

1 Engineering recombination between diverged yeast species reveals genetic
2 incompatibilities

3
4 G. Ozan Bozdag*^{1,2}, Jasmine Ono*†³, Jai A. Denton⁴, Emre Karakoc⁵, Neil Hunter^{6,7}, Jun-Yi Leu⁸,
5 and Duncan Greig^{2,3}

6
7 ¹School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA

8 ²Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön,
9 Germany

10 ³Department of Genetics, Evolution and Environment, University College London, London,
11 United Kingdom

12 ⁴Genomics & Regulatory Systems Unit, Okinawa Institute of Science & Technology, Onna-son,
13 Japan

14 ⁵Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom

15 ⁶Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA

16 ⁷Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA,
17 USA

18 ⁸Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan

19 * Authors contributed equally

20 † Corresponding author: Jasmine Ono j.ono@ucl.ac.uk

21
22 **23 Abstract**

24
25 The major cause of the sterility of F1 hybrids formed between *Saccharomyces cerevisiae* and

26 *Saccharomyces paradoxus* is anti-recombination. The failure of homologous chromosomes

27 from the different species to recombine causes them to mis-segregate, resulting in aneuploid

28 gametes, most of which are inviable. These effects of anti-recombination have previously

29 impeded the search for other forms of incompatibility, such as negative genetic interactions

30 (Bateson-Dobzhansky-Muller incompatibilities). By suppressing the meiotic expression of

31 *MSH2* and *SGS1*, we could increase recombination and improve hybrid fertility seventy-fold.

32 This allowed us to recover meiotic tetrads in which all four gametes were viable, ensuring that

33 segregation had occurred properly to produce perfectly haploid, not aneuploid, recombinant

34 hybrid gametes. We sequenced the genomes of 84 such tetrads, and discovered that some

35 combinations of alleles from different species were significantly under-represented,

36 indicating that there are incompatible genes contributing to reproductive isolation.

37
38 **39 Introduction**

40 Species are formed and maintained by the restriction of gene flow between
41 diverging populations. Barriers to gene flow can be physical, such as geographic
42 distance, or they can be properties of the species themselves. Here, we focus on one
43 such barrier to gene flow, hybrid sterility. Hybrid sterility is a form of post-zygotic
44 reproductive isolation, meaning that it acts after diverging populations have already
45 mated and produced a hybrid zygote. Hybrid sterility can be caused by a variety of
46 mechanisms that can generally be classified into incompatibilities between diverged
47 chromosomes (such as large-scale chromosomal rearrangements; Rieseberg and
48 Willis, 2007, and anti-recombination) and incompatibilities between individual
49 genes from the diverging populations (Presgraves, 2010). There is particular
50 interest in the latter class of genic incompatibilities, which are often referred to as
51 “Bateson-Dobzhansky-Muller incompatibilities” (BDMIs) or “speciation genes” (Orr,
52 1996). As we don’t know whether these incompatibilities themselves are the cause
53 of speciation or have developed post-speciation, we will refer to them as BDMIs
54 throughout.

55

56 BDMIs represent a case where alleles (at two or more loci) that have evolved
57 to work well together within a species perform poorly when combined in a hybrid
58 individual with alleles from another species, whose alleles have evolved
59 independently (Coyne and Orr, 2004). Since BDMIs offer a universal mechanism for
60 speciation, they have been studied intensely, both theoretically and empirically, yet
61 only a handful have been discovered and characterized at the molecular level
62 (reviewed in Presgraves, 2010; Rieseberg and Blackman, 2010; Maheshwari and
63 Barbash, 2011; Nosil and Schlüter, 2011). Understanding the molecular mechanisms
64 underlying additional BDMIs will allow us to address general questions about
65 reproductive isolation, such as the number of BDMIs typically involved and their

66 effect sizes, whether the same genes or types of genes are involved in different
67 cases, what types or locations of mutations are most likely to cause incompatibility,
68 and whether BDMIs evolve by selection or drift (Nosil and Schluter, 2011).

69

70 Yeast are a great system in which to molecularly characterize such
71 interactions because the genomic data, molecular tools and genetic tractability of
72 the model yeast *Saccharomyces cerevisiae* are unsurpassed by any other model
73 eukaryote (Botstein and Fink, 2011). F1 hybrids between *S. cerevisiae* and its closest
74 relative *Saccharomyces paradoxus* have greatly reduced sexual fertility compared to
75 non-hybrids. Haploid gametes from the two different species can fuse to form
76 diploid F1 hybrids that grow normally by mitosis, but only about 1% of the gametes
77 (which are produced as spores) formed via meiosis are viable (able to germinate
78 and grow into colonies) (Hunter et al., 1996). In contrast, nearly all the spores
79 produced by non-hybrids are viable. The two species do not differ by substantial
80 chromosomal rearrangements that might account for this sterility (Fischer et al.,
81 2000; Kellis et al., 2003). Instead, a form of chromosomal incompatibility known as
82 anti-recombination is thought to be the cause. The two species' genomes are so
83 diverged in sequence (about 12% of nucleotide positions differ; Rogers et al., 2018)
84 that homologous recombination is suppressed, and meiotic crossing over is greatly
85 reduced. Because crossovers are important for chromosome segregation during
86 meiosis, efficient segregation is impaired, and gametes are killed because they lack
87 one or more essential chromosomes or, potentially, because they carry extra
88 chromosomes. Consistent with this, the 1% viable gametes produced from hybrid
89 meioses are aneuploid, carrying additional chromosomes, and very few
90 chromosomes are recombinant (Hunter et al., 1996; Kao et al., 2010).

91

92 In principle, chromosome mis-segregation alone is capable of explaining
93 yeast hybrid sterility without invoking any role for BDMIs. We recently quantified
94 the precise rates at which each chromosome segregates in F1 hybrids (Rogers et al.,
95 2018). The average rate of correct distribution for each chromosome in hybrids
96 formed between *S. cerevisiae* and *S. paradoxus* is 59.7%, so we expect only 0.03% of
97 gametes to receive exactly one copy of each chromosome (0.597 for each
98 chromosome, raised to the power of 16 to account for all sixteen chromosomes).
99 However, gametes carrying more than one copy of a chromosome can also be viable,
100 as shown by the high rates of aneuploidy detected in viable hybrid gametes. In the
101 40.3% of hybrid meioses in which a chromosome does not segregate properly, half
102 of the resulting spores (20.15%) will receive two copies of the chromosome and
103 might therefore be viable, whilst the remaining 20.15% will receive no copies and
104 will certainly be inviable. Therefore 2.7% of gametes (0.597 plus 0.2015, raised to
105 the power of 16) will receive *at least* one copy of each essential chromosome, and
106 could be viable, depending on the effect of the additional chromosomes that they
107 carry (Boynton et al., 2018). Thus chromosome mis-segregation due to anti-
108 recombination accounts for at least 97.3%, and potentially all, of the observed
109 hybrid sterility. However, there is little direct evidence that extra chromosomes
110 contribute to spore inviability (Rogers et al., 2018), so the smaller figure is more
111 likely, leaving open the possibility that some hybrid spores are killed because of
112 incompatible interactions between genes of one species and those of the other
113 (BDMIs).

114
115 To date, no such BDMIs have been detected in yeast. BDMIs have been
116 detected between mitochondrial genes from one yeast species and nuclear genes
117 from another (Lee et al., 2008; Chou et al., 2010; also see Xu and He, 2011), but these

118 act earlier by reducing F1 mitotic viability and preventing F1 meiosis from even
119 occurring, not by causing inviability of the gametes produced by hybrid meiosis. We
120 have previously shown that most *S. paradoxus* chromosomes can successfully
121 replace their homologues in *S. cerevisiae* haploid gametes when substituted one at a
122 time, indicating that they do not contain always-lethal incompatibilities (Greig,
123 2007). But this method would not detect weaker BDMIs that kill only sometimes
124 (incomplete penetrance), or that have a cumulative effect with other BDMIs on
125 other chromosomes. A possible way to detect such BDMIs is to genotype the
126 surviving gametes from hybrid meioses and test whether some combinations of
127 alleles from different species at different loci are statistically under-represented.
128 The explanation for such under-representation would be that they are incompatible
129 and cause gamete inviability. This method has been modelled by Li et al. (2013), and
130 has been implemented by Kao et al. (2010). Whilst the distribution of genotypes
131 differed significantly from what was expected by chance, the additional aneuploid
132 chromosomes carried by the genotyped gametes confounded analysis to an extent
133 that the effective sample size was too low to identify individual pairs of
134 incompatible loci (Kao et al., 2010).

135
136 In order to identify BDMIs involved in hybrid spore inviability, it is therefore
137 necessary to overcome the primary effect of anti-recombination, in order to produce
138 haploid spores without additional aneuploid chromosomes for genotyping. Hunter
139 et al. (1996) previously showed that knocking out genes involved in monitoring the
140 fidelity of recombination increases both the rate of recombination and the
141 proportion of viable gametes produced by hybrid meioses. By deleting the mismatch
142 repair gene *MSH2*, they increased crossing over in hybrids on average 13-fold,
143 resulting in a nearly 9-fold increase in hybrid spore viability. Kao et al. (2010)

144 therefore used *msh2Δ* knock-out mutants in their search for BDMIs, but the
145 improvement in chromosome segregation was insufficient to relieve the extensive
146 aneuploidy of the hybrid gametes. Here we employed two additional tools in order
147 to produce perfectly euploid hybrid gametes for genotyping. First, we repressed the
148 expression of both *MSH2* and a second anti-recombination factor, DNA-helicase
149 *SGS1*, specifically in meiosis, thereby retaining their normal function during mitosis,
150 which reduces the mutagenic effects of knocking them out entirely. Secondly, we
151 dissected hybrid gametes out of their meiotic tetrads and genotyped only those that
152 came from tetrads in which all four spores were viable. Our sample therefore
153 excluded not only those gametes containing lethal combinations of the parent
154 species' alleles, but also aneuploid gametes, since any chromosome mis-segregation
155 will kill some of the gametes in a tetrad.

