

1 **The cyanobacterial saxitoxin exacerbates neural cell death and brain
2 malformations induced by Zika virus**

3

4 Carolina da S. G. Pedrosa¹, Letícia R. Q. Souza¹, Caroline V. F. de Lima¹, Pitia F. Ledur¹,
5 Karina Karmirian^{1,2}, Tiago A. Gomes³, Jimena Barbeito-Andres^{2,†}, Marcelo do N. Costa²,
6 Luiza M. Higa⁴, Maria Bellio⁵, Flávio A. Lara³, Amilcar Tanuri⁴, Patricia P. Garcez²,
7 Arnaldo Prata-Barbosa¹, Fernanda Tovar-Moll^{1,2}, Renato J. R. Molica⁶, Stevens K. Rehen^{1,2*}

8

9 ¹ D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil.

10

11 ² Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ,
12 Brazil.

13

14 ³ Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro,
15 RJ, Brazil.

16

17 ⁴ Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de
18 Janeiro, RJ, Brazil.

19

20 ⁵ Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de
21 Janeiro, RJ, Brazil.

22

23 ⁶ Academic Unit of Garanhuns, Federal Rural University of Pernambuco, Garanhuns, PE,
24 Brazil.

25

26 * Corresponding author

27 E-mail: srehen@lance-ufrj.org (SKR)

28

29 [†] present address: Institute for Studies in Neuroscience and Complex Systems, ENyS,
30 CONICET, Buenos Aires, Argentina.

31 Abstract

32 The northeast (NE) region of Brazil commonly goes through drought periods, which
33 favor cyanobacterial blooms, capable of producing neurotoxins with implications for human
34 and animal health. The most severe dry spell in the history of Brazil occurred between 2012
35 and 2016. Coincidentally, the highest incidence of microcephaly associated with the Zika virus
36 (ZIKV) outbreak was described in the NE region of Brazil during the same years. In this
37 work, we tested the hypothesis that saxitoxin (STX), a neurotoxin produced in South America
38 by the freshwater cyanobacteria *Raphidiopsis raciborskii*, could have contributed to the most
39 severe Congenital Zika Syndrome (CZS) profile described worldwide. Quality surveillance
40 showed higher cyanobacteria amounts and STX occurrence in human drinking water supplies
41 of NE compared to other regions of Brazil. Experimentally, we described that STX doubled
42 the amount of ZIKV-induced neural cell death in progenitor areas of human brain organoids,
43 while the chronic ingestion of water contaminated with STX before and during gestation
44 caused brain abnormalities in offspring of ZIKV-infected immunocompetent C57BL/6J mice.
45 Our data indicate that saxitoxin-producing cyanobacteria is overspread in water reservoirs of
46 the NE and might have acted as a co-insult to ZIKV infection in Brazil. These results raise a
47 public health concern regarding the consequences of arbovirus outbreaks happening in areas
48 with droughts and/or frequent freshwater cyanobacterial blooms.

49 Author summary

50 The uncontrolled spreading of cyanobacteria in drinking water reservoirs has been the
51 cause of serious public health problems worldwide. Toxin-producing cyanobacterial blooms
52 commonly occur during drought periods in the northeast (NE) region of Brazil. During Zika
53 Virus (ZIKV) outbreak in 2015-16, Brazilian NE showed disproportionately higher
54 microcephaly incidence. Here, we test the hypothesis that the cyanotoxin saxitoxin (STX)

55 may act as a co-insult for ZIKV. Water quality surveillance data showed increased
56 cyanobacteria population and higher STX amount in NE region during 2014-2018. *In vitro*,
57 we observed that neural progenitor cell death was doubled after STX exposure to ZIKV-
58 infected brain organoids. *In vivo*, chronic ingestion of STX during gestational period
59 potentiated ZIKV-derived brain abnormalities in newborn mice. Our study provides new
60 insights that may explain the discrepancies among Brazilian regions regarding CZS severity.
61 Moreover, the data highlight the importance of cyanobacteria and cyanotoxin freshwater
62 monitoring for future arbovirus outbreaks.

63 **Introduction**

64 Human population growth, associated with disorderly occupation of territory, results
65 in waste discard in the freshwater reservoir. This Ambiental problem could be escalated by
66 long periods of drought, leads to aquatic ecosystems eutrophication, with the main problem
67 being the mass proliferation of cyanobacteria (blooms) (1). Cyanobacterial blooms comprise
68 hepatotoxin- and neurotoxin-producing species responsible for wild and domestic animals
69 intoxication, besides the contamination of human drinking water supplies (2). Previous
70 studies have shown that 60% of all fresh water samples containing cyanobacteria used to be
71 toxic, with neurotoxin-producing ones being more common in North America, Europe and
72 Australia (3).

73 Brazilian northeast (NE) usually faces periods of severe drought, with the most severe
74 ever recorded occurring between 2012 and 2016 (4). Besides reducing the reservoirs to
75 critical volumes, which results in water supply deficiency (5), this rainy scarcity favors
76 cyanobacterial blooms (6,7). A literature survey of cyanobacteria publication from 1930 to
77 2016 showed that the highest number of toxic bloom events occurred in Pernambuco (PE)
78 state, where was described the presence of microcystins, cylindrospermopsin, five variants of

79 saxitoxin (STX) and anatoxin-a(S) in freshwater (8). Extreme climate events promote
80 changes in the dominance of cyanobacteria (7) as shown during the drought in 1998 (a
81 consequence of the El Niño in 1997), which favored the proliferation of *Raphidiopsis*
82 (*raciborskii* (formely *Cylindrospermopsis raciborskii*) (9) in almost 40 reservoirs in the NE of
83 Brazil (6). The *R. raciborskii* has high adaptability to unfavorable conditions because of its
84 physiological characteristics, that includes akinete formation and tolerance to low phosphorus
85 and nitrogen availability (10). Most important, saxitoxin producing strains of *R. raciborskii*
86 were positively selected among non-producing strains in NE superficial freshwater
87 reservoir, as STXs would serve as a protection against water high salinity and or hardness
88 (11–13).

