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Abstract

Background: Depression is a leading cause of burden of disease among young people.
Current treatments are not uniformly effective, in part due to the heterogeneous nature of
major depressive disorder (MDD). Refining MDD into more homogeneous subtypes is an
important step towards identifying underlying pathophysiological mechanisms and improving
treatment of young people. In adults, symptom-based subtypes of depression identified using
data-driven methods mainly differed in patterns of neurovegetative symptoms (sleep and
appetite/weight). These subtypes have been associated with differential biological
mechanisms, including immuno-metabolic markers, genetics and brain alterations (mainly in

the ventral striatum and insular cortex).

Methods: K-means clustering was applied to individual depressive symptoms from the Quick
Inventory of Depressive Symptoms (QIDS) in 275 young people (15-25 years old) with MDD
to identify symptom-based subtypes, and in 244 young people from an independent dataset
(a subsample of the STAR*D dataset). Insula surface area and thickness and ventral

striatum volume were compared between the subtypes using structural MRI.

Results: Three subtypes were identified in the discovery dataset and replicated in the
independent dataset; severe depression with increased appetite, severe depression with
decreased appetite and severe insomnia, and moderate depression. The severe increased
appetite subtype showed lower surface area in the anterior insula compared to both healthy

controls and the moderate subtype.

Conclusions: Our findings in young people replicate the previously identified symptom-
based depression subtypes in adults. The structural alterations of the anterior insular cortex
add to the existing evidence of different pathophysiological mechanisms involved in this

subtype.
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Introduction

Approximately 322 million people worldwide (5% of the world’s population) suffer from Major
Depressive Disorder (MDD), a disease characterized by a depressed mood and associated
symptoms (1). In young people, depressive disorders are the main cause of global burden of
disease (2). The onset of MDD peaks during adolescence and young adulthood, and earlier
onset of MDD is associated with decreased quality of life and increased impairment in social
and occupational functioning later in life (3, 4). Currently available treatments are not
uniformly effective for adolescent depression, with response rates around 61% for
antidepressants and 55% for psychotherapy (5, 6). The unpredictable nature of treatment
response might be explained, at least in part, by the heterogeneity of MDD.

The most commonly used systems for classifying mental disorders, The ICD 10
(International Classification of Diseases 10th revision) and Diagnostic and Statistical Manual
of Mental Disorders (DSM-5), categorize a broad spectrum of depressive symptom patterns
within a single MDD diagnosis. To receive an MDD diagnosis, a minimum of 5 of the 9 DSM
criteria for MDD have to be met. Considering that some of the criteria include symptoms of
opposite polarity (e.g. increased versus decreased appetite, weight gain versus loss,
insomnia versus hypersomnia, and psychomotor agitation versus retardation), almost 1500
different combinations of MDD symptoms lead to the same DSM diagnosis of MDD (7). Thus,
patients with the same diagnosis show heterogeneous depressive symptom profiles, which
may reflect different underlying neurobiological mechanisms that could require different
treatments. As people with different phenotypic presentations of depression are not uniquely
identified and diagnosed, they cannot be stratified into different treatments.

Several attempts to identify subtypes of depression have been made to overcome
these issues associated with the traditional diagnostic classification and the heterogeneity of
MDD. Traditionally, subtypes of depression have been defined based on subjective expert
consensus. An example of describing different subtypes are the DSM atypical and

melancholic depression specifiers (1). The atypical specifier is characterized by mood
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reactivity in combination with increases in weight or appetite, hypersomnia and/or leaden
paralysis. The melancholic specifier is distinguished by opposite neurovegetative symptoms:
decreases in weight or appetite and early morning awakening, in addition to psychomotor
agitation or retardation, worse mood in the morning and excessive feelings of guilt. Existence
of the melancholic specifier has been confirmed by prior research, however, the atypical
specifier has been questioned. For example, mood-reactivity, the only obligatory atypical
symptom in the DSM, does not show associations with the other atypical features (8, 9).
More recently, data-driven approaches have been employed to identify symptom-based
depression subtypes. Replicated across a number of studies in adults, latent class analysis
has derived data-driven typical versus atypical neurovegetative symptom subtypes (10-17).
The typical and atypical subtypes are usually characterized as having similar affective and
cognitive symptoms, differing only on sleep and appetite profiles. Of note, the atypical
neurovegetative symptom subtype differs from the atypical specifier in the DSM as it mainly
shows only reversed neurovegetative symptoms (i.e., increased appetite and weight, and in
some studies also hypersomnia). However, not much is known about whether similar
subtypes exist in young people with depression, although one study suggests they are
similar to adults (18).