156

157 We sequenced all 336 haploid gametes from 84 F1 hybrid meioses and tested
158 statistically for pairs of alleles for which parental combinations were over-
159 represented. We were able to map four broad pairs of genomic regions that show
160 evidence of incompatibility. Thus, for the first time, we find evidence of naturally-
161 occurring nuclear BDMIs causing sterility of hybrids between two species of yeast.

162

163

164 **Results**

165

166 **Restoration of hybrid fertility**

167

168 We constructed strains of *S. cerevisiae* and *S. paradoxus* in which the native promoters of
169 *MSH2* and *SGS1* were replaced with the *CLB2* promoter, which is specifically repressed during
170 meiosis (Grandin and Reed, 1993; Lee and Amon, 2003) (Table 1, Supplementary File 1,
171 Supplementary File 2). *MSH2* and *SGS1* are both implicated in the anti-recombination process
172 (Chakraborty and Alani, 2016). By maintaining expression of these genes in mitosis, we can

Table 1: List of strains used in this study. For a complete list, see Supplementary File 2.

YDG	Strain name	Original strain name	
391	NCYC 3708	N17	ho::HYGMX @ ura3::KanMX
542	NCYC 3583	W303	ho::HYGMX a ura3::KanMX ade2-1
832	NHY 2039		ho::hisG a ura3(ΔSma-Pst) HIS4::LEU2-(BamHI; +ori) leu2::hisG pCLB2-3HA-SGS1::kanMX4
853	YDG391 x YDG542	N17 x W303	ho::HYGMX/ho::HYGMX a/@ ura3::KanMX/ura3::KanMX ade2-1/ADE2
866		W303	ho a ura his3 leu2::NAT trp ade-2 can1r pCLB2-3HA-SGS1::kanMX4
905		N17	ho @ ura3 cyh2r pCLB2-3HA-SGS1::kanMX4
912	YDG866 x YDG905	W303 x N17	ho/ho a/@ ura/ura3 his3/HIS3 leu2::NAT/LEU2 trp/TRP ade-2/ADE can1r/CAN1 CYH2/cyh2r pCLB2-3HA-SGS1::kanMX4/pCLB2-3HA-SGS1::kanMX4
959		N17	ho a lys2 cyh2r pCLB2-3HA-MSH2::kanMX4
960	YSC1059	W303	ho @ ura3-52 his3-11 leu2-3,112 trp1Δ2 ade2-1 can1-100 pCLB2-3HA-MSH2::kanMX4
964	YDG959 x YDG960	N17 x W303	ho/ho a/@ URA3/ura3-52 lys2/LYS2 HIS3/his3-11 LEU2/leu2-3,112 TRP1/trp1Δ2 ADE2/ade2-1 CAN1/can1-100 cyh2r/CYH2 pCLB2-3HA-MSH2::kanMX4/pCLB2-3HA-MSH2::kanMX4
967		N17	ho a cyh2r pCLB2-3HA-SGS1::kanMX4 pCLB2-3HA-MSH2::kanMX4
968		N17	ho @ cyh2r pCLB2-3HA-SGS1::kanMX4 pCLB2-3HA-MSH2::kanMX4
969		W303	ho a ura3 his3 leu2::NAT trp1 ade-2 can1r pCLB2-3HA-SGS1::kanMX4 pCLB2-3HA-MSH2::kanMX4
970		W303	ho @ ura3 his3 leu2::NAT trp1 ade-2 can1r pCLB2-3HA-SGS1::kanMX4 pCLB2-3HA-MSH2::kanMX4
982	YDG968 x YDG969	N17 x W303	ho/ho @/a URA3/ura3 HIS3/his3 LEU2/leu2::NAT TRP1/trp1 ADE/ade-2 CAN1/can1r cyh2r/CYH2 pCLB2-3HA-SGS1::kanMX4/pCLB2-3HA-SGS1::kanMX4 pCLB2-3HA-MSH2::kanMX4/pCLB2-3HA-MSH2::kanMX4

173 avoid any unwanted effects such as an increased recessive-lethal mutation rate, which would
174 actually reduce fertility (Hunter et al., 1996). In a previous study, we found that suppressing
175 meiotic expression of *SGS1* alone improved the rate of correct segregation by almost half in
176 hybrid meioses (Rogers et al., 2018). Here, we find that spore viability is also dramatically
177 improved. Suppression of *SGS1* alone increased hybrid spore viability from 0.46% to 20.8%;
178 and in combination with suppression of *MSH2*, spore viability was further improved to 32.6%
179 (Figure 1, Source Data 1). Significantly more of the double mutant spores were viable than in
180 the wild-type hybrid (chi-squared contingency test: $X^2 = 479.91$, $df = 1$, p -value $< 2.2 \times 10^{-16}$).

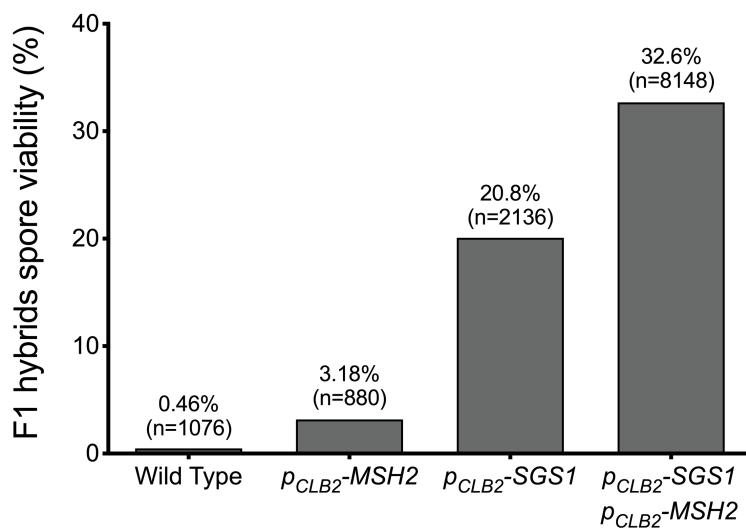
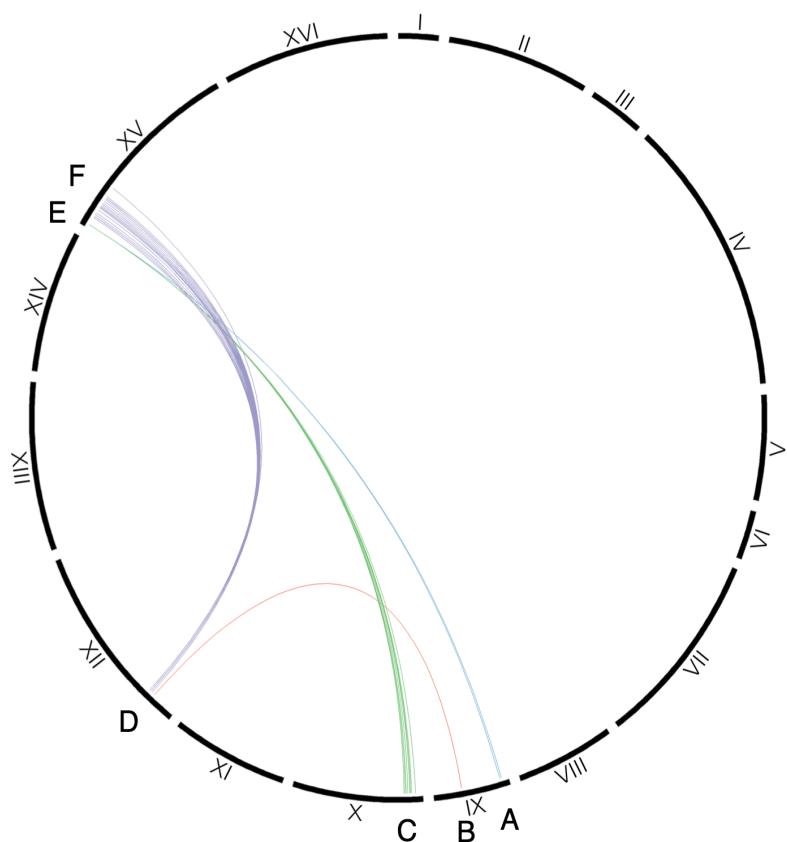


Figure 1: Restoration of hybrid fertility by meiotic repression of *MSH2* and *SGS1*. Percentages are spore viabilities of the indicated hybrid strains. In the *P_{CLB2}-MSH2 P_{CLB2}-SGS1* strain, a significant 32.14% increase in spore viability was observed (double mutant when compared with the wild type: $X^2 = 479.91$, $df = 1$, p -value $< 2.2 \times 10^{-16}$). Numbers in parentheses indicate the total number of dissected spores checked for viability. Full data, including other strains, can be found in Source Data 1.

