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Abstract  

Background: Depression is a leading cause of burden of disease among young people. 

Current treatments are not uniformly effective, in part due to the heterogeneous nature of 

major depressive disorder (MDD). Refining MDD into more homogeneous subtypes is an 

important step towards identifying underlying pathophysiological mechanisms and improving 

treatment of young people. In adults, symptom-based subtypes of depression identified using 

data-driven methods mainly differed in patterns of neurovegetative symptoms (sleep and 

appetite/weight). These subtypes have been associated with differential biological 

mechanisms, including immuno-metabolic markers, genetics and brain alterations (mainly in 

the ventral striatum and insular cortex).  

Methods: K-means clustering was applied to individual depressive symptoms from the Quick 

Inventory of Depressive Symptoms (QIDS) in 275 young people (15-25 years old) with MDD 

to identify symptom-based subtypes, and in 244 young people from an independent dataset 

(a subsample of the STAR*D dataset). Insula surface area and thickness and ventral 

striatum volume were compared between the subtypes using structural MRI.  

Results: Three subtypes were identified in the discovery dataset and replicated in the 

independent dataset; severe depression with increased appetite, severe depression with 

decreased appetite and severe insomnia, and moderate depression. The severe increased 

appetite subtype showed lower surface area in the anterior insula compared to both healthy 

controls and the moderate subtype.  

Conclusions: Our findings in young people replicate the previously identified symptom-

based depression subtypes in adults. The structural alterations of the anterior insular cortex 

add to the existing evidence of different pathophysiological mechanisms involved in this 

subtype.  
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Introduction  

Approximately 322 million people worldwide (5% of the world’s population) suffer from Major 

Depressive Disorder (MDD), a disease characterized by a depressed mood and associated 

symptoms (1). In young people, depressive disorders are the main cause of global burden of 

disease (2). The onset of MDD peaks during adolescence and young adulthood, and earlier 

onset of MDD is associated with decreased quality of life and increased impairment in social 

and occupational functioning later in life (3, 4). Currently available treatments are not 

uniformly effective for adolescent depression, with response rates around 61% for 

antidepressants and 55% for psychotherapy (5, 6). The unpredictable nature of treatment 

response might be explained, at least in part, by the heterogeneity of MDD. 

The most commonly used systems for classifying mental disorders, The ICD 10 

(International Classification of Diseases 10th revision) and Diagnostic and Statistical Manual 

of Mental Disorders (DSM-5), categorize a broad spectrum of depressive symptom patterns 

within a single MDD diagnosis. To receive an MDD diagnosis, a minimum of 5 of the 9 DSM 

criteria for MDD have to be met. Considering that some of the criteria include symptoms of 

opposite polarity (e.g. increased versus decreased appetite, weight gain versus loss, 

insomnia versus hypersomnia, and psychomotor agitation versus retardation), almost 1500 

different combinations of MDD symptoms lead to the same DSM diagnosis of MDD (7). Thus, 

patients with the same diagnosis show heterogeneous depressive symptom profiles, which 

may reflect different underlying neurobiological mechanisms that could require different 

treatments. As people with different phenotypic presentations of depression are not uniquely 

identified and diagnosed, they cannot be stratified into different treatments.  

Several attempts to identify subtypes of depression have been made to overcome 

these issues associated with the traditional diagnostic classification and the heterogeneity of 

MDD. Traditionally, subtypes of depression have been defined based on subjective expert 

consensus. An example of describing different subtypes are the DSM atypical and 

melancholic depression specifiers (1). The atypical specifier is characterized by mood 
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reactivity in combination with increases in weight or appetite, hypersomnia and/or leaden 

paralysis. The melancholic specifier is distinguished by opposite neurovegetative symptoms: 

decreases in weight or appetite and early morning awakening, in addition to psychomotor 

agitation or retardation, worse mood in the morning and excessive feelings of guilt. Existence 

of the melancholic specifier has been confirmed by prior research, however, the atypical 

specifier has been questioned. For example, mood-reactivity,  the only obligatory atypical 

symptom in the DSM, does not show associations with the other atypical features (8, 9). 

More recently, data-driven approaches have been employed to identify symptom-based 

depression subtypes. Replicated across a number of studies in adults, latent class analysis 

has derived data-driven typical versus atypical neurovegetative symptom subtypes (10–17). 

