

**Full title: Non-hierarchical, RhIR-regulated acyl-homoserine lactone quorum sensing in a cystic fibrosis isolate of *Pseudomonas aeruginosa***

**Short title: RhIR quorum sensing in a *Pseudomonas aeruginosa* clinical isolate**

Renae L. Cruz<sup>1</sup>, Kyle L. Asfahl<sup>2</sup>, Sara Van den Bossche<sup>3</sup>, Tom Coenye<sup>3</sup>, Aurélie Crabbé<sup>3</sup>, Ajai A. Dandekar<sup>1,2</sup>

Departments of <sup>1</sup>Microbiology and <sup>3</sup>Medicine, University of Washington, Seattle, WA 98117 USA; <sup>3</sup>Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium

Keywords: chronic infection, RhIR, cytotoxicity, transcriptome

Correspondence author:

Ajai A. Dandekar

K-359A HSB, Box 356522

1705 NE Pacific St

Seattle, WA 98195

[dandekar@u.washington.edu](mailto:dandekar@u.washington.edu)

1 **ABSTRACT**

2 The opportunistic pathogen *Pseudomonas aeruginosa* is a leading cause of airway infection in  
3 cystic fibrosis (CF) patients. *P. aeruginosa* employs several hierarchically arranged and  
4 interconnected quorum sensing (QS) regulatory circuits to produce a battery of virulence factors  
5 such as elastase, phenazines, and rhamnolipids. The QS transcription factor LasR sits atop this  
6 hierarchy, and activates the transcription of dozens of genes, including that encoding the QS  
7 regulator RhlR. Paradoxically, inactivating *lasR* mutations are frequently observed in isolates from  
8 CF patients with chronic *P. aeruginosa* infections. In contrast, mutations in *rhlR* are rare. We have  
9 recently shown that in CF isolates, the QS circuitry is often “rewired” such that RhlR acts in a  
10 LasR-independent manner. To begin understanding how QS activity differs in this “rewired”  
11 background, we characterized QS activation and RhlR-regulated gene expression in *P.*  
12 *aeruginosa* E90, a LasR-null, RhlR-active chronic infection isolate. In this isolate, RhlR activates  
13 the expression of 53 genes in response to increasing cell density. The genes regulated by RhlR  
14 include several that encode virulence factors. Some, but not all, of these genes are present in the  
15 QS regulon described in the well-studied laboratory strain PAO1. We also demonstrate that E90  
16 produces virulence factors at similar concentrations to that of PAO1. Unlike PAO1, cytotoxicity by  
17 E90 in a three-dimensional lung epithelium cell model is also RhlR-regulated. These data  
18 illuminate a “rewired” LasR-independent RhlR regulon in chronic infection isolates and suggest  
19 that RhlR may be a target for therapeutic development in chronic infections.

20 **AUTHOR SUMMARY**

21 *Pseudomonas aeruginosa* is a prominent cystic fibrosis (CF) pathogen that uses quorum sensing  
22 (QS) to regulate virulence. In laboratory strains, the key QS regulator is LasR. Some isolates from  
23 patients with chronic CF infections appear to use an alternate QS circuitry in which another  
24 transcriptional regulator, RhlR, mediates QS. We show that a LasR-null CF clinical isolate  
25 engages in QS through RhlR and remains capable of inducing cell death in an *in vivo*-like lung  
26 epithelium cell model. Our findings support the notion that LasR-null clinical isolates can engage  
27 in RhlR QS and highlight the centrality of RhlR gene regulation in chronic *P. aeruginosa* infections.

28 **INTRODUCTION**

29 Many species of bacteria are able to sense and communicate with each other via quorum sensing  
30 (QS), a cell-density dependent gene regulation mechanism[1]. In *Proteobacteria*, acyl-  
31 homoserine lactones (HSL) are used as QS signals. Commonly, signals are produced by acyl-  
32 HSL synthases of the *luxI* family and are recognized by their cognate receptors, transcription  
33 factors of the *luxR* family[2].

34

35 *Pseudomonas aeruginosa*, a leading cause of airway infection in cystic fibrosis (CF) patients,  
36 uses QS to regulate the production of a wide array of virulence factors including phenazines,  
37 rhamnolipids, and hydrogen cyanide[3]. *P. aeruginosa* possesses two complete LuxI/LuxR QS  
38 regulatory circuits: LasI/LasR and RhIIR/RhIIR[4,5]. The signal synthase LasI produces the signal  
39 *N*-3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL). Above a certain concentration, 3OC12-  
40 HSL binds to and facilitates the dimerization of LasR[6]. The LasR homodimer functions as a  
41 transcriptional activator promoting the expression of hundreds of genes including *rhI/R* and *rhII*,  
42 thereby linking the two acyl-homoserine lactone (AHL) QS regulatory circuits[4,5]. Similarly, RhIIR  
43 produces the signal *N*-butanoyl-homoserine lactone (C4-HSL), which binds to RhIIR, initiating  
44 transcription of an additional set of target genes that overlap somewhat with the LasR  
45 regulon[1,7]. There is a third, non-AHL QS circuit in *P. aeruginosa* that involves a quinolone signal  
46 (*Pseudomonas* quinolone signal; PQS), which activates the transcription factor PqsR[8]. PqsR  
47 and RhIIR co-regulate the production of some extracellular products[9].

48

49 In laboratory strains of *P. aeruginosa*, deletion or deleterious mutation of *lasR* results in  
50 attenuated virulence in various animal models of infection[10,11]. Despite the importance of LasR  
51 in regulating virulence, several studies have shown that *lasR* mutations are commonly observed  
52 in isolates collected from the lungs of chronically infected CF patients[12–14]. In some patients,  
53 the frequency of isolates with a mutant *lasR* has been reported to be greater than 50%[13,15].

54 These findings led to the notion that QS is not essential during chronic stages of infection,  
55 dampening enthusiasm for QS inhibitors as potential therapeutics. Contrary to this idea, we and  
56 others have shown that many *LasR*-null *P. aeruginosa* chronic infection isolates remain capable  
57 of engaging in QS activity through the *RhlI/RhlR* circuit[16–18]. CF strains appear to “rewire” their  
58 QS circuitry so that *RhlR* is the key transcription factor.

59

60 We are interested in the regulatory remodeling of QS that occurs in isolates of *P. aeruginosa* from  
61 chronic infections, including those in CF. To begin to understand how *RhlR*-mediated QS in  
62 clinical isolates might be different from that of laboratory strains[15,16,18,19], we studied a CF  
63 isolate called E90[20], which contains a single base-pair deletion in *lasR* at base 170, and uses  
64 *RhlR* to mediate QS. E90 produces QS-regulated virulence factors at levels comparable to that  
65 of PAO1. We used RNA-seq to analyze the *RhlR* regulon of this isolate by comparing its  
66 transcriptome with that of an isogenic *RhlR* deletion mutant. We determined that the E90 *RhlR*  
67 regulon consists of over 83 genes including those that encode virulence factors. Using a three-  
68 dimensional tissue culture model, we also observed that E90 induces cell death in a *RhlR*-  
69 dependent manner. Together our data provide a more complete picture of the “rewiring” of QS  
70 that can take place in CF-adapted *P. aeruginosa*, while also providing a basis for understanding  
71 the gene targets of *RhlR* without the confounding effects of the QS hierarchy.

72 **RESULTS**

73 **RhlR and C4-HSL-dependent QS activity is conserved in LasR-null isolate E90**

74 We identified isolate E90 from a phenotypic survey of chronic infection isolates collected in the  
75 Early *Pseudomonas* Infection Control (EPIC) Observational Study [16]. This isolate, an apparent  
76 LasR mutant, still engaged in activities that are putatively QS-regulated such as rhamnolipid,  
77 exoprotease, and phenazine production. The *lasR* gene of E90 features a 1 bp deletion at  
78 nucleotide position 170, a frameshift mutation which results in a premature stop codon (at residue  
79 114). To confirm that this single nucleotide polymorphism encodes a nonfunctional LasR  
80 polypeptide, we transformed the strain with a LasR-specific reporter plasmid consisting of *gfp*  
81 fused to the promoter region of *lasI*, which encodes the signal synthase and is strongly activated  
82 by LasR [21]. GFP fluorescence in E90 transformed with this reporter plasmid was nil and mirrored  
83 that of a PAO1Δ*lasR* mutant (Fig. 1A). As a complementary approach, we measured the  
84 concentration of 3OC12-HSL produced by E90 using a bioassay. We found that E90 after  
85 overnight growth produced very low amounts of 3OC12-HSL (40 nM) compared to PAO1 (1.5  
86 μM) and in contrast to PAO1Δ*lasR* for which no 3OC12-HSL was detected (Fig. 1B). The apparent  
87 differences in E90 LasR activity reported by the transcriptional reporter assay and the bioassay  
88 is likely explained by the greater sensitivity of the latter method. E90 produced approximately 8.3  
89 μM C4-HSL after overnight growth, comparable to what we measured for PAO1 (9.8 μM).  
90 Altogether, these data confirmed that E90 encodes a non-functional LasR, and suggested that  
91 QS in this isolate is regulated by either RhlR, PqsR, or both transcription factors.

92

93 To determine if RhlR QS activity in E90 was AHL-dependent, we examined the expression of  
94 several well-studied quorum-regulated genes in the presence or absence of AiiA lactonase, an  
95 enzyme that degrades AHL signals[22]. Using qRT-PCR, we observed that expression of *lasB*  
96 and *rhlA* were increased in the presence of AHLs (Fig. 2). These genes, which encode the  
97 exoprotease elastase and a rhamnosyltransferase involved in rhamnolipid production, were

98 identified as QS-regulated in PAO1 [3,23]. *rhlI*, which encodes the C4-HSL synthase, was also  
99 AHL-regulated (Fig. 2). Because we had determined that little 3OC12-HSL is produced by E90  
100 (Fig. 1), we reasoned that expression of QS-regulated genes likely was dependent on C4-HSL.