Importantly, there are biological differences between the data-driven neurovegetative
symptom subtypes in adults. Higher levels of leptin, inflammatory markers (C-reactive protein
(CRP), interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1RA) and tumor necrosis
factor-a (TNF-a)), insulin and higher BMI are associated with the atypical or increased
appetite subtype (15, 19-21). Conversely, higher cortisol and ghrelin levels are associated
with the more typical subtype characterized by decreased appetite (19, 21-23). In addition,
genetic studies have shown that the atypical subtype with increased appetite is associated
with a higher polygenic risk score for BMI, leptin and CRP, whereas the typical subtype
showed a stronger association with polygenic risk scores for psychiatric disorders such as
schizophrenia (24, 25). Moreover, brain activation responses to pictures of food have been

shown to differentiate depressed patients selected on having either increased or decreased
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appetite (21, 26). Higher cortisol levels in the MDD group with decreased appetite were
negatively correlated with ventral striatal activity during a food task; while the MDD group
with increased appetite showed a positive correlation between insulin resistance and
posterior and dorsal mid-insula cortex activity (21). In addition, higher anterior insula cortex
activity in response to these appetitive food pictures was observed in the MDD group with
increased appetite (26).

There is now consistent evidence in adults for different biological correlates across
neurovegetative symptom subtypes, however, it remains unknown whether similar subtypes
exist in young people and if they are characterized by similar biological mechanisms. The
current study aims to replicate the data-driven symptom profiles based on neurovegetative
symptoms, previously identified in adults, in young people with MDD. Furthermore, we
included an additional independent sample as a replication cohort. In addition, the study aims
to examine structural brain alterations associated with the identified subtypes. We
hypothesize that similar subtypes exist in young people, mainly distinguished by opposite
neurovegetative symptoms. We also hypothesize that structural alterations in subregions of
the insula and ventral striatum, regions that have been implicated in subtype differences in

previous adult studies (21, 26), may differentiate between the symptom subtypes.

Methods and Materials

Participants

Discovery sample: Participants were recruited from youth mental health centers in Australia

as part of the YoDA-A and YoDA-C (Youth Depression Alleviation) studies (27, 28). All
participants were aged between 15 and 25 years old and diagnosed with a primary diagnosis
of MDD. In total, 275 young people with MDD and 100 age and gender matched healthy
controls (HC) were included. The HC participants were recruited through advertisements and

did not have a present or past diagnosis of MDD or anxiety disorders. Participants were
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excluded if they suffered from an acute medical disorder, had experienced any psychotic
episodes, or were diagnosed with bipolar disorder. Further, pregnancy, breastfeeding and
any contraindications to MRI were exclusion criteria. The participants gave written informed
consent and the Melbourne Health Human Research Ethics Committee approved the study

protocol.

Replication sample: The data for the independent replication sample came from the STAR*D

study, a large multicenter study examining antidepressant effectiveness (29). To match the
YoDA sample, the sample was restricted to young people between 18 and 25 years old with
an MDD diagnosis, resulting in a sample size of 244. All participants scored 14 or higher on
the Hamilton Depression Rating Scale (HDRS) (30), indicating moderate to severe
depression. Exclusion criteria were a primary diagnosis of schizophrenia, bipolar disorder,
anorexia nervosa, bulimia or obsessive-compulsive disorder. In addition, the participants

were free of antidepressants when they entered the study.