The typical and atypical subtypes are usually characterized as having similar affective and 

cognitive symptoms, differing only on sleep and appetite profiles. Of note, the atypical 

neurovegetative symptom subtype differs from the atypical specifier in the DSM as it mainly 

shows only reversed neurovegetative symptoms (i.e., increased appetite and weight, and in 

some studies also hypersomnia). However, not much is known about whether similar 

subtypes exist in young people with depression, although one study suggests they are 

similar to adults (18).  

Importantly, there are biological differences between the data-driven neurovegetative 

symptom subtypes in adults. Higher levels of leptin, inflammatory markers (C-reactive protein 

(CRP), interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1RA) and tumor necrosis 

factor-α (TNF-α)), insulin and higher BMI are associated with the atypical or increased 

appetite subtype (15, 19–21). Conversely, higher cortisol and ghrelin levels are associated 

with the more typical subtype characterized by decreased appetite (19, 21–23). In addition, 

genetic studies have shown that the atypical subtype with increased appetite is associated 

with a higher polygenic risk score for BMI, leptin and CRP, whereas the typical subtype 

showed a stronger association with polygenic risk scores for psychiatric disorders such as 

schizophrenia (24, 25). Moreover, brain activation responses to pictures of food have been 

shown to differentiate depressed patients selected on having either increased or decreased 
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appetite (21, 26). Higher cortisol levels in the MDD group with decreased appetite were 

negatively correlated with ventral striatal activity during a food task; while the MDD group 

with increased appetite showed a positive correlation between insulin resistance and 

posterior and dorsal mid-insula cortex activity (21). In addition, higher anterior insula cortex 

activity in response to these appetitive food pictures was observed in the MDD group with 

increased appetite (26). 

There is now consistent evidence in adults for different biological correlates across 

neurovegetative symptom subtypes, however, it remains unknown whether similar subtypes 

exist in young people and if they are characterized by similar biological mechanisms. The 

current study aims to replicate the data-driven symptom profiles based on neurovegetative 

symptoms, previously identified in adults, in young people with MDD. Furthermore, we 

included an additional independent sample as a replication cohort. In addition, the study aims 

to examine structural brain alterations associated with the identified subtypes. We 

hypothesize that similar subtypes exist in young people, mainly distinguished by opposite 

neurovegetative symptoms. We also hypothesize that structural alterations in subregions of 

the insula and ventral striatum, regions that have been implicated in subtype differences in 

previous adult studies (21, 26), may differentiate between the symptom subtypes. 

 

Methods and Materials 

Participants  

Discovery sample: Participants were recruited from youth mental health centers in Australia 

as part of the YoDA-A and YoDA-C (Youth Depression Alleviation) studies (27, 28). All 

participants were aged between 15 and 25 years old and diagnosed with a primary diagnosis 

of MDD. In total, 275 young people with MDD and 100 age and gender matched healthy 

controls (HC) were included. The HC participants were recruited through advertisements and 

did not have a present or past diagnosis of MDD or anxiety disorders. Participants were 
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excluded if they suffered from an acute medical disorder, had experienced any psychotic 

episodes, or were diagnosed with bipolar disorder. Further, pregnancy, breastfeeding and 

any contraindications to MRI were exclusion criteria. The participants gave written informed 

consent and the Melbourne Health Human Research Ethics Committee approved the study 

protocol. 

 

Replication sample: The data for the independent replication sample came from the STAR*D 

study, a large multicenter study examining antidepressant effectiveness (29). To match the 

YoDA sample, the sample was restricted to young people between 18 and 25 years old with 

an MDD diagnosis, resulting in a sample size of 244. All participants scored 14 or higher on 

the Hamilton Depression Rating Scale (HDRS) (30), indicating moderate to severe 

depression. Exclusion criteria were a primary diagnosis of schizophrenia, bipolar disorder, 

anorexia nervosa, bulimia or obsessive-compulsive disorder. In addition, the participants 

were free of antidepressants when they entered the study.  

