenografts of shELOVL2-PDC had escaped from ELOVL2 inhibition, as shown by Q-PCR 

detection of human ELOVL2 mRNA levels at levels similar to those measured in tumors developing 

from xenografts of shControl-PDC (Fig. 5f). To gain insight into the cell process affected by 

ELOVL2, we selected from the 27 genes of the lipid metabolism, a lipid subgroup of 16 genes 

detected in at least 25% of the cells (Table S5). These genes were used to construct a principal 

curve onto which each GBM cell was projected (Fig. 5g). In addition, we computed a score with the 

expression of these 16 genes, following the same procedure as for the tumorigenic score. Of note, 

highest lipid scores (Fig. 5h), highest ELOVL2 expression values (Fig. 5i) and highest tumorigenic 

scores (Fig. 5j) all coincided in cells along the principal curve. This result further strengthens the 

relationship between the expression of the lipid subgroup, ELOVL2 expression and the tumorigenic 

state of the cells. Another member of the ELOVL family, ELOVL4, was involved in extracellular 

vesicle formation and release [29]. This prompted us to determine whether ELOVL2 expression is 

associated with molecular signatures of extracellular vesicles at the single cell level. Scores 

calculated for each of the four molecular signatures associated with extracellular vesicle were 

correlated with the tumorigenic scores (Table S6) and coincided with high ELOVL2 expression in 

cells along the principal curve (Fig. 5k and Fig. S7). This experimental set of results demonstrates 

that ELOVL2 is required for the tumorigenic behavior of GBM cells. It also suggests that ELOVL2 

requirement stems from its involvement in the regulation of intercellular communication via 

extracellular vesicles. In addition, it provides robust experimental support for the relevance of 
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signature-driven reduction of single cell transcriptomes to decipher the metabolic pathways 

underscoring GBM cell behaviors within the patients’ tumors. 

 
Discussion 

Metabolism is at the heart of cell behavior and its dependence on enzymatic activities makes 

it a target of choice for therapeutic targeting. GBM cells adapt their functioning state to changes in 

their microenvironment, whether these changes result from natural tumor growth or therapies. 

Progress towards identification of the most relevant possible targets for patient therapy requires 

access to molecular players active in the actual context of the patient tumors while taking into 

account the heterogeneity of the tumor tissue. Transcriptomes of single cells sorted from patient 

GBM offer such an access.  

Unsupervised analysis of scRNA-seq resulting in predominant grouping of cancer cells 

according to their tumor of origin and of normal cells independently from their tumor of origin was 

found in analyzing scRNA-seq from tumors other than GBM [11, 33, 37, 54, 61] but never 

questioned. We considered in all ways we thought eventual influences of scRNA-seq technical 

biases as well as of the tumor-specific differences in gene repertoires expected to reflect inter-

tumor biological differences whatever their sources. We did not find one accounting for cell 

grouping-dependence on the tumor of origin. In contrast, unsupervised analyses of randomly 

down-sampled numbers of genes showed that tumor-driven cell grouping disappears below a 

critical number of genes (100 to 50 in this study). Collectively, our results show that cancer cell 

clustering per tumor is not due to scRNA-seq technical bias (as expected with respect to the lack of 

influence of the tumor on normal cell grouping) or to circumscribed gene subsets reflecting inter-

tumor biological differences. They support the notion that the identity of the tumor to which each 

cancer cell belongs is encoded by information dispersed throughout the cell transcript repertoire.   

To unmask cell functioning states regardless of their tumor of origin, we reduced the data 

based on previously acquired biological knowledge. Signature-driven data reduction was 

previously used to infer cell lineages from single cell transcriptomes of oligodendrogliomas and 

diffuse infiltrative pontine gliomas [22, 62]. In these studies performed on centered data, cell 

lineages were inferred using sets of top correlated genes to the principal component scores of a 

PCA of the dataset under scrutiny [62], or on the basis of mouse or human gene sets differentiating 

normal neural subtypes [22, 64]. Here, we based our analysis on a molecular signature related to a 

major functioning state, tumorigenicity.  

