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Abstract—Previous studies have shown that 

electroencephalogram (EEG) can be used in estimating mental 

workload. However, developing fast and reliable models for 

cross-task, cross-subject and cross-session classifications of 

workload remains a challenge. In this study, a wireless Emotiv 

EPOC headset was used to evaluate workload in two different 

mental tasks: n-back task and mental arithmetic task. 0-back 

task and 2-back task were employed as low and high workload in 

the n-back task while 1-digit and 3-digit addition were used as 

the two different workload levels in the arithmetic task.  Using 

power spectral density as features, a fast signal processing and 

feature extraction framework was developed to facilitate real-

time estimation of workload. Within-session accuracies of 98.5% 

and 95.5% were achieved in the n-back and arithmetic tasks 

respectively. Adaptive subspace feature matching (ASFM) was 

applied for cross-session, cross-task and cross-subject 

classifications. The feature adaptation provided average cross-

session accuracies of 80.5% and 74.4% in the n-back and the 

arithmetic tasks respectively. An average cross-task accuracy of 

68.6% was achieved while cross-subject accuracies were 74.4% 

and 64.1% in the n-back and arithmetic tasks respectively. The 

framework generalised well across subjects and tasks, and it 

provided a promising approach towards developing subject and 

task-independent models. This study also shows that a consumer-

level wireless EEG headset can be applied in cognitive 

monitoring for real-time estimation of workload in practice. 

Keywords—Electroencephalogram (EEG), mental workload, 

cross-task, cross-subject, cross-session, wireless EEG headset, 

adaptive subspace feature matching (ASFM), n-back task, mental 

arithmetic task. 

I.  INTRODUCTION  

Brain-computer interface (BCI) is mainly applied to aid 
disabled persons by using the brain signals for communication 
and control while bypassing auxiliary muscles or nerves [1]. 
However, the application of BCI for healthy patients is 
becoming increasingly popular and this is giving rise to a 
myriad of applications [2]. The application of BCI to obtain 
information about a user’s state by using arbitrary brain events 
without intending any voluntary control is called Passive BCI 
[2]. Passive BCI can be used to obtain information about a 
driver’s level of workload, stress or attentiveness. 
Consequently, the driver’s performance can be improved, and 
potential costly errors can be forestalled [3]. Furthermore, BCI 
has shown potential usefulness in avoiding accidents in 
industries by monitoring the mental state of workers [4]. In 

security surveillance, the level of attentiveness and 
concentration can also be monitored to ensure continuous 
safety [5].  Estimating workload in adaptive systems can 
generally facilitate task sharing and load shedding between 
human and machine to reduce operational errors. 

Although there is no universal definition of workload [6], 
[2], mental workload can be determined by considering the 
task or the operator (human). The task-oriented approach 
considers the task characteristics and the condition of task 
performance in estimating workload. The human-oriented 
approach evaluates workload through the effect of the task 
performance on the human [7]. Psychologists are however 
more inclined to the latter approach – they view workload as 
the result of the interaction between work demands and human 
capacity [8]. As the workload increases, the task demand 
approaches the upper limit of human ability.  

One way to measure workload is the use of performance 
measures. This method assumes that operator’s performance 
degrades with task demand. Performance degradation is 
evidenced in slower work pace and increased errors in the 
task. However, it could be costly to wait till performance 
degrades, especially in some critical tasks [9]. Nevertheless, 
performance measures are easy to justify and can be useful in 
building predictive models for operator functional state [6]. 
Subjective measures also provide a way of estimating 
workload. The operator gives a personal evaluation of the 
workload by filling a rating scale. Common rating scales 
include NASA Task Load Index (NASA-TLX) [7], Subjective 
Workload Assessment Technique (SWAT) [10], Rating Scale 
Mental Effort (RSME) [11] and Thurstonian Scale [12]. 
Rating scales can be used in many types of workload [7], they 
are easily prepared [12] and provide direct evaluation [10]. 
However, the requirement for an operator to repeatedly fill the 
scale may impose extra burden on him. In a bid to avoid such 
intermittent intrusion, an operator may fill the scale at a much 
later time, but this can lead to bias. The scale is also prone to 
falsification and faulty judgement [7]. Physiological correlates 
of workload have also been established in many literatures.  
Some of these measures include heart rate [13], blood pressure 
[14], chemical measures including sodium and potassium in 
saliva, cortisol in blood [14], heart rate variability [15], eye 
blink frequency [16], saccades [16], Electromyogram (EMG) 
[17] and EEG. Even though there seem not to be a best 
physiological indicator of workload, some studies showed 
EEG to be more promising compared to other indicators [18], 
[19]. 
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Previous studies have shown correlation between workload 
and power in some EEG frequency bands. EEG frequency 
bands are commonly divided into delta (1-4Hz), theta (4-8Hz), 
alpha (8-12Hz), beta (12-25Hz) and gamma (>25Hz) [20]. 
Increase in workload was observed to cause reduction of 
power in alpha band, especially at the parietal regions [21]. 
Also, theta power was reported to increase with workload 
mostly in frontal regions [21]. Gamma [22], [23], delta and 
beta powers [13] increase with workload at the parietal and 
temporal regions. 