 

Procedure 

Discovery sample: The YoDA participants were screened using the Structured Clinical 

Interview for the DSM-IV (SCID) during the baseline assessment (29). In addition, depressive 

symptoms were measured using the Montgomery–Åsberg Depression Rating Scale 

(MADRS) as well as the Quick Inventory of Depressive Symptomatology Self Report (QIDS-

SR) (31, 32). A score of 20 or higher on the MADRS, indicating at least moderate severity of 

symptoms, was an inclusion criterion in these studies. Further, participants completed the 

Generalized Anxiety Disorder 7 questionnaire (GAD-7), Social and Occupational Functioning 

Assessment Scale (SOFAS), Alcohol Use Disorder Identification Test (AUDIT) (33–35) and 

other questionnaires not germane to this study. Within two weeks of the baseline 

assessment, and prior to commencing the study treatments, a subset of the participants (137 

MDD patients and 100 healthy controls) underwent a structural MRI scan. 
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Replication sample: Baseline scores of the QIDS of STAR*D participants were included in 

this study (31). The Psychiatric Diagnostic Screening Questionnaire (PDSQ) was used as a 

diagnostic screening tool in the STAR*D study (36). Quality of life was assessed with the 

Quality of Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q) and impaired 

functioning using the Work and Social Adjustment Scale (WSAS) (37, 38). No MRI data was 

available in this sample. 

 

MRI data 

Discovery sample: The T1 weighted scan lasted ~4 minutes and was performed on a 3T 

General Electric Signa Excite at Sunshine Hospital (Western Health, Melbourne). An 8-

channel phased-array head coil was used (TR: 7900 ms, echo time: 3000 ms, thickness (no 

gap): 1 mm, flip angle: 13°, field of view: 25.6 cm, matrix: 256x256 pixels). 

The cortical parcellation was performed using FreeSurfer (version 5.3) (39). The 

segmentations and parcellations were visually inspected and outliers were examined using 

the ENIGMA protocol (http://enigma.ini.usc.edu/protocols/imaging-protocols). Cortical 

surface area and cortical thickness of the anterior and posterior insula (based on the 

Destrieux atlas, (40)) and ventral striatal (nucleus accumbens) volume in the left and right 

hemisphere were included as regions of interest. 

 

Data analysis 

Symptom subtypes 

A k-means clustering in R was applied to the 16 depression items of the QIDS to identify 

symptom subtypes in the young people diagnosed with MDD from the YoDA sample (41). 

With k-means clustering, clusters are formed based on the cluster mean (centroid) that is 

closest to a data point (the item score of a subject) to keep the centroids as small as 

possible. The QIDS item data were scaled to make sure all variables had the same weight.  
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Selecting the optimal number of clusters: The number of clusters (k) was selected based on 

the highest number of partitioning methods in R that selected the same optimal number of 

clusters. The R package NbClust was used to determine the optimal number of clusters by 

looking at different combinations of distance measures and clustering methods based on 

hierarchical clustering (ward.D2, which minimizes variance within clusters) (for more details, 

please see supplemental material) (42).  

K-means clustering: The optimal number of clusters determined by NbClust was used as an 

input parameter to K-means clustering using the stats package in R (41), to identify the 

centers of the clusters (centroids). To prevent the clustering settling on local minima, an 

initialization method was used to pick cluster means that covered the full range (43, 44). In 

this initialization method, random centers were selected, after which the procedure was reran 

to readjust the centers. The centroids of the next cluster were selected by maximizing the 

distance to the centroids that were selected before. These centers were used to run the K-

mean clustering.  

Testing validity and stability: Three methods were used to test the validity and reliability of 

the clusters. First, to test the stability of the clusters we repeated our clustering analysis in 

10,000 randomly selected subsamples, each containing 100 participants from a pre-selected 

training sample (which consisted of 70% of the total sample). In each of the 10,000 

subsamples, participants left out of the cluster identification process (the remaining 30%) 

were assigned to clusters using linear discriminant analysis classifiers. The left-out sample 

was combined with the training sample to form a complete cluster solution. We then tested 

whether the individual cluster assignments were stable over the 10,000 subsamples by 

calculating an adjusted Rand score to test the similarity between each subsampling 

clustering solution compared to the original clustering solution. A Rand index of 1 means that 

the clustering solutions completely agree on the labels, while a Rand-index of 0 represents a 

disagreement in the clustering. We also calculated the cluster-to-cluster index, which 

represents the mean distance between the clusters in the original and the new clustering 

obtained through resampling. Second, the optimal number of clusters was tested against a 
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null distribution with permutation testing (45). The same analysis procedure, including 

subsampling and permutation testing was repeated in the independent replication dataset 

STAR*D. A latent class analysis was performed to test the robustness of the k-means 

clustering method and to compare our findings to findings in previous adult studies that 

mainly employed latent class analysis (Supplementary Materials). 