89 The Brazilian strain of *R. raciborskii* produces STX, one of the most potent paralytic
90 shellfish toxin (PST) found in freshwater and marine ecosystems (10). PSTs are a group of
91 neurotoxic alkaloids that act binding to voltage-gated sodium channels, blocking the
92 generation of action potentials in neurons. The acute exposition to high amounts of PST
93 results in numbness and even death by respiratory failure (14). In contrast, little is known
94 about the effects of chronic low-dose exposure to PSTs (15). Because of their aforementioned
95 dangerousness, a safety level of 3 µg/L of STX has been established in Brazilian water
96 quality guidelines (16). However, *in vitro* exposure to low levels of STX has already been
97 reported to result in impaired neurite outgrowth and altered expression of proteins related to
98 cell apoptosis and mitochondrial function (15,17).

99 The amount of STX usually found in reservoirs of the Brazilian semi-arid region
100 varied between 0.003 and 0.766 µg/L, depending on the period of the year (18). In 2000,
101 during a toxic bloom at the northeast state of Rio Grande do Norte, *R. raciborskii* represented
102 90-100% of total phytoplankton species (19). In case of severe water scarcity, the most
103 impoverished population uses raw water from alternative sources without effective

104 elimination of microorganisms. The consumption of water from ponds, water trucks, wells
105 and household water reservoirs has already been associated with diarrhea outbreaks in states
106 of the Brazilian NE (20). Furthermore, it is important to notice that STX could also
107 accumulate in marine organisms such as freshwater fishes, which is the main animal protein
108 source of many NE communities (21). The effects of this accumulation in humans are not
109 completely understood.

110 Zika virus (ZIKV) infection became an international concern when it was linked to a
111 high rate of congenital brain abnormalities in Brazil (22,23). The incidence of microcephaly
112 varied among regions, with the highest frequency being found in the NE of Brazil (24,25) (S1
113 Fig in Supporting Information). In contrast, the total number of cases of ZIKV infection was
114 lower in NE compared to middle-west or southeast (SE) regions (26). Authors have suggested
115 that a co-factor could be acting with ZIKV, contributing to this divergence among NE and
116 other regions of Brazil; however, none has been confirmed until now (27).

117 The present study aimed to evaluate cyanobacteria and STX spreading among
118 Brazilian regions during the ZIKV outbreak; confirming the synergism between STX and
119 ZIKV *in vitro* using human brain organoids, and *in vivo*, using low-dose exposition of STX to
120 mice that may exacerbate the neurological consequences of viral congenital infection. Our
121 results show that STX occurred in almost half of municipalities in the Brazilian NE, while the
122 majority of other regions presented STX in less than 5%. STX combined with ZIKV
123 increased neural cell death and brain malformations, *in vitro* and *in vivo*. Therefore, STX
124 could be an environmental co-factor associated with the highest incidence of brain
125 abnormalities caused by ZIKV in the northeast of Brazil compared to any other region of the
126 world.

127

128 **Methods**

129 **Occurrence of cyanobacteria and STX in water reservoirs of Brazil**

130 The data about the number of cyanobacteria and STX presence were obtained from
131 SisAgua - Water Quality Surveillance Information System for Human Consumption, a
132 Brazilian Ministry of Health integrated data bank. The number of cyanobacteria per milliliter
133 was determined in water reservoir destined to human use, before treatment, from 2014 to
134 2018. Values were compiled and corrected by the number of municipalities in each Brazilian
135 state. Then, the percentage of the measurements below 10,000 cells/mL, between 10,000 and
136 20.000 cells/mL and above 20,000 cells/mL per municipality were organized per each region
137 of Brazil. STX presence at treated water from 2014 to 2018 was compiled the same way as
138 cyanobacteria concentration and their presence per municipality were organized per each
139 region of Brazil.

140 **ZIKV propagation and titration**

141 ZIKV (Recife/Brazil, ZIKV PE/243, number: KX197192.1) was provided by Dr.
142 Marli Tenório Cordeiro from Fundação Oswaldo Cruz/Centro de Pesquisas Aggeu
143 Magalhães, Brasil. The procedure of ZIKV isolation was described previously (28). The virus
144 was propagated in C6/36 *Aedes albopictus* cell line at multiplicity of infection (MOI) of 0.01
145 and cultured for 6 days in Leibovitz's L-15 medium (Thermo Fisher Scientific, Waltham,
146 MA) supplemented with 0.3% tryptose phosphate broth (Sigma-Aldrich), 2 mM glutamine
147 and 1x MEM non-essential amino acids (Thermo Fisher Scientific) and 2% FBS. ZIKV titers
148 were determined by conventional plaque assay.

149 **Human brain organoids**

150 Human induced pluripotent stem (iPS) cells were obtained from Coriell Institute for
151 Medical Research repository (GM79A). iPS cells were cultured in mTeSR1 media (StemCell

152 Technologies, Vancouver, CAN) on the top of Matrigel (BD Biosciences, Franklin Lakes,
153 NJ). When colonies reached 70-80% confluence, iPS cells were dissociated with Accutase
154 (MP Biomedicals, Santa Ana, CA), centrifuged at 300g, resuspended in media and counted.
155 9,000 cells/well were plated in ultra-low attachment 96-well plates and maintained at 37°C
156 and 5% CO₂.

157 Next day, medium was replaced with hESC media and the embryoid bodies (EBs)
158 were cultured for 6 days as previously described (29). Then, EBs were transferred to 24-well
159 ultra-low attachment culture plates containing Neural Induction Media: 1% N2 Supplement
160 (Thermo Fisher Scientific), 1% GlutaMAX (Life Technologies), 1% P/S, heparin 1 µg/mL
161 for 4 days. Organoids were coated with Matrigel during 1 hour at 37 °C and 5% CO₂ and
162 returned to 24-well ultra-low attachment plates in Neurodifferentiation Media (NDM) with
163 no vitamin A for additional 4 days in static culture and subsequently, transferred to agitation
164 in NDM with vitamin A until day 50. Culture media changes were performed weekly.

