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ABSTRACT

Cell size varies during the cell cycle and in response to external stimuli. This requires the
tight coordination, or “scaling”, of mMRNA and protein quantities with the cell volume in order
to maintain biomolecules concentrations and cell density. Evidence in cell populations and
single cells indicates that scaling relies on the coordination of mMRNA transcription rates with
cell size. Here we use a combination of single-molecule fluorescence in situ hybridisation
(smFISH), time-lapse microscopy and mathematical modelling in single fission yeast cells to
uncover the precise molecular mechanisms that control transcription rates scaling with cell
size. Linear scaling of mRNA quantities is apparent in single fission yeast cells during a
normal cell cycle. Transcription rates of both constitutive and regulated genes scale with cell
size without evidence for transcriptional bursting. Modelling and experimental data indicate
that scaling relies on the coordination of RNAPII transcription initiation rates with cell size
and that RNAPII is a limiting factor. We show using real-time quantitative imaging that size
increase is accompanied by a rapid concentration independent recruitment of RNAPII onto
chromatin. Finally, we find that in multinucleated cells, scaling is set at the level of single
nuclei and not the entire cell, making the nucleus the transcriptional scaling unit. Integrating
our observations in a mechanistic model of RNAPII mediated transcription, we propose that
scaling of gene expression with cell size is the consequence of competition between genes
for limiting RNAPII.
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INTRODUCTION

Gene expression is coordinated with cell size in order to maintain biomolecule
concentrations. Understanding the mechanisms that mediate this coordination, called
hereafter “scaling”, is a fundamental and intriguing problem in cell biology [1,2]. Messenger
RNAs (mRNA) and proteins are synthesised from the cell DNA genome, which is one of the
few cellular components that do not scale with size. Because cell volume increases
exponentially and mRNA half-lives are typically short, constant rates of mRNA or protein
production cannot lead to gene expression scaling. Recent work, in yeast [3], animal [4,5]
and plant cells [6] has shown that mMRNA synthesis rates instead are coordinated globally
with cell size and are a major mechanism of scaling. Conversely, mMRNA degradation seems
to be mostly unconnected to scaling [3,4,6], although evidence suggests that degradation
rates are adjusted early after budding yeast asymmetric division [7] and when growth rate
changes [8,9]. Scaling is pervasive and only few mRNAs are able to deviate from its
regulation [10—-12]. Interestingly, two of them have been found to participate in the control of

size homeostasis [10,11].

What could be the molecular mechanism behind transcription scaling with cell size? For a
gene with an active promoter mRNA numbers follow a Poisson distribution [13].
Transcription is however often discontinuous and periods of RNA synthesis or ‘bursts”
alternate with periods of promoter inactivity [14]. Work in single mammalian cells has shown
that scaling of mMRNA numbers results from a coordination of the size of the transcription
bursts with cell volume and not from their frequency [4]. This is compatible with the
increased RNAPII occupancy observed genome-wide in large fission yeast cell cycle
mutants [3]. This also indicates that the mechanism behind scaling may not be related to
activation of transcription but rather to the efficiency of an active promoter. Critically,
transcription is a complex process and is regulated at many levels including, RNAPII
initiation, pause/release, elongation, and termination [15—18]. Which of these processes is

coordinated with cell size to mediate scaling remains unclear.

How could a complex set of molecular reactions such as transcription become more efficient
as cell size increases? In an elegant experiment Padovan-Merhar and colleagues fused cells
of small and large size and found that the number of mMRNAs from a gene encoded in the
small cell genome would increase in response to the large cell environment, however its
concentration was almost halved. This suggests that scaling responds to both cell volume
and DNA content [4]. This is consistent with the observation that the cell synthesis capacity

is split between genome copies in diploid budding yeast cells [10]. Importantly, changes in
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74  gene numbers, in the case of increased ploidy for instance, are associated with overall cell
75  size increase in many organisms [1]. This indicates that the number of genes present in a
76  cell is linked to its volume and number of macromolecules. This also suggests that the cell’'s
77  overall synthetic capacity could be limiting and have a determining role in setting its size
78  [19]. ltis therefore likely that scaling depends on a limiting factor involved in transcription but
79  its identity and regulation with the cell volume is not known [19,20].