101

102 Previous work has shown that RhlR activity can be uncoupled from LasR regulation in LasR-null  
103 backgrounds [24–26]. Given that C4-HSL production is robust in E90 (Fig. 1B), we queried if this  
104 strain similarly engaged in RhlR-dependent QS activity. To address this question, we engineered  
105 a *rhlI* deletion in the E90 background to observe its effect on quorum-regulated phenotypes. We  
106 found that the E90Δ*rhlI* deletion mutant displayed nil *rhlA* promoter activity and produced little to  
107 no exoprotease and pyocyanin, consistent with the idea that RhlR regulates QS activity in E90  
108 (Fig. 3). As a whole, our results showed that the LasR-null isolate E90 retains QS activity in a  
109 RhlR- and C4-HSL-dependent manner, and suggested that regulation by RhlR in this strain  
110 parallels that of LasR in PAO1. Because RhlR-dependent QS regulation appears to be common  
111 in CF isolates[16–18], we reasoned that a study of the genes regulated by RhlR in this background  
112 would give insight into which QS-regulated gene products might be important in chronic CF  
113 infections. Furthermore, because *rhlI* is not regulated by LasR in E90 (and other clinical isolates),  
114 a study of the E90 QS transcriptome has the potential to disentangle genes that are regulated  
115 solely by RhlR from those that require both LasR and RhlR.

116

### 117 **Identification of the RhlR regulon of E90**

118 To determine which genes are regulated by RhlR, we performed an RNA-seq-based differential  
119 gene (DE) expression analysis comparing RNA collected from cultures of the parent strain E90  
120 to the isogenic RhlR deletion mutant. First, we sought to generate a *de novo*-assembled genome  
121 for E90 to use as an RNA-seq mapping reference which would account for the potential genomic  
122 differences between E90 and reference strains of *P. aeruginosa*. Using a hybrid approach  
123 combining both short- and long-read high-throughput sequencing, we were able to assemble the

124 genome of E90 into a single circular contig of approximately 6.8 Mb that harbors 6650 annotated  
125 features (Figure 4; 6650 features total, 6503 protein coding sequences). In addition to being  
126 roughly 550 kb larger than the published sequence of laboratory strain PAO1 [27], the genome of  
127 E90 includes 862 features with no homology to PAO1. Also present is a 4.4 Mb inversion relative  
128 to PAO1, which includes an internal reorder of roughly 250 kb. The inversion appears to be the  
129 result of a recombination event between two roughly 5 kb repeat regions that do not have  
130 homology to PAO1, but flank the *rrnA/rrnB* region previously implicated in restructuring of the *P.*  
131 *aeruginosa* genome [27]. A brief search of the E90 genome for *P. aeruginosa* genes previously  
132 reported to be under purifying selection in CF isolates revealed a nonsynonymous mutation in the  
133 gene coding for the probable oxidoreductase MexS (locus PAE90\_2949/PA2491;  
134 nonsynonymous SNP), as well as the resistance-nodulation-division multidrug efflux membrane  
135 fusion protein precursor MexA (locus PAE90\_0464/PA0425; 33bp deletion) [13].

136  
137 Next, to facilitate a comparison to previously published QS regulons in our transcriptome analysis  
138 [3,28], we grew strains in LB-MOPS to an OD<sub>600</sub> of 2.0. The growth of E90 and E90Δ*rhIR* are  
139 indistinguishable in this medium (S1 Fig.). Our DE analysis identified 53 genes that were  
140 upregulated in the E90 vs. E90Δ*rhIR* comparison (Table 1 and S1 Table). Forty-four (83%) of  
141 these genes were identified as QS-regulated in a previous microarray study of the PAO1 [3] and  
142 21 belong to the core quorum-controlled genome characterized in the laboratory strain PAO1 [28].

**Table 1. The 20 most highly RhlR-activated genes in isolate E90.**

| <i>De novo</i> ID <sup>a</sup> | Gene name <sup>b</sup> | Product description <sup>c</sup>     | Fold change |
|--------------------------------|------------------------|--------------------------------------|-------------|
| PAE90_1621                     | <i>rhIB</i>            | rhamnosyltransferase chain B         | 5688.8      |
| PAE90_1620                     | <i>rhIA</i>            | rhamnosyltransferase chain A         | 1956.4      |
| PAE90_0833                     | <i>phzC1</i>           | phenazine biosynthesis protein PhzC  | 129.4       |
| PAE90_1777                     |                        | probable FAD-dependent monooxygenase | 64.5        |
| PAE90_1773                     |                        | conserved hypothetical protein       | 60.9        |
| PAE90_1775                     |                        | probable short chain dehydrogenase   | 52.0        |
| PAE90_3307                     | <i>hcnA</i>            | hydrogen cyanide synthase HcnA       | 35.0        |

|                   |              |                                               |             |
|-------------------|--------------|-----------------------------------------------|-------------|
| PAE90_1771        |              | probable acyl carrier protein                 | 32.6        |
| PAE90_3647        |              | probable acyl carrier protein                 | 32.1        |
| PAE90_1364        | <i>lasB</i>  | elastase LasB                                 | 32.1        |
| PAE90_0834        | <i>phzB1</i> | probable phenazine biosynthesis protein       | 30.9        |
| PAE90_0835        | <i>phzA1</i> | probable phenazine biosynthesis protein       | 29.0        |
|                   |              | probable non-ribosomal peptide synthetase     | 28.3        |
| PAE90_1778        |              | 3-oxoacyl-[acyl-carrier-protein] synthase III | 23.5        |
| PAE90_1772        | <i>fabH2</i> | hypothetical protein                          | 20.4        |
| PAE90_1776        |              | <b>hypothetical protein</b>                   | <b>15.5</b> |
| <b>PAE90_2705</b> |              | <b>hypothetical protein</b>                   | <b>14.7</b> |
| <b>PAE90_0837</b> |              | <b>hypothetical protein</b>                   | <b>14.4</b> |
| <b>PAE90_2723</b> | <i>vqsR</i>  | <b>VqsR</b>                                   | <b>12.2</b> |
| PAE90_1770        |              | hypothetical protein                          | 13.2        |
| <b>PAE90_0133</b> |              | <b>hypothetical protein</b>                   |             |

a. "PAE90" identification numbers correspond to locus tags in the E90 *de novo* genome.

b. Gene names from PAO1-UW reference annotation (PAO1\_107; see Materials and Methods) available on the Pseudomonas Genome Database (<https://www.pseudomonas.com>).

c. Product descriptions from PAO1-UW reference annotation, with the exception of those genes not present in the PAO1 genome (see Materials and Methods) which are described as annotated in the *de novo* genome.

**Bold** denotes genes not previously identified as QS-regulated (Schuster et al., 2003).

143

144 We also identified several well-known virulence genes including those that encode biosynthetic  
145 machinery required for rhamnolipid (*rhlAB*), hydrogen cyanide (HCN; *hcnABC*), elastase (*lasB*),  
146 and pyocyanin synthesis (*phzABC1*). Elastase is an exoprotease known to degrade various  
147 components of the innate and adaptive immune system including surfactant proteins A and D  
148 [29,30]. Rhamnolipid and pyocyanin have also been previously appreciated for their roles in  
149 airway epithelium infiltration and damage [31,32]. In addition, our RNA-seq analysis revealed  
150 *hsfA2*, the first gene in the cluster encoding the Second Type VI Secretion System, which  
151 facilitates the uptake of *P. aeruginosa* by lung epithelial cells [33].

152

153 While QS control of the phenazine biosynthesis pathway has been reported previously, only one  
154 of the two “redundant” operons (“*phz1*”; *phzA1-G1*) was indicated [3]. Interestingly, our  
155 transcriptome analysis found that RhlR also regulates the first two genes of the second phenazine  
156 operon (“*phz2*”; *phzA2-G2*) in E90, albeit at a slightly lower level than *phz1*. Both operons encode  
157 nearly identical sets of proteins, each with the capacity to synthesize the precursor (phenazine-  
158 1-carboxylic acid) of many downstream phenazine derivatives, including the virulence factor  
159 pyocyanin [34]. Despite their seemingly redundant function, *phz1* and *phz2* do not appear to be  
160 regulated in concert. In strain PA14, although *phz1* is more highly expressed than *phz2* in liquid  
161 culture, similar to what we observed in the E90 RhlR regulon, *phz2* actually contributes more to  
162 overall phenazine production in liquid culture [35]. Furthermore, *phz2* is the only active *phz* operon  
163 in colony biofilms, and was the only *phz* operon implicated in lung colonization in a murine model  
164 of infection [35].

165

166 Moreover, we observed that the RhlR regulon included genes that likely confer a growth  
167 advantage in the CF lung. For example, *cbpD* encodes a chitin-binding protein shown to  
168 contribute to the thickness of biofilms, the development of which is important for nutrient  
169 acquisition and stress resistance [36]. The gene encoding the monodechloroaminopyrrolnitrin 3-  
170 halogenase PrnC was also present in the E90 RhlR regulon, which has not been reported in  
171 previous *P. aeruginosa* transcriptomes and is not present in the PAO1 reference genome.  
172 Halogenase PrnC has only previously been described in *P. protegens* (formerly *P. fluorescens*),  
173 where it is involved in the synthesis of pyrrolnitrin, an antifungal antibiotic [37].