165 **ZIKV infection in human brain organoids**

166 The superficial cell number in organoids was calculated by dividing the superficial
167 area (calculated using: $4\pi r^2$) by the mean cell area in the organoid surface (15 µm²). Brain
168 organoids were infected using ZIKV MOI 0.5 (2- 6.5 x 10⁵ PFU per organoid) - for 2 h, then
169 cultured in medium with (or without) STX 12 µg/L (NRC Halifax, CAN) for 13 days. Mock-
170 exposed organoids (treated and non-treated with STX) were used as control. The assay was
171 performed in triplicates in three independent experiments.

172 **Animal experimental design, STX exposition and ZIKV infection**

173 C57BL/6J ZIKV-refractory (30,31) nulliparous female 6-week-old mice received
174 standard filtered water *ad libitum* supplemented (or not) with 15 ng/L of STX 7-10 days
175 before mating and until harvesting date. All females were fed a standard diet with the

176 recommended amount of macro and micro-nutrients (TD91352, Harlan Teklad, Madison). No
177 significant differences in water intake were observed between groups.

178 Pregnancy was confirmed through observation of post-coital vaginal plug for
179 estimation of embryonic age. ZIKV (virus plus C6/36 cell line supernatant) or Mock (C6/36
180 cell line supernatant) was administered intraperitoneally on E12. ZIKV groups received 10^6
181 plaque-forming units per animal. Harvesting of samples was carried out on the first day of
182 postnatal life (P0).

183 **Sample preparation for optical microscopy**

184 Brain organoids and newborn mice brains were fixed in 4% paraformaldehyde
185 solution (Sigma-Aldrich) for 2h and 48h, respectively. Organoids were cryopreserved in
186 sucrose solution, immersed in O.C.T compound (Sakura Finetek, Netherland) and frozen at -
187 80 °C, being sectioned at 20 μ m slices in a Leica CM1860 cryostat for analysis. Newborn
188 brains were embedded in 5% agarose/PBS (Bioline, Taunton, MA), being sectioned coronally
189 at 80 μ m in a vibrating microtome (VT1000S, Leica, Germany) for analysis.

190 **Immunofluorescence staining**

191 After washing with PBS, sections were incubated in permeabilization/blocking
192 solution (0.3% Triton X-100/ 3% goat serum, for organoids; 0.2% Triton X-100/ 2% goat
193 serum, for newborn brains) for 2 h. Primary antibodies Mouse IgG anti-NS1 (1:500 -
194 organoids or 1:10 – newborn brains; BF-1225-36 – BioFront Technologies, Tallahassee, FL)
195 combined with rabbit IgG anti-Nestin (1:1000; RA22125 – Neuromics, Minneapolis, MN) in
196 organoids or with, rabbit IgG anti-cleaved caspase 3 (1:300; 9661S - Cell Signaling, Danvers,
197 MA) in newborn brains were incubated at 4°C overnight. Then, sections were incubated with
198 secondary antibody goat anti-rabbit AlexaFluor 488 (1:400; A-11008 - Thermo Fischer
199 Scientific), for organoids and newborn brains; and goat anti-mouse AlexaFluor 546 (1:500;

200 A-11003 - Life technologies), for newborn brains, for 2 h. Nuclei were stained with 0.5
201 µg/mL 4'-6-diamino-2-phenylindole (DAPI) for 20 min. Apoptotic cells were stained with
202 ApopTag® Red in Situ (S7165, Merck Millipore) according to manufacturer's instructions.

203 10-12 periventricular nestin-positive fields of 100 µm² of three sections per organoid
204 from each experimental group were analyzed. Images were acquired on a confocal
205 microscope Leica TCS SP8. The number of TUNEL positive cells per area was quantified
206 using Cell Profiler Software (BROAD Institute, Cambridge, MA). Two sections per animal
207 brain from each experimental group (three brains per group) were analyzed. Images were
208 taken on microscope AxioImager A.1 (Zeiss, Oberkochen, DEU). Image J was used to
209 determine the thickness of cortical layers.

210 **Ethical statements**

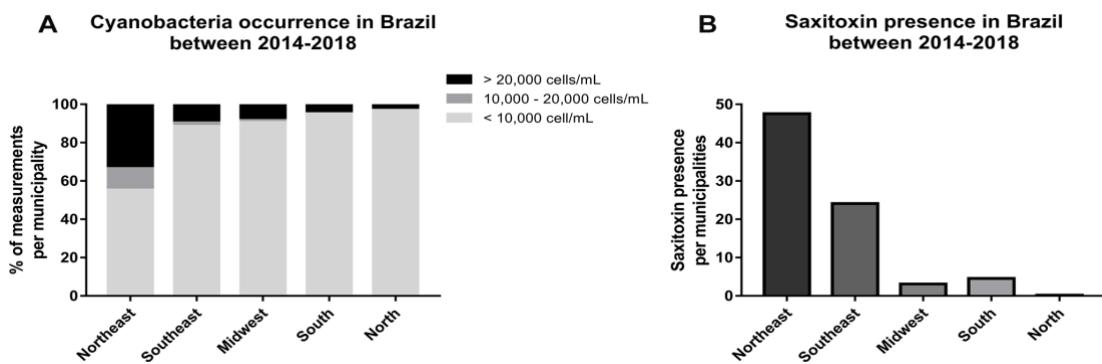
211 Animals were housed in the Animal Care Facility of the Microbiology Institute of the
212 Federal University of Rio de Janeiro. Protocols for animal handling were approved by the
213 Research Ethics Committee of the Federal University of Rio de Janeiro (CONCEA
214 registration number 01200.001568/2013-87, acceptance number 037/16).