80 In this study, we measured gene expression in over 20,000 single cells of the fission yeast
81  Schizosaccharomyces pombe by single molecule in situ hybridisation (smFISH, Tables S1-
82  3)[21]. We combined these data with agent-based models of growing and dividing cells [22—
83  24], stochastic models of gene expression [13,25,26] and Bayesian inference [27-33] to
84 investigate the quantitative parameters of gene expression that mediate scaling. This
85 integrative approach enabled us to determine which part of the transcription process is

86  scaling with cell size and which molecular event connects transcription with the cell volume.
87
88 RESULTS

89 Gene expression scaling is a single cell attribute of constitutive and inducible gene

90 expression.

91  We first confirmed that scaling of gene expression with cell size was an attribute of single
92 fission yeast cells during rapid proliferation. To do this, we measured mRNA levels of 7
93  constitutively expressed genes in wild-type haploids (wtf), and in conditional mutants of the
94  Weel (wee-50) and Cdc25 (cdc25-22) cell cycle regulators by smFISH (Figure 1A, Table
95  S1). At semi-permissive temperature, mutant cells divide at smaller and larger sizes than wt
96 respectively (Figure S1A) [3]. Consistent with population microarray data, mean numbers of
97 the 7 mRNAs measured in single cells scale with the average size of the three strains
98 (Figure 1B) [3].

99 We then wondered whether scaling could be detected as cells elongate and progress
100 through a normal cell cycle. The fission yeast elongation phase is restricted to G2.
101  Confounding effects arising from changes in genome content during DNA replication are
102  therefore unlikely. Using cell length as a measure of size (methods), we analysed
103  expression of the rpb7 mMRNA as a function of single cells’ sizes in wt, mutant and diploid
104 cells and observed linear scaling within each genotype across a wide range of sizes (Figure
105 1C and 1F). Linear scaling during the cell cycle was apparent for all the constitutive genes
106  analysed in this study (Figure S1B-C). This indicates that gene expression scaling is not an

107  artefact of mutations in the wee? and cdc25 cell-cycle regulators. Moreover, the mutant data
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108 demonstrate that gene expression scales over a dynamic range of sizes larger than that
109 observed in wt cells. Together with earlier studies in cell populations this analysis

110  establishes fission yeast as a powerful model system for studying scaling [3].

111 We next analysed the relation of scaling with ploidy using diploid cells. Diploids follow
112  scaling parameters (slope, intercept) similar to smaller haploids (Figure 1C, 1F).
113  Interestingly, for a given size, mRNA numbers in diploids and in cdc25-22 haploids were
114  similar (Figure S1D-F). Moreover, when analysing 3 diploid strains bearing heterozygous
115  deletions of single genes we observed significant linear scaling of the corresponding mRNA
116  but decreased concentrations compared to both diploid and cdc25-22 cells. This suggests
117  that scaling of single gene copies in fission yeast is coordinated with the cell genome content

118 and that the machinery behind scaling may be limiting (Figure S1D-F).

119 At the level of single genes, is scaling a property of constitutive expression or do genomes of
120 larger cells have a globally higher gene expression potential? To answer this question, we
121  analysed three mRNA that are induced during specific phases of the cell cycle (Figure
122 8$1G). All three mRNA showed stronger induction levels in larger cells when comparing wt
123 with wee7-50 and cdc25-22 mutants (Figure 1D, 1G, S1l and S1J). This indicates that
124  larger cells have an increased gene expression potential in order to support scaling of
125  constitutive mRNA and inducible transcripts, which were not expressed in smaller cells at the

126  beginning of the cycle.

