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Abstract—Previous studies have shown that
electroencephalogram (EEG) can be used in estimating mental
workload. However, developing fast and reliable models for
cross-task, cross-subject and cross-session classifications of
workload remains a challenge. In this study, a wireless Emotiv
EPOC headset was used to evaluate workload in two different
mental tasks: n-back task and mental arithmetic task. 0-back
task and 2-back task were employed as low and high workload in
the n-back task while 1-digit and 3-digit addition were used as
the two different workload levels in the arithmetic task. Using
power spectral density as features, a fast signal processing and
feature extraction framework was developed to facilitate real-
time estimation of workload. Within-session accuracies of 98.5%
and 95.5% were achieved in the n-back and arithmetic tasks
respectively. Adaptive subspace feature matching (ASFM) was
applied for cross-session, cross-task and cross-subject
classifications. The feature adaptation provided average cross-
session accuracies of 80.5% and 74.4% in the n-back and the
arithmetic tasks respectively. An average cross-task accuracy of
68.6% was achieved while cross-subject accuracies were 74.4%
and 64.1% in the n-back and arithmetic tasks respectively. The
framework generalised well across subjects and tasks, and it
provided a promising approach towards developing subject and
task-independent models. This study also shows that a consumer-
level wireless EEG headset can be applied in cognitive
monitoring for real-time estimation of workload in practice.

Keywords—Electroencephalogram (EEG), mental workload,
cross-task, cross-subject, cross-session, wireless EEG headset,
adaptive subspace feature matching (ASFM), n-back task, mental
arithmetic task.

I. INTRODUCTION

Brain-computer interface (BCI) is mainly applied to aid
disabled persons by using the brain signals for communication
and control while bypassing auxiliary muscles or nerves [1].
However, the application of BCI for healthy patients is
becoming increasingly popular and this is giving rise to a
myriad of applications [2]. The application of BCI to obtain
information about a user’s state by using arbitrary brain events
without intending any voluntary control is called Passive BCI
[2]. Passive BCI can be used to obtain information about a
driver’s level of workload, stress or attentiveness.
Consequently, the driver’s performance can be improved, and
potential costly errors can be forestalled [3]. Furthermore, BCI
has shown potential usefulness in avoiding accidents in
industries by monitoring the mental state of workers [4]. In

security surveillance, the level of attentiveness and
concentration can also be monitored to ensure continuous
safety [5]. Estimating workload in adaptive systems can
generally facilitate task sharing and load shedding between
human and machine to reduce operational errors.

Although there is no universal definition of workload [6],
[2], mental workload can be determined by considering the
task or the operator (human). The task-oriented approach
considers the task characteristics and the condition of task
performance in estimating workload. The human-oriented
approach evaluates workload through the effect of the task
performance on the human [7]. Psychologists are however
more inclined to the latter approach — they view workload as
the result of the interaction between work demands and human
capacity [8]. As the workload increases, the task demand
approaches the upper limit of human ability.

One way to measure workload is the use of performance
measures. This method assumes that operator’s performance
degrades with task demand. Performance degradation is
evidenced in slower work pace and increased errors in the
task. However, it could be costly to wait till performance
degrades, especially in some critical tasks [9]. Nevertheless,
performance measures are easy to justify and can be useful in
building predictive models for operator functional state [6].
Subjective measures also provide a way of estimating
workload. The operator gives a personal evaluation of the
workload by filling a rating scale. Common rating scales
include NASA Task Load Index (NASA-TLX) [7], Subjective
Workload Assessment Technique (SWAT) [10], Rating Scale
Mental Effort (RSME) [11] and Thurstonian Scale [12].
Rating scales can be used in many types of workload [7], they
are easily prepared [12] and provide direct evaluation [10].
However, the requirement for an operator to repeatedly fill the
scale may impose extra burden on him. In a bid to avoid such
intermittent intrusion, an operator may fill the scale at a much
later time, but this can lead to bias. The scale is also prone to
falsification and faulty judgement [7]. Physiological correlates
of workload have also been established in many literatures.
Some of these measures include heart rate [13], blood pressure
[14], chemical measures including sodium and potassium in
saliva, cortisol in blood [14], heart rate variability [15], eye
blink frequency [16], saccades [16], Electromyogram (EMG)
[17] and EEG. Even though there seem not to be a best
physiological indicator of workload, some studies showed
EEG to be more promising compared to other indicators [18],
[19].
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Previous studies have shown correlation between workload
and power in some EEG frequency bands. EEG frequency
bands are commonly divided into delta (1-4Hz), theta (4-8Hz),
alpha (8-12Hz), beta (12-25Hz) and gamma (>25Hz) [20].
Increase in workload was observed to cause reduction of
power in alpha band, especially at the parietal regions [21].
Also, theta power was reported to increase with workload
mostly in frontal regions [21]. Gamma [22], [23], delta and
beta powers [13] increase with workload at the parietal and
temporal regions.