181 The restoration of hybrid fertility vastly increased the production of hybrid tetrads in which
182 all four spores were viable, which were specifically selected for genotyping and further
183 analysis. All spores from such tetrads are necessarily euploid, as mis-segregation of even a
184 single chromosome would result in at least one dead spore (lacking that chromosome). By

185 analyzing only euploid spores, we ensured that recessive BDMIs were not masked by
186 aneuploidy.

187 **Evidence for hybrid incompatibility**


188 189 A fertility-reducing BDMI between a pair of loci would result in fewer gametes
190 containing hybrid combinations of alleles at these loci. Reasoning that we could not
191 map such loci at a resolution higher than the linkage groups produced by the
192 crossovers that occurred within the 84 tetrads in our sample, we divided the
193 chromosomes into 1208 segments defined by all of the recombination breakpoints
194 produced by our genotyping procedure (see Supplementary File 3). Treating each of
195 these segments as a putative incompatibility locus, we tested every segment against
196 every other segment, excluding those on the same chromosome, using two-by-two
197 contingency tables in the manner described by Li et al. (2013). Those on the same
198 chromosome cannot be tested because physical linkage cannot be distinguished
199 from linkage due to interaction. We calculated the odds ratio (OR) for each pair by
200 dividing the product of the numbers of the two parental genotypes observed by that
201 of the two hybrid types:

202
$$OR = (par1 * par2) / (hyb1 * hyb2)$$

203 204 In addition, we calculated the 99% confidence interval (CI) for the odds ratios. An
205 odds ratio of 1 indicated that the parental and hybrid types were present in equal
206 frequencies. An odds ratio greater than 1 would be observed for a bias towards
207 parental types; and an odds ratio less than 1 would indicate that hybrid types were
208 preferentially observed. We found all pairwise comparisons for which the calculated
209 99% CI did not encompass the value of 1 (lower bound of CI > 1 or upper bound of
210 CI < 1). 1.9% of all comparisons (13,082/676,294) had CIs that indicated a hybrid
211 preference and 2.6% (17,492/676,294) had CIs that indicated a parental preference.
212 Parental types were not only over-represented more often, but were also more

212 highly favoured. Parental types were over-represented by 3/4 in 190 cases
213 (parent/hybrid ratio ≥ 1.75) while hybrid types were over-represented by 3/4 in
214 only 22 cases (hybrid/parent ratio ≥ 1.75).

215 Individual significant interactions were determined as described in Li et al.
216 (2013) and in the Methods. Briefly, a null distribution of top ORs was produced by
217 randomly re-sampling the observed data 100 times (see Source Code 1). The 5th
218 largest OR from this set of the top 100 ORs was used as the critical value from which
219 we judged significance. All observed pairs with a higher OR than the critical value
220 (3.41) were deemed significant (Supplementary File 4 and Source Data 2). Blocks

221 Figure 2: Four putative BDMIs mapped to six genomic regions. Here, the
chromosomes are displayed in a circle and each significant pairwise
interaction is indicated by a line linking the involved segments. The
interactions were grouped by nearby segments, forming six interacting
regions and four putative BDMIs. Interactions contributing to different
putative BDMIs are coloured differently. For the code used to determine
significance, see Source Code 1. Source Data 2 contains all significant
interactions.

222 were then formed from these significant pairs by grouping nearby segments that
223 interacted with other nearby segments (see Methods for details). Of note, region B
224 interacts with a segment adjacent to those interacting with region F (Figure 2). We
225 collapsed both interacting regions into one (region D) as the two interactions may
226 involve a single underlying gene in the broader area. In this way, we found four
227 putative BDMIs involving six regions of the genome: between regions A and E (two
228 significant interactions - highest OR = 4 or 2-fold over-representation of parental
229 combinations), regions B and D (one significant interaction - highest OR = 3.60 or
230 1.90-fold difference), regions C and E (eight significant interactions - highest OR =
231 4.71 or 2.17-fold difference) and regions D and F (32 significant interactions -
232 highest OR = 4 or 2-fold difference) (Table 2, Figure 2). All four interactions involve
233 only four chromosomes, with multiple independently significant interactions
234 mapping to the same regions.

Table 2: The six genomic regions involved in putative BDMIs. Region E interacts with both A and C, and region D interacts with both B and F. The ranges and number of genes are based on SGRP sequencing added 10/10/08 (Liti et al., 2009; Bergström et al., 2014) and can be determined using Source Data 2 in conjunction with Supplementary File 3.

Region	Chr	Genomic range (W303)	Number of genes (W303)	Genomic range (N17)	Number of genes (N17)
A	IX	32385-52752	13	11474-28361	11
B	IX	275518-276372	1	248868-249722	1
C	X	25663-113149	55	2529-101136	54
D	XII	138633-196103	30	125307-183140	30
E	XV	16405-26386	5	2188-14304	5
F	XV	63347-279621	121	51621-263564	117

235

236 **Discussion**

237

238 **Anti-recombination as a barrier between species**

239

240 By reducing the expression of just two genes, *SGS1* and *MSH2*, during meiosis we
241 were able to rescue the fertility of a sterile hybrid between *S. cerevisiae* and *S.*
242 *paradoxus*, increasing its ability to produce viable gametes 70-fold, from 0.46% to
243 32.6%. The fertility of our rescued inter-species hybrid was around one third that of
244 its non-hybrid parents, which is about the same as intra-species crosses formed
245 between diverged populations of a single species, *S. paradoxus* (e.g., Greig et al.,
246 2003; Charron et al., 2014). These anti-recombination genes thus determine most of
247 the hybrid sterility barrier between *S. cerevisiae* and *S. paradoxus*.

248

249 The hybrid sterility effects of *SGS1* and *MSH2* are not caused by
250 incompatibilities between their alleles from the different species, but rather by their
251 effects on the physical interaction between whole chromosomes from the different
252 species. In non-hybrids, the Sgs1 and Msh2 proteins act to physically impede the
253 formation and stabilization of heteroduplex DNA formed during recombination
254 between mismatched DNA sequences. This activity helps to maintain genome
255 integrity by permitting recombination at allelic positions between matching
256 homologous chromosomes, but preventing ectopic (non-allelic) recombination
257 between non-homologous chromosomes and dispersed repeats, which would cause
258 rearrangements. However, the genomes of *S. cerevisiae* and *S. paradoxus* differ by
259 12% at allelic positions across the genome (Rogers et al., 2018), so there are enough
260 mismatches to globally reduce meiotic recombination between homologous
261 chromosomes in hybrids. Kao et al. (2010) found that viable hybrid spores had only
262 2.7 crossovers per meiosis. By inferring crossover rates in dead spores, Rogers et al.
263 (2018) measured an overall rate of just one crossover per hybrid meiosis, much
264 lower than the normal rate of about 90 crossovers that occur in a non-hybrid *S.*
265 *cerevisiae* meiosis (Martini et al., 2006). Thus most of the sixteen pairs of

266 chromosomes in a hybrid lack any meiotic crossovers, leading to aneuploidy and
267 inviability in the spores.

268

269 Manipulating the expression of *SGS1* has previously been shown to greatly
270 improve meiotic segregation of chromosomes from different species, both in partial
271 hybrids, in which only one chromosome comes from another species, and in full
272 hybrids as we used here. Amin et al. (2010) found that meiotic non-disjunction of a
273 single chromosome III from *S. paradoxus* in an otherwise *S. cerevisiae* background
274 fell 2.5-fold, from 11.5% to 4.6% per meiosis, when *SGS1* was repressed during
275 meiosis using the *CLB2* promotor. Rogers et al. (2018) found that the non-
276 disjunction rate in full hybrids was much higher than in partial hybrids, averaging
277 40.3% per chromosome per meiosis. Nevertheless, repressing *SGS1* expression also
278 improved segregation in the full hybrids by between 2-fold and 3.2-fold, depending
279 on the chromosome. Here we showed that this improvement in segregation is
280 sufficient to greatly improve fertility, confirming that anti-recombination comprises
281 the major component of the species barrier.

282

283 The much larger effect of repressing *SGS1* expression on hybrid viability,
284 relative to that of repressing *MSH2*, could be explained by *Sgs1* having several
285 effects on homolog interactions and meiotic recombination. First, *Sgs1* is assumed to
286 act downstream of mismatch recognition by *Msh2* to unwind strand-exchange
287 intermediates containing a high density of mismatches (Golfarb and Alani, 2005;
288 Sugawara et al., 2004; Spell and Jinks-Robertson, 2004; Chakraborty and Alani,
289 2016). It is also possible that *Sgs1* possesses *Msh2*-independent anti-recombination
290 activity. Second, *SGS1* mutants have an increased number of cytologically visible
291 connections between homologs, which could help to stabilize interactions between

292 diverged chromosomes (Rockmill et al. 2003). Finally, *Sgs1* also limits crossing over
293 by facilitating recombinational repair without an associated exchange of
294 chromosome arms (non-crossovers outcome; Bizard and Hickson, 2014). When
295 *SGS1* expression is suppressed during meiosis, recombination intermediates are
296 processed by structure-selective endonucleases to yield higher levels of crossovers
297 (Oh et al, 2007; Zakaryevich et al. 2012; De Muyt et al. 2012; Rockmill et al. 2003).
298 All of these factors may contribute to the increased rate of crossing over observed in
299 the *SGS1* repression mutants.