 

Differences in clinical and structural brain characteristics between subtypes 

The symptom subtypes that were identified were compared on clinical and demographic 

characteristics in R using ANOVA or chi-square tests, and if there was a significant 

difference at p<0.05, posthoc tests with Tukey HSD correction for multiple comparisons (3 

tests to compare the 3 subtypes).  

In the YoDA sample, anterior and posterior insula cortex surface area and thickness 

and ventral striatum volume (in the left and right hemisphere) were compared between 

subtypes using an ANCOVA with group (MDD subtypes and healthy controls) as predictor 

and age and sex, as well as intercranial volume (ICV) as covariates. We did not include ICV 

as a covariate in analysis with insula thickness measures, since thickness does not scale 

with head size (46). False discovery rate (FDR) correction was applied and Tukey HSD 

corrected posthoc tests were performed when a significant main effect of group was found. 

Analyses were repeated in an antidepressant naïve sample to control for the possible effect 

of antidepressant use. 

 

Results 

Symptom subtypes  

A 3-cluster solution was found to be the optimal fit according to 9 out of 26 partitioning 

methods (see Supplemental Figure S1). The stability of the clusters was tested for 2 as well 

as 3 clusters. The average Rand Index was 0.40 for 2 clusters, and 0.55 for 3 clusters. In 

addition, the average cluster-to-cluster distance was 1.35 for 2 clusters and 1.85 for 3 
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clusters, meaning that more labels agreed when 3 clusters were used and the means of 

different clusters were further apart in the 3-cluster solution. In addition, the Scott and 

Friedman partitioning measure showed that the index number for this number of clusters was 

higher than the cluster indices of an empirical null distribution, meaning that 3 clusters 

described the data better than data with no underlying clusters (Scott: p<0.001, Friedman: 

p=0.01, Supplemental Figure S2). 

 

Figure 1. Symptom subtypes in the YoDA discovery sample (A) and in a subsample of 
the STAR*D replication sample (B). A severe depression with increased appetite (SIA) 
subtype, severe depression with decreased appetite and insomnia (SDA) subtype and a 
moderate depression (MOD) subtype were identified in both datasets. The axis shows the 
percentage of subjects within a subtype that shows the symptoms in the radar plot (QIDS 
items). 
 

The clusters were labelled as following: moderate depression (n=111, MOD), severe 

depression with increased appetite (n=59, SIA) and severe depression with decreased 

appetite and insomnia (n=105, SDA) (Figure 1A). The MOD subtype endorsed symptoms 

such as a sad mood, lack of general interest, fatigue and typical neurovegetative symptoms 

of decreased appetite, weight loss and insomnia. The SIA and SDA subtypes both showed a 

higher severity of symptoms overall than the MOD subtype. The SIA subtype was uniquely 

characterized by endorsement of reversed (atypical) neurovegetative symptoms of increased 

appetite and weight gain, whereas the SDA subtype showed decreased appetite and higher 

levels of insomnia. The SIA subtype consisted of more females and was associated with 
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higher BMI compared to SDA and MOD (Table 1). Similar clusters were identified in the 

STAR*D dataset, including a moderate depression subtype (MOD, n=108), a severe 

depression with increased appetite and weight gain subtype (SIA, n=54) and a severe 

depression with decreased appetite and highest levels of insomnia subtype (SDA, n=82) 

(Figure 1B, Table 2). 

 

Table 1. Demographics and clinical characteristics of symptom subtypes identified in 
the YoDA discovery sample. 

 SIA 
(N=59) 

SDA 
(N=105) 

MOD 
(N=111) 

p-value Post hoc 

Age 19.9 (2.4) 19.6 (2.6) 20.0 (2.9)  0.56  
Female, N (%) 43 (73%) 59 (56%) 59 (53%)   0.04 SIA > SDA, 

MOD 
Comorbid ANX, 
N (%) 

30 (51%) 62 (59%) 56 (50%)  0.75  

Age of onset 
MDD 

15.5 (3.2) 12.8 (2.4) 13.6 (2.6)  0.20   

Recurrent % 37.3 32.4 29.7  0.77   
AD use % 3.4 11.4 4.5  0.04  
FH MDD % 52.5 43.8 45.0  0.36   
QIDS 18.4 (2.7) 19.5 (2.4) 14.1 (2.8)  <0.001 SDA > SIA > 