Procedure

Discovery sample: The YoDA participants were screened using the Structured Clinical

Interview for the DSM-IV (SCID) during the baseline assessment (29). In addition, depressive
symptoms were measured using the Montgomery—Asberg Depression Rating Scale
(MADRS) as well as the Quick Inventory of Depressive Symptomatology Self Report (QIDS-
SR) (31, 32). A score of 20 or higher on the MADRS, indicating at least moderate severity of
symptoms, was an inclusion criterion in these studies. Further, participants completed the
Generalized Anxiety Disorder 7 questionnaire (GAD-7), Social and Occupational Functioning
Assessment Scale (SOFAS), Alcohol Use Disorder Identification Test (AUDIT) (33—-35) and
other questionnaires not germane to this study. Within two weeks of the baseline
assessment, and prior to commencing the study treatments, a subset of the participants (137

MDD patients and 100 healthy controls) underwent a structural MRI scan.
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Replication sample: Baseline scores of the QIDS of STAR*D participants were included in

this study (31). The Psychiatric Diagnostic Screening Questionnaire (PDSQ) was used as a
diagnostic screening tool in the STAR*D study (36). Quality of life was assessed with the
Quality of Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q) and impaired
functioning using the Work and Social Adjustment Scale (WSAS) (37, 38). No MRI data was

available in this sample.

MRI data

Discovery sample: The T1 weighted scan lasted ~4 minutes and was performed on a 3T
General Electric Signa Excite at Sunshine Hospital (Western Health, Melbourne). An 8-
channel phased-array head coil was used (TR: 7900 ms, echo time: 3000 ms, thickness (no
gap): 1 mm, flip angle: 13°, field of view: 25.6 cm, matrix: 256x256 pixels).

The cortical parcellation was performed using FreeSurfer (version 5.3) (39). The
segmentations and parcellations were visually inspected and outliers were examined using
the ENIGMA protocol (http://enigma.ini.usc.edu/protocols/imaging-protocols). Cortical
surface area and cortical thickness of the anterior and posterior insula (based on the
Destrieux atlas, (40)) and ventral striatal (nucleus accumbens) volume in the left and right

hemisphere were included as regions of interest.

Data analysis

Symptom subtypes

A k-means clustering in R was applied to the 16 depression items of the QIDS to identify

symptom subtypes in the young people diagnosed with MDD from the YoDA sample (41).
With k-means clustering, clusters are formed based on the cluster mean (centroid) that is
closest to a data point (the item score of a subject) to keep the centroids as small as

possible. The QIDS item data were scaled to make sure all variables had the same weight.
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Selecting the optimal number of clusters: The number of clusters (k) was selected based on

the highest number of partitioning methods in R that selected the same optimal number of
clusters. The R package NbClust was used to determine the optimal number of clusters by
looking at different combinations of distance measures and clustering methods based on
hierarchical clustering (ward.D2, which minimizes variance within clusters) (for more details,
please see supplemental material) (42).

K-means clustering: The optimal number of clusters determined by NbClust was used as an

input parameter to K-means clustering using the stats package in R (41), to identify the
centers of the clusters (centroids). To prevent the clustering settling on local minima, an
initialization method was used to pick cluster means that covered the full range (43, 44). In
this initialization method, random centers were selected, after which the procedure was reran
to readjust the centers. The centroids of the next cluster were selected by maximizing the
distance to the centroids that were selected before. These centers were used to run the K-
mean clustering.

Testing validity and stability: Three methods were used to test the validity and reliability of

the clusters. First, to test the stability of the clusters we repeated our clustering analysis in
10,000 randomly selected subsamples, each containing 100 participants from a pre-selected
training sample (which consisted of 70% of the total sample). In each of the 10,000
subsamples, participants left out of the cluster identification process (the remaining 30%)
were assigned to clusters using linear discriminant analysis classifiers. The left-out sample
was combined with the training sample to form a complete cluster solution. We then tested
whether the individual cluster assignments were stable over the 10,000 subsamples by
calculating an adjusted Rand score to test the similarity between each subsampling
clustering solution compared to the original clustering solution. A Rand index of 1 means that
the clustering solutions completely agree on the labels, while a Rand-index of O represents a
disagreement in the clustering. We also calculated the cluster-to-cluster index, which
represents the mean distance between the clusters in the original and the new clustering

obtained through resampling. Second, the optimal number of clusters was tested against a
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null distribution with permutation testing (45). The same analysis procedure, including
subsampling and permutation testing was repeated in the independent replication dataset
STAR™D. A latent class analysis was performed to test the robustness of the k-means
clustering method and to compare our findings to findings in previous adult studies that

mainly employed latent class analysis (Supplementary Materials).