174

175 Among the most highly regulated genes [3,28] were those belonging to a conserved nonribosomal  
176 peptide synthetase (NRPS) pathway (PaE90\_1770-1779; PA3327-3336). The products of this  
177 NRPS pathway have been identified as azetidine-containing alkaloids referred to as  
178 azetidomonamides[38]. The biological significance of this widely conserved NRPS pathway in

179 *Pseudomonas* species or what roles azetidomonamides may play in virulence or interspecies  
180 interaction is not well understood, but regulation by QS appears to be a common feature.

181

182 Our interrogation of the E90 RhlR regulon also revealed 30 genes that were RhlR-repressed (S2  
183 Table); none of these genes were reported in previous reports of QS-repressed genes [3] and 19  
184 are not present in the PAO1 genome. We found two genes of the *alpABCDE* lysis cassette, *alpB*  
185 and *alpC*, were repressed by RhlR in E90 under the conditions of our experiments. While induction  
186 of *alpABCDE*, via de-repression of the *alpA* gene, has been shown to be lethal to individual cells,  
187 it may benefit infecting cells at the population level [39]. We also observed down-regulation of the  
188 gene encoding the posttranscriptional regulatory protein RsmA by RhlR in E90. RsmA is nested  
189 in a host of regulatory machinery important in infection, and mutation of RsmA has been observed  
190 to favor chronic persistence and increased inflammation in a murine model of lung infection [40].  
191 Lastly, we identified RhlR regulation of phage loci not found in the PAO1 genome. The RhlR-  
192 repressed phage loci correspond to E90 genes PaE90\_2433 through PaE90\_2442.

193

#### 194 **RhlR is the primary driver of cytotoxicity in a lung epithelium model**

195 LasR-null laboratory strains are less virulent than the WT in acute infection settings [10,11,41].  
196 However, as the RhlR-dependent QS regulon of E90 includes several factors implicated in  
197 virulence (Table 1), we queried if E90 might be capable of inducing host cell death. To address  
198 this question, we incubated an *in vivo*-like three-dimensional (3D) lung epithelial cell culture model  
199 (A549 cell line) [42] with either PAO1, E90, or engineered QS transcription-factor mutants. The  
200 3D lung cell model possesses several advantages over the standard A549 monolayer as an  
201 infection model, including increased production of mucins, formation of tight junctions and polarity,  
202 decreased expression of carcinoma markers, and physiologically relevant cytokine expression  
203 and association of *P. aeruginosa* with the epithelial cells [42,43]. Following an incubation period  
204 of 24 hours, we measured cell death of the 3-D cell cultures via cytosolic lactate dehydrogenase

205 (LDH) release. Consistent with prior studies, WT PAO1 cytotoxicity is abrogated in a LasR  
206 deletion mutant; however, cytotoxicity of a PAO1 RhlR-null mutant is similar to that of the wild-  
207 type, because in this assay the secreted products responsible for cytotoxicity are LasR-regulated  
208 in PAO1, with little or no contribution from RhlR. Strikingly, the opposite was true for E90: deletion  
209 of RhlR significantly reduces cytotoxicity (Fig. 5). This RhlR-dependent cytotoxicity might be  
210 related to the different timing of RhlR activation in E90, the specific set of genes regulated by  
211 RhlR in this strain, or both. Together, these results highlight the restructuring of QS gene  
212 regulation in this clinical isolate and underscore implications for virulence during chronic infection.

213 **DISCUSSION**

214 A substantial body of literature now suggests that the QS hierarchy of *P. aeruginosa* is adaptable  
215 and that LasR mutants can be “rewired” to be AHL QS proficient [16,25,26,44]. These “rewired”  
216 LasR-null clinical isolates retain the QS regulation of several exoproducts through the RhII/RhIR  
217 circuit [16,17]. Prior studies examining a RhIR-dependent variant of PAO1 [24], and another LasR-  
218 null and RhIR-active clinical isolate[17], show that the parent strain outcompetes RhIR-null  
219 derivatives when grown in co-culture [17,24]. These findings support the notion that there is  
220 something inherently disadvantageous about mutation of RhIR and point to RhIR as a key QS  
221 transcription factor in chronic infections like CF.

222

223 We do not know the mechanism or genetic modifications that resulted in Las- independent RhIR  
224 activity in isolate E90. In strain PAO1, in which the hierarchy of QS was initially described, LasR  
225 mutants can readily evolve an independent RhIR QS system through inactivating mutations of  
226 *mexT*, which encodes a non-QS transcriptional regulator [24,26]. However, this is not the case in  
227 isolate E90, which possesses a functional *mexT* allele. We did observe that *rhII* expression is  
228 upregulated by RhIR in E90 unlike in PAO1, where *rhII* expression is predominately LasR-  
229 regulated [45]. These data suggest that in E90 RhIR and RhII may constitute a positive  
230 autoregulatory loop that may facilitate Las-independent RhIR activity. We are interested in  
231 investigating alternate mechanisms, other than inactivation of *mexT*, through which RhIR escapes  
232 LasR regulation in these “rewired” backgrounds.

233

234 In the present study, we aimed to identify which genes comprise the RhIR regulon in a clinical  
235 isolate, which may shed light on factors important for establishment or continuation of a chronic  
236 infection. Our RNA-seq analysis revealed that the E90 RhIR regulon bears a substantial amount  
237 of overlap with the suite of AHL-regulated genes previously identified in PAO1[3] and consists of  
238 virulence factors that are likely advantageous in the context of the CF lung.

239

240 A portion of the genes found to be RhlR-regulated in our transcriptomic analysis of E90 were not  
241 previously reported to be QS-regulated. These genes include *vqsR* (PAE90\_2723/PA2591) and  
242 two genes of the *phz2* operon (PAE90\_3614-3615/PA1899-1900). *VqsR* is itself a LuxR-homolog  
243 that serves to augment QS gene regulation, possibly through activation of the orphan QS receptor  
244 *QscR*, although the precise mechanism and biological outcomes of this interaction are still  
245 mysterious [46,47]. Our finding that the *phz2* operon, in addition to *phz1*, is activated by RhlR  
246 may reflect ongoing QS adaptation in our selected CF isolate. While E90 appears to produce  
247 slightly less bulk pyocyanin in broth culture than PAO1, pyocyanin production by E90 may be  
248 comparatively greater in the biofilm lifestyle of the CF lung. The *phz2* locus, while showing roughly  
249 98% nucleotide identity with *phz1*, has been shown to be responsible for nearly all the pyocyanin  
250 produced in biofilms by PAO1 and is the dominant contributor to murine lung colonization between  
251 the two loci [35]. It is possible that some of these previously unreported QS-regulated genes were  
252 excluded from earlier transcriptome analyses[3,28] due to different analysis approaches or  
253 methodology. Of particular note, we compared a RhlR-deletion mutant to the parent strain to  
254 derive our transcriptome, while some of these previous studies used signal-synthase mutants with  
255 and without signal, which has been demonstrated, in the case of RhlR QS, to yield a different  
256 phenotype [48].

257

258 We also discovered RhlR-QS-regulation of many genes that are not present in the PAO1 genome.  
259 This list includes several hypothetical proteins activated as much as 15-fold in E90 compared to  
260 the RhlR mutant. The list also includes the gene encoding the halogenase *PrnC*, a protein  
261 involved in production of the antifungal antibiotic pyrrolnitrin which may be important in  
262 interspecific interactions in the CF lung [49]. Our finding that RhlR-QS in E90 also appears to  
263 repress genes in the programmed cell death cassette *alpBCDE*, points to additional potential for  
264 QS regulation of population level interactions in CF-adapted strain E90.

265

266 Although we do not yet fully understand the biological significance of the RhlR-mediated  
267 suppression of the phage identified in this study, we are interested in exploring its role, if any, in  
268 fitness and inter- and intra-species competition in the near future. We note that had we used the  
269 PAO1 genome, as opposed to the E90 *de novo* genome, for read alignment, we would have failed  
270 to identify the phage loci and a handful of other genes. These findings therefore argue in favor of  
271 using *de novo* genomes to improve comprehensive transcriptome analyses of clinical and  
272 environmental isolates moving forward.

273

274 Strikingly, we found that in E90, RhlR but not LasR is the critical determinant of cytotoxicity in a  
275 three-dimensional lung epithelium cell aggregate model. Though our study did not reveal exactly  
276 which virulence factors are important for cell death in this model, our results nevertheless  
277 challenge the idea that LasR-null isolates are avirulent. Instead, our data argue that some  
278 virulence activity is conserved in “rewired” isolates, but that RhlR is the primary regulator of  
279 several such functions.

280

281 The scope of our analysis is limited by our examination of a single clinical isolate and laboratory  
282 growth conditions were used for RNA-seq analysis, but our data provide a basis for understanding  
283 regulatory remodeling of QS activity and provide avenues for future investigation. Several  
284 important questions remain about QS in clinical isolates, including whether or not there is a “core”  
285 regulon that is common to isolates that use either LasR or RhlR as the primary QS transcription  
286 factor. Our work also serves as a starting point to test hypotheses regarding the role of RhlR-  
287 regulated genes during chronic infection, the possible fitness advantage associated with LasR-  
288 independent RhlR activity, and mediators of sustainable chronic infections. Our work reveals the  
289 potential breadth of QS activity and virulence functions retained in LasR-null, CF-adapted isolates

290 and suggests that the development of anti-QS therapeutics for chronic *P. aeruginosa* infections  
291 should be focused on RhlR, not LasR.