Cells from a given GBM have long been known to be endowed with differing abilities to 

initiate neoplasms [30, 53, 66]. We postulated that such a choice would enhance the likelihood to 

group cells based on their functioning state irrespective of their tumor of origin. We postulated also 

that using a signature defined [4] and experimentally validated in independent prior studies [4, 28, 

41, 60] would reduce the risk of obtaining results relevant only for the dataset analyzed. Our 

choices proved fruitful to identify two contrasting functioning states, with respect to the following 

findings: genes previously described as controlling GBM cell aggressiveness were found to be 

overexpressed in cells with high tumorigenic scores; a highly similar list of differentially expressed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2019. ; https://doi.org/10.1101/755611doi: bioRxiv preprint 

https://doi.org/10.1101/755611
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

genes was obtained when applying the same analytical strategy to an independent dataset made 

of tissue bulk transcriptomes of a much larger number of GBM; highest scores for the lipid 

subgroup found to be enriched in TumHIGH cells and tissues coincided with highest tumorigenic 

scores; finally, experimental knockdown of the most interconnected gene of this lipid metabolism 

subset, ELOVL2, impaired GBM cell tumorigenic properties. 

Oncogenic mutations have long been known to favor mobilization of metabolic pathways, 

most notably by allowing cancer cells to adapt their mode of energy production to different 

microenvironments and sources of nutrients [40, 52]. GBM cells, like other cancer cell types, are 

considered to favor glycolysis over oxidative phosphorylation for ATP production. This prevalence 

of glycolysis is considered as a cell adaptation to its need for feeding carbon into biosynthesis of 

nucleic acids, fatty acids and proteins for cell growth and proliferation. At the single cell level, 

overexpression of genes coding for enzymes of the glycolysis pathway was not associated with 

high tumorigenic scores. This suggests that enhanced mobilization of glycolysis enzymes is not 

proper to GBM cells in a tumorigenic state, at least at the transcriptional level. Overexpression of 

two genes coding for enzymes of the amino-acid pathways, GATM and CKB (Fig. 4b) rather 

suggests that another source of energy distinguishes tumorigenic from non-tumorigenic GBM cells. 

GATM is one of the two enzymes ensuring brain-endogenous synthesis of creatine, starting from 

glycine. The second enzyme, GAMT, was found to be overexpressed in tumorigenic high GBM 

cells but not retained for final analyses because absent from the list of genes overexpressed in 

tumorigenic GBM tissues. CKB is responsible for the phosphorylation of creatine, which serves for 

ATP regeneration and plays an essential role in brain energy metabolism [56]. Interestingly, GATM 

is the most interconnected of the enzymes coding for elements of amino acid metabolism in the 

modeling of the gene expression network (Fig. 4c). Lipids are also a significant source of energy. 

Lipid metabolism association to GBM cell aggressiveness has been reported to stem from lipid 

contribution to cell energetics through fatty acid beta-oxidation and to transduction pathways 

through the mevalonate metabolism [40]. Accordingly, we found that genes coding for key 

enzymes of the fatty acid synthesis (e.g. ACLY, FASN) and beta-oxidation pathways (CPT1), as 

well as the mevalonate pathways (MVD) were overexpressed in TumHIGH cells. In addition, we 

observed an overexpression of genes involved in the synthesis of phospholipids, glycerolipids and 

sphingolipids, essential components of plasma membranes and/or sources of potent 

autocrine/paracrine signaling molecules.  