In mental workload classification, a variety of machine
learning methods have been employed. Some of these methods
include support vector machine (SVM) [24], artificial neural
network (ANN) [25] and hierarchical Bayes model [26]. SVM
finds more application due to its ability to better generalise
well and handle high-dimensional data [27]. However, due to
the nonstationary nature of EEG signals, the performance of
algorithms degrades when the training and test data are taken
from different sessions and subjects. Hence the algorithm
needs to be trained or adapted for every user and session.
Some feature adaptation techniques have been proposed to
control this degradation, but they are often computationally
expensive and complex for real-time estimation of workload.
Moreover, developing a model for cross-task classification
remains a challenge. Furthermore, many of the previous
studies on mental workload estimation employed large number
of electrodes for recording the EEG signals, therefore reducing
the comfortability of using EEG headsets in practical and
online scenarios. Only a limited number of studies have
recently investigated the feasibility of using wireless headsets
with small number of electrodes for mental workload
estimation [24]. To address these issues, we employed a
wireless consumer-level Emotiv EPOC EEG headset with
small number of electrodes to estimate mental workload. A
simple signal processing and feature extraction technique was
developed to facilitate practical and real-time application. The
model was tested across eight (8) subjects in two different
types of task — n-back task and arithmetic task. In addition, a
fast domain adaptation technique called Adaptive Subspace
Feature Machine (ASFM) [28] was applied to improve the
model performance in cross-session, cross-task and cross-
subject classifications. We compared the results from ASFM
with those of SVM. Some subjective and performance indices
of mental workload were also used to verify that the
experimental design reflects different levels of workload

Fig.1. Electrode configuration of Emotiv EPOC [30]

Il. METHOD

A. Subjects

Eight (8) subjects (6 males and 2 females) participated in
the EEG experiment at the Physiological Signal Processing
Laboratory, Department of Automatic Control and Systems
Engineering, University of Sheffield. Some of the participants
were recruited through the University’s student volunteer list
while others were friends of the research student. Participants
were aged between 19 and 30 (M = 25 years; SD=3 years);
where M = mean and SD = standard deviation. All subjects
were right-handed, reported normal or corrected-to-normal
vision, and had no history of any fatigue-related disorder. The
experiment was performed in accordance with the University’s
ethics guidelines, and participants were given written informed
consent.

B. Material

The EEG was recorded using a wireless Emotiv EPOC
neuroheadset [29]. The Emotiv EPOC headset uses 14
electrodes with two additional electrodes for referencing
(DRL) and noise cancellation (CMS) as shown in Fig. 1. All
the available electrodes were used in this study. Saline liquid
was applied to the electrodes before every experiment to keep
the electrode impedances low to an acceptable level.

The stimuli were presented on a monitor at a distance from
participants’ eyes. Participants press keyboard to indicate if the
letters or numbers displayed are targets or non-targets. They
press ‘H’ (hit) if a target is displayed and ‘F’ (fail) for non-
target. RSME scale [11] was also employed as a subjective
measure of mental workload. RSME was chosen due to its
higher sensitivity compared to other commonly employed
methods like NASA-TLX [31]. Participants were asked to rate
each task based on the perceived expended effort in solving
that task. The scale ranges from 0 to 150. O depicts the lowest
effort and 150 indicates the peak effort.