MOD 
MADRS 31.0 (5.0) 35.4 (5.7) 30.9 (4.8)  <0.001  SDA > SIA, 

MOD 
GAD-7 14.7 (4.6) 15.4 (4.9) 10.0 (4.9)  <0.001  MOD < SIA, 

SDA 
SOFAS 56.7 (11.1) 57.0 (11.3) 58.4 (11.0)  0.55   
BMI 29.5 (7.7) 24.2 (6.0) 26.2 (8.0)  <0.001  SIA > SDA, 

MOD 
Anorexia 
Nervosa, N (%) 

1 (2%) 2 (2%) 3 (3%) 0.89  

Bulimia 
Nervosa, N (%) 

2 (3%) 3 (3%) 2 (2%) 0.80  

Binge eating 
disorder, N (%) 

9 (15%) 3 (3%) 1 (1%) <0.001 SIA > SDA, 
MOD 

AD: antidepressant, ANX: anxiety disorder, BMI: body mass index, GAD-7: generalized 
anxiety disorder 7, MADRS: Montgomery Äsberg depression rating scale, MDD: major 
depressive disorder, MOD: moderate depression subtype, N: number of, QIDS: quick 
inventory of depressive symptomatology, SDA: severe depression with decreased appetite 
and insomnia subtype, SIA: severe depression with increased appetite subtype, SOFAS: 
social and occupational functioning assessment scale 
 
Table 2. Demographics and clinical characteristics of symptom subtypes identified in 
the STAR*D replication sample. 
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 SIA  
(N= 54) 

SDA  
(N= 82) 

MOD 
(N=108) 

p-value Post hoc 

Age 22.3 (2.0) 21.8 (2.0) 21.8 (1.9) 0.29  
Female, N 
(%) 

42 (78%) 60 (73%) 75 (69%) 0.53  

Comorbid 
ANX, N (%) 

5 (9%) 11 (13%) 16 (14%) 0.61  

Eating 
disorder, N 
(%) 

1 (2%) 1 (1%) 0 (0%) 0.41  

QIDS  18.3 (3.2) 18.4 (2.5) 12.4 (2.3) <0.001 SIA, SDA > MOD 
Hamilton  21.1 (4.4) 24.4 (5.2) 19.8 (4.0) <0.001 SDA > SIA, MOD 
Q-LES-Q  38.8 (10.7) 38.6 (12.6) 50.2 (13.4) <0.001 SIA, SDA < MOD 
WSAS 26.0 (7.4) 25.3 (7.1) 17.5 (7.2) <0.001 SIA, SDA > MOD 

ANX: anxiety disorder, MOD: moderate depression subtype, N: number of, QIDS: quick 
inventory of depressive symptomatology, Q-LES-Q: quality of life enjoyment and satisfaction 
questionnaire, SDA: severe depression with decreased appetite and insomnia subtype, SIA: 
severe depression with increased appetite subtype, WSAS: work and social adjustment scale 
 

 

Neurobiological alterations in symptom subtypes 

Left and right anterior insula surface area showed a main effect of group (p=0.01), which was 

driven by lower surface area in these regions in the SIA subtype compared to healthy 

controls (posthoc: left anterior insula: p=0.05, right anterior insula: p=0.03) (Figure 2). 

Additionally, right anterior insula surface area was also lower in the SIA subtype compared to 

the MOD subtype (marginally significant at p=0.05). No differences were found in posterior 

insula surface area, thickness of insular subregions and ventral striatum volume. Among the 

participants with neuroimaging data, the subtypes did not show differences in BMI (see 

Supplemental Table S1). The results were replicated in a subset of the sample excluding 

lifetime antidepressant users. In the subset consisting of only antidepressant naïve patients 

(n=97), the main effects for left and right anterior insula were still significant (p=0.03 and 

p=0.03). However, the SIA subtype showed less robust differences from healthy controls 

(p=0.06 and p=0.08) and the surface area in the left and right anterior insula in the SIA 

subtype does not differ from the moderate subtype in this sample (p=0.27 and p=0.17). 
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Figure 2. Left and right anterior insula surface area in the subtypes in the YoDA 
discovery sample. Severe increased appetite (SIA) subtype, Severe decreased appetite 
and insomnia (SDA) subtype, Moderate (MOD) subtype and Healthy control (HC). SIA 
showed significantly lower surface area in the left anterior insula compared to HC. In the right 
anterior insula, SIA showed lower surface area compared to HC and MOD. 
 