In mental workload classification, a variety of machine 
learning methods have been employed. Some of these methods 
include support vector machine (SVM) [24], artificial neural 
network (ANN) [25] and hierarchical Bayes model [26]. SVM 
finds more application due to its ability to better generalise 
well and handle high-dimensional data [27].  However, due to 
the nonstationary nature of EEG signals, the performance of 
algorithms degrades when the training and test data are taken 
from different sessions and subjects. Hence the algorithm 
needs to be trained or adapted for every user and session. 
Some feature adaptation techniques have been proposed to 
control this degradation, but they are often computationally 
expensive and complex for real-time estimation of workload. 
Moreover, developing a model for cross-task classification 
remains a challenge. Furthermore, many of the previous 
studies on mental workload estimation employed large number 
of electrodes for recording the EEG signals, therefore reducing 
the comfortability of using EEG headsets in practical and 
online scenarios. Only a limited number of studies have 
recently investigated the feasibility of using wireless headsets 
with small number of electrodes for mental workload 
estimation [24]. To address these issues, we employed a 
wireless consumer-level Emotiv EPOC EEG headset with 
small number of electrodes to estimate mental workload. A 
simple signal processing and feature extraction technique was 
developed to facilitate practical and real-time application. The 
model was tested across eight (8) subjects in two different 
types of task – n-back task and arithmetic task. In addition, a 
fast domain adaptation technique called Adaptive Subspace 
Feature Machine (ASFM) [28] was applied to improve the 
model performance in cross-session, cross-task and cross-
subject classifications. We compared the results from ASFM 
with those of SVM.  Some subjective and performance indices 
of mental workload were also used to verify that the 
experimental design reflects different levels of workload 

 

Fig.1. Electrode configuration of Emotiv EPOC [30] 

II. METHOD 

A. Subjects 

Eight (8) subjects (6 males and 2 females) participated in 
the EEG experiment at the Physiological Signal Processing 
Laboratory, Department of Automatic Control and Systems 
Engineering, University of Sheffield. Some of the participants 
were recruited through the University’s student volunteer list 
while others were friends of the research student. Participants 
were aged between 19 and 30 (M = 25 years; SD=3 years); 
where M = mean and SD = standard deviation. All subjects 
were right-handed, reported normal or corrected-to-normal 
vision, and had no history of any fatigue-related disorder. The 
experiment was performed in accordance with the University’s 
ethics guidelines, and participants were given written informed 
consent. 

B. Material 

The EEG was recorded using a wireless Emotiv EPOC 
neuroheadset [29]. The Emotiv EPOC headset uses 14 
electrodes with two additional electrodes for referencing 
(DRL) and noise cancellation (CMS) as shown in Fig. 1. All 
the available electrodes were used in this study. Saline liquid 
was applied to the electrodes before every experiment to keep 
the electrode impedances low to an acceptable level. 

The stimuli were presented on a monitor at a distance from 
participants’ eyes. Participants press keyboard to indicate if the 
letters or numbers displayed are targets or non-targets. They 
press ‘H’ (hit) if a target is displayed and ‘F’ (fail) for non-
target. RSME scale [11] was also employed as a subjective 
measure of mental workload. RSME was chosen due to its 
higher sensitivity compared to other commonly employed  
methods like NASA-TLX [31]. Participants were asked to rate 
each task based on the perceived expended effort in solving 
that task. The scale ranges from 0 to 150. 0 depicts the lowest 
effort and 150 indicates the peak effort. 