215 **Statistical analysis**

216 *In vitro* and *in vivo* results were expressed as mean plus standard error of the mean
217 (SEM). Data sets were compared using One-Way ANOVA, followed by post-test of Dunnet
218 with 95% of confidence intervals, using GraphPad Prism Software. P-value < 0.05 was
219 considered statistically significant.

220

221


222

223 **Results**

224 **~ 50% of water reservoirs in the Brazilian northeast had cyanobacteria and saxitoxin**

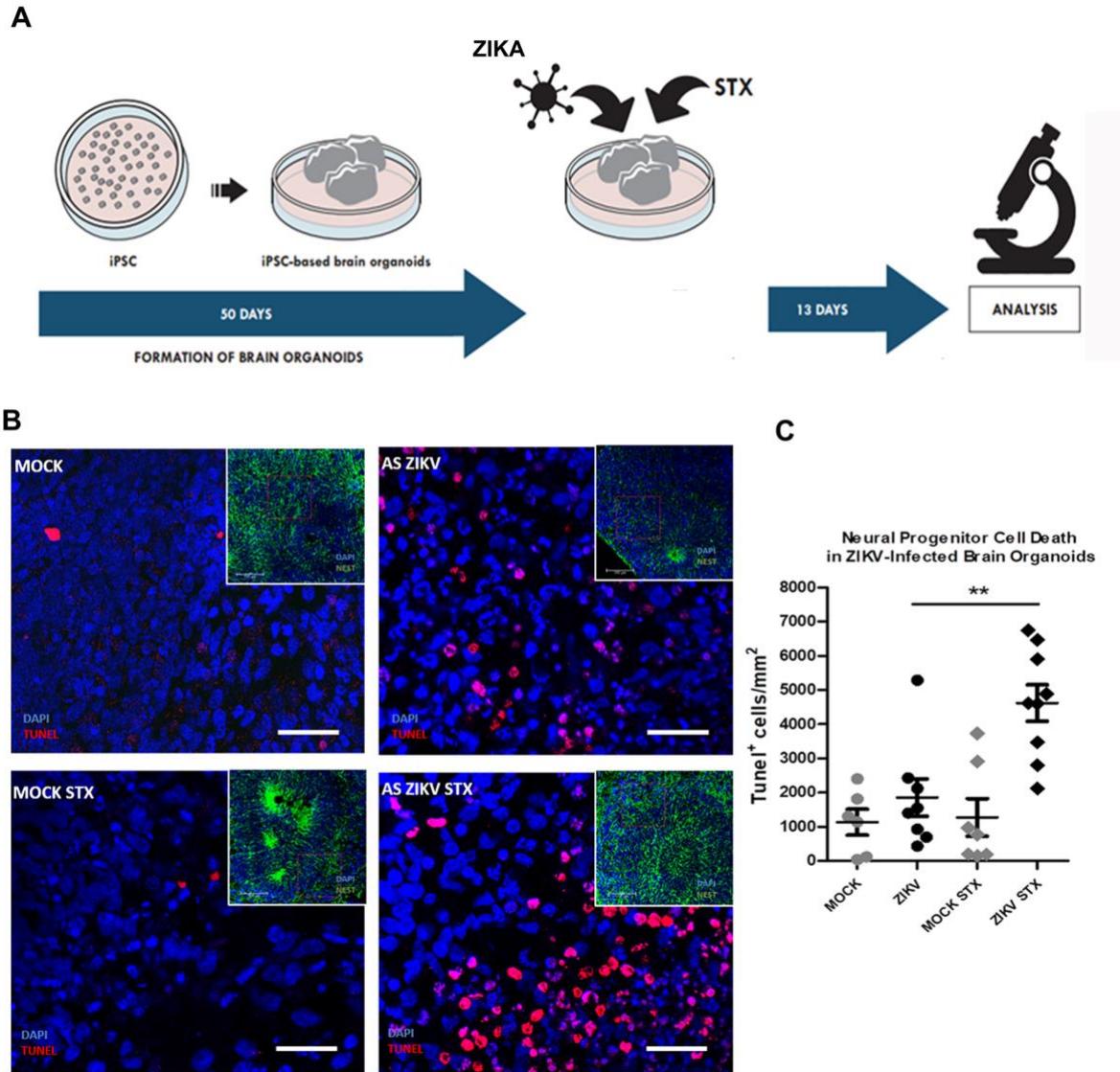
225 Data describing the incidence of cyanobacteria in water reservoirs in Brazil were
226 organized by the percentage of measurements per municipality in the concentration's ranges:
227 below 10,000 cells/mL, between 10,000 and 20,000 cells/mL and above 20,000 cells/mL.
228 Between 2014 and 2018, NE showed ~ 34% of the measurements above 20,000 cells/mL,
229 while other regions showed no more than 10% of the measurements on this range (Fig 1A –
230 black bar).

231 The presence of STX per municipality was also evaluated. Half of NE municipalities
232 had STX in water reservoirs (Fig 1B – dark gray bar), followed by 25% in the SE (Fig 1B –
233 medium gray bar). Other Brazilian regions presented STX in less than 5% of their
234 municipalities (Fig 1B).

236 **Fig. 1. Cyanobacterial and STX occurrence among Brazilian Regions.**

237 (A) Cyanobacteria in Brazil between 2014-2018. The measurements per municipality were
238 split in ranges of cyanobacterial concentration. (B) STX 2014-2018 in Brazil. Note that NE
239 had almost twice saxitoxin than SE.