Discussion  

The aims of the current study were to identify data-driven subtypes of depressive symptoms 

in young people (aged 15-25) with MDD and to compare potential structural brain alterations 

between these subtypes. The data-driven symptom subtypes found in the YoDA study cohort 

were in line with the subtypes characterized by opposite neurovegetative symptoms 

previously identified in adults (11–18). One subtype showed atypical or reversed 

neurovegetative symptoms, mainly discriminated by increased appetite and weight gain, and 

two subtypes showed typical neurovegetative symptoms, including insomnia, decreased 

appetite and weight loss, with the typical symptom subtypes having different levels of overall 

severity (moderate versus severe). We replicated these data driven symptom subtypes in a 

subsample of the STAR*D study, an independent sample of MDD patients within a similar 

age range. Symptom-based subtypes in young people have only been studied in one 

previous study in adolescents, that used latent class analysis to identify similar subtypes 

(18).  

 

The data used in the current study is unique, since 34% of the MDD patients with imaging 

data were diagnosed with their first episode of MDD and 70% were antidepressant naïve. 
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Identifying similar subtypes as found in adults in these more clinically specific 

(antidepressant free and at an early stage of the disorder) young people further validates the 

existence of the subtypes. Moreover, identifying similar subtypes in adolescents and young 

adults is relevant, since mood, appetite and sleep and their underlying biological processes 

go through developmental changes in adolescence, such as maturation of neural emotion 

regulation and reward processing circuitries, increasing levels of leptin, and a shift in the 

circadian rhythm (47–49).  

 

In line with previous adult studies, the increased appetite subtype had more females and a 

higher BMI than the other subtypes (11, 13, 16, 18). In addition, unlike some adult studies, 

the increased appetite subtype we identified was not discriminated by hypersomnia. 

However, hypersomnia items in a self-report questionnaire show low correlations with 

objective sleep measures (50, 51). Additionally, whereas three items assess insomnia in the 

QIDS self-report, only one item targets hypersomnia, and the disturbances might be more 

complex than assessed in that single question (for example fractionated or irregular night-

time sleep but increased duration of sleep, including daytime napping). Therefore, sleep 

disturbances may still exist in the subtype with atypical neurovegetative symptoms. More 

ecologically valid assessments of sleep disturbances should be employed in future studies to 

examine sleep disturbances in these subtypes. 

 

This study is the first to examine differences in structural brain alterations between data-

driven symptom-based subtypes. We found lower anterior insula surface area in the 

increased appetite subtype compared to healthy controls and the moderate severity subtype. 

Different parts of the insula are thought to have different roles, with the anterior insula 

important for integration of interoceptive information and reward and motivational processes 

(52). The anterior portion of the insula is preferentially interconnected with the orbitofrontal 

(OFC) and anterior cingulate cortices (ACC) and ventral striatum (53–55). Together with the 

dorsal ACC, the anterior insula forms a core hub of the so-called ‘salience network’, 
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commonly implicated in interoceptive awareness; integrating external and internal stimuli to 

guide an individual’s actions and decisions (56–59). The anterior insula integrates 

information about the motility of the digestive system and hunger. Hormones (including leptin 

and insulin), body weight status, and inflammation have been shown to influence insula 

activity and volume (60–63). Since alterations in hormones, such as leptin and insulin, and 

inflammatory markers have been observed in the increased appetite subtype in adults and 

those hormones and inflammatory markers have been found to affect surface area (64), is 

possible that alterations in these endocrine factors that may be unique to this atypical 

neurovegetative subtype affect surface area. 

 

Furthermore, the insula is implicated in reward processing and emotion regulation, processes 

that have been associated with food intake (65–68). Previous research reported increased 

brain activity in the anterior insula and other reward regions including the ventral striatum in 

response to pictures of food in adult MDD patients with increased appetite (26). In addition, 

emotion regulation disturbances have shown to increase emotional eating (69), which may 

underlie the increased appetite and weight gain observed in the atypical neurovegetative 

subtype, potentially mediated by structural alterations in the anterior insula (70).  