C. Task 

Two tasks were employed in the experiment and each task 
had two difficulty levels. The first task was n-back task and the 
second task was mental arithmetic task. N-back task has been 
extensively employed in cognitive workload studies because it 
can be used to vary workload by changing the number of letters 
(‘n’) a user should memorise. Moreover, changing the value of 
n does not change the rate of visual input or motor-cortex 
demands [7]. This is important to ensure that workload is being 
measured and not mere reaction to varying stimuli [32]. 0-back  
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Fig.2. N-back tasks 
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Fig.3 Arithmetic tasks 

and 2-back tasks were used to represent low and high 
workloads respectively. In 0-back condition (low workload 
level), the target letter is ‘X’. Hence, the participant only needs 
to memorise the letter ‘X’ and does not need to update his 
memory as the task proceeds. For 2-back condition (high 
workload level), participant decides if the letter displayed 
currently is same as the letter displayed two sequences earlier. 
Hence, the participant updates his memory by memorising two 
previous letters as the sequence progresses. In both task levels, 
the participant presses the appropriate key to indicate if the 
letter is a target or not while paying attention to speed.  

Mental arithmetic task has also been used to study cognitive 
workload [33] and is shown to have relationship with working 
memory [24]. The task requires a participant to perform 
arithmetic operations without any aid such as pen and paper or 
calculator. The answer from every arithmetic operation is 
stored in the participant’s brain and retrieved after some 
seconds when an answer is displayed. If the number displayed 
is the correct result from the last arithmetic operation, then 
such number is a target, else it is non-target. Two versions of 
arithmetic task were used. The first was 1-digit addition for low 
workload level and the second was 3-digit addition for high 
workload level. To regulate the effect of carry, a carry was 
always involved in both workload levels; e.g. (7 + 8) for 1-digit 
task, and (234 + 356) for 3-digit task.  

D. Stimuli 

The stimuli were presented in Arial font style, white and 
size 50pt. The stimuli were displayed on a black background. 
Upper case letters were employed in the n-back tasks. Similar 
to the method used in [32], all letters were selected from 
consonants only and randomly presented. Vowel letters were 
not included to preclude participants from grouping the letters 
into sensible word or pattern, which may ease the workload. 
Each letter was displayed for 500ms, followed by a fixation 
cross for 2000ms (inter-stimulus interval) before the next letter. 
For both levels of n-back task, 120 trials were used and 30% of 
the trials were targets. The n-back task design is illustrated in 
Fig. 2. ‘T’ denotes ‘Target’, ‘NT’ denotes ‘None-Target’ and 
‘s’ represents time in seconds. 

For the mental arithmetic tasks, the two numbers to be 
added (trial) were displayed together for 5000ms followed by a 
fixation cross of 4000ms. Another single number (answer) was 
then presented for 2000ms and the participant indicates 
whether the number is a correct result of the last trial or not. A 
fixation cross was displayed for 2000ms before the next trial. 
25 trials were used for both task levels and 44% of the trials 
were targets. Fig. 3 shows the 3-digit arithmetic task. 

E. Design 

The experiment was designed to allow evaluation of model 
performance across different tasks. Each subtask (0-back, 2-
back, 1-digit arithmetic and 3-digit arithmetic) was presented in 
a 5-minute block. Hence, a session of the experiment was 
comprised of four blocks. Markers were sent to the EEG 
recording panel to mark the beginning and end of each block. 
After each block of task, the participant could have a break 
before moving on to the next block.  Before each session, there 
was a baseline block where the subject quietly fixated on a 
cross for 30 seconds. The response times and accuracies of 
answers were also recorded as dependent measures. The RMSE 
scale was filled by the participant after each block to 
subjectively rate the mental workload for each subtask.  

Three of the eight participants were asked to repeat the 
tasks after one week; the tasks were presented in a 
counterbalanced order. The repetition was to enable the 
evaluation of robustness of the model to the nonstationarity of 
EEG. The whole experiment was designed and implemented in 
MATLAB with the aid of Cogent 2000 [34]. 