240


241

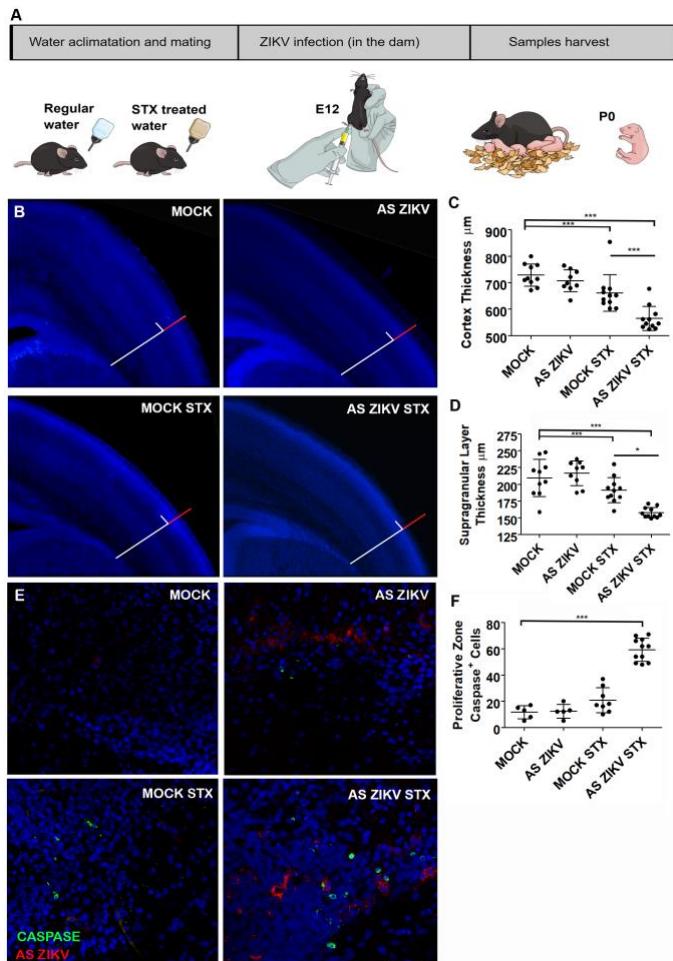
242 **Cell death induced by ZIKV was exacerbated by STX *in vitro* and *in vivo***

243 In order to evaluate the effects of STX in the live human neural tissue, 50 day-old
244 brain organoids were exposed to 12 μ g/L of STX for 13 days and then infected with ZIKV
245 (MOI 0.5, which corresponds to 2- 6.5 \times 10⁵ plaque-forming unit - PFU - per organoid) (Fig
246 2A). This concentration of STX was chosen since it was often described in untreated water
247 sources during droughts in the NE of Brazil (32). Fixed organoids were sectioned in cryostat
248 and immunostaining to identify apoptotic cells (TUNEL) and progenitors (Nestin) was
249 performed. ZIKV-infected brain organoids exposed to STX presented \sim 2.5 times more dead
250 cells per mm² than ZIKV-infected organoids (Fig 2B–C). STX alone did not increase cell
251 death in brain organoids (Fig 2C).

252 To confirm the effects of STX as a cofactor of ZIKV neurotoxicity observed in brain
253 organoids, we used C57BL/6J mice as model. These wild-type animals, due to their efficient
254 type I interferon signaling and ability to control ZIKV replication (30,31), do not present
255 neurological significant impairments derived from vertical ZIKV transmission during
256 embryogenesis (33). Since the population of Brazilian NE is continuously exposed to STX
257 (Fig 1B), and there is insufficient information about their accumulative effect, we decided to
258 analyze the effect of chronic exposition to a low concentration of STX. We offered water
259 contaminated with 15 ng/L of STX to immunocompetent C57BL/6J females one week before
260 mating and continued during gestation. On gestational day 12, females were infected by
261 intraperitoneal injection of 10⁶ PFU per animal. Offspring brains were analyzed on the day of
262 birth (P0) (Fig 3A).

263

264


265 **Fig 2. Saxitoxin increases cell death in ZIKV-infected brain organoids.**

266 50-day-old brain organoids were infected with ZIKV and exposed to STX for 13 days. (A)
267 The illustration shows the experimental timeline. (B) Representative images of Nestin-
268 positive areas (green) of untreated or STX-treated Mock and ZIKV-infected organoids.
269 Inserts showing TUNEL-positive cells in areas were used for evaluation. (C) Number of
270 TUNEL-positive cells per Nestin-positive brain organoid areas (mean \pm SEM) ** p < 0.01.

271

272 As expected, the offspring of ZIKV-infected female mice presented mild cortical
273 erosion, while ZIKV infected mice exposed to STX-contaminated water (ZIKV STX group)
274 displayed a significant reduction in cortical thickness, ~ 30% thinner than control animals
275 (Fig 3B, C). Differently than observed *in vitro*, STX alone produced significant effects in
276 cortex thickness (Fig 3C). The thinner cortical layer was predominantly related to a reduction
277 in the supra granular layers (Fig 3D). To confirm if co-exposure of STX and ZIKV induce
278 cell death in the developing cerebral cortex of mice, we quantified the number of caspase-
279 positive cells in their proliferative zones. The amount of cell death in STX ZIKV-infected
280 neonates increased more than twice, in comparison to the other groups (Fig 3E-F).

281 Our data show that STX exacerbates cell death in the progenitor zones of ZIKV-
282 infected human brain organoids and mice. Therefore, since the incidence of STX in water
283 reservoirs was extremely high in the northeast, and it aggravates the neurogenic impairment
284 caused by ZIKV both *in vitro* and *in vivo*, cyanobacteria may be considered a cofactor to the
285 malformations caused by ZIKV in Brazil.

286

287 **Fig 3. Mice offspring chronically exposed to STX during pregnancy presents severe**
288 **cortex malformation.**

289 C57BL/6J pregnant mice continuously exposed to STX were infected with 10^6 PFU of ZIKV
290 intraperitoneally at E12. (A) Illustration showing the experimental timeline. (B)
291 Representative somatosensory P0 cerebral cortex sections stained with DAPI. In the Mock
292 group image, the red bar represents the supragranular cortical layers, and the white scale bar
293 represents the remaining cortical layers. The control colored scale bars were replicated in all
294 images for comparison. Cortex (C) and supragranular cortical (D) layers thickness evaluation
295 (mean \pm SEM). (E) Representative brain slices stained with cleaved-caspase 3 (green) and
296 NS1 ZIKV (red) in P0 proliferative zones. (F) Quantification of caspase-positive cells in P0
297 (mean \pm SEM) *** p < 0.001, ** p < 0.01 and * p < 0.05.