292 **MATERIALS AND METHODS**

293 **Bacterial strains and growth conditions.** Bacterial strains and plasmids used in this study are  
294 described in S3 Table in Supporting Information. E90 is part of a collection of clinical isolates  
295 obtained via the Early *Pseudomonas* Infection Control Observational (EPIC Obs) Study[20]. The  
296 isolates are from oropharyngeal and sputum samples from 5-12 year-old patients. Further details  
297 regarding the EPIC Obs study design and results have been described previously [20,50].

298

299 For the transcriptional reporter assays as well as pyocyanin and AHL measurements, overnight  
300 cultures were started from single colonies grown in 3 mL of Luria-Bertani (LB) broth buffered with  
301 50 mM morpholinopropanesulfonic acid (MOPS) in an 18 mm culture tube. For the cytotoxicity  
302 experiments, overnight cultures were started from single colonies in 5 mL of unbuffered LB broth.  
303 When appropriate, antibiotics were added at the following concentrations: 10 µg/mL gentamicin  
304 or 100 µg/mL ampicillin for *Escherichia coli*, and 100 µg/mL gentamicin for *P. aeruginosa*. Cells  
305 were grown at 37°C with shaking at 250 RPM unless stated otherwise.

306

307 **LasR and RhIR activity.** LasR and RhIR-specific promoter fusions constructed in pPROBE-GT  
308 have been described previously [16] and are listed in S3 Table. Electrocompetent *P. aeruginosa*  
309 cells were prepared through repeated washing and resuspension of cell pellets in 300 mM  
310 sucrose[51]. Transformants were obtained by plating on LB agar supplemented with gentamicin  
311 and verified by PCR.

312

313 Experimental cultures were prepared as follows: first, overnight cultures were grown with the  
314 addition of 100 µg/mL gentamicin and 100 µg/mL AiiA lactonase, the latter inhibiting AHL-  
315 mediated QS[22]. The addition of AiiA lactonase eliminates residual GFP fluorescence that would  
316 otherwise arise from previously induced reporter gene expression during overnight growth.  
317 Overnight cultures were then diluted to an optical density (OD<sub>600</sub>, 1 cm pathlength) of 0.001

318 (approximately  $1-5 \times 10^6$  CFU/mL) in 3 mL MOPS-buffered LB supplemented with AiiA lactonase  
319 in 18 mm culture tubes. After these cultures grew to an approximate  $OD_{600}$  of 0.2, they were  
320 diluted to  $OD_{600}$  0.001 in 400  $\mu$ L of MOPS-buffered LB alone in a 48-well plate with a clear bottom  
321 (Greiner Bio-One). To prevent evaporation, strains were only grown in wells that did not line the  
322 edges of the plate and all empty wells were filled with 400  $\mu$ L water. We monitored GFP  
323 fluorescence and  $OD_{600}$  at 30-minute intervals for 15 hours using a BioTek Synergy HI microplate  
324 reader (excitation: 489 nm, emission: 520 nm, gain: 80). All strains were grown at 37°C with  
325 shaking for the duration of the assay. To account for differences in growth, results were  
326 normalized to  $OD_{600}$ . As a negative control, each strain was electroporated with an empty vector,  
327 which was used to establish a baseline level of background fluorescence. The fluorescence  
328 intensity was calculated by subtracting the background fluorescence from the total fluorescence  
329 measured at every time point. All experiments were performed in biological triplicate.

330

### 331 **Construction of the E90 $\Delta$ rhIR mutant**

332 A homologous recombination approach was used to generate an in-frame deletion mutant[52,53].  
333 Fragments flanking rhIR were PCR-amplified from E90 genomic DNA and cloned into pEXG2 to  
334 yield pEXG2.E90 $\Delta$ rhIR, which was then transformed into *E. coli* S17-1 in order to facilitate  
335 conjugal transfer of pEXG2.E90 $\Delta$ rhIR into E90. Transconjugants were selected by plating on  
336 *Pseudomonas* isolation agar supplemented with gentamicin, and deletion mutants were counter-  
337 selected by plating onto LB agar with 10% (wt/vol) sucrose. Deletion of rhIR was confirmed by  
338 PCR and targeted sequencing.

339

### 340 **AHL signal extraction and measurement**

341 Experimental cultures were prepared from overnight cultures diluted to  $OD_{600}$  0.001 in 3 mL of  
342 MOPS-buffered LB in an 18 mm culture tube. Experimental cultures were grown with shaking until  
343 they reached  $OD_{600}$  2.0. Then, AHL signals were extracted from experimental cultures using

344 acidified ethyl acetate as described elsewhere[54]. We used an *E. coli* DH5 $\alpha$  strain containing  
345 either pJN105L and pSC11 in conjunction with the Tropix® Galacto-Light™ chemiluminescent  
346 assay (Applied Biosystems) to measure 3OC12-HSL, or containing pECP65.1 to measure C4-  
347 HSL[23,55,56]. The bioassay strains and plasmids are listed in S3 Table in the Supporting  
348 Information.

349

350 **Protease and pyocyanin measurements**

351 Experimental cultures were prepared from overnight cultures by diluting to OD<sub>600</sub> 0.001 in 3 mL  
352 MOPS-buffered LB in 18 mm culture tubes. For secreted protease measurements, experimental  
353 cultures were grown with shaking to OD<sub>600</sub> 2.0. Then, cells were pelleted and 100  $\mu$ L of the  
354 supernatant was collected to measure protease production using the FITC-Casein for Pierce  
355 Fluorescent Protease Assay Kit (ThermoFisher Scientific). For pyocyanin measurements,  
356 experimental cultures were grown with shaking for 18 h and pyocyanin was extracted from  
357 cultures as described previously[16]. We grew strains in MOPS-buffered LB to remain consistent  
358 with the growth conditions used for RNA-seq analysis.

359

360 **Cytotoxicity of three-dimensional A549 cell cultures**

361 A three-dimensional lung epithelial cell culture model was generated by culturing A549 cells  
362 (ATCC CCL-185) on porous microcarrier beads in a rotating well vessel (RWV) bioreactor system,  
363 as described previously [42]. A549 cells were grown in GTSF-2 medium (GE Healthcare)  
364 supplemented with 2.5 mg/L insulin transferrin selenite (ITS) (Sigma-Aldrich), 1.5 g/L sodium  
365 bicarbonate, and 10% heat-inactivated FBS (Invitrogen), and incubated at 37°C under 5% CO<sub>2</sub>,  
366 >80% humidity conditions. Infection studies were performed on cultures grown for 11 to 14 days  
367 in the RWV. Thereafter, 3-D cell cultures were equally distributed in a 48-well plate at a  
368 concentration of 2.5  $\times$  10<sup>5</sup> cells/well (250  $\mu$ L volume), and infected with the different strains at a  
369 targeted multiplicity of infection of 30:1 as described previously[43]. All infection studies were

370 performed in the above-described cell culture medium, with the exception that no FBS was added  
371 given the interference of serum compounds with QS signaling [57]. After 24 h infection, the release  
372 of cytosolic lactate dehydrogenase (LDH) from 3-D lung epithelial cell cultures was determined  
373 using a LDH activity assay kit (Sigma-Aldrich) according to the manufacturer's instructions. A  
374 standard curve using NADH was included. The positive control (theoretical 100% LDH release)  
375 was obtained by lysing  $2.5 \times 10^5$  cells with 1% Triton-X100. All LDH release values were  
376 expressed as a percentage of the positive control.

377

### 378 **RNA isolation and qRT-PCR**

379 Overnight cultures were started from single colonies grown in 3 mL of MOPS-buffered LB in 18  
380 mm culture tubes. Experimental cultures were prepared by diluting overnight cultures to  $OD_{600}$   
381 0.01 in 25 mL of MOPS-buffered LB in 125-mL baffled flasks. Experimental cultures were grown  
382 at 37°C with shaking at 250 RPM. Approximately  $1 \times 10^9$  cells were pelleted at  $OD_{600}$  2.0 and  
383 mixed with RNA Protect Bacteria reagent (Qiagen) before being stored at -80°C. Thawed cell  
384 pellets were resuspended in QIAzol reagent and mechanically lysed by bead beating. To extract  
385 RNA, we used the RNeasy kit (Qiagen) according to manufacturer's instructions. Isolated RNA  
386 was then treated with Turbo DNase (Ambion) and purified using the MinElute cleanup kit  
387 (Qiagen). Three biological replicates were processed for each strain (E90 and E90 $\Delta$ rhlR). Next,  
388 cDNA was prepared using the iScript™ cDNA Synthesis Kit (BioRad). Then, expression of target  
389 genes was analyzed by following the protocol for the iQ™ SYBR® Green SuperMix (BioRad) on  
390 a CFX96 Real-Time PCR cycler. We analyzed expression of the following genes: *lasI*, *lasB*, *rhlI*,  
391 *rhlR*, *rhlA*, *pqsA*, *chiC*, and *aprA*. We used *rplU* as a reference gene. Primers used for qRT-PCR  
392 are listed in S3 Table in Supporting Information.