F. Procedure 

As the subjects arrived for the experiment, they were made 
to fill the screening form to ascertain if they were eligible for 
the experiment. After the screening, participant went on to sign 
informed consent form. Then, the tasks involved in the 
experiment were clearly explained to the subject. The EEG 
headset was worn on the participant’s head and proper 
connection of the electrodes to the scalp was ensured by 
observing the Emotiv panel throughout the experiment.  

Before the actual task, participants practised 2-back task 
and 3-digit mental arithmetic task several times until they were 
confident with the task. Participant was told to pay attention to 
speed and accuracy during the practice and main experiment. 
The participant was able to see his performance after every 
practice. Thereafter, the participant moved on to do the main 
tasks. The instructions about the tasks were displayed on the 
monitor at necessary stages in the experiment. First, the 
participant fixated on a cross on the screen for 30 seconds 
without any movement or much eye blinking. Then, the 
participant moved on to perform a 5-minute block of the 0-
back task. After the first block of task, participant could take a 
break before moving to the next task. Also, the participant was 
required to rate the 0-back task on the RMSE scale before 
proceeding. Participant then moved on to the second, third and 
fourth blocks to solve the 2-back, 1-digit arithmetic and 3-digit 
arithmetic tasks respectively.  The participant took break after 
every block and rated the workloads on RMSE scale.  

G. Data Analysis 

1) Data Processing: The EEG data were sampled at 
128Hz. All the 14 channels were used and referenced 
absolutely to the left mastoid.  The raw EEG measurement in 
edf format was imported into MATLAB and converted to 
structure array (struct). The data from the fourteen channels 
were accessed by extracting rows 3 to 16 of the ‘data’ field in 
the struct file. No sophisticated or manual artefact removal 
technique was employed. This was to facilitate online 
classification of mental workload in practice. However, eye 
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blinks, muscle artefacts and powerline noise were removed by 
bandpass filtering. The dataset was passed through a low pass 
Butterworth filter with cut-off frequency of 3Hz. The filtering 
was done forward and then backward. This two-way filtering 
ensures zero-phase filtering or avoids phase distortion of the 
EEG data. Then, the low-passed data was filtered in both 
directions again using a high-pass Butterworth filter with cut-
off frequency of 37Hz.  With the aid of the markers sent 
during the EEG recording, the epochs corresponding to each 
task were extracted.  

2) Feature Extraction: The filtered data were divided 
into 4-second blocks with 2-second overlaps between adjacent 
blocks. The data in each block was normalised for zero mean 
as shown in (1) below. 
 

 

(1) 

where x is the whole data in a 4-second block,  is the 

mean of the data in such block and   is the normalised 
data in the block. Normalisation gives equal importance to 
every data and facilitates further processing. The power 
spectral density (PSD) in each normalised block was 
computed using Welch’s method with 1-second Hamming 
window and 50% overlap. Windowing was necessary to obtain 
a short-time Fourier transform that captures the nonstationarity 
of EEG. In each block, the power spectral densities of eight 
frequency bands were computed thus: 4-8Hz, 8-12Hz, 12-
16Hz, 16-20Hz, 20-24Hz, 24-28Hz, 28-32Hz, 32-36Hz. For 
each frequency band, the root-mean-square (RMS) value was 
calculated as follows: 

 

             (2) 

 
where ||PSD|| is the Euclidean length of the PSD in a 

frequency band and  is the length of the PSD vector. With 
14 channels and 8 frequency bands, 112 (14 × 8) features were 
generated. 

3) Data Classification: SVM was used for the 
classification of the workload levels in the n-back and 
arithmetic tasks. The accuracy of the model was evaluated 
using 10-fold cross-validation. Cross-validation reflects an 
unbiased performance of the algorithm and prevents 
overfitting [35]. In addition, the performance of the SVM was 
investigated for cross-session, cross-task and cross-subject 
classifications. ASFM was also applied and the results of the 
two methods were compared.  

ASFM was proposed in [28] as a fast domain adaptation 
technique for EEG-based emotion recognition to overcome the 
degradation of algorithm when EEG data are sampled from 
different subjects or sessions. The nonstationary nature of 
EEG and variability of brain dynamics with individuals and 
age causes a mismatch between the marginal and conditional 
distributions of the source domain (training data) and target 
domain (testing data). ASFM uses a framework which reduces 
such mismatch. In other words, if there is a source domain Xs 
with label Ys and a target domain Xt with label Yt, ASFM 
formulates a new feature to reduce the marginal distribution 
mismatch between Ps(Xs) and Pt(Xt), and conditional 
distribution mismatch between Ps(Ys|Xs) and Pt(Yt|Xt). For 
details of the algorithm, see [28]. 