127  To investigate this further, we analysed the induction of two genes, which respond to acute
128  changes in external conditions. The uracil regulated gene urg? responds to changes in uracil
129  concentration and sib7 to addition of 2,2-dipyridyl (DIP) [34,35]. Induction of the urg7 mRNA
130 was heterogeneous and scaled with cell size across size mutants (Figure 1E, 1H, and S1H).
131  The sib1 mRNA showed a much more homogeneous response which also showed clear
132 scaling within and across cell types (Figure S1K). This indicates that higher gene
133  expression capacity in larger cells supports scaling in response to unexpected changes in
134  external conditions. Taken together, these data indicate that scaling is universal and does
135 not depend on the mode of gene regulation. Scaling does not result from a passive
136  accumulation of mMRNA during the cell cycle but from a change in the cell gene expression

137  capacity that is coordinated with cell size.
138
139  Coupling of mMRNA decay rates with cell size is not a mechanism of scaling

140 Messenger RNA quantities are regulated at the level of transcription but also post-

141  transcriptionally through modulation of degradation rates [36]. Three studies have reported
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142  that mRNA degradation rates are not regulated as a function of cell size in fission yeast,
143 plant and mammalian cells [3,4,6]. To confirm these observations and extend them to single
144  fission yeast cells, we analysed expression of 3 genes by smFISH after transcription
145  inhibition with Thiolutin in wt, wee1-50, and cdc25-22 cells. Thiolutin has been shown to
146  inhibit transcription in S. pombe efficiently (Figure S2A) [11]. We observed mRNA half-lives
147  of around 30-40min for the rpb7 and rpb2 mRNAs consistent with previous observations
148  (Figure S2B) [37]. In wee1-50 and cdc25-22 mutants both mRNAs showed half-lives similar
149  to wi, consistent with an absence of scaling of mMRNA degradations rates. We also measured
150 mRNA half-lives as a function of the cell cycle using cells binned by size. This analysis did
151 not show consistent positive or negative coordination of degradation kinetics with cell size
152  (Figure S2B, left). The absence of scaling of mRNA degradation rates was further
153  confirmed using an orthogonal promoter switch-off approach for the rbp1, rbp2 and rip1
154  genes (Figure S2B, right). Finally, as discussed in the next section mathematical modelling
155 and inference do not support scaling of degradation rate. Overall, in agreement with previous

156  studies, our analysis indicates that mRNA degradation is not a major mediator of scaling.
157
158  Coupling of transcription rates to cell size and not burst frequency mediates scaling.

159  We next explored the contribution of transcription rates to scaling using measurements of
160 mRNA quantities and mathematical modelling. Using this combined approach allowed us to
161  study dynamic transcription rates from static smFISH measurements of single cells. We
162  developed agent-based models that incorporate the two-state model of gene expression
163  inside growing and dividing cells, which are themselves described by phenomenological
164 models of cell growth and size control (Figure 2A, methods). We used an Approximate
165 Bayesian Computation (ABC) approach on cell size and smFISH measurements to infer
166  mechanism of scaling. This inference approach determines the simplest model that captures
167 the statistics of the experimental measurements and returns posteriors of the parameters
168 and model probabilities for all models (methods). We used 2 classes of gene expression
169 models that are the limiting cases of the two-state model shown in Figure 2A. The first class
170  describes transcriptional bursts explicitly, while the second assumes only non-bursty
171  transcription kinetics with a simple birth-death process that produces Poisson distributions
172 (Figure 2A). Each class is in turn composed of two models the first assuming constant
173 transcription rates during the cell cycle and the second assuming transcription rates that

174  increase linearly (“scale”) with cell size (methods).

175 We performed model selection between these four models on the smFISH data for 7

176  constitutively expressed genes in the wt. This analysis generated two clear conclusions.
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177  First, models assuming bursty transcription were strongly penalised and supported by small
178 model probabilities (Figure 2B, compare proportion of blue and red colours). Second,
179  among the Poisson models, the one assuming transcription scaling with size was preferred
180  for all but one mRNA (rpb3 in Figure 2B, compare orange and dark red colours). From this
181  we conclude that transcription rates of constitutively expressed genes in fission yeast are not

182  bursty and scale with cell size.