393

### 394 **Whole-genome sequencing, RNA-seq, and differential gene expression analysis**

395 We generated the complete circular sequence of E90 using a *de novo* whole-genome sequencing  
396 approach. High-molecular weight (HMW) genomic DNA was isolated from overnight E90 liquid  
397 culture using the Genomic-tip 20/G kit (Qiagen). Genomic DNA was sequenced separately using  
398 the following two approaches. For short reads, genomic DNA was subjected to 300 bp PE  
399 sequencing on the Illumina MiSeq platform using TruSeq v3 reagents to yield approximately 20  
400 M raw reads which were then groomed using Trimmomatic (v0.36; adapter trimming, paired reads  
401 only, Phred score cutoff=15) [58]. For long reads, genomic DNA was prepared into two ligation-  
402 mediated (SQK-LSK109, Oxford Nanopore) libraries: one barcoded via PCR (EXP-PBC001) and  
403 the other via native barcoding (EXP-NBD114). Libraries were then subjected to sequencing on  
404 the Nanopore MinION platform using R9.4.1 pores. Nanopore reads were base-called and de-  
405 multiplexed using Guppy (v3.1.5, Oxford Nanopore), further groomed to remove adapters and for  
406 quality using Porechop (v0.2.4) [59], and final statistics determined in NanoPack (NanoPlot  
407 v1.27.0; NanoQC v0.9.1) [60] (read length N50=12kb; median read quality=Q12.6). All reads were  
408 then combined in a hybrid *de novo* assembly approach using the Unicycler pipeline [61], including  
409 short-read assembly via SPAdes(v3.13.0)[62], long-read assembly via Racon (v1.4.3), and  
410 polishing via Pilon [63], to yield the complete E90 genome. The E90 genome was then annotated  
411 using the RAST pipeline [64]. The E90 genome is available via the National Center for  
412 Biotechnological Information (NCBI) under BioProject accession PRJNA559863.

413  
414 For RNA-seq experiments, cultures were prepared, and RNA was extracted and purified as  
415 described above for qRT-PCR with 2 biological replicates per treatment. Genewiz, LLC performed  
416 rRNA depletion, library generation, and sequencing for all samples. RNA reads were obtained  
417 using the Illumina HiSeq platform with an average of 15.3M 150-bp paired-end raw reads per  
418 sample which were then groomed using Trim Galore (v0.4.3;  
419 <https://github.com/FelixKrueger/TrimGalore>). Reads were then aligned against the E90 genome  
420 and counted using the Subread/featureCounts suite of command line tools to produce a final

421 count matrix of 4 by 6478 which was then loaded into the R statistical environment [65,66].  
422 Differential expression (DE) analysis was performed using DESeq2 using a fold-change cut-off of  
423 2 and an adjusted  $p=0.05$  [67]. The raw reads and count matrix associated with this transcriptome  
424 analysis have been deposited in the of the NCBI Sequence Read Archive under BioProject  
425 accession PRJNA559863.

426

427 **ACKNOWLEDGMENTS**

428 This work was supported by grants from the NIH (R01 GM125714), Doris Duke Charitable  
429 Foundation (2017072) and the Burroughs-Wellcome Fund (1012253) to AAD. RC and KLA were  
430 supported in part by the Cystic Fibrosis Foundation, with additional support to KLA from the US  
431 National Institutes of Health (T32 HL007287). We acknowledge core support from the Cystic  
432 Fibrosis Foundation (SINGH15R0 and R565 CR11) and NIH (P30DK089507). Funding from the  
433 Research Foundation Flanders to AC (Odysseus grant G.0.E53.14N) and SVDB (PhD fellowship  
434 3S55719) also supported this study. We thank Amy Schaefer and Nicole Smalley for providing  
435 the AiiA lactonase and protocols for the use of AiiA lactonase.

436 **REFERENCES**

437 1. Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. *Annu Rev  
438 Cell Dev Biol.* 2005;21: 319–346. doi:10.1146/annurev.cellbio.21.012704.131001

439 2. Case RJ, Labbate M, Kjelleberg S. AHL-driven quorum-sensing circuits: their frequency  
440 and function among the Proteobacteria. *ISME J.* 2008;2: 345–349.  
441 doi:10.1038/ismej.2008.13

442 3. Schuster M, Lostroh CP, Ogi T, Greenberg EP. Identification, timing, and signal specificity  
443 of *Pseudomonas aeruginosa* quorum-controlled genes: a transcriptome analysis. *J  
444 Bacteriol.* 2003;185: 2066–2079. doi:10.1128/JB.185.7.2066

445 4. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A. A hierarchical quorum-sensing  
446 cascade in *Pseudomonas aeruginosa* links the transcriptional activators LasR and RhlR  
447 (VsmR) to expression of the stationary-phase sigma factor RpoS. *Mol Microbiol.* 1996;21:  
448 1137–46.

449 5. Pesci EC, Pearson JP, Seed PC, Iglesias BH. Regulation of *las* and *rhl* quorum sensing in  
450 *Pseudomonas aeruginosa*. *J Bacteriol.* 1997;179: 3127–32.

451 6. Kiratisin P, Tucker KD, Passador L. LasR, a transcriptional activator of *Pseudomonas  
452 aeruginosa* virulence genes, functions as a multimer. *J Bacteriol.* 2002;184: 4912–9.

453 7. Schuster M, Greenberg EP. A network of networks: quorum-sensing gene regulation in  
454 *Pseudomonas aeruginosa*. *Int J Med Microbiol.* 2006;296: 73–81.  
455 doi:10.1016/j.ijmm.2006.01.036

456 8. Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, et al. Regulation of  
457 *Pseudomonas* quinolone signal synthesis in *Pseudomonas aeruginosa*. *J Bacteriol.*  
458 2005;187: 4372–80. doi:10.1128/JB.187.13.4372-4380.2005

459 9. Farrow JM, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC. PqsE functions  
460 independently of PqsR-*Pseudomonas* quinolone signal and enhances the *rhl* quorum-  
461 sensing system. *J Bacteriol.* 2008;190: 7043–7051. doi:10.1128/JB.00753-08

462 10. Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA. Quorum  
463 sensing and the social evolution of bacterial virulence. *Curr Biol.* 2009;19: 341–345.  
464 doi:10.1016/J.CUB.2009.01.050

465 11. Tang HB, DiMango E, Bryan R, Gambello M, Iglewski BH, Goldberg JB, et al. Contribution  
466 of specific *Pseudomonas aeruginosa* virulence factors to pathogenesis of pneumonia in a  
467 neonatal mouse model of infection. *Infect Immun.* 1996;64: 37–43.

468 12. D'Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Déziel E, Smith EE, et al. Growth  
469 phenotypes of *Pseudomonas aeruginosa lasR* mutants adapted to the airways of cystic  
470 fibrosis patients. *Mol Microbiol.* 2007;64: 512–533. doi:10.1111/j.1365-2958.2007.05678.x

471 13. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D'Argenio DA, et al.  
472 Genetic adaptation by *Pseudomonas aeruginosa* to the airways of cystic fibrosis patients.  
473 *Proc Natl Acad Sci U S A.* 2006;103: 8487–92. doi:10.1073/pnas.0602138103

474 14. Hoffman LR, Kulasekara HD, Emerson J, Houston LS, Burns JL, Ramsey BW, et al.  
475 *Pseudomonas aeruginosa lasR* mutants are associated with cystic fibrosis lung disease  
476 progression. *J Cyst Fibros.* 2009;8: 66–70. doi:10.1016/J.JCF.2008.09.006

477 15. Wilder CN, Allada G, Schuster M. Instantaneous within-patient diversity of *Pseudomonas*  
478 *aeruginosa* quorum-sensing populations from cystic fibrosis lung infections. *Infect Immun.*  
479 2009;77: 5631–9. doi:10.1128/IAI.00755-09

480 16. Feltner JB, Wolter DJ, Pope CE, Groleau MC, Smalley NE, Greenberg EP, et al. LasR  
481 variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in  
482 *Pseudomonas aeruginosa*. *MBio.* 2016;7. doi:10.1128/mBio.01513-16

483 17. Chen R, Déziel E, Groleau M-C, Schaefer AL, Greenberg EP. Social cheating in a  
484 *Pseudomonas aeruginosa* quorum-sensing variant. *Proc Natl Acad Sci U S A.* 2019;116:  
485 7021–7026. doi:10.1073/pnas.1819801116

486 18. Bjarnsholt T, Jensen PØ, Jakobsen TH, Phipps R, Nielsen AK, Rybtke MT, et al. Quorum  
487 sensing and virulence of *Pseudomonas aeruginosa* during lung infection of cystic fibrosis

488 patients. *PLoS One*. 2010;5: e10115. doi:10.1371/journal.pone.0010115

489 19. Wang Y, Gao L, Rao X, Wang J, Yu H, Jiang J, et al. Characterization of *lasR*-deficient  
490 clinical isolates of *Pseudomonas aeruginosa*. *Sci Rep*. 2018;8: 13344.  
491 doi:10.1038/s41598-018-30813-y

492 20. Treggiari MM, Rosenfeld M, Mayer-Hamblett N, Retsch-Bogart G, Gibson RL, Williams J,  
493 et al. Early anti-pseudomonal acquisition in young patients with cystic fibrosis: rationale  
494 and design of the EPIC clinical trial and observational study. *Contemp Clin Trials*. 2009;30:  
495 256–268. doi:10.1016/j.cct.2009.01.003

496 21. Seed PC, Passador L, Iglewski BH. Activation of the *Pseudomonas aeruginosa lasl* gene  
497 by LasR and the *Pseudomonas* autoinducer PAI: an autoinduction regulatory hierarchy. *J  
498 Bacteriol*. 1995;177: 654–9.