298 **Discussion**

299 In the present study, we aimed to determine the possible participation of STX, one of
300 the most neurotoxic and widespread PST naturally found, as a co-insult to ZIKV
301 malformations. First, we showed that cyanobacteria and STX are notably widespread in the
302 Brazilian NE (Fig 1A, B). Moreover, the evaluation of STX and ZIKV association showed a
303 two-fold increase in cell death (Fig 2B, C), while the chronic exposition to a lower
304 concentration of STX in ZIKV-infected pregnant mice revealed a microcephaly-like
305 phenotype.

306 Issues related to drinking-water contaminated with cyanobacteria have already
307 occurred in Brazil, United States and Australia (3). Toxic cyanobacterial blooms commonly
308 occur in NE of Brazil, where large amount of cyanobacteria and STX are common (Fig 1A,
309 B). A recent study with cyanotoxin-contaminated water from the Brazilian NE showed a deep
310 impairment of zebrafish development, including spine deformation and an increased rate of
311 lethality (34). A previous work showed that neuronal cells exposed to low doses of STX had
312 inhibited axonal-like extensions, suggesting that cells remained in an immature state (15). It
313 has already been shown that neural activity during development prevents inappropriate
314 connections in the brain (35). In human brains, ZIKV infects neural stem cells and glial cells
315 rather than neurons (36). We showed increased cell death in neural progenitors from STX
316 exposed ZIKV-infected brain organoids (Fig 2B, C). It remains to be known the mechanisms
317 by which STX acts in human neural progenitors.

318 Chronic exposure to STX before and during ZIKV-infection in mice, mimicked what
319 might have occurred in the NE of Brazil. We offered water contaminated with 15 ng/L of
320 STX to pregnant mice. This concentration is considered safe to humans by Brazilian
321 regulatory legislation (16) and is usually found in the drinkable water of the NE of Brazil,
322 according to the SisAgua databank (Ministry of Health). Even in this concentration,

323 significant impairment in cortical thickness (Fig 3B-D) and increased cell death in
324 proliferative zones (Fig 3E, F) were observed in ZIKV-infected mice exposed to STX. STX
325 alone reduced the cortical thickness of mice offspring (Fig 3C) as well, similar to observed in
326 zebrafish (34).

327 The synergism between cyanobacteria and ZIKV raises awareness that the exposure
328 to STX should also be considered as a public health concern during arbovirus outbreaks. It is
329 important to clarify that microcephaly and other ZIKV-derived congenital abnormalities are
330 multifactorial, therefore, other risk factors may have contributed to foster the uncommon
331 pattern of CZS in Brazil (27). ZIKV outbreaks occurred elsewhere; however, no
332 epidemiological relationship between STX-producing cyanobacteria and congenital
333 malformations derived from ZIKV infection was showed until now.

334 With this study, we shed light on the importance of governmental regulations for
335 monitoring cyanobacterial blooms and their removal during water treatment, particularly on
336 droughts. We also observed that SXT may act synergistically with ZIKV even at
337 concentrations considered to be safe by Brazilian authorities. Stringent standards and
338 surveillance of drinking water in areas where ZIKV is reported will be critical for minimizing
339 future harmful arbovirus-associated effects on human populations.

340 Acknowledgements

341 This project was supported by Fundação de Amparo à Pesquisa do Estado do Rio de
342 Janeiro (E-26/201.340/2016), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
343 (88887.116625/2016-01 and 440909/2016-3), Conselho Nacional de Desenvolvimento
344 Científico e Tecnológico (440909/2016-3 and 441096/2016-6), Banco Nacional de
345 Desenvolvimento Econômico e Social (10.2.0051.1), Financiadora de Estudos e Projetos
346 (01.08.0657.00 and 01.12.0161.00), Departamento de Vigilância em Saúde Ambiental e

347 Saúde do Trabalhador – DSAST (25380.001612/2017-70) and intramural grants from D'Or
348 Institute for research and Education. The authors would like to thank Marcia Triunfol and
349 Teresa Puig for helpful discussion during manuscript elaboration; Renan Duarte dos Santos,
350 Camila Vicente Bonfim and Luiz Felipe Lomanto Santa Cruz from Department of
351 Surveillance in Environmental Health and Worker's Health (DSAST/SVS), from the
352 Brazilian Ministry of Health for providing data of SisAgua databank.

353 **References**

- 354 1. Azevedo SMFO, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, et
355 al. Human intoxication by microcystins during renal dialysis treatment in Caruaru -
356 Brazil. *Toxicology*. 2002;181–182:441–6.
- 357 2. Carmichael WW, Azevedo SMFO, An JS, Molica RJR, Jochimsen EM, Lau S, et al.
358 Human fatalities from cyanobacteria: Chemical and biological evidence for
359 cyanotoxins. *Environ Health Perspect*. 2001;109(7):663–8.
- 360 3. World Health Organization (WHO). Algae and cyanobacteria in fresh water. In:
361 Guidelines for safe recreational water environments. 1999. p. 136–58.
- 362 4. Marengo Orsini JA, Alves LM, Alvala RCS, Cunha AP, Brito S, Moraes OLL.
363 Climatic characteristics of the 2010-2016 drought in the semiarid northeast Brazil
364 region. *An Acad Bras Cienc*. 2018;90(2):1973–85.
- 365 5. Sena A, Ebi KL, Freitas C, Corvalan C, Barcellos C. Indicators to measure risk of
366 disaster associated with drought: Implications for the health sector. *PLoS One*.
367 2017;12(7).
- 368 6. Bouvy M, Falcão D, Marinho M, Pagano M, Moura A. Occurrence of
369 *Cylindrospermopsis* (Cyanobacteria) in 39 Brazilian tropical reservoirs during the
370 1998 drought. *Aquat Microb Ecol*. 2000;23(1):13–27.