300
301 **Genetic incompatibility as a barrier between species**
302
303 In other organisms, hybrid sterility is shown to be caused by incompatibility
304 between allele(s) from one species at one or more loci and allele(s) from the other
305 species at one or more distinct loci (ex: Long et al., 2008; Mihola et al., 2009; Ting et
306 al., 1998). BDMIs are expected to evolve quite readily when populations are isolated
307 because new alleles, compatible with the genomes they evolve in, can spread by
308 natural selection within their population, and are only costly if hybrids are formed
309 with another isolated diverging population, combining new alleles that have not
310 been together before. When experimental *S. cerevisiae* populations are evolved in
311 divergent laboratory environments, hybrids between them have lower mitotic
312 fitness in either environment (Dettman et al., 2007). Similar results are found when
313 natural *S. cerevisiae* isolates and crosses between them are grown in a range of
314 different laboratory conditions (Hou et al., 2015). These results suggest that genetic
315 incompatibilities affecting F1 hybrid mitotic fitness occur readily within a species.
316 However F1 hybrids between *S. paradoxus* and *S. cerevisiae* do not show such
317 incompatibilities in growth. On the contrary, they tend to show enhanced viability
318 or “hybrid vigour” (Bernardes et al., 2017), so BDMIs for mitotic growth do not

319 appear to be a major part of the species barrier between these well-established
320 species. What of BDMIs affecting meiosis? Dettman et al. (2007) also report that
321 their experimental hybrids show a relative reduction in “meiotic efficiency”, that is
322 the proportion of diploids that enter meiosis when starved, but this is more a
323 change of life history strategy than an intrinsically deleterious trait as presumably
324 both unsporulated and sporulated cells remained viable. Well-defined mitochondrial-
325 nuclear incompatibilities among *S. cerevisiae*, *S. paradoxus*, and *S. bayanus* can cause
326 hybrids to lose the ability to respire, preventing entry into meiosis altogether (Lee
327 et al., 2008; Chou et al., 2010). Such mito-nuclear incompatibilities may well reflect
328 divergent adaptation of these different species (also see Xu and He, 2011).

329

330 Given the apparent ease with which incompatibilities affecting other parts of
331 the yeast life cycle can evolve, it is surprising that BDMIs causing hybrid gamete
332 inviability have not been detected to date (Xu and He, 2011; Kao et al., 2010). The
333 largest and most direct attempt to identify BDMIs between nuclear genomes in
334 yeast was conducted by Kao et al. (2010). They concluded that there were no
335 “simple” BDMIs between the nuclear genomes of *S. cerevisiae* and *S. paradoxus*,
336 where a simple BDMI is one that kills a certain hybrid genotype. They found several
337 pairs of segments with distributions that were statistically significantly different
338 than what would be expected by chance, but they attributed these to more complex
339 interactions, likely involving multiple loci with weak effects. They found some
340 evidence of three-way interactions, but lacked confidence due to limited statistical
341 power. Li et al.’s simulation study explicitly investigated whether previous attempts
342 at mapping BDMIs in yeast were adequate to conclude that they did not exist (Li et
343 al., 2013). They found that BDMIs with incomplete penetrance (those do not kill all
344 gametes of the incompatible genotype) would not be detected in Kao et al. (2010)’s

345 study due to the limited sample size. Moreover, higher order interactions (involving
346 three or more loci) would behave the same as incompletely penetrant two-way
347 interactions and thus, given a sufficient sample size, could be detected statistically in
348 the same way. They recommend using OR instead of ChiSq because it has the
349 advantage of differentiating between differences due to over-representation and
350 under-representation of a genotype relative to expectations.

351

352 We were able to build on the work of Kao et al. (2010) and Li et al. (2013) to
353 successfully detect pairwise BDMIs. Using our *PCLB2-MSH2* *PCLB2-SGS1* double mutant
354 strains, we were able to restore recombination to an average of 37.9 cross-overs per
355 meiosis (or 18.9 per spore). This was an improvement over Kao et al.'s deletion
356 mutant of *MSH2*, which had an average of 17.8 recombination events per strain (Kao
357 et al., 2010). They were also forced to exclude aneuploid chromosomes from most of
358 their analysis, thus greatly decreasing the effective sample size (Kao et al., 2010). By
359 obtaining complete tetrads, we avoided this problem. Moreover, we also reduced
360 potential genotyping errors because each recombination event is supported in two
361 separate, reciprocal samples. As well as these improvements, by using OR instead of
362 ChiSq, as recommended by Li et al. (2013), we could focus solely on the case in
363 which there is a depletion of hybrid types (OR higher than expected).

364

365 Using these improved methods, we found six major regions of the genome
366 that appear to define four putative two-locus BDMIs (Figure 2). These regions were
367 found on only four chromosomes (chr IX, X, XII and XV). Many genes map to these
368 regions, and fine-scale mapping will be necessary to determine the causative loci.
369 Among the known interacting genes in BioGRID, there are none identified between
370 genes found in regions A and E or B and D (Oughtred et al., 2018). Among the genes

371 in regions C and E, there is one known interaction; a negative genetic interaction
372 between *IMA2* (an isomaltase) and *CDC6* (an essential protein required for DNA
373 replication), which was found in a large-scale genetic interaction study (Costanzo et
374 al., 2016). Regions D and F harbour many known interacting genes, but this is
375 unsurprising because together they encompass the largest number of genes. Despite
376 no known interactions between regions A and E or regions B and D, there are some
377 good candidates based on similar proteins. For example, in region E, gene *YOL159C-*
378 *A*, encoding a protein of unknown function, interacts positively with *COA4*, encoding
379 a protein involved in the organization of cytochrome c oxidase (Cherry et al., 2012;
380 Costanzo et al., 2016). *COA4* is not found in region A but *COA1*, which is also
381 required for assembly of the cytochrome c oxidase complex, is. Additionally, *CSS3*,
382 another protein of unknown function in region E, interacts negatively with *MAL12*, a
383 maltase that hydrolyzes sucrose (Cherry et al., 2012; Costanzo et al., 2016). *MAL12*
384 is not found in region A but *SUC2*, a sucrose hydrolyzing enzyme, is. In region B,
385 there is only one gene, *CBR1*, a cytochrome b reductase. It has physical interactions
386 with *GSC2*, a synthase involved in the formation of the inner layer of the spore wall
387 (Cherry et al., 2012; Krogan et al., 2006) similar to *SP075* found in region D, which is
388 required for spore wall formation. It also interacts physically with *ORC1*, the largest
389 subunit of the origin recognition complex (Cherry et al., 2012; Müller et al., 2010),
390 and *ORC3*, another subunit of the origin recognition complex, is found in region D.
391 *CBR1* also interacts negatively genetically with both *MDM36*, a mitochondrial
392 protein which is proposed to have involvement in the formation of Dnm1p-
393 containing cortical anchor complexes that promote mitochondrial fission, where
394 *DNM1* is found in region D, and *WHI2*, a binding partner of Psr2p required for full
395 activation of STRE-mediated gene expression, where *PSR2* is found in region D
396 (Cherry et al., 2012; Costanzo et al., 2016). Whilst these incompatible regions

397 contain interesting candidate genes, finer scale recombination mapping followed by
398 candidate allele replacement and sensitive fertility assays will be necessary to
399 determine the underlying molecular genetics of these BDMIs.

400
401 **Conclusion**
402
403 Suppressing the expression of just two genes, *SGS1* and *MSH2*, rescues the fertility of
404 normally sterile yeast hybrids and allows the recovery of recombinant euploid
405 hybrid gametes, permitting the detection of nuclear-nuclear BDMIs in yeast for the
406 first time. Whilst these incompatibilities comprise only a small part of the
407 reproductive barrier between the parent species, with the vast majority coming
408 from anti-recombination between the diverged genomes, they may have been
409 important in the early stages of speciation. These results not only bring the power of
410 yeast genetics to bear on the genetics of post zygotic reproductive isolation, they
411 also enable crossing between highly diverged species, potentially allowing other
412 interesting traits to be mapped or producing recombinant hybrids with novel
413 commercial or research uses.

414
415
416 **Materials and Methods**
417
418 **Strains**
419
420 We used as a template a previously constructed *S. cerevisiae* strain NHY 2039, in
421 which the promotor of *SGS1* had been replaced by the *CLB2* promotor (Oh et al.,
422 2008) using the pFA6a-KANMX6-pCLB2-3HA created by Lee and Amon (2003). We
423 amplified the *CLB2* promotor and the *KANMX4* drug resistance marker out of
424 NHY2039 (i.e. YDG832) using primer pairs (see Supplementary File 5) that allowed
425 us to transform it in place of the natural promoters of *MSH2* and *SGS1* in both *S.*
426 *cerevisiae* (W303 background) and *S. paradoxus* (N17 background). The resulting *S.*

427 *cerevisiae* and *S. paradoxus* haploid strains YDG968 and YDG969 (see Table 1,
428 Supplementary File 1 and Supplementary File 2 for details) were crossed together
429 producing an F1 hybrid diploid YDG982 in which both homologous copies of both
430 *SGS1* and *MSH2* were under the control of the *CLB2* promotor, suppressing the
431 expression of these genes during meiosis. To obtain a non-hybrid, double-mutant
432 (i.e. P_{CLB2} -*MSH2*, P_{CLB2} -*SGS1*) control strain under the *S. paradoxus* background, we
433 crossed haploid strains YDG967 and YDG968. Next, we crossed YDG969 and
434 YDG970 strains to obtain a similar non-hybrid, double mutant (i.e. P_{CLB2} -*MSH2*, P_{CLB2} -
435 *SGS1*) control strain for the *S. cerevisiae* background. Finally, to obtain a wild-type
436 hybrid control strain (i.e. without *CLB2* promoter replacement), we crossed haploid
437 strains YDG391 (*S. paradoxus*) and YDG542 (*S. cerevisiae*), and selected for diploid
438 clones (to form YDG853).