499 22. Dong Y-H, Xu J-L, Li X-Z, Zhang L-H. AiiA, an enzyme that inactivates the acylhomoserine  
500 lactone quorum-sensing signal and attenuates the virulence of *Erwinia carotovora*. *Proc  
501 Natl Acad Sci*. 2000;97: 3526–3531. doi:10.1073/pnas.97.7.3526

502 23. Pearson JP, Pesci EC, Iglewski BH. Roles of *Pseudomonas aeruginosa las* and *rhl*  
503 quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. *J  
504 Bacteriol*. 1997;179: 5756–67. doi:10.1128/JB.179.18.5756-5767.1997

505 24. Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP, Dandekar AA. Evolution of  
506 the *Pseudomonas aeruginosa* quorum-sensing hierarchy. *Proc Natl Acad Sci U S A*.  
507 2019;116: 7027–7032. doi:10.1073/pnas.1819796116

508 25. Dekimpe V, Deziel E. Revisiting the quorum-sensing hierarchy in *Pseudomonas*  
509 *aeruginosa*: the transcriptional regulator RhIR regulates LasR-specific factors.  
510 *Microbiology*. 2009;155: 712–723. doi:10.1099/mic.0.022764-0

511 26. Oshri RD, Zrihen KS, Shner I, Omer Bendori S, Eldar A. Selection for increased quorum-  
512 sensing cooperation in *Pseudomonas aeruginosa* through the shut-down of a drug  
513 resistance pump. *ISME J*. 2018;12: 2458–2469. doi:10.1038/s41396-018-0205-y

514 27. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete  
515 genome sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic pathogen. *Nature*.  
516 2000;406: 959–964. doi:10.1038/35023079

517 28. Chugani S, Kim BS, Phattarasukol S, Brittnacher MJ, Choi SH, Harwood CS, et al. Strain-  
518 dependent diversity in the *Pseudomonas aeruginosa* quorum-sensing regulon. *Proc Natl  
519 Acad Sci U S A*. 2012;109: E2823–E2831. doi:10.1073/pnas.1214128109

520 29. Kuang Z, Hao Y, Walling BE, Jeffries JL, Ohman DE, Lau GW. *Pseudomonas aeruginosa*  
521 elastase provides an escape from phagocytosis by degrading the pulmonary surfactant  
522 protein-A. *PLoS One*. 2011;6: e27091. doi:10.1371/journal.pone.0027091

523 30. Alcorn JF, Wright JR. Degradation of pulmonary surfactant protein D by *Pseudomonas*  
524 *aeruginosa* elastase abrogates innate immune function. *J Biol Chem*. 2004;279: 30871–9.  
525 doi:10.1074/jbc.M400796200

526 31. Zulianello L, Canard C, Kohler T, Caille D, Lacroix J-S, Meda P. Rhamnolipids are virulence  
527 factors that promote early infiltration of primary human airway epithelia by *Pseudomonas*  
528 *aeruginosa*. *Infect Immun*. 2006;74: 3134–3147. doi:10.1128/IAI.01772-05

529 32. Caldwell CC, Chen Y, Goetzmann HS, Hao Y, Borchers MT, Hassett DJ, et al. *Pseudomonas aeruginosa* exotoxin pyocyanin causes cystic fibrosis airway pathogenesis.  
530 *Am J Pathol*. 2009;175: 2473–88. doi:10.2353/ajpath.2009.090166

531 33. Sana TG, Hachani A, Bucior I, Soscia C, Garvis S, Termine E, et al. The second type VI  
532 secretion system of *Pseudomonas aeruginosa* strain PAO1 is regulated by quorum sensing  
533 and Fur and modulates internalization in epithelial cells. *J Biol Chem*. 2012;287: 27095–  
534 105. doi:10.1074/jbc.M112.376368

535 34. Mavrodi D V., Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS. Functional  
536 analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from  
537 *Pseudomonas aeruginosa* PAO1. *J Bacteriol*. 2001;183: 6454–6465.  
538 doi:10.1128/JB.183.21.6454-6465.2001

539

540 35. Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, Prince AS, et al.  
541 Redundant phenazine operons in *Pseudomonas aeruginosa* exhibit environment-  
542 dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A.  
543 2012; doi:10.1073/pnas.1213901109

544 36. Zhang W, Sun J, Ding W, Lin J, Tian R, Lu L, et al. Extracellular matrix-associated proteins  
545 form an integral and dynamic system during *Pseudomonas aeruginosa* biofilm  
546 development. Front Cell Infect Microbiol. 2015;5: 40. doi:10.3389/fcimb.2015.00040

547 37. Hammer PE, Hill DS, Lam ST, Van Pee KH, Ligon JM. Four genes from *Pseudomonas*  
548 *fluorescens* that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol. 1997;63:  
549 2147–54.

550 38. Hong Z, Bolard A, Giraud C, Prévost S, Genta-Jouve G, Deregaucourt C, et al. Azetidine-  
551 containing alkaloids produced by a quorum-sensing regulated nonribosomal peptide  
552 synthetase pathway in *Pseudomonas aeruginosa*. Angew Chemie Int Ed. 2019;58: 3178–  
553 3182. doi:10.1002/anie.201809981

554 39. McFarland KA, Dolben EL, LeRoux M, Kambara TK, Ramsey KM, Kirkpatrick RL, et al. A  
555 self-lysis pathway that enhances the virulence of a pathogenic bacterium. Proc Natl Acad  
556 Sci U S A. 2015;112: 8433–8438. doi:10.1073/pnas.1506299112

557 40. Mulcahy H, O'Callaghan J, O'Grady EP, Macia MD, Borrell N, Gomez C, et al.  
558 *Pseudomonas aeruginosa* RsmA plays an important role during murine infection by  
559 influencing colonization, virulence, persistence, and pulmonary inflammation. Infect  
560 Immun. 2008;76: 632–638. doi:10.1128/IAI.01132-07

561 41. Rumbaugh KP, Griswold JA, Iglesias BH, Hamood AN. Contribution of quorum sensing to  
562 the virulence of *Pseudomonas aeruginosa* in burn wound infections. Infect Immun.  
563 1999;67: 5854–62.

564 42. Carterson AJ, Höner zu Bentrup K, Ott CM, Clarke MS, Pierson DL, Vanderburg CR, et al.  
565 A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture

566 model for *Pseudomonas aeruginosa* pathogenesis. *Infect Immun.* 2005;73: 1129–40.  
567 doi:10.1128/IAI.73.2.1129-1140.2005

568 43. Crabbé A, Liu Y, Matthijs N, Rigole P, De La Fuente-Núñez C, Davis R, et al. Antimicrobial  
569 efficacy against *Pseudomonas aeruginosa* biofilm formation in a three-dimensional lung  
570 epithelial model and the influence of fetal bovine serum. *Sci Rep.* 2017;7: 43321.  
571 doi:10.1038/srep43321

572 44. Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, et al. A cell-cell communication signal  
573 integrates quorum sensing and stress response. *Nat Chem Biol.* 2013;9: 339–343.  
574 doi:10.1038/nchembio.1225

575 45. de Kievit TR, Kakai Y, Register JK, Pesci EC, Iglesias BH. Role of the *Pseudomonas*  
576 *aeruginosa* *las* and *rhl* quorum-sensing systems in *rhl* regulation. *FEMS Microbiol Lett.*  
577 2002;212: 101–6.

578 46. Liang H, Deng X, Ji Q, Sun F, Shen T, He C. The *Pseudomonas aeruginosa* global  
579 regulator VqsR directly inhibits QscR to control quorum-sensing and virulence gene  
580 expression. *J Bacteriol.* 2012;194: 3098–108. doi:10.1128/JB.06679-11

581 47. Juhas M, Wiehlmann L, Huber B, Jordan D, Lauber J, Salunkhe P, et al. Global regulation  
582 of quorum sensing and virulence by VqsR in *Pseudomonas aeruginosa*. *Microbiology.*  
583 2004;150: 831–841. doi:10.1099/mic.0.26906-0

584 48. Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL. The RhIR quorum-sensing  
585 receptor controls *Pseudomonas aeruginosa* pathogenesis and biofilm development  
586 independently of its canonical homoserine lactone autoinducer. *PLOS Pathog.* 2017;13:  
587 e1006504. doi:10.1371/journal.ppat.1006504

588 49. Wynands I, van Pee K-H. A novel halogenase gene from the pentachloropseudolin producer  
589 *Actinoplanes* sp. ATCC 33002 and detection of in vitro halogenase activity. *FEMS Microbiol*  
590 *Lett.* 2004;237: 363–367. doi:10.1111/j.1574-6968.2004.tb09718.x

591 50. Mayer-Hamblett N, Rosenfeld M, Gibson RL, Ramsey BW, Kulasekara HD, Retsch-Bogart

592 GZ, et al. *Pseudomonas aeruginosa* *in vitro* phenotypes distinguish cystic fibrosis infection  
593 stages and outcomes. Am J Respir Crit Care Med. 2014;190: 140617081504001.  
594 doi:10.1164/rccm.201404-0681OC

595 51. Choi K-H, Kumar A, Schweizer HP. A 10-min method for preparation of highly  
596 electrocompetent *Pseudomonas aeruginosa* cells: Application for DNA fragment transfer  
597 between chromosomes and plasmid transformation. J Microbiol Methods. 2006;64: 391–  
598 397. doi:10.1016/J.MIMET.2005.06.001

599 52. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-  
600 FRT recombination system for site-specific excision of chromosomally-located DNA  
601 sequences: application for isolation of unmarked *Pseudomonas aeruginosa* mutants.  
602 Gene. 1998;212: 77–86. doi:10.1016/s0378-1119(98)00130-9

603 53. Kostylev M, Otwell AE, Richardson RE, Suzuki Y. Cloning should be simple: *Escherichia*  
604 *coli* DH5 $\alpha$ -mediated assembly of multiple DNA fragments with short end homologies. PLoS  
605 One. 2015;10: e0137466. doi:10.1371/journal.pone.0137466