C. Task

Two tasks were employed in the experiment and each task
had two difficulty levels. The first task was n-back task and the
second task was mental arithmetic task. N-back task has been
extensively employed in cognitive workload studies because it
can be used to vary workload by changing the number of letters
(‘n”) a user should memorise. Moreover, changing the value of
n does not change the rate of visual input or motor-cortex
demands [7]. This is important to ensure that workload is being
measured and not mere reaction to varying stimuli [32]. 0-back
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Fig.2.  N-back tasks
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Fig.3  Arithmetic tasks

and 2-back tasks were used to represent low and high
workloads respectively. In 0-back condition (low workload
level), the target letter is ‘X’. Hence, the participant only needs
to memorise the letter ‘X’ and does not need to update his
memory as the task proceeds. For 2-back condition (high
workload level), participant decides if the letter displayed
currently is same as the letter displayed two sequences earlier.
Hence, the participant updates his memory by memorising two
previous letters as the sequence progresses. In both task levels,
the participant presses the appropriate key to indicate if the
letter is a target or not while paying attention to speed.

Mental arithmetic task has also been used to study cognitive
workload [33] and is shown to have relationship with working
memory [24]. The task requires a participant to perform
arithmetic operations without any aid such as pen and paper or
calculator. The answer from every arithmetic operation is
stored in the participant’s brain and retrieved after some
seconds when an answer is displayed. If the number displayed
is the correct result from the last arithmetic operation, then
such number is a target, else it is non-target. Two versions of
arithmetic task were used. The first was 1-digit addition for low
workload level and the second was 3-digit addition for high
workload level. To regulate the effect of carry, a carry was
always involved in both workload levels; e.g. (7 + 8) for 1-digit
task, and (234 + 356) for 3-digit task.

D. Stimuli

The stimuli were presented in Arial font style, white and
size 50pt. The stimuli were displayed on a black background.
Upper case letters were employed in the n-back tasks. Similar
to the method used in [32], all letters were selected from
consonants only and randomly presented. Vowel letters were
not included to preclude participants from grouping the letters
into sensible word or pattern, which may ease the workload.
Each letter was displayed for 500ms, followed by a fixation
cross for 2000ms (inter-stimulus interval) before the next letter.
For both levels of n-back task, 120 trials were used and 30% of
the trials were targets. The n-back task design is illustrated in
Fig. 2. ‘T’ denotes ‘Target’, ‘NT” denotes ‘None-Target’ and
‘s’ represents time in seconds.

For the mental arithmetic tasks, the two numbers to be
added (trial) were displayed together for 5000ms followed by a
fixation cross of 4000ms. Another single number (answer) was
then presented for 2000ms and the participant indicates
whether the number is a correct result of the last trial or not. A
fixation cross was displayed for 2000ms before the next trial.
25 trials were used for both task levels and 44% of the trials
were targets. Fig. 3 shows the 3-digit arithmetic task.

E. Design

The experiment was designed to allow evaluation of model
performance across different tasks. Each subtask (0-back, 2-
back, 1-digit arithmetic and 3-digit arithmetic) was presented in
a 5-minute block. Hence, a session of the experiment was
comprised of four blocks. Markers were sent to the EEG
recording panel to mark the beginning and end of each block.
After each block of task, the participant could have a break
before moving on to the next block. Before each session, there
was a baseline block where the subject quietly fixated on a
cross for 30 seconds. The response times and accuracies of
answers were also recorded as dependent measures. The RMSE
scale was filled by the participant after each block to
subjectively rate the mental workload for each subtask.

Three of the eight participants were asked to repeat the
tasks after one week; the tasks were presented in a
counterbalanced order. The repetition was to enable the
evaluation of robustness of the model to the nonstationarity of
EEG. The whole experiment was designed and implemented in
MATLAB with the aid of Cogent 2000 [34].

F. Procedure

As the subjects arrived for the experiment, they were made
to fill the screening form to ascertain if they were eligible for
the experiment. After the screening, participant went on to sign
informed consent form. Then, the tasks involved in the
experiment were clearly explained to the subject. The EEG
headset was worn on the participant’s head and proper
connection of the electrodes to the scalp was ensured by
observing the Emotiv panel throughout the experiment.