439
440 **Fertility**
441
442 We induced meiosis and sporulation by incubating the hybrid diploid (YDG982) in 3
443 ml KAc (2% potassium acetate sporulation media) for four days in room
444 temperature with vigorous shaking. To digest the ascus walls of the hybrid
445 ascospores, we incubated them in 1unit (per 10 μ l) zymolyase (Zymo Research EU,
446 Freiburg, Germany) for 30 minutes. After enzymatic digestion of the ascus walls, we
447 placed the four spores of each tetrad onto YEPD (2% glucose, 1% yeast extract, 2%
448 peptone, 2% agar) plates using an MSM400 tetrad dissection microscope (Singer
449 Instruments, Watchet, UK). Plates containing dissected tetrads were incubated at 30
450 °C before examining them for visible colonies founded by germinating spores.

451
452 We defined fertility as the proportion of viable gametes, i.e. the number of
453 spores that germinated and formed colonies visible to the naked eye after 2 days,

454 divided by the total number of spores that were dissected. For the hybrid crosses,
455 we dissected a large number of spores (≥ 880 , see Source Data 1). This was
456 necessary for the hybrid crosses because they were known to have low gamete
457 viability. For the non-hybrid crosses, we only dissected 384-400 spores (Source
458 Data 1). Because the non-hybrid crosses had much higher rates of gamete viability
459 than the hybrid crosses, dissecting a lower number of spores was sufficient to obtain
460 a good estimate of their true fertility. Only technical replicates (repeated meioses of
461 the same original diploid strain) were performed and were all considered to be part
462 of a single sample.

463
464 **Sequencing and genotyping**
465

466 To ensure that the hybrid gametes we sequenced were euploid, we only genotyped
467 gametes from tetrads that contained four viable spores. Even with the observed 70-
468 fold increase in hybrid gamete viability, only 5% of the tetrads contained four viable
469 spores. In order to maximize useable data from a single lane of sequencing, we
470 limited our sample size to 94 tetrads. Again, repeated meioses of a single diploid
471 strain were performed and were all considered to be part of a single sample. We
472 extracted DNA from all 376 colonies from 94 tetrads (in addition to two non-hybrid
473 control tetrads) using MasterPure™ Yeast DNA Purification Kit (Epicentre, Biozyme
474 Biotech, Oldendorf, Germany). To prepare the samples for sequencing, we used
475 double digestion based RAD-tag library preparation method (Etter et al., 2011;
476 Hohenlohe et al., 2010; Peterson et al., 2012). We digested 50 ng of DNA from each
477 colony using restriction enzymes *Csp6I* and *PstI* and ligated adapters
478 (adapterX_TagY_fq and adapterX_TagY_rv) in the same reaction at 37 °C for two
479 hours. We cleaned up the excess adapters, enzymes, and fragments smaller than
480 300bp by using Ampure beads at a 1:1 ratio. Next we mixed Phusion Hot Start II

481 High-Fidelity DNA Polymerase (2U/μl), adding P5 and P7 primers at 10 mM
482 concentration, dNTPs (2mM per dNTP), and 5X Phusion HF Buffer to amplify the
483 target regions (Acinas et al., 2005; Etter et al., 2011). 30 μl PCR mixtures were
484 amplified as an initial 98 °C incubation for 30s, followed by 25 cycles of 98 °C for
485 10s, 68 °C for 15s, 72 °C for 30s, and then a final extension at 72 °C for 5 mins. To
486 sequence the tagged samples, we mixed all tagged samples in one pool. All samples
487 were multiplexed using combinations of 24 unique barcodes therefore reads from a
488 single sequencing reaction would have unique reverse and forward tags that will
489 help us to distinguish all samples after obtaining the pool of MiSeq reads. We used
490 MiSeq platform to obtain 300 bp paired-end reads. Raw sequence data is available
491 from Dryad (Bozdag et al., 2019).

492

493 To map the reads, we assembled two simplified co-linear reference genomes
494 consisting of the coding DNA only from the set of open reading frames shared
495 between *S. cerevisiae* and *S. paradoxus*, removing open reading frames that were
496 present in one species but not in another or which were not co-linear (based on
497 SGRP sequencing added 10/10/08; Liti et al., 2009; Bergström et al., 2014). We
498 mapped reads to these reference genomes using NGK. At this point, we excluded 10
499 tetrads due to poor sequencing coverage and quality, leaving us with 336 samples
500 from 84 tetrads. We assigned ORFs to one or other species using two simplifying
501 assumptions: that no non-Mendelian segregation occurred and that recombination
502 occurred only in intergenic regions. Thus, if reads in all four spores of a tetrad
503 contained reads mapping to a given ORF of one or the other or both species, the two
504 spores with the highest proportion of reads mapping to one species ORF would have
505 it assigned to that species and the other two would have the ORF assigned to the
506 other species. If the four copies of an ORF within a tetrad did not all contain reads

507 mapping to either or both species then the ORF would be assigned to the same
508 species as the neighbouring ORF. These genotyping rules produced a recombination
509 map (see Supplementary File 6 for an example, full data available in Bozdag et al.,
510 2019) of the four spores within each tetrad at ORF-level resolution, with no gain or
511 loss of genetic material (i.e. no gene-conversion).

512
513 **Analysis**
514

515 We divided the chromosomes into 1208 segments defined by the recombination
516 breakpoints observed in all 84 tetrads (Supplementary File 3), reasoning that we
517 could not resolve a locus smaller than the closest crossovers flanking it. Each
518 segment was tested against each other segment, excluding pairs found on the same
519 chromosome, similar to the method described by Li et al. (2013) (exact method can
520 be found in Source Code 1). Within chromosome pairs were not tested because
521 physical linkage would skew the numbers towards parental combinations, the same
522 effect that we expect to see due to incompatibility between loci, thus making the
523 results difficult to interpret. Following the procedure of Li et al. (2013), the odds
524 ratio (OR) was calculated for each pair of segments by dividing the product of the
525 numbers of the two parental genotypes observed by that of the two hybrid types:

526
$$\text{OR} = (\text{par1} * \text{par2}) / (\text{hyb1} * \text{hyb2})$$

527 Pairs of segments on the same chromosome were excluded because physical linkage
528 would skew the numbers towards parental combinations, the same effect that we
529 expect to see due to incompatibility between loci, thus making the results difficult to
530 interpret.

531

532 To control for type I error, we produced a null distribution against which to
533 test our observed ORs (Source Code 1). First, a new set of 84 tetrads was simulated

534 by pulling each chromosome for each tetrad from the pool of chromosomes of that
535 type (with replacement). This is similar to, but not exactly the same as, the method
536 used by Li et al. (2013). They, in contrast, shuffle the chromosomes without
537 replacement instead of sampling with replacement, and they do so among random
538 spores instead of whole tetrads. ORs for the segment pairs were then calculated as
539 before but on the simulated set of chromosomes. This process was repeated 99
540 more times, and the top OR from each set of simulated tetrads was recorded. The
541 5th largest OR from this set of 100 top ORs was chosen as the critical value from
542 which to judge significance. All observed pairs with a higher OR than this critical
543 value (3.4131) were deemed statistically significant (Supplementary File 4 and
544 Source Data 2). For our sample size of 84 tetrads, this represents a 1.85-fold over-
545 representation of parental combinations (218 parental combinations vs. 118 hybrid
546 combinations for that pair of alleles).

547

548 The significant pairs of segments were then grouped into blocks comprising
549 neighbouring pairs. Instead of looking at blocks of seven markers, as was done in Li
550 et al. (2013), we decided that if two adjacent segments both had a significant
551 interaction with the same segment in another chromosome, they were part of the
552 same block. In one case, one significant interaction was between a non-adjacent
553 segment and a segment that interacted with many other nearby segments. Because
554 this interaction was so close to the others (within nine segments), we arbitrarily
555 decided to treat it as part of the same interaction (Source Data 2, row 37 as
556 compared to surrounding rows). Similarly, region B was found to interact with a
557 segment adjacent to those interacting with region F. In this case, we collapsed both
558 interacting regions into one (region D), as we consider it most likely that the two
559 regions are interacting with a single gene in the region.

560

561

562 **Acknowledgements**

563

564

Numerous people have contributed to this long-running project over the years, and we
565 apologise if we have neglected to name you. We are particularly grateful to colleagues at the
566 Max Planck Institute for Evolutionary Biology, especially Arne Nolte, Gunda Dechow-
567 Seligmann, and Elke Bustorf, who genotyped our hybrid strains. Mahesh Binzer-Panchal de-
568 multiplexed the sequence reads. Krishna B. S. Swamy provided invaluable input on data
569 analysis. Michael Scott at UCL generously helped us with code and simulations.