III. RESULTS 

A. Subjective Measure (RSME) 

As expected, the RSME scale revealed that mental 
workload perceived by subjects increased with memory load, 
with average rating of 44 for 0-back task and 86 for 2-back 
task. Paired-samples t-test showed that the two task levels 
were significantly different (t(7) = -9.361, p<0.05). The 
average ratings for the 1-digit and 3-digit arithmetic tasks 
were 42 and 73 respectively, and the two task levels differed 
significantly (t(7) = -4.47, p<0.05). The averages and 
statistical tests of both the n-back tasks and arithmetic tasks 
confirmed that the experiment design used in this work 
provides two discriminative workload levels: low workload 
and high workload. 

B. Performance Measures 

Average response time increased as the workload 
increased from 0-back (547.9ms) to 2-back (853.9ms). 
Wilcoxon signed-rank test showed a significant difference in 
response times of the two workload levels (p<0.05).  The 
arithmetic tasks also showed increase in response time with 
workload from 972.5ms (1-digit) to 1251.8ms (3-digit). The 
difference was statistically significant (t(7) = -4.773,  p<0.05). 
The results imply a significant interaction between speed of 
performance of a task and workload. 

The average accuracy of response to stimuli decreased 
with increase in workload from 0-back (98.2%) to 2-back 
(91.4%). The accuracy varied significantly between the two 
workload levels (t(7) =3.399, p<0.05). Increase in workload 
from 1-digit to 3-digit arithmetic resulted in decrease in 
average accuracy from 92.5% to 78.5%. Wilcoxon signed-
rank test showed that the accuracy of task performance 
differed significantly for the two work load levels (p<0.05). 
The results from both n-back tasks and arithmetic tasks 
confirmed the expected difference between the difficulty 
levels of low and high mental workloads. 

C. Variation of EEG Spectral Power with Workload 

The grand averages of spectral powers across all the eight 
subjects are shown in Fig. 4. The channels (electrodes) 
presented in the figures were chosen in such a way that all the 
brain regions are represented. 

All the plots show that EEG signal power varied with 
workload. In consonance with previous studies, alpha power 
(4-8Hz) was observed to decrease with workload across all the 
electrodes, gamma power (>25Hz) increased with workload, 
and theta power (4-7Hz) increased with workload. Similar to 
the findings in [8], increase in power with workload could also 
be observed in the high beta band (20-25Hz), especially at the 
frontal sites (AF4 and FC6). Furthermore, the effect of 
workload on spectral power is prominent in the gamma band 
across all electrodes. The results have demonstrated that EEG 
spectral power is a good feature for estimating mental 
workload.  
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                             (a)                                                                                  (b)                                                                               (c) 

       

                                        (e)                                                                                       (f) 

Fig. 4.  Grand averages of spectral power for the eight subjects vary with workload across frequency bands (a) Power spectra in frontal region. (b)  Power 

spectra in central region. (c) Power spectra in Ocipital region. (d) Power spectra in temporal region. (e) Power specta in parietal region 

D. Classification Results 

1) Within-Session Classification: The EEG obtained 
from a subject in an experiment session was used to train and 
test the accuracy of the model for such subject. 10-fold cross-
validation was used. Fig. 5 shows the performance of the 
SVM (with linear kernel) in classifying the workload levels 
for the two types of task.  

The algorithm was able to classify the two levels of 
workload in n-back task with an average accuracy of 98.5% 
(SD = 2.1%) as against a mean accuracy of 95.5% (SD = 
4.1%) for the two workload levels in arithmetic task. The 
average accuracies are close to the 98.6% (0-back vs 2-back) 
and 94.2% (1-digit vs 2-digit multiplication) obtained in [34] 
using same Emotiv EPOC headset. About 100% accuracy was 
also reported by [35] using Emotiv headset for 0-back vs 2-
back tasks. Wilcoxon signed-rank test showed that the 
classification accuracies in the n-back and arithmetic tasks 
were significantly different p=0.028 (p<0.05). The highest and 
lowest accuracies achieved for the n-back task were 100% and 
93.5% respectively. The arithmetic task produced 100% and 
88.4% as the highest and least accuracies respectively. 