 

Only two prior studies in adults examined differences in brain measures between MDD 

patients selected on the presence of depression-related symptoms of increased appetite 

versus decreased appetite (21, 26). These studies examined neural responses during an 

fMRI food picture task, and found that lower ventral striatum activity was associated with 

higher cortisol in the decreased appetite subtype. In contrast, in the increased appetite 

subtype higher anterior insula activity was observed. In line with these studies by Simmons 

et al., we found anterior insula surface area alterations in the increased appetite subtype. 

However, no differences in ventral striatum volume between the subtypes were found in the 

present study, suggesting that alterations in the ventral striatum might be restricted to a 

functional level.  
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Interestingly, only surface area differences were observed for the anterior insula and no 

differences were found in insular cortical thickness. Cortical surface area and cortical 

thickness are two distinct characteristics of the brain’s cortex and have different 

developmental pathways. Cortical thickness increases until approximately age 2, whereas 

cortical surface area increases, depending on the region, until adolescence, making it more 

vulnerable to early life stressors (71–74). In addition, cortical surface area alterations have 

been found to be associated with early onset depression (75, 76), and prior research shows 

that the increased appetite, or atypical neurovegetative, subtype is associated with earlier 

onset of depression (13, 19, 24). However, since this study consisted of adolescents and 

young adults, the age of onset was low overall and did not differ between subtypes.  

 

A few limitations of the study should be noted. The exclusion criteria of the YoDA studies 

might have influenced clustering results, and compromise generalizability. Only young 

people with MDD who showed moderate to severe depressive symptoms were included, 

therefore not representing the whole depressive spectrum. Additionally, the k-means 

clustering might have been affected by the high negative correlations between the increased 

appetite/weight and decreased appetite/weight symptoms, and between insomnia and 

hypersomnia. There has been some critique regarding the subtyping based on symptoms 

including these opposite neurovegetative symptoms using a latent class analysis or other 

data-driven techniques, since they are complete opposites and one symptom automatically 

rules out the possibility of showing the other symptom (e.g., a person can’t endorse both 

weight gain and weight loss at the same time, although they can endorse no changes in 

weight). The negative correlations between increased and decreased appetite (-0.49) and 

weight (-0.31), and between insomnia and hypersomnia (-0.14 to -0.21), known as a violation 

of conditional independence, have likely dominated the clustering and may have masked 

subtypes based on other patterns of symptom endorsement (77). However, differences in 

genetics, blood markers of inflammation, leptin insensitivity and insulin resistance, and 
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neuroimaging markers have been repeatedly found between these subtypes derived using a 

data-driven analysis (19, 20, 24, 25, 78 and the current study) and when selected on the 

presence of increased versus decreased appetite (21, 26). Therefore, the subtypes seem 

clinically relevant.  

 

This clinical relevance of these neurovegetative symptom subtypes is underlined by the 

persistence of sleep and appetite disturbances after treatment for depression (79, 80). In 

addition, these neurovegetative symptoms do not affect clinical management decisions as 

much as mood symptoms, even though they are associated with high risks of suicide (81), 

obesity and metabolic syndrome (82), and depression recurrence (83–85). Subtyping 

depression based on neurovegetative symptoms could lead to more targeted intervention. 

However, to achieve a more personalized intervention, future research should investigate 

whether the different subtypes based on neurovegetative symptoms respond differently to 

traditional (e.g. psychotherapy, antidepressants) and novel treatments. Our findings of 

structural alterations in the anterior insula together with previous findings of functional 

alterations in the insula uniquely associated with the atypical neurovegetative subtype 

suggest that core functions of the insula including interoceptive function, emotion regulation 

and reward processing may be promising treatment targets for this specific subtype of 

depression.  

 

To conclude, we were able to replicate the existence of reversed neurovegetative and typical 

neurovegetative symptom subtypes of depression in two adolescent/young adult MDD 

samples. This was the first study to show that these symptom subtypes were associated with 

cortical surface alterations in the anterior insula, with the increased appetite showing lower 

surface area compared to the moderate subtype and healthy controls. Together with 

previous findings in adults, our current findings suggest that the subtype with atypical 

neurovegetative symptoms may have a unique biological signature. Moreover, 

neurovegetative symptoms are associated with poorer clinical outcomes and antidepressant 
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treatment have shown to work more effectively for mood and cognitive symptoms than for 

atypical and sleep symptoms (86, 87). Therefore, these neurovegetative symptoms subtypes, 

characterized by changes in sleep and appetite, should be noted when treating young people 

with depression. 
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