570

571

572 **References**

573

574

Acinas, S. G., Sarma-Rupavtarm, R., Klepac-Ceraj, V., & Polz, M. F. (2005). PCR-induced
575 sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries
576 constructed from the same sample. *Appl. Environ. Microbiol.*, 71(12), 8966-8969.
577 doi: 10.1128/AEM.71.12.8966-8969.2005

578

579

Amin, A. D., Chaix, A. B., Mason, R. P., Badge, R. M., & Borts, R. H. (2010). The roles of the
580 *Saccharomyces cerevisiae* RecQ helicase SGS1 in meiotic genome surveillance. *PLoS one*, 5(11),
581 e15380. <https://doi.org/10.1371/journal.pone.0015380>

582

583

Bergström, A., Simpson, J. T., Salinas, F., Barré, B., Parts, L., Zia, A., ... & Warringer, J. (2014). A
584 high-definition view of functional genetic variation from natural yeast genomes. *Molecular
585 biology and evolution*, 31(4), 872-888. <https://doi.org/10.1093/molbev/msu037>

586

587

Bernardes, J. P., Stelkens, R. B., & Greig, D. (2017). Heterosis in hybrids within and between
588 yeast species. *Journal of Evolutionary Biology*, 30(3), 538-548.
589 <https://doi.org/10.1111/jeb.13023>

590

591

Bizard, A. H., & Hickson, I. D. (2014). The dissolution of double Holliday junctions. *Cold Spring
592 Harbor perspectives in biology*, 6(7), a016477. doi: 10.1101/cshperspect.a016477

593

594

Botstein, D., & Fink, G. R. (2011). Yeast: an experimental organism for 21st Century
595 biology. *Genetics*, 189(3), 695-704. <https://doi.org/10.1534/genetics.111.130765>

596

597

Boynton, P. J., Janzen, T., & Greig, D. (2018). Modeling the contributions of chromosome
598 segregation errors and aneuploidy to *Saccharomyces* hybrid sterility. *Yeast*, 35(1), 85-98.
599 <https://doi.org/10.1002/yea.3282>

600

601

Bozdag, G. O., Ono, J., Denton, J. A., Karakoc, E., Hunter, N., Leu, J.-Y., and Greig, D. (2019). Data
602 from: Engineering recombination between diverged yeast species reveals speciation genes.
603 Dryad Digital Repository. doi:10.5061/dryad.bk02240

604

605 Chakraborty, U., & Alani, E. (2016). Understanding how mismatch repair proteins participate
606 in the repair/anti-recombination decision. *FEMS yeast research*, 16(6), fow071.
607 <https://doi.org/10.1093/femsyr/fow071>

608

609 Charron, G., Leducq, J. B., & Landry, C. R. (2014). Chromosomal variation segregates within
610 incipient species and correlates with reproductive isolation. *Molecular ecology*, 23(17), 4362-
611 4372. <https://doi.org/10.1111/mec.12864>

612

613 Cherry, J. M., Hong, E. L., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E. T., ... & Fisk, D. G.
614 (2012). Saccharomyces Genome Database: the genomics resource of budding yeast. *Nucleic
615 acids research*, 40(D1), D700-D705. <https://doi.org/10.1093/nar/gkr1029>

616

617 Chou, J. Y., Hung, Y. S., Lin, K. H., Lee, H. Y., & Leu, J. Y. (2010). Multiple molecular mechanisms
618 cause reproductive isolation between three yeast species. *PLoS biology*, 8(7), e1000432.
619 <https://doi.org/10.1371/journal.pbio.1000432>

620

621 Costanzo, M., VanderSluis, B., Koch, E. N., Baryshnikova, A., Pons, C., Tan, G., et al. (2016). A
622 global genetic interaction network maps a wiring diagram of cellular function. *Science*,
623 353(6306), aaf1420-aaf1420. doi: 10.1126/science.aaf1420

624

625 Coyne, J. A., & Orr, H. A. (2004). Speciation. Sinauer. *Sunderland, MA*.

626

627 De Muyt, A., Jessop, L., Kolar, E., Sourirajan, A., Chen, J., Dayani, Y., & Lichten, M. (2012). BLM
628 helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate
629 metabolism. *Molecular cell*, 46(1), 43-53. <https://doi.org/10.1016/j.molcel.2012.02.020>

630

631 Dettman, J. R., Sirjusingh, C., Kohn, L. M., & Anderson, J. B. (2007). Incipient speciation by
632 divergent adaptation and antagonistic epistasis in yeast. *Nature*, 447(7144), 585-588.
633 <https://doi.org/10.1038/nature05856>

634

635 Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E. A., & Cresko, W. A. (2011). SNP Discovery
636 and Genotyping for Evolutionary Genetics Using RAD Sequencing. *Methods in molecular
637 biology (Clifton, NJ)*, 772, 157. https://doi.org/10.1007/978-1-61779-228-1_9

638

639 Fischer, G., James, S. A., Roberts, I. N., Oliver, S. G., & Louis, E. J. (2000). Chromosomal evolution
640 in Saccharomyces. *Nature*, 405(6785), 451. <https://doi.org/10.1038/35013058>

641

642 Goldfarb, T., & Alani, E. (2005). Distinct roles for the *Saccharomyces cerevisiae* mismatch
643 repair proteins in heteroduplex rejection, mismatch repair and nonhomologous tail
644 removal. *Genetics*, 169(2), 563-574. <https://doi.org/10.1534/genetics.104.035204>

645

646 Grandin, N., & Reed, S. I. (1993). Differential function and expression of *Saccharomyces
647 cerevisiae* B-type cyclins in mitosis and meiosis. *Molecular and cellular biology*, 13(4), 2113-
648 2125. doi: 10.1128/MCB.13.4.2113

649

650 Greig, D. (2007). A screen for recessive speciation genes expressed in the gametes of F1
651 hybrid yeast. *PLoS genetics*, 3(2), e21. <https://doi.org/10.1371/journal.pgen.0030021>

652

653 Greig, D., Travisano, M., Louis, E. J., & Borts, R. H. (2003). A role for the mismatch repair
654 system during incipient speciation in *Saccharomyces*. *Journal of evolutionary biology*, 16(3),
655 429-437. <https://doi.org/10.1046/j.1420-9101.2003.00546.x>

656

657 Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A., & Cresko, W. A. (2010).
658 Population genomics of parallel adaptation in threespine stickleback using sequenced RAD
659 tags. *PLoS genetics*, 6(2), e1000862. <https://doi.org/10.1371/journal.pgen.1000862>

660

661 Hou, J., Friedrich, A., Gounot, J.-S., & Schacherer, J. (2015). Comprehensive survey of condition-
662 specific reproductive isolation reveals genetic incompatibility in yeast. *Nature Communications*, 6, 7214. <https://doi.org/10.1038/ncomms8214>

662

663

664 Hunter, N., Chambers, S. R., Louis, E. J., & Borts, R. H. (1996). The mismatch repair system
665 contributes to meiotic sterility in an interspecific yeast hybrid. *The EMBO journal*, 15(7),
666 1726-1733. <https://doi.org/10.1002/j.1460-2075.1996.tb00518.x>

667

668 Kao, K. C., Schwartz, K., & Sherlock, G. (2010). A genome-wide analysis reveals no nuclear
669 Dobzhansky-Muller pairs of determinants of speciation between *S. cerevisiae* and *S.*
670 paradoxus, but suggests more complex incompatibilities. *PLoS genetics*, 6(7), e1001038.
671 <https://doi.org/10.1371/journal.pgen.1001038>

672

673

674 Kellis, M., Patterson, N., Endrizzi, M., Birren, B., & Lander, E. S. (2003). Sequencing and
675 comparison of yeast species to identify genes and regulatory elements. *Nature*, 423(6937),
676 241. <https://doi.org/10.1038/nature01644>

677

678 Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., ... & Punna, T. (2006). Global
679 landscape of protein complexes in the yeast *Saccharomyces cerevisiae*. *Nature*, 440(7084),
680 637. <https://doi.org/10.1038/nature04670>

681

682 Lee, B. H., & Amon, A. (2003). Role of Polo-like kinase CDC5 in programming meiosis I
683 chromosome segregation. *Science*, 300(5618), 482-486. doi: 10.1126/science.1081846

684

685 Lee, H. Y., Chou, J. Y., Cheong, L., Chang, N. H., Yang, S. Y., & Leu, J. Y. (2008). Incompatibility of
686 nuclear and mitochondrial genomes causes hybrid sterility between two yeast
687 species. *Cell*, 135(6), 1065-1073. <https://doi.org/10.1016/j.cell.2008.10.047>

688

689 Li, C., Wang, Z., & Zhang, J. (2013). Toward Genome-Wide Identification of Bateson-
690 Dobzhansky-Muller Incompatibilities in Yeast: A Simulation Study. *Genome biology and*
691 *evolution*, 5(7), 1261-1272. <https://doi.org/10.1093/gbe/evt091>

692

693 Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., ... & Tsai, I. J. (2009).
694 Population genomics of domestic and wild yeasts. *Nature*, 458(7236), 337.
695 <https://doi.org/10.1038/nature07743>

696

697 Long, Y., Zhao, L., Niu, B., Su, J., Wu, H., Chen, Y., ... & Xia, J. (2008). Hybrid male sterility in rice
698 controlled by interaction between divergent alleles of two adjacent genes. *Proceedings of the*
699 *National Academy of Sciences*, 105(48), 18871-18876.
700 <https://doi.org/10.1073/pnas.0810108105>