The difference in accuracy for the two tasks could be 
attributable to the fact that the two levels of workload in the 
arithmetic tasks have more similarities than those of the n-

back tasks. Hence, there are likely more common features in 
the 1-digit and 3-digit subtasks which makes less easy for the 
algorithm to discriminate between the two arithmetic 
workload levels. It could also be that there are more cross-
subject variabilities in the arithmetic task than the n-back task, 
therefore, the model could generalise better for the latter task. 
As shown in the results, accuracies of the two tasks varied 
from subject to subject. Very high accuracies were achieved 
for subjects P05 and P08. These discrepancies point to the fact 
that brain dynamics vary with individuals and age; hence, a 
model may not generalise well across subjects and may 
therefore require tuning for every user. However, the model 
developed in this work was good enough to generalise across 
many subjects without individual-based tuning. 

2) Classification Accuracy with Varying Data Length: 
To investigate the performance of the model on small number 
of samples, the time window of EEG signal used in cross-
validation was varied from 60seconds to 300seconds. Fig. 6 
shows the effect of varying data lengths (windows) on the 
performance of the model. 

As expected, the average classification increased with the 
amount of training data. However, the model achieved an 
average accuracy of 96.4% (SD = 5%) and 92.9% (SD = 
7.5%) on 60second data in the n-back task and arithmetic task 
respectively.  The result suggests that the model can achieve a  
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Fig.5. Trend of classification accuracies with tasks 

      

Fig. 6. Variation of model accuracy with length of training data 

high accuracy when trained with small number of data. This is 
very important in online usage where fast detection of 
workload levels is necessary. Also, if the model needs to be 
trained for every user at every usage session, the required time 
for training would not be large. Consequently, the burden of 
retraining model across users and sessions will not be 
significant. 

3) Cross-Session Classification: Due to the 
nonstationary nature of EEG signals, the performance of a 
model degrades if the training and test data are from different 
sessions or times. As a result, training is often repeated for 
every session. To test the performance of the model across 
different training sessions, three participants were asked to 
repeat the tasks after seven days. Then, the data from the first 
day were used to train while the data from the eighth day were 
used for testing. Here, SVM and ASFM were used and 
compared against each other as shown in Fig. 7 and Fig. 8. 

The performance of SVM degraded when the trainings 
from previous experiment session were used to classify data 
obtained many days later without retraining. The accuracy of 
SVM, without any feature adaptation, reduced to as low as 
43.9% (below 50%) in one of the cases. However, the use of 
ASFM, a domain adaption technique, achieved high average 
cross-session accuracies of 76.6% (SD = 2.5%) and 80.5%  
(SD=16%) in the arithmetic and n-back tasks respectively. 

 

Fig. 7. Cross-session classification on n-back task 

 

Fig. 8. Cross-session classification on arithmetic task 

ASFM reduced the marginal and conditional distribution 
mismatch of EEG data across two different experimental 
sessions.  This result suggests that the model with ASFM 
could be used for a subject at every session without retraining. 
ASFM was first used in [28] for emotion recognition using 
differential entropy as features. In that work, it achieved a 
cross-session accuracy of 75.1% (SD = 7.7%). This work has 
however shown that it can be successfully applied to mental 
workload using power spectral density as features.  

4) Cross-Subject Classification: Having known that 

brain dynamics vary with individual and age, the model was 

evaluated for cross-subject performance. The leave-one-

subject-out classification method was used. Data from one 

subject was used for testing while the data from the remaining 

seven subjects were used for training. The procedure was 

repeated eight times so that data from every subject was used 

for testing. To limit the size of the training data, only about 

60second data window (60 samples) was selected from each 

subject for inclusion in the training set. Hence, the training set 

contained 420 samples. In the test set, the whole 5minute 

length of data from a subject was used. Furthermore, the 

kernel of the SVM was changed to RBF kernel because the 

linear kernel could not find a linear hyperplane for one of the 

cases. As a result, SVM with RBF kernel was compared 

against ASFM as shown in Fig. 9 and Fig. 10. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2019. ; https://doi.org/10.1101/755033doi: bioRxiv preprint 

https://doi.org/10.1101/755033
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 9. Accuracy of the model in cross-subject classification (n-back task) 