Before the actual task, participants practised 2-back task
and 3-digit mental arithmetic task several times until they were
confident with the task. Participant was told to pay attention to
speed and accuracy during the practice and main experiment.
The participant was able to see his performance after every
practice. Thereafter, the participant moved on to do the main
tasks. The instructions about the tasks were displayed on the
monitor at necessary stages in the experiment. First, the
participant fixated on a cross on the screen for 30 seconds
without any movement or much eye blinking. Then, the
participant moved on to perform a 5-minute block of the O-
back task. After the first block of task, participant could take a
break before moving to the next task. Also, the participant was
required to rate the 0-back task on the RMSE scale before
proceeding. Participant then moved on to the second, third and
fourth blocks to solve the 2-back, 1-digit arithmetic and 3-digit
arithmetic tasks respectively. The participant took break after
every block and rated the workloads on RMSE scale.

G. Data Analysis

1) Data Processing: The EEG data were sampled at
128Hz. All the 14 channels were used and referenced
absolutely to the left mastoid. The raw EEG measurement in
edf format was imported into MATLAB and converted to
structure array (struct). The data from the fourteen channels
were accessed by extracting rows 3 to 16 of the ‘data’ field in
the struct file. No sophisticated or manual artefact removal
technique was employed. This was to facilitate online
classification of mental workload in practice. However, eye
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blinks, muscle artefacts and powerline noise were removed by
bandpass filtering. The dataset was passed through a low pass
Butterworth filter with cut-off frequency of 3Hz. The filtering
was done forward and then backward. This two-way filtering
ensures zero-phase filtering or avoids phase distortion of the
EEG data. Then, the low-passed data was filtered in both
directions again using a high-pass Butterworth filter with cut-
off frequency of 37Hz. With the aid of the markers sent
during the EEG recording, the epochs corresponding to each
task were extracted.

2) Feature Extraction: The filtered data were divided
into 4-second blocks with 2-second overlaps between adjacent
blocks. The data in each block was normalised for zero mean
as shown in (1) below.

x—x ()

Xnormal = mean

where x is the whole data in a 4-second block, Xmean is the

mean of the data in such block and Xnormat is the normalised
data in the block. Normalisation gives equal importance to
every data and facilitates further processing. The power
spectral density (PSD) in each normalised block was
computed using Welch’s method with 1-second Hamming
window and 50% overlap. Windowing was necessary to obtain
a short-time Fourier transform that captures the nonstationarity
of EEG. In each block, the power spectral densities of eight
frequency bands were computed thus: 4-8Hz, 8-12Hz, 12-
16Hz, 16-20Hz, 20-24Hz, 24-28Hz, 28-32Hz, 32-36Hz. For
each frequency band, the root-mean-square (RMS) value was
calculated as follows:

IPSD| @)

Vi,

where ||PSD|| is the Euclidean length of the PSD in a

frequency band and Ly is the length of the PSD vector. With
14 channels and 8 frequency bands, 112 (14 x 8) features were
generated.

3) Data Classification: SVM was used for the
classification of the workload levels in the n-back and
arithmetic tasks. The accuracy of the model was evaluated
using 10-fold cross-validation. Cross-validation reflects an
unbiased performance of the algorithm and prevents
overfitting [35]. In addition, the performance of the SVM was
investigated for cross-session, cross-task and cross-subject
classifications. ASFM was also applied and the results of the
two methods were compared.

ASFM was proposed in [28] as a fast domain adaptation
technique for EEG-based emotion recognition to overcome the
degradation of algorithm when EEG data are sampled from
different subjects or sessions. The nonstationary nature of
EEG and variability of brain dynamics with individuals and
age causes a mismatch between the marginal and conditional
distributions of the source domain (training data) and target
domain (testing data). ASFM uses a framework which reduces
such mismatch. In other words, if there is a source domain Xs
with label Ys and a target domain X; with label Y; ASFM
formulates a new feature to reduce the marginal distribution
mismatch between Ps(Xs) and P¢(X;), and conditional
distribution mismatch between Ps(Ys|Xs) and P(YiX:). For
details of the algorithm, see [28].