The biological relevance of the results of our bioinformatics analyses was further validated in 

in vivo experimental models of human GBM. Our study unveiled an unexpected causal link 

between ELOVL2, the endpoint enzymatic component of the lipid subpathway ensuring synthesis 

of VLC-PUFA, and the tumorigenic status of GBM cells. Notably, we show that ELOVL2 

knockdown in PDC decreases tumor growth in vivo. Little is known on this member of the ELOVL 

family that catalyzes the elongation of saturated and monounsaturated VLCFA (ELOVL1, 3, 6 and 

7) and of VLC-PUFA (ELOVL2, 4 and 5) by adding two carbon units to the carboxyl end of a fatty 

acid chain [27]. ELOVL2 is specifically involved in the elongation cascade starting from the dietary 

PUFA linoleic and linolenic acids, which cannot be synthesized by humans. The products of the 
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enzymatic process of these essential PUFA are thought to modulate diverse biological phenomena 

ranging from cell survival to inflammatory responses [3, 10]. In mouse models, Elovl2 knockout has 

been shown to result in defective PUFA composition in the liver, serum and testis in association 

with male infertility and a reduced capacity to accumulate fat [51, 70]. PUFA are structural 

components of membrane phospholipids especially enriched in neural tissues, and provide potent 

signaling compounds [39]. In the MCF7 cell line that models breast cancers requiring estrogen for 

growth, ELOVL2 expression is positively regulated by estrogen [26], and its knockdown is 

associated with epithelial to mesenchymal transition [36]. In this epithelial cancer high ELOVL2 

expression is associated with higher metastatic relapse-free survival [36]. On the opposite, 

ELOVL2 upregulation in prostate cancer has been associated with the oncogenic effect of SPOP 

loss of function mutations [68]. Here, finding of the association between high ELOVL2 expression 

in GBM and worsened patient prognosis (Fig. 5a and Fig. S6F), coupled with the demonstrated 

requirement of ELOVL2 for GBM cells tumorigenicity in vivo, demonstrates a causal link between 

ELOVL2 and GBM growth. We investigated through bioinformatics analysis what might be the 

mechanism of action of ELOVL2 overexpression in tumorigenic high cells. The correlation between 

ELOVL2 overexpression and molecular signatures of extracellular vesicles suggests that formation 

and release of extracellular vesicles is one of the cell processes by which ELOVL2 controls GBM 

tumor development. This possibility is coherent with the reported involvement of another member 

of the family, ELOVL4, in the formation of synaptic vesicles in the brain and retina [29]. 

Extracellular vesicles have been involved in intercellular communications within GBM, by carrying 

metabolites, nucleotides and proteins able to affect the behavior of cancerous as well as non-

cancerous cells composing the tumor [6, 21]. Our experimental results are coherent with our 

modeling results that place ELOVL2 at the core of the metabolic pathways essential for sustaining 

GBM cell tumorigenicity. ELOVL2 importance for GBM is strengthened by a study published during 

writing of this article that describes ELOVL2 as a super-enhancer associated gene controlling 

glioblastoma stem cell properties [25].  

 

Conclusions 
The present findings underscore the power of single cell transcriptome analyses for unveiling 

the complexity of the participation of metabolism in relation to the heterogeneity of cell functioning 

states encountered in GBM. It is worth emphasizing that the discovery of a molecular deregulation 

that proved to be a predictor of patient survival in independent cohorts of several hundred tumors 

stems from the study of cells derived from only four tumors. Our results show the high relevance of 

integrating the cell functioning status, even when focusing on only two contrasting states, for the 

discovery of metabolic modules controlling GBM aggressiveness. Further development of 

signature-driven data reduction based on established experimental evidence will lead to further 

refine the identification of functioning states and of the diversity of the molecular networks required 

for their maintenance. The workflow we designed to classify any single cell dataset according to a 

signature score will be instrumental for blocking GBM cell ability to escape therapies, thus 

contributing to improve GBM therapies. 
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Figure and table legends  
 

Fig. 1. Spontaneous grouping of cancer cells by tumor of origin following unsupervised 

analysis 

a. Schematic outline of the analytical and experimental strategy. 