701

702 Maheshwari, S., & Barbash, D. A. (2011). The genetics of hybrid incompatibilities. *Annual*
703 *review of genetics*, 45, 331-355. <https://doi.org/10.1146/annurev-genet-110410-132514>

704

705 Martini, E., Diaz, R. L., Hunter, N., & Keeney, S. (2006). Crossover homeostasis in yeast
706 meiosis. *Cell*, 126(2), 285-295. <https://doi.org/10.1016/j.cell.2006.05.044>

707

708 Mihola, O., Trachulec, Z., Vlcek, C., Schimenti, J. C., & Forejt, J. (2009). A mouse speciation gene
709 encodes a meiotic histone H3 methyltransferase. *Science*, 323(5912), 373-375. doi:
710 [10.1126/science.1163601](https://doi.org/10.1126/science.1163601)

711

712 Müller, P., Park, S., Shor, E., Huebert, D. J., Warren, C. L., Ansari, A. Z., ... & Fox, C. A. (2010). The
713 conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA
714 replication origins within chromatin. *Genes & development*, 24(13), 1418-1433. doi:
715 [10.1101/gad.1906410](https://doi.org/10.1101/gad.1906410)

716

717 Nosil, P., & Schlüter, D. (2011). The genes underlying the process of speciation. *Trends in*
718 *Ecology & Evolution*, 26(4), 160-167. <https://doi.org/10.1016/j.tree.2011.01.001>

719

720 Oh, S. D., Lao, J. P., Hwang, P. Y. H., Taylor, A. F., Smith, G. R., & Hunter, N. (2007). BLM ortholog,
721 Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint
722 molecules. *Cell*, 130(2), 259-272. <https://doi.org/10.1016/j.cell.2007.05.035>

723

724 Oh, S. D., Lao, J. P., Taylor, A. F., Smith, G. R., & Hunter, N. (2008). RecQ helicase, Sgs1, and XPF
725 family endonuclease, Mus81-Mms4, resolve aberrant joint molecules during meiotic
726 recombination. *Molecular cell*, 31(3), 324-336. <https://doi.org/10.1016/j.molcel.2008.07.006>

727

728 Orr, H. A. (1996). Dobzhansky, Bateson, and the genetics of speciation. *Genetics*, 144(4), 1331.

729

730 Oughtred, R., Stark, C., Breitkreutz, B. J., Rust, J., Boucher, L., Chang, C., ... & Zhang, F. (2018).
731 The BioGRID interaction database: 2019 update. *Nucleic acids research*, 47(D1), D529-D541.
732 <https://doi.org/10.1093/nar/gky1079>

733

734 Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest
735 RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-
736 model species. *PLoS one*, 7(5), e37135. <https://doi.org/10.1371/journal.pone.0037135>

737

738 Presgraves, D. C. (2010). The molecular evolutionary basis of species formation. *Nature*
739 *Reviews Genetics*, 11(3), 175. <https://doi.org/10.1038/nrg2718>

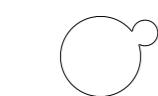
740

741 Rieseberg, L. H., & Blackman, B. K. (2010). Speciation genes in plants. *Annals of Botany*, 106(3),
742 439-455. <https://doi.org/10.1093/aob/mcq126>

743

744 Rieseberg, L. H., & Willis, J. H. (2007). Plant speciation. *Science*, 317(5840), 910-914. doi:
745 [10.1126/science.1137729](https://doi.org/10.1126/science.1137729)

746


747 Rockmill, B., Fung, J. C., Branda, S. S., & Roeder, G. S. (2003). The Sgs1 helicase regulates
748 chromosome synapsis and meiotic crossing over. *Current Biology*, 13(22), 1954-1962.
749 <https://doi.org/10.1016/j.cub.2003.10.059>

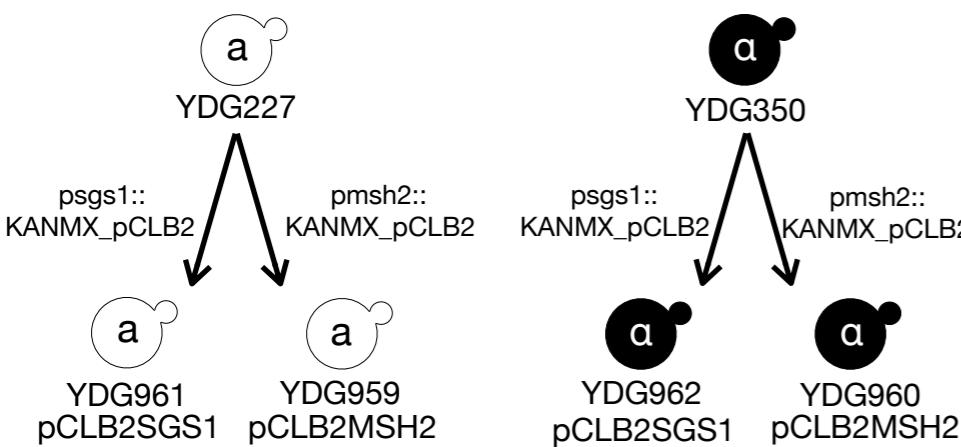
750
751 Rogers, D. W., McConnell, E., Ono, J., & Greig, D. (2018). Spore-autonomous fluorescent protein
752 expression identifies meiotic chromosome mis-segregation as the principal cause of hybrid
753 sterility in yeast. *PLoS biology*, 16(11), e2005066.
754 <https://doi.org/10.1371/journal.pbio.2005066>
755
756 Spell, R. M., & Jinks-Robertson, S. (2004). Examination of the roles of Sgs1 and Srs2 helicases
757 in the enforcement of recombination fidelity in *Saccharomyces cerevisiae*. *Genetics*, 168(4),
758 1855-1865. <https://doi.org/10.1534/genetics.104.032771>
759
760 Sugawara, N., Goldfarb, T., Studamire, B., Alani, E., & Haber, J. E. (2004). Heteroduplex
761 rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins
762 Msh2 and Msh6 but not Pms1. *Proceedings of the National Academy of Sciences*, 101(25), 9315-
763 9320. <https://doi.org/10.1073/pnas.0305749101>
764
765 Ting, C. T., Tsaur, S. C., Wu, M. L., & Wu, C. I. (1998). A rapidly evolving homeobox at the site of
766 a hybrid sterility gene. *Science*, 282(5393), 1501-1504. doi: 10.1126/science.282.5393.1501
767
768 Xu, M., & He, X. (2011). Genetic incompatibility dampens hybrid fertility more than hybrid
769 viability: yeast as a case study. *PLoS One*, 6(4), e18341.
770 <https://doi.org/10.1371/journal.pone.0018341>
771
772 Zakharyevich, K., Tang, S., Ma, Y., & Hunter, N. (2012). Delineation of joint molecule resolution
773 pathways in meiosis identifies a crossover-specific resolvase. *Cell*, 149(2), 334-347.
774 <https://doi.org/10.1016/j.cell.2012.03.023>
775
776
777 **Supplementary Material**
778
779 Supplementary File 1: A schematic of how the strains used in this study were constructed.
780
781 Supplementary File 2: Complete list of strains used in this study.
782
783 Supplementary File 3: Segments used for mapping BDMIs. Each segment is defined by
784 observed recombination between genes and all start and end locations are based on the
785 sequence of W303.
786
787 Supplementary File 4: All pairwise combinations of segments, the observed number of
788 parental and hybrid combinations and the summary statistics.
789
790 Supplementary File 5: Primers used in the study.
791
792 Supplementary File 6: An example recombination map of a single tetrad. Gametes
793 were genotyped by ORF into one of the two species, ensuring a 2:2 segregation of
794 species identity at each ORF.
795
796 Source Data 1: Raw counts of dissected and viable spores for each strain assayed in this study.
797
798 Source Data 2: Significant pairwise combinations of segments grouped by interacting regions.

799

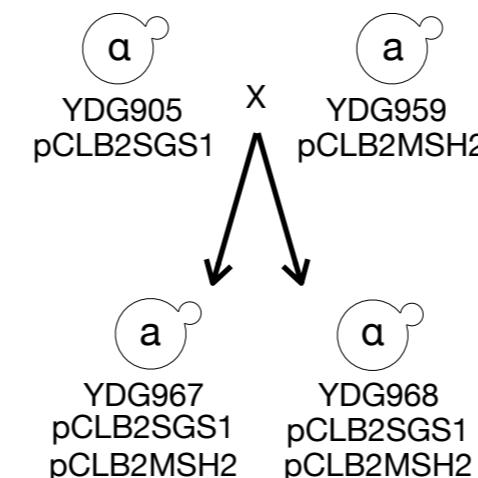
800 Source Code 1: Code used to perform statistical analysis on gene interaction data, along with
801 necessary input files.