Differences in clinical and structural brain characteristics between subtypes

The symptom subtypes that were identified were compared on clinical and demographic
characteristics in R using ANOVA or chi-square tests, and if there was a significant
difference at p<0.05, posthoc tests with Tukey HSD correction for multiple comparisons (3
tests to compare the 3 subtypes).

In the YoDA sample, anterior and posterior insula cortex surface area and thickness
and ventral striatum volume (in the left and right hemisphere) were compared between
subtypes using an ANCOVA with group (MDD subtypes and healthy controls) as predictor
and age and sex, as well as intercranial volume (ICV) as covariates. We did not include ICV
as a covariate in analysis with insula thickness measures, since thickness does not scale
with head size (46). False discovery rate (FDR) correction was applied and Tukey HSD
corrected posthoc tests were performed when a significant main effect of group was found.
Analyses were repeated in an antidepressant naive sample to control for the possible effect

of antidepressant use.

Results

Symptom subtypes

A 3-cluster solution was found to be the optimal fit according to 9 out of 26 partitioning
methods (see Supplemental Figure S1). The stability of the clusters was tested for 2 as well
as 3 clusters. The average Rand Index was 0.40 for 2 clusters, and 0.55 for 3 clusters. In

addition, the average cluster-to-cluster distance was 1.35 for 2 clusters and 1.85 for 3
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clusters, meaning that more labels agreed when 3 clusters were used and the means of

different clusters were further apart in the 3-cluster solution. In addition, the Scott and

Friedman partitioning measure showed that the index number for this number of clusters was

higher than the cluster indices of an empirical null distribution, meaning that 3 clusters

described the data better than data with no underlying clusters (Scott: p<0.001, Friedman:

p=0.01, Supplemental Figure S2).
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Figure 1. Symptom subtypes in the YoDA discovery sample (A) and in a subsample of
the STAR*D replication sample (B). A severe depression with increased appetite (SIA)
subtype, severe depression with decreased appetite and insomnia (SDA) subtype and a
moderate depression (MOD) subtype were identified in both datasets. The axis shows the
percentage of subjects within a subtype that shows the symptoms in the radar plot (QIDS

items).

The clusters were labelled as following: moderate depression (n=111, MOD), severe

depression with increased appetite (n=59, SIA) and severe depression with decreased

appetite and insomnia (n=105, SDA) (Figure 1A). The MOD subtype endorsed symptoms
such as a sad mood, lack of general interest, fatigue and typical neurovegetative symptoms
of decreased appetite, weight loss and insomnia. The SIA and SDA subtypes both showed a
higher severity of symptoms overall than the MOD subtype. The SIA subtype was uniquely
characterized by endorsement of reversed (atypical) neurovegetative symptoms of increased
appetite and weight gain, whereas the SDA subtype showed decreased appetite and higher

levels of insomnia. The SIA subtype consisted of more females and was associated with
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higher BMI compared to SDA and MOD (Table 1). Similar clusters were identified in the
STAR*D dataset, including a moderate depression subtype (MOD, n=108), a severe
depression with increased appetite and weight gain subtype (SIA, n=54) and a severe
depression with decreased appetite and highest levels of insomnia subtype (SDA, n=82)

(Figure 1B, Table 2).

Table 1. Demographics and clinical characteristics of symptom subtypes identified in
the YoDA discovery sample.

SIA SDA MOD p-value Post hoc
(N=59) (N=105) (N=111)

Age 19.9 (2.4) 19.6 (2.6) 20.0 (2.9) 0.56

Female, N (%) 43 (73%) 59 (56%) 59 (53%) 0.04 SIA > SDA,
MOD

Comorbid ANX, 30 (51%) 62 (59%) 56 (50%) 0.75

N (%)