606 54. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Rinehart KL, et al. Detecting and  
607 characterizing *N*-acyl-homoserine lactone signal molecules by thin-layer chromatography.  
608 Proc Natl Acad Sci U S A. 1997;94: 6036–41. doi:10.1073/PNAS.94.12.6036

609 55. Chugani SA, Whiteley M, Lee KM, D'Argenio D, Manoil C, Greenberg EP. QscR, a  
610 modulator of quorum-sensing signal synthesis and virulence in *Pseudomonas aeruginosa*.  
611 Proc Natl Acad Sci U S A. 2001;98: 2752–7. doi:10.1073/pnas.051624298

612 56. Lee J-H, Lequette Y, Greenberg EP. Activity of purified QscR, a *Pseudomonas aeruginosa*  
613 orphan quorum-sensing transcription factor. Mol Microbiol. 2006;59: 602–609.  
614 doi:10.1111/j.1365-2958.2005.04960.x

615 57. Smith AC, Rice A, Sutton B, Gabrilska R, Wessel AK, Whiteley M, et al. Albumin Inhibits  
616 *Pseudomonas aeruginosa* quorum sensing and alters polymicrobial interactions. Infect  
617 Immun. 2017;85. doi:10.1128/IAI.00116-17

618 58. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.  
619 Bioinformatics. 2014;30: 2114–2120. doi:10.1093/bioinformatics/btu170

620 59. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with  
621 multiplex MinION sequencing. Microb Genomics. 2017;3: e000132.  
622 doi:10.1099/mgen.0.000132

623 60. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing  
624 and processing long-read sequencing data. Bioinformatics. 2018;34: 2666–2669.  
625 doi:10.1093/bioinformatics/bty149

626 61. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies  
627 from short and long sequencing reads. PLOS Comput Biol. 2017;13: e1005595.  
628 doi:10.1371/journal.pcbi.1005595

629 62. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A  
630 new genome assembly algorithm and its applications to single-cell sequencing. J Comput  
631 Biol. 2012;19: 455–477. doi:10.1089/cmb.2012.0021

632 63. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An  
633 integrated tool for comprehensive microbial variant detection and genome assembly  
634 improvement. PLoS One. 2014;9: e112963. doi:10.1371/journal.pone.0112963

635 64. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA. plasmidSPAdes:  
636 assembling plasmids from whole genome sequencing data. Bioinformatics. 2016;32:  
637 btw493. doi:10.1093/bioinformatics/btw493

638 65. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server:  
639 rapid annotations using subsystems technology. BMC Genomics. 2008;9: 75.  
640 doi:10.1186/1471-2164-9-75

641 66. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for  
642 assigning sequence reads to genomic features. Bioinformatics. 2014;30: 923–930.  
643 doi:10.1093/bioinformatics/btt656

644 67. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping  
645 by seed-and-vote. *Nucleic Acids Res.* 2013;41: e108–e108. doi:10.1093/nar/gkt214  
646 68. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-  
647 seq data with DESeq2. *Genome Biol.* 2014;15: 550. doi:10.1186/s13059-014-0550-8

648

649 **FIGURE LEGENDS**

650 **Figure 1. LasR activity is absent in E90, a cystic fibrosis-adapted chronic infection isolate.**  
651 A) *p<sub>lasI</sub>-gfp* reporter activity over time (Fluorescence/OD<sub>600</sub>). PAO1, open circles; PAO1 $\Delta$ /asR, blue circles; E90, red triangles. Data from the first three hours are excluded from analysis because  
652 cell density measurements were below the limit of detection. B) AHL signal concentrations. Black  
653 bars, 3OC12-HSL; grey bars, C4-HSL. The dashed line indicates the limit of detection for the  
654 3OC12 and C4-HSL bioassay (10 nM in each case). Both the PAO1 $\Delta$ /asR mutant and E90  
655 produce concentrations of 3OC12-HSL and C4-HSL that are significant from PAO1 (p-value <  
656 0.05 by t-test). For (A) and (B), means and standard deviation of biological replicates are shown  
657 (n=3). In some cases, error bars are too small to be seen.

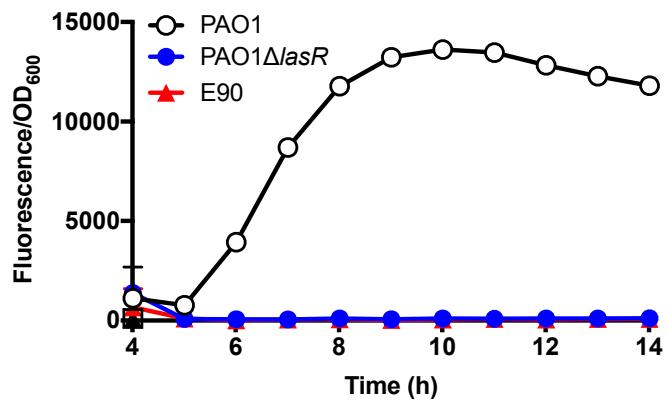
659

660 **Figure 2. In isolate E90, expression of several canonical QS-regulated genes is AHL-  
661 dependent.** The following target genes were measured in the presence or absence of AiiA  
662 lactonase using qRT-PCR: *lasI*, 3OC12-HSL signal synthase; *lasB*, elastase; *rhII*, C4-HSL signal  
663 synthase; *rhIIR*, RhIIR, *pqsA*, coenzyme A ligase involved in *Pseudomonas* Quinolone Signal  
664 synthesis; *chiC*, chitinase; *aprA*; alkaline metalloprotease. The differences in threshold cycle ( $\Delta$   
665 Ct) are measured relative to the housekeeping gene *rplU*. Fold changes in gene expression (table  
666 on right) are reported relative to cultures incubated with AiiA lactonase. Asterisks (\*) indicate  
667 statistical significance (p < 0.05 by t test). Error bars represent the standard deviation for results  
668 of three independent experiments.

669

670 **Figure 3. RhIR regulates QS in E90.** Production of (A) pyocyanin or (B) protease in either PAO1,  
671 E90, PAO1 $\Delta$ /asR or E90 $\Delta$ rhIR. The dashed lines indicate the detection limits for the pyocyanin  
672 and protease assays, which are 0.2  $\mu$ g/mL and 0.008  $\mu$ g/mL, respectively. C) *rhIA-gfp* reporter  
673 activity over time. Data from the first five hours are excluded because cell density measurements  
674 were below the limit of detection of the plate reader. Error bars represent the standard deviation  
675 for results of three independent experiments. In some cases, error bars are too small to be seen.  
676 Both the PAO1 $\Delta$ /asR mutant and E90 produce concentrations of pyocyanin or exoprotease that  
677 are significantly different from PAO1 (\*, p < 0.05; \*\*, p < 0.01; \*\*\*, p < 0.001 by t-test).

678


679 **Figure 4. General features of the complete E90 genome.** This circular representation of the  
680 E90 genome includes rings indicating the following features described from the outer-most to  
681 inner-most rings: annotated features of CDS (blue) or rDNA (grey) on the forward (outer) or  
682 reverse (inner) strands; all-by-all blastn hits (red) in a comparison against PAO1\_107 (nucleotide  
683 identity >40%); GC content deviation (black); GC skew (+, green; -, purple). Additional outer,  
684 partial rings indicate the 4.4 Mb inversion (bright red) and the 250 kb reorder (light blue).

685

686 **Figure 5. RhIR regulates cytotoxicity in E90, but not PAO1.** We measured cell lysis (as a  
687 percentage of the total lactate dehydrogenase release caused by incubation with a lysis agent) of  
688 A549 cells incubated with PAO1, E90, or QS transcription factor mutants of PAO1 or E90.  
689 Asterisks (\*) indicate statistical significance (\*, p < 0.05; \*\*, p < 0.01; \*\*\*, p < 0.001 by t-test). Error  
690 bars represent the standard deviation for results of at least three independent experiments.