371 7. Brasil J, Attayde JL, Vasconcelos FR, Dantas DDF, Huszar VLM. Drought-induced
372 water-level reduction favors cyanobacteria blooms in tropical shallow lakes.
373 *Hydrobiologia*. 2016;770(1):145–64.

374 8. Moura ADN, Aragão-Tavares NKC, Amorim CA. Cyanobacterial blooms in
375 freshwater bodies from a semiarid region, northeast Brazil: A review. *J Limnol*.
376 2018;77(2):179–88.

377 9. Aguilera A, Gómez EB, Kaštovský J, Echenique RO, Salerno GL. The polyphasic
378 analysis of two native *Raphidiopsis* isolates supports the unification of the genera
379 *Raphidiopsis* and *Cylindrospermopsis* (Nostocales, Cyanobacteria) . *Phycologia*.
380 2018;57(2):130–46.

381 10. Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF, Rangel LM, et al.
382 Understanding the winning strategies used by the bloom-forming cyanobacterium
383 *Cylindrospermopsis raciborskii*. *Harmful Algae* [Internet]. 2016;54:44–53. Available
384 from: <http://dx.doi.org/10.1016/j.hal.2015.10.012>

385 11. Carneiro RL, Pacheco ABF, De Oliveira E, Azevedo SMF. Growth and saxitoxin
386 production by *cylindrospermopsis raciborskii* (cyanobacteria) correlate with water
387 hardness. *Mar Drugs*. 2013;11(8):2949–63.

388 12. Hoff-Rissetti C, Dörr FA, Schaker PDC, Pinto E, Werner VR, Fiore MF.
389 *Cylindrospermopsin and Saxitoxin Synthetase Genes in Cylindrospermopsis*
390 *raciborskii* Strains from Brazilian Freshwater. *PLoS One*. 2013;8(8):35–9.

391 13. Soto-Liebe K, Méndez MA, Fuenzalida L, Krock B, Cembella A, Vásquez M. PSP
392 toxin release from the cyanobacterium *Raphidiopsis brookii* D9 (Nostocales) can be
393 induced by sodium and potassium ions. *Toxicon* [Internet]. 2012;60(7):1324–34.
394 Available from: <http://dx.doi.org/10.1016/j.toxicon.2012.09.001>

395 14. Savio-Galimberti E, Gollob MH, Darbar D. Voltage-gated sodium channels:

396 Biophysics, pharmacology, and related channelopathies. *Front Pharmacol.* 2012;3

397 JUL(July):1–19.

398 15. O'Neill K, Musgrave IF, Humpage A. Extended Low-Dose Exposure to Saxitoxin

399 Inhibits Neurite Outgrowth in Model Neuronal Cells. *Basic Clin Pharmacol Toxicol.*

400 2017;120(4):390–7.

401 16. Ministério da Saúde. Portaria de Consolidação MS/GM Nº5 - Consolidação das

402 normas sobre as ações e os serviços de saúde do Sistema Único de Saúde. In: *Diário*

403 *Oficial da Republica Federativa do Brasil.* 2017. p. 360-Seção 1-Suplemento nº 190.

404 17. Chen X, Sun Y, Huang H, Liu W, Hu P, Huang X, et al. Uncovering the proteome

405 response of murine neuroblastoma cells against low-dose exposure to saxitoxin.

406 *Toxicol Mech Methods* [Internet]. 2018;28(5):335–44. Available from:

407 <https://doi.org/10.1080/15376516.2017.1411413>

408 18. Fonseca JR, Vieira PCS, Kujbida P, Costa IAS da. Cyanobacterial occurrence and

409 detection of microcystins and saxitoxins in reservoirs of the Brazilian semi-arid. *Acta*

410 *Limnol Bras.* 2015;27(1):78–92.

411 19. Costa IAS, Azevedo SMFO, Senna PAC, Bernardo RR, Costa SM, Chellappa NT.

412 Occurrence of toxin produceing cyanobacteria blooms in a brazilian semiarid

413 reservoir.pdf. *Brazilian J Biol.* 2006;66(1B):211–9.

414 20. Rufino R, Gracie R, Sena A, Freitas CM de, Barcellos C. Diarrhea outbreaks in

415 northeastern Brazil in 2013, according to media and health information systems -

416 Surveillance of climate risk and health emergencies. *Cien Saude Colet.*

417 2016;21(3):777–88.

418 21. Galvão JA, Oetterer M, Bittencourt-Oliveira M do C, Gouvêa-Barros S, Hiller S, Erler

419 K, et al. Saxitoxins accumulation by freshwater tilapia (*Oreochromis niloticus*) for

420 human consumption. *Toxicon.* 2009;54(6):891–4.

421 22. PAHO, World Health Organization (WHO). Zika situation report - Brazil. World Heal
422 Organ. 2017;(September):1–9.

423 23. Martines RB, Bhatnagar J, de Oliveira Ramos AM, Davi HPF, Iglezias SDA,
424 Kanamura CT, et al. Pathology of congenital Zika syndrome in Brazil: a case series.
425 Lancet [Internet]. 2016;388(10047):898–904. Available from:
426 [http://dx.doi.org/10.1016/S0140-6736\(16\)30883-2](http://dx.doi.org/10.1016/S0140-6736(16)30883-2)

427 24. de Oliveira WK, de França GVA, Carmo EH, Duncan BB, de Souza Kuchenbecker R,
428 Schmidt MI. Infection-related microcephaly after the 2015 and 2016 Zika virus
429 outbreaks in Brazil: a surveillance-based analysis. Lancet. 2017;390(10097):861–70.

430 25. Barbeito-Andrés J, Schuler-Faccini L, Garcez PP. Why is congenital Zika syndrome
431 asymmetrically distributed among human populations? PLoS Biol. 2018;16(8):1–11.