Age of onset 15.5 (3.2) 12.8 (2.4) 13.6 (2.6) 0.20

MDD

Recurrent % 37.3 324 29.7 0.77

AD use % 3.4 11.4 4.5 0.04

FH MDD % 52.5 43.8 45.0 0.36

QIDS 18.4 (2.7) 19.5 (2.4) 14.1 (2.8) <0.001 SDA>SIA >
MOD

MADRS 31.0 (5.0) 35.4 (5.7) 30.9 (4.8) <0.001 SDA > SIA,
MOD

GAD-7 14.7 (4.6) 15.4 (4.9) 10.0 (4.9) <0.001 MOD < SIA,
SDA

SOFAS 56.7 (11.1) 57.0 (11.3) 58.4 (11.0) 0.55

BMI 29.5(7.7) 24 .2 (6.0) 26.2 (8.0) <0.001 SIA > SDA,
MOD

Anorexia 1(2%) 2 (2%) 3 (3%) 0.89

Nervosa, N (%)

Bulimia 2 (3%) 3 (3%) 2 (2%) 0.80

Nervosa, N (%)

Binge eating 9 (15%) 3 (3%) 1 (1%) <0.001 SIA > SDA,

disorder, N (%) MOD

AD: antidepressant, ANX: anxiety disorder, BMI: body mass index, GAD-7: generalized
anxiety disorder 7, MADRS: Montgomery Asberg depression rating scale, MDD: major
depressive disorder, MOD: moderate depression subtype, N: number of, QIDS: quick
inventory of depressive symptomatology, SDA: severe depression with decreased appetite
and insomnia subtype, SIA: severe depression with increased appetite subtype, SOFAS:
social and occupational functioning assessment scale

Table 2. Demographics and clinical characteristics of symptom subtypes identified in
the STAR*D replication sample.
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SIA SDA MOD p-value Post hoc
(N=54) (N=82) (N=108)
Age 22.3 (2.0) 21.8 (2.0) 21.8 (1.9) 0.29
Female, N 42 (78%) 60 (73%) 75 (69%) 0.53
(%)
Comorbid 5 (9%) 11 (13%) 16 (14%) 0.61
ANX, N (%)
Eating 1 (2%) 1 (1%) 0 (0%) 0.41
disorder, N
(%)
QIDS 18.3 (3.2) 18.4 (2.5) 12.4 (2.3) <0.001 SIA, SDA > MOD
Hamilton 211 (4.4) 244 (5.2) 19.8 (4.0) <0.001 SDA > SIA, MOD
Q-LES-Q 38.8 (10.7) 38.6 (12.6) 50.2 (13.4) <0.001 SIA, SDA < MOD
WSAS 26.0 (7.4) 253 (7.1) 175 (7.2) <0.001 SIA, SDA > MOD

ANX: anxiety disorder, MOD: moderate depression subtype, N: number of, QIDS: quick
inventory of depressive symptomatology, Q-LES-Q: quality of life enjoyment and satisfaction
questionnaire, SDA: severe depression with decreased appetite and insomnia subtype, SIA:
severe depression with increased appetite subtype, WSAS: work and social adjustment scale

Neurobiological alterations in symptom subtypes

Left and right anterior insula surface area showed a main effect of group (p=0.01), which was

driven by lower surface area in these regions in the SIA subtype compared to healthy

controls (posthoc: left anterior insula: p=0.05, right anterior insula: p=0.03) (Figure 2).

Additionally, right anterior insula surface area was also lower in the SIA subtype compared to

the MOD subtype (marginally significant at p=0.05). No differences were found in posterior

insula surface area, thickness of insular subregions and ventral striatum volume. Among the

participants with neuroimaging data, the subtypes did not show differences in BMI (see

Supplemental Table S1). The results were replicated in a subset of the sample excluding

lifetime antidepressant users. In the subset consisting of only antidepressant naive patients

(n=97), the main effects for left and right anterior insula were still significant (p=0.03 and

p=0.03). However, the SIA subtype showed less robust differences from healthy controls

(p=0.06 and p=0.08) and the surface area in the left and right anterior insula in the SIA

subtype does not differ from the moderate subtype in this sample (p=0.27 and p=0.17).

12
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Figure 2. Left and right anterior insula surface area in the subtypes in the YoDA
discovery sample. Severe increased appetite (SIA) subtype, Severe decreased appetite
and insomnia (SDA) subtype, Moderate (MOD) subtype and Healthy control (HC). SIA
showed significantly lower surface area in the left anterior insula compared to HC. In the right
anterior insula, SIA showed lower surface area compared to HC and MOD.