RMS =

I1l. RESULTS

A. Subjective Measure (RSME)

As expected, the RSME scale revealed that mental
workload perceived by subjects increased with memory load,
with average rating of 44 for 0-back task and 86 for 2-back
task. Paired-samples t-test showed that the two task levels
were significantly different (t(7) = -9.361, p<0.05). The
average ratings for the 1-digit and 3-digit arithmetic tasks
were 42 and 73 respectively, and the two task levels differed
significantly (t(7) = -4.47, p<0.05). The averages and
statistical tests of both the n-back tasks and arithmetic tasks
confirmed that the experiment design used in this work
provides two discriminative workload levels: low workload
and high workload.

B. Performance Measures

Average response time increased as the workload
increased from O0-back (547.9ms) to 2-back (853.9ms).
Wilcoxon signed-rank test showed a significant difference in
response times of the two workload levels (p<0.05). The
arithmetic tasks also showed increase in response time with
workload from 972.5ms (1-digit) to 1251.8ms (3-digit). The
difference was statistically significant (t(7) = -4.773, p<0.05).
The results imply a significant interaction between speed of
performance of a task and workload.

The average accuracy of response to stimuli decreased
with increase in workload from 0-back (98.2%) to 2-back
(91.4%). The accuracy varied significantly between the two
workload levels (t(7) =3.399, p<0.05). Increase in workload
from 1-digit to 3-digit arithmetic resulted in decrease in
average accuracy from 92.5% to 78.5%. Wilcoxon signed-
rank test showed that the accuracy of task performance
differed significantly for the two work load levels (p<0.05).
The results from both n-back tasks and arithmetic tasks
confirmed the expected difference between the difficulty
levels of low and high mental workloads.

C. Variation of EEG Spectral Power with Workload

The grand averages of spectral powers across all the eight
subjects are shown in Fig. 4. The channels (electrodes)
presented in the figures were chosen in such a way that all the
brain regions are represented.

All the plots show that EEG signal power varied with
workload. In consonance with previous studies, alpha power
(4-8Hz) was observed to decrease with workload across all the
electrodes, gamma power (>25Hz) increased with workload,
and theta power (4-7Hz) increased with workload. Similar to
the findings in [8], increase in power with workload could also
be observed in the high beta band (20-25Hz), especially at the
frontal sites (AF4 and FC6). Furthermore, the effect of
workload on spectral power is prominent in the gamma band
across all electrodes. The results have demonstrated that EEG
spectral power is a good feature for estimating mental
workload.
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Grand averages of spectral power for the eight subjects vary with workload across frequency bands (a) Power spectra in frontal region. (b) Power

spectra in central region. (c) Power spectra in Ocipital region. (d) Power spectra in temporal region. (e) Power specta in parietal region

D. Classification Results

1) Within-Session Classification: The EEG obtained
from a subject in an experiment session was used to train and
test the accuracy of the model for such subject. 10-fold cross-
validation was used. Fig. 5 shows the performance of the
SVM (with linear kernel) in classifying the workload levels
for the two types of task.

The algorithm was able to classify the two levels of
workload in n-back task with an average accuracy of 98.5%
(SD = 2.1%) as against a mean accuracy of 95.5% (SD =
4.1%) for the two workload levels in arithmetic task. The
average accuracies are close to the 98.6% (0-back vs 2-back)
and 94.2% (1-digit vs 2-digit multiplication) obtained in [34]
using same Emotiv EPOC headset. About 100% accuracy was
also reported by [35] using Emotiv headset for 0-back vs 2-
back tasks. Wilcoxon signed-rank test showed that the
classification accuracies in the n-back and arithmetic tasks
were significantly different p=0.028 (p<0.05). The highest and
lowest accuracies achieved for the n-back task were 100% and
93.5% respectively. The arithmetic task produced 100% and
88.4% as the highest and least accuracies respectively.