 

Fig. 10. Model accuracy in cross-subject classification (arithmetic task) 

SVM achieved a mean classification accuracy of 60.4% 
(SD = 20.5%) and 52.6% (SD = 4.2%) on n-back and 
arithmetic tasks respectively. ASFM improved the cross-
subject accuracies to 74.4% (SD =13) and 64.1% (SD = 9.5%) 
in the n-back task and arithmetic task respectively. Statistical 
tests showed significance (or marginal significance) in the 
accuracies provided by the two models (p<0.05) in the n-back 
task and (p = 0.05) in the arithmetic task. 

Even though using a non-linear kernel can improve 
performance of SVM or even find a solution where using 
linear kernel is infeasible, the performance of SVM, without 
feature adaptation, is limited in capturing the cross-human 
variability that exists in brain dynamics. Such limitation is 
observed in subject P01 where the model performance 
deteriorated below the average level. The results have shown 
that feature adaptation with ASFM can mitigate the effect of 
subject variability on model performance. 

5) Cross-Task Classification: The cross-task 
performance of the model was examined by training on n-back 
tasks and classifying on arithmetic tasks. The result of the 
cross-task classification is shown in Fig. 11. SVM with RBF 
kernel provided an average accuracy of 52% (SD = 5.5%) 
while ASFM yielded a higher average accuracy of 68.6% (SD 
= 15.8%). The deterioration in performance could be 
attributed to difference in absolute workload levels in the two 
tasks. For example, low workload level in the n-back task (0- 
back) might not be equivalent to low workload level in the 

 
Fig. 11. Accuracy of the model in cross-task classification 

arithmetic task (1-digit). This effect can be observed in the 
differences of subjective ratings on the RSME scale presented 
earlier. Besides, the underlying brain dynamics resulting from 
performing the n-back tasks could be different from those of 
the arithmetic tasks. Nevertheless, the use of ASFM as a 
feature adaptation technique reduced the mismatch between the 
different workload types. 

IV. CONCLUSION 

This work proposed a fast modelling technique for online 
estimation of mental workload using a 14-channel wireless 
EEG headset. The subjective and performance measures 
indicated that the experimental design provided discriminative 
workload levels. Using SVM with linear kernel, the model 
was able to classify workload levels in more than one type 
task without the need for individual or task adaptation. 
Furthermore, a domain adaptation technique, ASFM, was used 
to overcome the variabilities that exist across subjects, 
experimental sessions, and tasks. ASFM showed better 
performance than SVM (with RBF kernel) in the presence of 
these variabilities. ASFM – to the best of our knowledge – has 
not been used in estimating workload before. However, it was 
successfully applied in this work and yielded good 
performance in cross-subject, cross-session and cross-task 
classifications of workload. This research provided a 
promising framework for estimating mental workload across 
subjects, sessions and tasks. In addition, it shows the 
feasibility of developing models that would not require 
retraining or recalibration when there are changes in users, 
sessions, or types of task.  

Although, this work has used two separate types of task to 
estimate workload, more tasks can be designed to further 
investigate the generalisation of the model across different 
tasks. In addition, multi-class workload levels can be used 
instead of the two-class workload levels employed in this 
work. This will capture more levels of workload like ‘very 
low’, ‘very high’, etc. Validation on many tasks and work load 
levels can lead to developing a task-independent model for 
within-task and cross-task classification in practical situations.  

Furthermore, other physiological markers of workload 
such as electrocardiogram (ECG) and electrooculogram 
(EOG) can be combined with EEG. Such combination can 
enhance exploring more features that will be robust to the 
variabilities of EEG. As a result, better cross-task, cross-
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subject and cross-session classifications could be achieved.  In 
addition, functional connectivity model of the brain can be 
employed to understand the common and distinguishing 
features that exist in different types of tasks. Such 
understanding would facilitate feature selection for better 
cross-task classification.  

Applying a model for practical situations requires 
validation on many samples. The model developed in this 
work may be tested on more subjects to validate its 
generalisation ability. The model can also be tested in real-
time when the subjects are performing cognitive tasks. 
Ultimately, this can lead to a robust personalised online 
cognitive monitoring system for assessing mental workload in 
practical situations. 
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