Discussion

The aims of the current study were to identify data-driven subtypes of depressive symptoms
in young people (aged 15-25) with MDD and to compare potential structural brain alterations
between these subtypes. The data-driven symptom subtypes found in the YoDA study cohort
were in line with the subtypes characterized by opposite neurovegetative symptoms
previously identified in adults (11-18). One subtype showed atypical or reversed
neurovegetative symptoms, mainly discriminated by increased appetite and weight gain, and
two subtypes showed typical neurovegetative symptoms, including insomnia, decreased
appetite and weight loss, with the typical symptom subtypes having different levels of overall
severity (moderate versus severe). We replicated these data driven symptom subtypes in a
subsample of the STAR*D study, an independent sample of MDD patients within a similar
age range. Symptom-based subtypes in young people have only been studied in one
previous study in adolescents, that used latent class analysis to identify similar subtypes

(18).

The data used in the current study is unique, since 34% of the MDD patients with imaging

data were diagnosed with their first episode of MDD and 70% were antidepressant naive.
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Identifying similar subtypes as found in adults in these more clinically specific
(antidepressant free and at an early stage of the disorder) young people further validates the
existence of the subtypes. Moreover, identifying similar subtypes in adolescents and young
adults is relevant, since mood, appetite and sleep and their underlying biological processes
go through developmental changes in adolescence, such as maturation of neural emotion
regulation and reward processing circuitries, increasing levels of leptin, and a shift in the

circadian rhythm (47—49).

In line with previous adult studies, the increased appetite subtype had more females and a
higher BMI than the other subtypes (11, 13, 16, 18). In addition, unlike some adult studies,
the increased appetite subtype we identified was not discriminated by hypersomnia.
However, hypersomnia items in a self-report questionnaire show low correlations with
objective sleep measures (50, 51). Additionally, whereas three items assess insomnia in the
QIDS self-report, only one item targets hypersomnia, and the disturbances might be more
complex than assessed in that single question (for example fractionated or irregular night-
time sleep but increased duration of sleep, including daytime napping). Therefore, sleep
disturbances may still exist in the subtype with atypical neurovegetative symptoms. More
ecologically valid assessments of sleep disturbances should be employed in future studies to

examine sleep disturbances in these subtypes.

This study is the first to examine differences in structural brain alterations between data-
driven symptom-based subtypes. We found lower anterior insula surface area in the
increased appetite subtype compared to healthy controls and the moderate severity subtype.
Different parts of the insula are thought to have different roles, with the anterior insula
important for integration of interoceptive information and reward and motivational processes
(52). The anterior portion of the insula is preferentially interconnected with the orbitofrontal
(OFC) and anterior cingulate cortices (ACC) and ventral striatum (53-55). Together with the

dorsal ACC, the anterior insula forms a core hub of the so-called ‘salience network’,
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commonly implicated in interoceptive awareness; integrating external and internal stimuli to
guide an individual’s actions and decisions (56-59). The anterior insula integrates
information about the motility of the digestive system and hunger. Hormones (including leptin
and insulin), body weight status, and inflammation have been shown to influence insula
activity and volume (60—63). Since alterations in hormones, such as leptin and insulin, and
inflammatory markers have been observed in the increased appetite subtype in adults and
those hormones and inflammatory markers have been found to affect surface area (64), is
possible that alterations in these endocrine factors that may be unique to this atypical

neurovegetative subtype affect surface area.

Furthermore, the insula is implicated in reward processing and emotion regulation, processes
that have been associated with food intake (65-68). Previous research reported increased
brain activity in the anterior insula and other reward regions including the ventral striatum in
response to pictures of food in adult MDD patients with increased appetite (26). In addition,
emotion regulation disturbances have shown to increase emotional eating (69), which may
underlie the increased appetite and weight gain observed in the atypical neurovegetative

subtype, potentially mediated by structural alterations in the anterior insula (70).