432 26. Ministério da Saúde, Secretaria de Vigilância em Saúde. Monitoramento dos casos de
433 dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica
434 35, 2017. In: Boletim Epidemiológico [Internet]. 2017. p. 1–13. Available from:
435 http://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_epidemiologica_7ed.pdf

436 27. Campos MC, Dombrowski JG, Phelan J, Marinho CRF, Hibberd M, Clark TG, et al.
437 Zika might not be acting alone: Using an ecological study approach to investigate
438 potential co-acting risk factors for an unusual pattern of microcephaly in Brazil. PLoS
439 One. 2018;13(8):1–16.

440 28. Donald CL, Brennan B, Cumberworth SL, Rezelj V V., Clark JJ, Cordeiro MT, et al.
441 Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from
442 Recife, Brazil. PLoS Negl Trop Dis. 2016;10(10):1–20.

443 29. Lancaster M, Knoblich J. Generation of Cerebral Organoids from Human Pluripotent
444 Stem. Eur PMC Funders Gr. 2015;9(10):2329–40.

445 30. Lazear HM, Govero J, Smith AM, Platt DJ, Miner JJ, Diamond MS. A Mouse Model

446 of Zika Virus Pathogenesis. *Cell Host Microbe*. 2017;19(5):720–30.

447 31. Chen J, Liang Y, Yi P, Xu L, Hawkins H, Rossi S, et al. Outcomes of congenital Zika
448 disease depend on timing of infection and maternal-fetal interferon action. *Cell Rep*.
449 2017;21(6):1588–99.

450 32. Mowe MAD, Mitrovic SM, Lim RP, Furey A, Yeo DCJ. Tropical cyanobacterial
451 blooms: A review of prevalence, problem taxa, toxins and influencing environmental
452 factors. *J Limnol*. 2015;74(2):205–24.

453 33. Dias JLM, Guimarães KP, Benazzato C, Almeida N, Graciela C, Romero S, et al. The
454 Brazilian Zika virus strain causes birth defects in experimental models. *Nature*.
455 2016;534(7606):267–71.

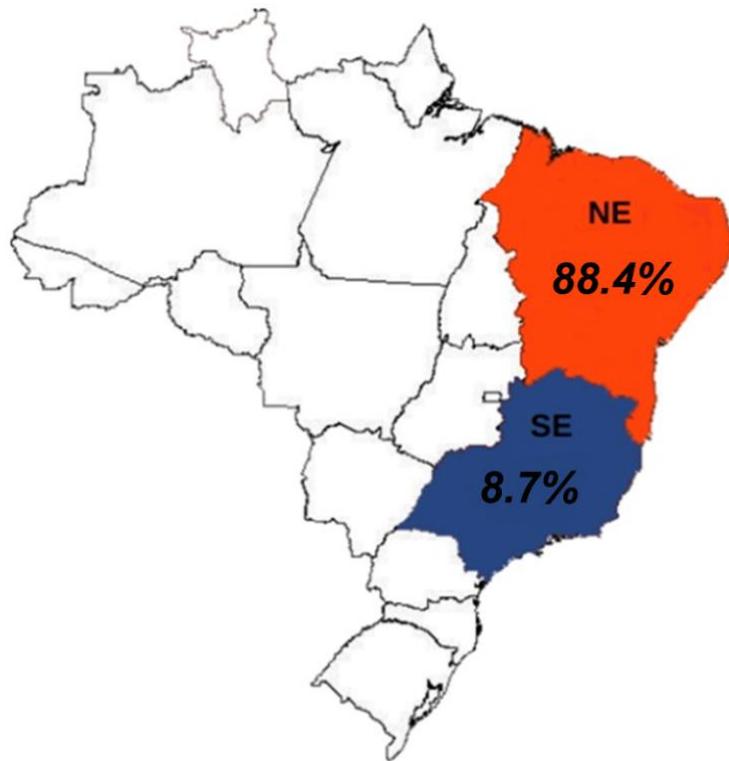
456 34. Walter JM, Lopes FAC, Lopes-Ferreira M, Vidal LM, Leomil L, Melo F, et al.
457 Occurrence of harmful cyanobacteria in drinking water from a severely drought-
458 impacted semi-arid region. *Front Microbiol*. 2018;9(FEB):1–10.

459 35. Jarecki J, Keshishian H. Role of neural activity during synaptogenesis in *Drosophila*. *J*
460 *Neurosci* [Internet]. 1995;15(12):8177–90. Available from:
461 <http://www.ncbi.nlm.nih.gov/pubmed/8613752>

462 36. Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, et al.
463 Zika virus cell tropism in the developing human brain and inhibition by azithromycin.
464 *Proc Natl Acad Sci*. 2016;113(50):14408–13.

465

466


467

468

469

470

471 **Supplemental information**

472

473 **S1 Fig. Percentage of brain image exams in the literature reporting microcephaly in NE**
474 **and SE regions of Brazil.**

475 The comparative systematic review selected 37 manuscripts with brain images of infants with
476 ZIKV-related malformations. The percentage of microcephaly brain in exams was placed in a
477 representative map of Brazil, in which southeast region is blue and northeast region is red.

478 **S1 Method**

479 **Comparative systematic review of ZIKV-derived microcephaly in SE and NE Brazil**

480 The words "Magnetic Resonance Image", "Computed tomography", "Ultrasound" and their
481 acronyms in English and Portuguese, combined with the words "Zika" and "Brazil" were
482 used to search on scientific publication databases PubMed/MEDLINE, LILACS and Scielo.
483 Only manuscripts with SE or NE as the geographical origin of cases (37 manuscripts,

484 including 9 with cases from the SE) were included in analysis. The analysis considered
485 publications until June 2018 in which infants were exposed to ZIKV during the gestational
486 period. The relative percentage of microcephaly-positive brain images per region was
487 obtained using brain exams from each region as 100%.

488

489

490

491

492

493