b-c. Normal cells group independently from tumor of origin whereas cancer cell group by their 

tumor of origin. PCA and tSNE visualizations in upper and lower panels, respectively. Each dot 

represents a cell. b1 and c: cells colored by tumor of origin (pink, green, orange, black for GBM1, 2, 

4 and 6, respectively). Ellipses delineate cell clusters identified upon unsupervised analysis. b2: 

cells colored by normal cell type identity (purple: astrocytes; blue: oligodendrocytes; light blue: 

oligodendrocyte precursor cells; red: neurons; gold: myeloid cells; brown: vascular cells). Ellipses 

delineate normal cell type identities as previously described [14].  

d. Impact of data treatment on the dependence of cell clustering to tumors. NMI: Normalized 

Mutual Information score. Black and white dotted lines correspond to the reference NMI scores of 

grouping analyses performed with all genes detected in GBM and normal cells, respectively. Note 

that NMI scores of GBM cell grouping remain constant, regardless of the mode of data 

normalization or filtering (PCA plots in Fig. S2). Only data standardization reduces the NMI score 

to a value similar to that obtained when analyzing normal cells. 

e. Unsupervised analysis of data standardized by tumor results in clusters mixing cells from 

different tumors. PCA plots with highlight of the 7 clusters identified (top panel) or of the tumor from 

which the cells derive (bottom panel: pink, green, orange, black for GBM1, 2, 4 and 6, 

respectively). 

f. Gene ontology analysis of the genes describing each of the clusters highlight a variety of 

biological processes, not linkable to specific functioning states. DAVID toolkit. Corresponding 

cluster number is indicated (colored as cluster colors in the e upper panel). 

 

Fig. 2. Down-sampling gene numbers relieves tumor-driven cell grouping. 

a. Decreased Normalized Mutual information (NMI) score when reducing gene numbers used for 

grouping analyses. Ten independent analyses performed with randomly selected genes for each 

gene number analyzed. * p <0.01 compared to the NMI score of the grouping analysis performed 

with all genes detected in GBM cells. $ p<0.0001 compared to the NMI score of the grouping 

analysis performed with all 19699 genes detected in the dataset of normal cells. One-sample t-test. 

Note that NMI scores consistently decrease below 500 genes analyzed, reaching values similar to 

the NMI score of the grouping analysis of normal cells only in grouping analyses performed with 50 

genes. 

b. Example of a cell grouping analysis using 2000 randomly sampled genes. The clusters are 

predominantly composed of cells from a single tumor.  

c. Example of cell grouping analysis using 50 randomly sampled genes. Cells from a given tumor 

are distributed in different clusters. Each dot represents a cell colored according to its tumor of 

origin. Cell clusters delineated by ellipses.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2019. ; https://doi.org/10.1101/755611doi: bioRxiv preprint 

https://doi.org/10.1101/755611
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

Fig. 3. Signature-driven data reduction approach identifies cells according to their potential 

tumorigenic state. 

a. Splitting cells into groups with high (TumHIGH) or low (TumLOW) tumorigenic potential. Left panel: 

tumorigenic score distribution across the cells. Dotted line: mean of the tumorigenic score. Right 

panel: PCA plot based on the expression of the 5 elements of the tumorigenic signature.  

b. Contribution of each tumor to the two tumorigenic groups identified (chord diagram). Note that 

each tumor contributes to each cell group. 

c. Tumorigenic score distribution across GBM tissues (155 GBM tissues, TCGA RNA-seq dataset). 

TumHIGH and TumLOW GBM tissue groups selected at the extreme quartiles of the distribution. 

d. High overlap between genes overexpressed in TumHIGH GBM tissues and cells. 65.5% (1688) of 

genes overexpressed in TumHIGH GBM tissues are also overexpressed in TumHIGH GBM cells. 