Only two prior studies in adults examined differences in brain measures between MDD
patients selected on the presence of depression-related symptoms of increased appetite
versus decreased appetite (21, 26). These studies examined neural responses during an
fMRI food picture task, and found that lower ventral striatum activity was associated with
higher cortisol in the decreased appetite subtype. In contrast, in the increased appetite
subtype higher anterior insula activity was observed. In line with these studies by Simmons
et al., we found anterior insula surface area alterations in the increased appetite subtype.
However, no differences in ventral striatum volume between the subtypes were found in the
present study, suggesting that alterations in the ventral striatum might be restricted to a

functional level.
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Interestingly, only surface area differences were observed for the anterior insula and no
differences were found in insular cortical thickness. Cortical surface area and cortical
thickness are two distinct characteristics of the brain’s cortex and have different
developmental pathways. Cortical thickness increases until approximately age 2, whereas
cortical surface area increases, depending on the region, until adolescence, making it more
vulnerable to early life stressors (71-74). In addition, cortical surface area alterations have
been found to be associated with early onset depression (75, 76), and prior research shows
that the increased appetite, or atypical neurovegetative, subtype is associated with earlier
onset of depression (13, 19, 24). However, since this study consisted of adolescents and

young adults, the age of onset was low overall and did not differ between subtypes.

A few limitations of the study should be noted. The exclusion criteria of the YoDA studies
might have influenced clustering results, and compromise generalizability. Only young
people with MDD who showed moderate to severe depressive symptoms were included,
therefore not representing the whole depressive spectrum. Additionally, the k-means
clustering might have been affected by the high negative correlations between the increased
appetite/weight and decreased appetite/weight symptoms, and between insomnia and
hypersomnia. There has been some critique regarding the subtyping based on symptoms
including these opposite neurovegetative symptoms using a latent class analysis or other
data-driven techniques, since they are complete opposites and one symptom automatically
rules out the possibility of showing the other symptom (e.g., a person can’t endorse both
weight gain and weight loss at the same time, although they can endorse no changes in
weight). The negative correlations between increased and decreased appetite (-0.49) and
weight (-0.31), and between insomnia and hypersomnia (-0.14 to -0.21), known as a violation
of conditional independence, have likely dominated the clustering and may have masked
subtypes based on other patterns of symptom endorsement (77). However, differences in

genetics, blood markers of inflammation, leptin insensitivity and insulin resistance, and
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neuroimaging markers have been repeatedly found between these subtypes derived using a
data-driven analysis (19, 20, 24, 25, 78 and the current study) and when selected on the
presence of increased versus decreased appetite (21, 26). Therefore, the subtypes seem

clinically relevant.

This clinical relevance of these neurovegetative symptom subtypes is underlined by the
persistence of sleep and appetite disturbances after treatment for depression (79, 80). In
addition, these neurovegetative symptoms do not affect clinical management decisions as
much as mood symptoms, even though they are associated with high risks of suicide (81),
obesity and metabolic syndrome (82), and depression recurrence (83-85). Subtyping
depression based on neurovegetative symptoms could lead to more targeted intervention.
However, to achieve a more personalized intervention, future research should investigate
whether the different subtypes based on neurovegetative symptoms respond differently to
traditional (e.g. psychotherapy, antidepressants) and novel treatments. Our findings of
structural alterations in the anterior insula together with previous findings of functional
alterations in the insula uniquely associated with the atypical neurovegetative subtype
suggest that core functions of the insula including interoceptive function, emotion regulation
and reward processing may be promising treatment targets for this specific subtype of

depression.

To conclude, we were able to replicate the existence of reversed neurovegetative and typical
neurovegetative symptom subtypes of depression in two adolescent/young adult MDD
samples. This was the first study to show that these symptom subtypes were associated with
cortical surface alterations in the anterior insula, with the increased appetite showing lower
surface area compared to the moderate subtype and healthy controls. Together with
previous findings in adults, our current findings suggest that the subtype with atypical
neurovegetative symptoms may have a unique biological signature. Moreover,

neurovegetative symptoms are associated with poorer clinical outcomes and antidepressant
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treatment have shown to work more effectively for mood and cognitive symptoms than for
atypical and sleep symptoms (86, 87). Therefore, these neurovegetative symptoms subtypes,
characterized by changes in sleep and appetite, should be noted when treating young people

with depression.
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