Figure 1

**A**



**B**

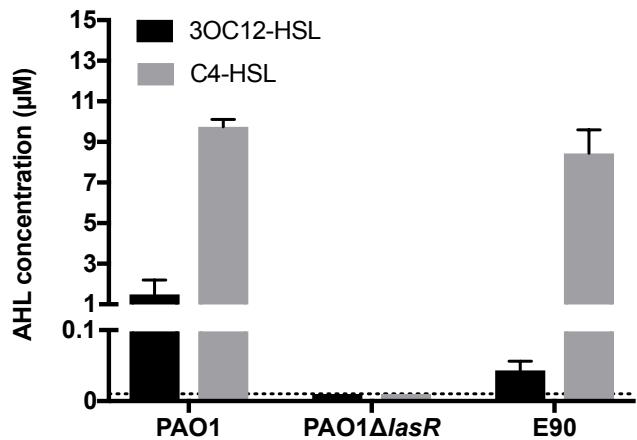



Figure 2

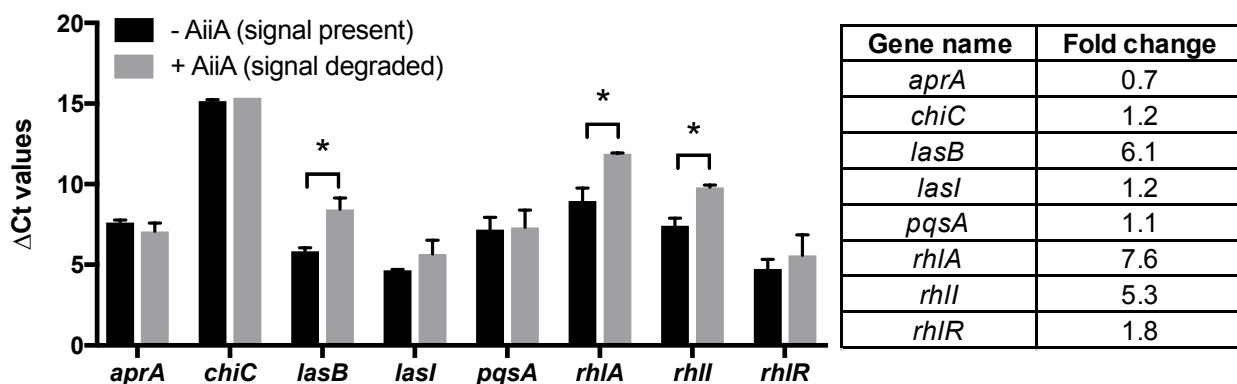



Figure 3

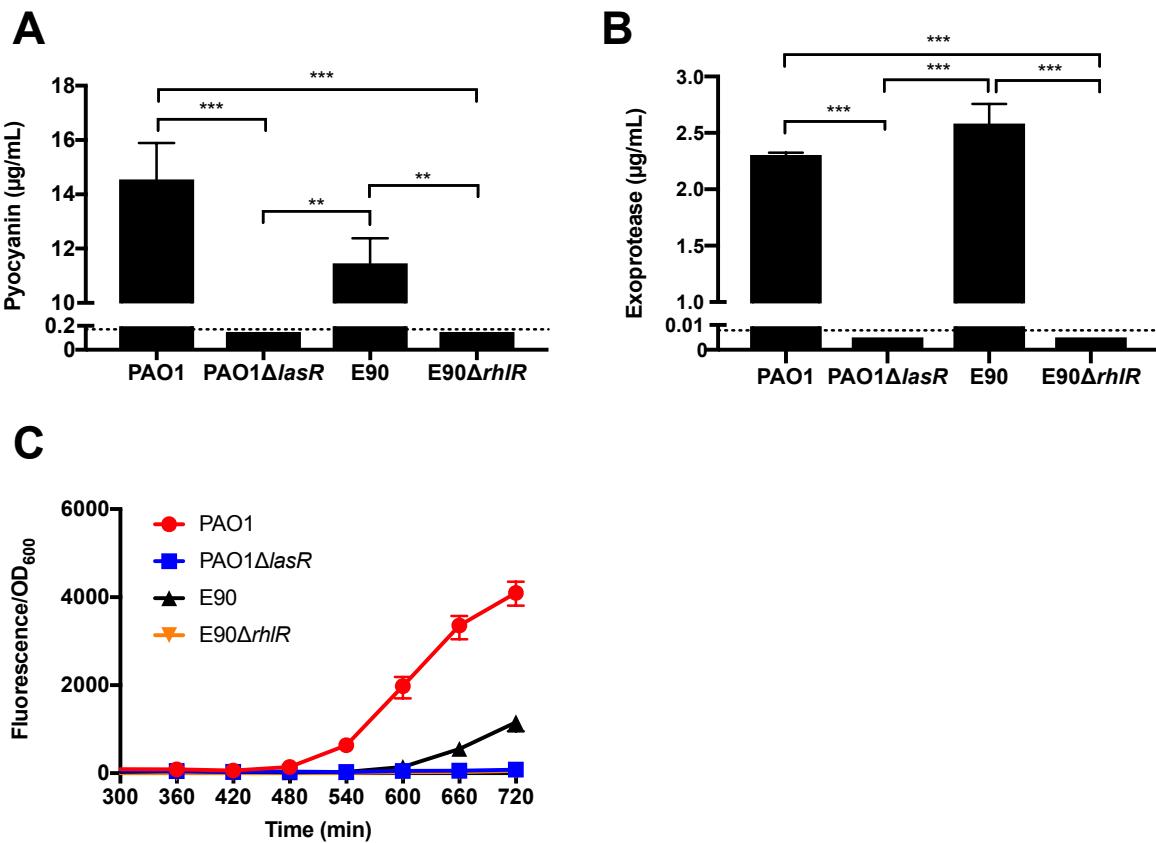



Figure 4

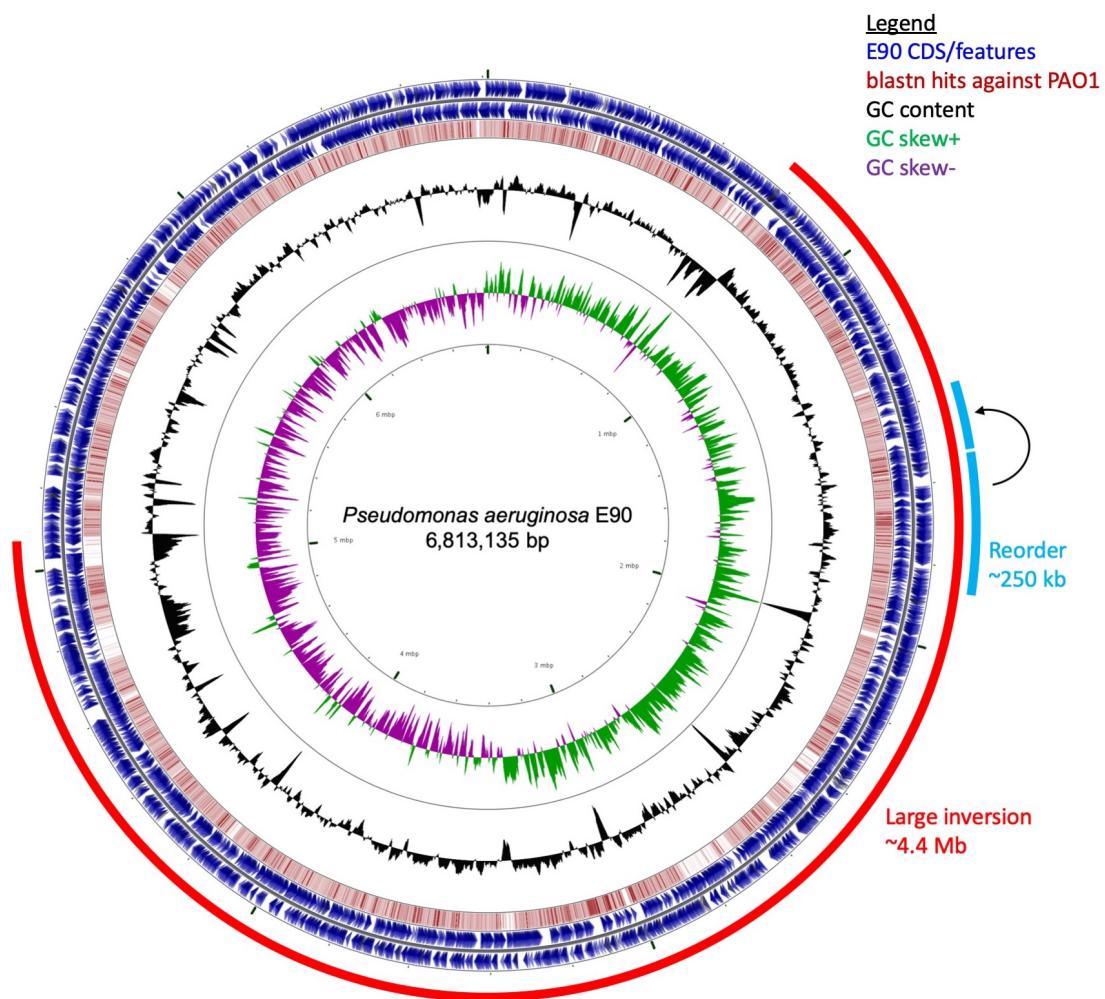
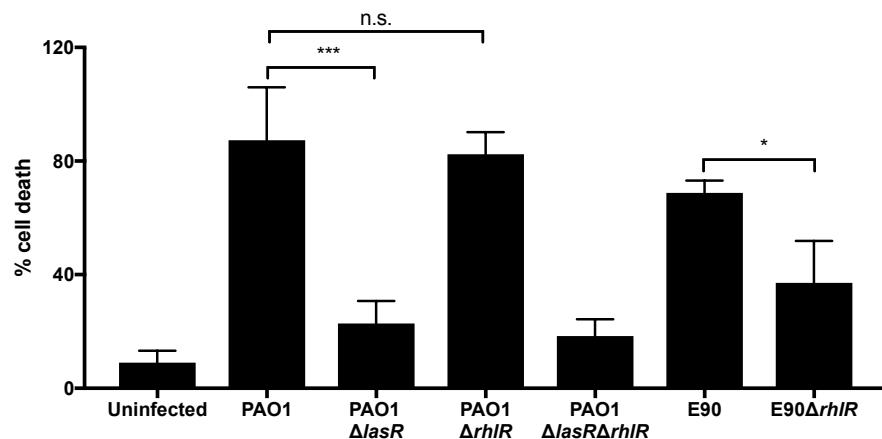




Figure 5



## SUPPORTING INFORMATION

### **S1 Fig. Growth curves of E90 and E90 $\Delta$ rhIR in buffered Luria-Bertani Broth.**

Means and standard deviation of biological replicates are shown (n=3). In some cases, error bars are too small to be seen.

### **S1 Table. Complete list of RhIR-activated genes in strain E90.**

### **S2 Table. Complete list of RhIR-repressed genes in strain E90.**

### **S3 Table. Bacterial strains, plasmids, and primers used in this study.**