Fig. 4. Enriched expression of genes coding for enzymes of the lipid and amino acid 

metabolisms in TumHIGH GBM cells and tissues.  

a. Gene ontology analysis of the 66 metabolism genes identified among genes overexpressed in 

both GBM TumHIGH cells and tissues. DAVID toolkit. 

b. Schematic representation of the lipid and amino acid metabolic pathways containing genes 

overexpressed in TumHIGH GBM cells and tissues. Asterisks mark genes coding for components of 

the glycine, serine and threonine metabolism. LA: linoleic acid; ALA: linolenic acid; ETA: 

eicosatetraenoic acid; EPA; eicosapentaenoic acid; ADA: docosatetraenoic acid; CA: clupanodonic 

acid; TTA: tetracostatetraenoic acid; TPA: tetracosapentaenoic acid; THA: tetracosahexaenoic 

acid.  

c. Modeling interconnections between the 66 metabolism genes highlights ELOVL2 at the most 

densely connected node of the network. Gene network built on the basis of the gene expression 

values across all GBM cells using MIIC tool. Line thickness represents the strength of the edge. 

Arrowheads linking variables in a v-structure of the type x → y ← z denotes the absence of a path 

between the x and z variables going through the y variable located on the tip of the v-structure. 

 

Fig. 5. Association of the lipid metabolism enzyme ELOVL2 to patient clinical outcome and 

GBM development  

a. High ELOVL2 expression is associated with worse patient survival. GBM tissue transcriptomes 

(microarrays) of 485, 156 and 173 GBM of the TCGA, French and Rembrandt datasets, 

respectively. Log-rank (Mantel-Cox) test. 

b. Decreased ELOVL2 mRNA levels in shELOVL2 patient-derived cells (PDC) compared to 

shControl cells. 6240** (left panel), R633 (middle panel) and 5706** (right panel) PDC. QPCR 

assay. Unpaired t-test with Welch’s correction, mean ± SD, n = 4-5 independent biological 

samples.  
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c. ELOVL2 down-regulation decreases cell proliferation. 6240** (left panel), R633 (middle panel) 

and 5706** (right panel) cells. Unpaired t-test with Welch’s correction, mean ± SD, n = 4-5 

independent biological samples.  

d. Knocking down ELOVL2 delays tumor development. Bioluminescent analyses of tumor growth 

initiated by grafting PDC transduced with a luciferase construct and either shControl (shCTL) or 

shELOVL2 constructs. n = 4 (6240**) and n = 6-8 (5706**) mice per group. 

e. ELOVL2 knockdown decreases tumor burden as shown by quantification of the tumor 

bioluminescent signals. DPG: days post-graft. n = 4 (6240**) and n = 6-8 (5706**) mice per group. 

Mean ± SD. Unpaired t-test with Welch’s correction. 

f. Recovery of ELOVL2 expression in tumors forming from xenografts of 6240** shELOVL2. QPCR 

assay. Mean ± SD. n=4 for shCTL and n=3 for shELOVL2. One sample t-test.  

g-k. Principal curve resulting from PCA of the expression of the subgroup of genes encoding lipid 

metabolism enzymes overexpressed in TumHIGH cells and tissues. g. Cell density along the 

principal curve. The ellipse delineates the portion of the curve with the highest cell density. h-k. 

Cells colored according to their (h) score calculated with the components of the lipid subgroup, (i) 

ELOVL2 expression levels, (j) tumorigenic score, and (k) extracellular vesicle biogenesis score. 

Note that cells with either high score or expression value cluster on the same portion of the curve 

(ellipses). Pathifier tool. 

 

Supplementary Information, tables and figures legends 
 

Supplementary Information 1 (related to Material and Methods).  

 

Datafile S1. R scripts used for unsupervised grouping and associated analyses. 

 

Datafile S2. R scripts used for signature-based analytical workflow. Schematic representation 

of the workflow in Fig. S4. 

 

Table S1 (related to Material and Methods). List of all resources and materials, R packages, 

corresponding websites and references. 

 

Table S2 (related to Fig. 1). Gene ontology (GO) analysis of the genes describing each of the 

seven clusters identified upon grouping analysis using standardized data. DAVID toolkit. 