The difference in accuracy for the two tasks could be
attributable to the fact that the two levels of workload in the
arithmetic tasks have more similarities than those of the n-

back tasks. Hence, there are likely more common features in
the 1-digit and 3-digit subtasks which makes less easy for the
algorithm to discriminate between the two arithmetic
workload levels. It could also be that there are more cross-
subject variabilities in the arithmetic task than the n-back task,
therefore, the model could generalise better for the latter task.
As shown in the results, accuracies of the two tasks varied
from subject to subject. Very high accuracies were achieved
for subjects P05 and P08. These discrepancies point to the fact
that brain dynamics vary with individuals and age; hence, a
model may not generalise well across subjects and may
therefore require tuning for every user. However, the model
developed in this work was good enough to generalise across
many subjects without individual-based tuning.

2) Classification Accuracy with Varying Data Length:
To investigate the performance of the model on small number
of samples, the time window of EEG signal used in cross-
validation was varied from 60seconds to 300seconds. Fig. 6
shows the effect of varying data lengths (windows) on the
performance of the model.

As expected, the average classification increased with the
amount of training data. However, the model achieved an
average accuracy of 96.4% (SD = 5%) and 92.9% (SD =
7.5%) on 60second data in the n-back task and arithmetic task
respectively. The result suggests that the model can achieve a
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Within-Session Accuracies with Varying Tasks
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Fig. 6. Variation of model accuracy with length of training data

high accuracy when trained with small number of data. This is
very important in online usage where fast detection of
workload levels is necessary. Also, if the model needs to be
trained for every user at every usage session, the required time
for training would not be large. Consequently, the burden of
retraining model across users and sessions will not be
significant.

3) Cross-Session  Classification:  Due to  the
nonstationary nature of EEG signals, the performance of a
model degrades if the training and test data are from different
sessions or times. As a result, training is often repeated for
every session. To test the performance of the model across
different training sessions, three participants were asked to
repeat the tasks after seven days. Then, the data from the first
day were used to train while the data from the eighth day were
used for testing. Here, SVM and ASFM were used and
compared against each other as shown in Fig. 7 and Fig. 8.

The performance of SVM degraded when the trainings
from previous experiment session were used to classify data
obtained many days later without retraining. The accuracy of
SVM, without any feature adaptation, reduced to as low as
43.9% (below 50%) in one of the cases. However, the use of
ASFM, a domain adaption technique, achieved high average
cross-session accuracies of 76.6% (SD = 2.5%) and 80.5%
(SD=16%) in the arithmetic and n-back tasks respectively.

Cross-Session Classification on N-Back Task

SVM at First Session

? === SVM Across Sessions
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Classification Accuracy (%)
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Fig. 7. Cross-session classification on n-back task

Cross-Session Classification on Arithmetic Task
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Fig. 8. Cross-session classification on arithmetic task

ASFM reduced the marginal and conditional distribution
mismatch of EEG data across two different experimental
sessions. This result suggests that the model with ASFM
could be used for a subject at every session without retraining.
ASFM was first used in [28] for emotion recognition using
differential entropy as features. In that work, it achieved a
cross-session accuracy of 75.1% (SD = 7.7%). This work has
however shown that it can be successfully applied to mental
workload using power spectral density as features.

4) Cross-Subject Classification: Having known that
brain dynamics vary with individual and age, the model was
evaluated for cross-subject performance. The leave-one-
subject-out classification method was used. Data from one
subject was used for testing while the data from the remaining
seven subjects were used for training. The procedure was
repeated eight times so that data from every subject was used
for testing. To limit the size of the training data, only about
60second data window (60 samples) was selected from each
subject for inclusion in the training set. Hence, the training set
contained 420 samples. In the test set, the whole 5minute
length of data from a subject was used. Furthermore, the
kernel of the SVM was changed to RBF kernel because the
linear kernel could not find a linear hyperplane for one of the
cases. As a result, SVM with RBF kernel was compared
against ASFM as shown in Fig. 9 and Fig. 10.
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Cross-Subject Accuracy for N-Back Task
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Fig. 9. Accuracy of the model in cross-subject classification (n-back task)

Cross-Subject Accuracy for Arithmetic Task
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Fig. 10. Model accuracy in cross-subject classification (arithmetic task)

SVM achieved a mean classification accuracy of 60.4%
(SD = 20.5%) and 52.6% (SD = 4.2%) on n-back and
arithmetic tasks respectively. ASFM improved the cross-
subject accuracies to 74.4% (SD =13) and 64.1% (SD = 9.5%)
in the n-back task and arithmetic task respectively. Statistical
tests showed significance (or marginal significance) in the
accuracies provided by the two models (p<0.05) in the n-back
task and (p = 0.05) in the arithmetic task.