Species:

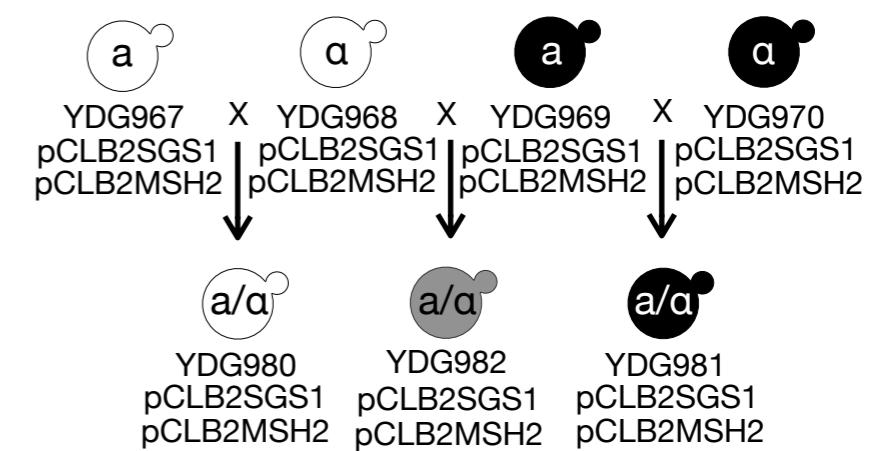
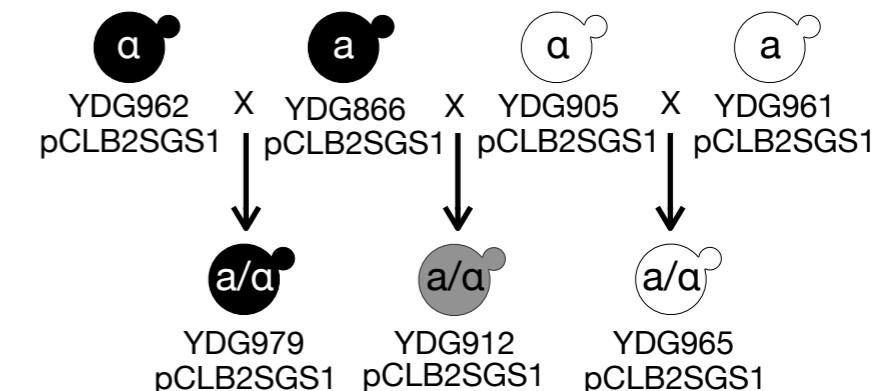
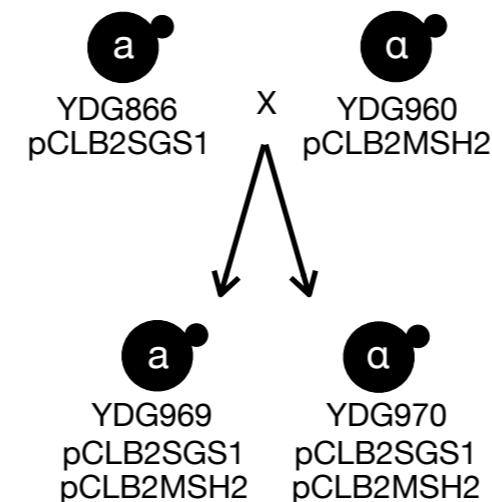
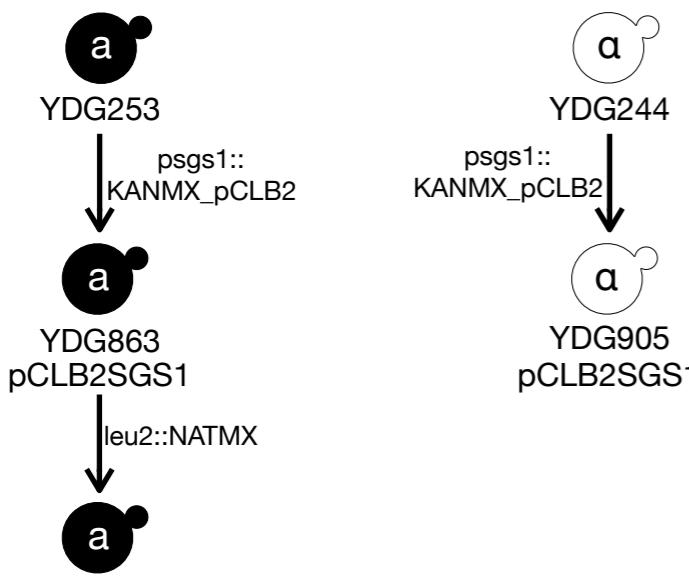
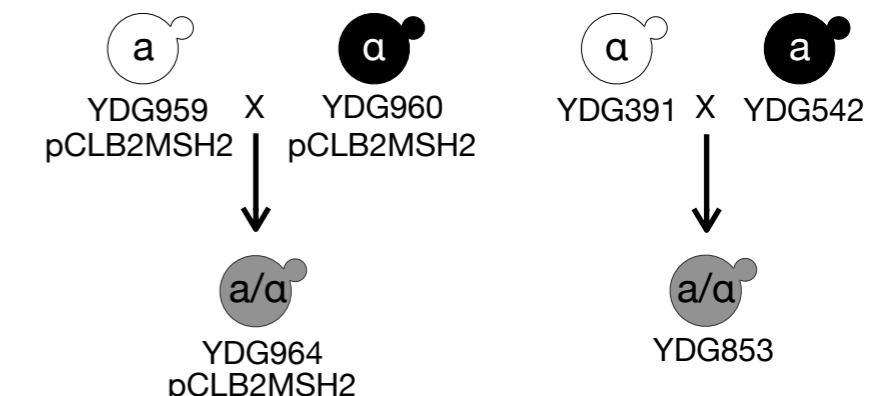
S. paradoxus

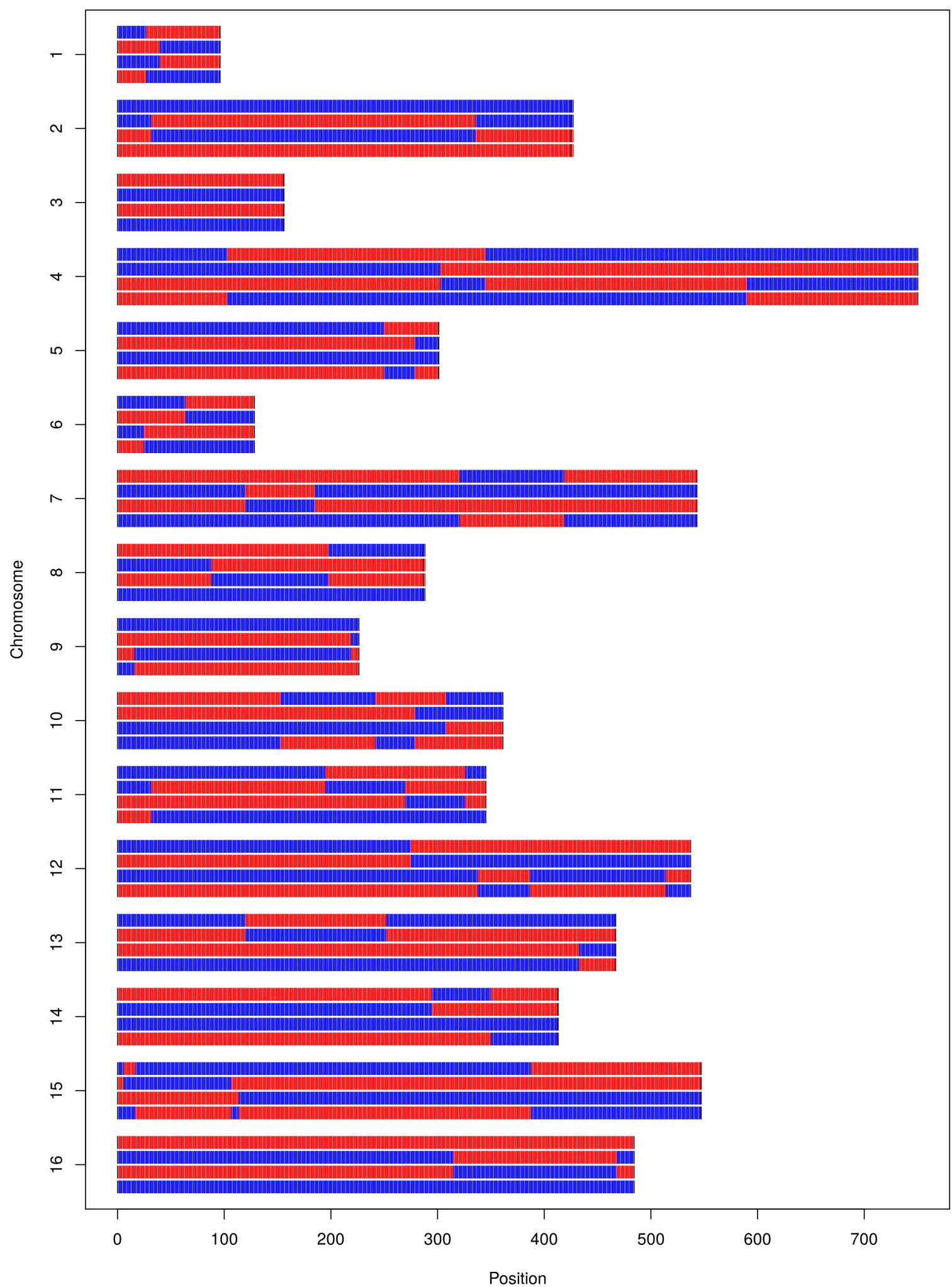


S. cerevisiae



Hybrid






a. Transformation



b. Mating & segregation

c. Mating