Sheet 1: Legend. Sheet 2: Lists of genes upregulated in a given group, as compared to their mean 

across all cell groups, and used for GO analysis. Following sheets: GO analysis results for clusters 

1-7. 

 

Table S3. List of housekeeping genes used for data normalization. Sheet 1: Legend. Sheets 

2-3: Percentage of cells in which genes are detected (sheet 2), the coefficient of variation of their 

expression (sheet 2) and their auto-correlation (sheet 3) across all GBM cells are indicated. 
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Computing gene expression values with the log2(CPM + 1) allows correcting sequencing depth 

variations between samples. We tested an additional step in the normalization of the sequencing 

depth based on a set of housekeeping genes (HKG). We considered as HKG the cluster of genes 

detected in at least 90% of the cells with pairwise correlated expression and the lowest coefficient 

of variation across cells. The geometric means of HKG expression were calculated per small 

groups of cells with similar expression profiles (metacells). Gene expression values computed as 

log2(CPM + 1) were divided, for each cell, by the normalization factor corresponding to its 

metacell. 

 

Table S4 (related to Fig. 3). Genes differentially expressed between low and high tumorigenic 

GBM cells and/or tissues. Sheet 1: Legend. Sheet 2: Genes differentially expressed between

GBM cells with low and high tumorigenic scores. Sheet 3: Genes differentially expressed between 

GBM tissues with low and high tumorigenic scores. Sheet 4: Genes found to be overexpressed in 

TumHIGH cells as well as tissues.  

 

Table S5 (related to Fig. 4). Pearson correlation across all GBM cells (sheet 2), and all GBM 

tissues (sheet 3) between the tumorigenic score, and the 78 metabolism genes identified as 

overexpressed in TumHIGH cells and tissues. Sheet 1: legend. Sheet 4: List of the 66 genes 

significantly correlated to the tumorigenic score across all GBM cells as well as across all GBM 

tissues. Sheet 5: Gene ontology analysis of the 66 genes coding for metabolic enzymes. Sheet 6: 

List of the 27 genes coding for enzymes of the lipid metabolism. Genes detected in at least 25% of 

the cells are highlighted. 

 

Table S6 (related to Fig. 5 and Fig. S7). Correlation values calculated across all cells between 

the tumorigenic score, ELOVL2 expression, and the signature scores associated with 

extracellular vesicle biogenesis, transport, targeting, and fusion. 

 

Fig. S1 (related to Fig. 1). Filtering out cells with low-complexity transcriptomes and 

unsupervised grouping analysis of GBM and normal cells simultaneously. A-B. Filtering out 

cells with low-complexity transcriptomes. Cells with more than 90000 transcripts and more than 

1700 genes were selected for further analyses. 1033 GBM (A) and 2417 normal cells (B) were 

retained. Left panels: selected cells colored in blue, rejected cells colored in gray. Right panels: 

cells colored by tumor. C. Unsupervised grouping analysis of the mixed set of GBM and normal 

cells distinguishes cancer cells from normal cells. Each dot represents a cell. Normal cells colored 

in light blue, cancer cells colored in violet. Left panel: PCA visualization. Right panel: tSNE 

visualization.  

 

Fig. S2 (related to Fig. 1). Maintenance of tumor-driven cell grouping regardless of the mode 

of data normalization or filtering. A: Multidimensional scaling (MDS) visualization. B-L: PCA 

visualization. Each dot represents a cell. Ellipses delineate the clusters identified. A-B. Technical 
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biases related to scRNA-seq do not contribute to tumor-driven cell grouping. A. Maintenance of 

tumor-driven cell grouping after imputation of dropouts using the algorithm CIDR (Clustering 

through Imputation and Dimensionality Reduction). CIDR imputes dropouts by inferring their values 

from gene expression across all cells [42]. B. Normalizing data by the expression of housekeeping 