Even though using a non-linear kernel can improve
performance of SVM or even find a solution where using
linear kernel is infeasible, the performance of SVM, without
feature adaptation, is limited in capturing the cross-human
variability that exists in brain dynamics. Such limitation is
observed in subject POl where the model performance
deteriorated below the average level. The results have shown
that feature adaptation with ASFM can mitigate the effect of
subject variability on model performance.

5) Cross-Task Classification: The cross-task
performance of the model was examined by training on n-back
tasks and classifying on arithmetic tasks. The result of the
cross-task classification is shown in Fig. 11. SVM with RBF
kernel provided an average accuracy of 52% (SD = 5.5%)
while ASFM vyielded a higher average accuracy of 68.6% (SD
= 15.8%). The deterioration in performance could be
attributed to difference in absolute workload levels in the two
tasks. For example, low workload level in the n-back task (0-
back) might not be equivalent to low workload level in the

Cross-Task Classsification Accuracy

#==SVM with RBF
Kernel

i ASFM

ification Accuracy (06)
¢ 3
]

Classificatio]

Subject ID

Fig. 11. Accuracy of the model in cross-task classification

arithmetic task (1-digit). This effect can be observed in the
differences of subjective ratings on the RSME scale presented
earlier. Besides, the underlying brain dynamics resulting from
performing the n-back tasks could be different from those of
the arithmetic tasks. Nevertheless, the use of ASFM as a
feature adaptation technique reduced the mismatch between the
different workload types.

IV. CONCLUSION

This work proposed a fast modelling technique for online
estimation of mental workload using a 14-channel wireless
EEG headset. The subjective and performance measures
indicated that the experimental design provided discriminative
workload levels. Using SVM with linear kernel, the model
was able to classify workload levels in more than one type
task without the need for individual or task adaptation.
Furthermore, a domain adaptation technique, ASFM, was used
to overcome the variabilities that exist across subjects,
experimental sessions, and tasks. ASFM showed better
performance than SVM (with RBF kernel) in the presence of
these variabilities. ASFM — to the best of our knowledge — has
not been used in estimating workload before. However, it was
successfully applied in this work and vyielded good
performance in cross-subject, cross-session and cross-task
classifications of workload. This research provided a
promising framework for estimating mental workload across
subjects, sessions and tasks. In addition, it shows the
feasibility of developing models that would not require
retraining or recalibration when there are changes in users,
sessions, or types of task.

Although, this work has used two separate types of task to
estimate workload, more tasks can be designed to further
investigate the generalisation of the model across different
tasks. In addition, multi-class workload levels can be used
instead of the two-class workload levels employed in this
work. This will capture more levels of workload like ‘very
low’, “very high’, etc. Validation on many tasks and work load
levels can lead to developing a task-independent model for
within-task and cross-task classification in practical situations.

Furthermore, other physiological markers of workload
such as electrocardiogram (ECG) and electrooculogram
(EOG) can be combined with EEG. Such combination can
enhance exploring more features that will be robust to the
variabilities of EEG. As a result, better cross-task, cross-
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subject and cross-session classifications could be achieved. In
addition, functional connectivity model of the brain can be
employed to understand the common and distinguishing
features that exist in different types of tasks. Such
understanding would facilitate feature selection for better
cross-task classification.

Applying a model for practical situations requires
validation on many samples. The model developed in this
work may be tested on more subjects to validate its
generalisation ability. The model can also be tested in real-
time when the subjects are performing cognitive tasks.
Ultimately, this can lead to a robust personalised online
cognitive monitoring system for assessing mental workload in
practical situations.
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