genes (HKG) prior to analysis fails to alleviate tumor-driven cell grouping. C-L. Tumor-specific 

biological differences are not reducible to circumscribed sets of genes. C. Binarization of 

expression data to overcome possible inter-experimental variations in the efficacy of scRNA-seq, 

and therefore in the detected RNA levels, does not change tumor-driven cell grouping. D. Filtering 

out genes located on chromosomes with identified variations in copy number (CNV) does not 

modify tumor-driven cell grouping. E. Tumor-driven cell grouping is maintained after removal of 

genes detected in a single tumor. F. Grouping analysis performed using only genes detected in all 

tumors also results in tumor-driven cell grouping. G. Filtering out genes differentially expressed 

between tumors does not alleviate tumor-driven cell grouping. H. Cell grouping analyses using the 

most expressed genes across cells fails to overcome tumor-driven cell grouping. I. Cell grouping 

analyses using the top 500 genes with the most overdispersed expression across cells fails to 

overcome tumor-driven cell grouping. J. Filtering out the top 500 genes with the most 

overdispersed expression across cells does not change tumor-driven cell grouping. K. Cell 

grouping analyses using the top 1000 genes with the most overdispersed expression across cells 

fails to overcome tumor-driven cell grouping. L. Filtering out the top 1000 genes with the most 

overdispersed expression across cells does not change tumor-driven cell grouping.  
 

Fig. S3 (related to Fig. 3). Increased numbers of transcript (A) and genes (B) detected per cell with 

high tumorigenic scores, compared to cells with low tumorigenic scores. Mann-Whitney test. p = 

1.92*10-3 for transcript number and 2*10-41 for gene number.  

 

Fig. S4. Signature-based analytical workflow.  

The analytical method developed has been implemented in R and is provided in Datafile S2. 

 

Fig. S5 (related to Fig. 4). Schematic representation of the main metabolic pathways in which 

are involved 60 of the 66 metabolic enzyme genes overexpressed in TumHIGH GBM cells and 

tissues. Asterisks mark genes coding for components of the glycine, serine and threonine 

metabolism. 

Fig. S6 (related to Fig. 5). Increased ELOVL2 expression is associated with increased tumor 

burden. A. Down-regulated ELOVL2 expression in patient-derived GBM cells deprived of 

tumorigenic properties, compared to their tumorigenic counterparts. Mann-Whitney test. Lee 

microarray dataset GEO ID: GSE4536. R2 genomics analysis and visualization platform database 

(http://r2.amc.nl). B. Higher ELOVL2 expression in GBM tissues compared to normal brain tissues. 

Mann-Whitney test. TCGA tissue transcriptome dataset (microarrays) of 528 primary GBM and 10 

normal brain tissues. C. Significantly higher ELOVL2 expression in GBM cells compared to normal 
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cells. Mann-Whitney test. scRNA-seq dataset from Darmanis and colleagues [14]. D-E. ELOVL2 

expression prevails in GBM bearing a wild-type form of IDH1 (D) and with EGFR gene 

amplification (EGFRAMP) (E). French tissue transcriptome dataset (microarrays). IDH1WT, n=95. 

IDH1MUT n=33. EGFRWT, n=46. EGFRAMP, n=32. Mann-Whitney test. F. High ELOVL2 expression is 

associated with a poorer survival for patients. TCGA GBM tissue transcriptomes (RNA-seq) of 153 

primary GBM. Log rank test. 

 

Fig. S7 (related to Fig. 5). Principal curve analysis associates GBM cell tumorigenic state to 

mobilization of vesicle production and release. Principal curve resulting from PCA of the 

expression of the subgroup of genes encoding lipid metabolism enzymes overexpressed in 

TumHIGH cells and tissues. Cells colored according to their score calculated with the components of 

molecular signatures associated with extracellular vesicle transport (A), targeting (B), and fusion 

(C). Note that cells with either high score cluster on the same portion of the curve (ellipses). 
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