183  We then asked whether transcription regulated by the cell cycle or by external cues followed
184  the same paradigm. We found that, as constitutively expressed genes, cell-cycle regulated
185 mRNAs do not follow a bursty transcription dynamics (Figure 2B, middle). This indicates
186 that transcription, even when regulated in defined sections of the cell cycle falls into the
187 Poisson regime. In terms of scaling, model selection is, as for the constitutive case, in overall
188  support of scaling of transcription rate with cell size (Figure 2B, middle). Messenger RNAs
189  that respond to external stimuli showed a different picture. Model selection favoured the
190  bursty model with support for burst size scaling. This could point to bursty transcription of
191 inducible genes, to the presence of strong extrinsic noise, or to a scenario where cells

192  respond heterogeneously to the external signals.

193  In order to validate the model selection analysis, we generated simulations for all constitutive
194  and cell-cycle regulated genes from Figure 2B, using models where transcription rates scale
195  with cell size and follow a Poisson regime. This analysis reproduced quantitatively the mean
196  and coefficient of variation (sd/mean, CV) of all experimental smFISH measurements, which
197 illustrated the non-bursty nature of transcription for these genes further (Figure 2C). We
198 then used the inferred parameters for the Poisson models to simulate gene expression of
199  multiple genes in single cells and compared them to experimental data where 3 different
200 mRNAs were measured in each cell (methods). This analysis suggests that most gene-to-
201  gene correlations in expression are explained by scaling of transcription rates with cell size
202 and may not require extensive additional regulation (Figure 2D). However, our data also
203  suggest that for some gene pairs (e.g. Rpb1-Rpb2), correlations can be explained better by

204  including some additional extrinsic variability.

205  We finally asked whether our modelling approach was also in support of a negligible role of
206 mRNA degradation in scaling. We performed further model selection and simulation
207 analyses on the transcription shut-off experiment from Figure S2B using models that
208 consider different possible scalings of transcription and degradation rates (methods). This
209  analysis shows that the model assuming transcriptional scaling with constant rates of mMRNA
210 degradation with cell size is overwhelmingly chosen (Figure 2E) and could capture

211 experimental data quantitatively confirming our initial analysis (Figure S2B).
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212 In summary, we show that, as in metazoans, scaling occurs through coordination of
213  transcriptional rates with cell size in a rapidly growing unicellular organism. However, we find
214  that transcription during the fission yeast rapid cell cycle is mainly Poissonian except during
215 acute response to external changes where we detect signs of bursty expression. This is
216  consistent with previous observation in the budding yeast Saccharomyces cerevisae [38].
217  Finally, we find that scaling of transcription rates explains most of the expression correlation
218  of multiple mRNAs.

219

220 Coordination of RNAPII initiation rates with cell size as the main mechanism of
221  scaling.

222 We then wondered which specific aspect of the transcription process was directly
223 coordinated with cell size to mediate scaling. To investigate this and to confirm model
224  predictions from Figure 2, we measured transcription rates experimentally. Single cells’
225  transcription rates can be estimated from smFISH images by measuring intensities of
226 nuclear transcription sites [38]. As a model, we used probes directed against the 5’ region of
227 the rbp1 mRNA. This probe design provides strong sensitivity for detection of nascent
228 transcripts (Figure S3A, S3B). Transcription site intensities and cell size were overall
229  positively correlated when comparing wt, wee1-50 and cdc25-22 cells confirming modelling
230  results and previous observation in a metazoan cell line (Figure 3A, 3B, S3C) [4]. We then
231 investigated the impact of increased ploidy on transcription rates scaling. For this we
232 compared nascent site intensities of 4 mRNA in haploid cells with those of diploid strains.
233 We used probes against the 5’ end of rpb71 as above and against three mRNA induced in
234  specific phases of the cell cycle, since inducible expression increases the sensitivity of
235 nascent site analysis. Intensities of individual transcription sites were similar between
236  haploid and diploid cells (Figure 3C, green and yellow boxes). However, when considering
237  the total intensity per cell, diploids showed increased rates and scaling was apparent again
238  (Figure 3C, orange boxes). This indicates that the cell transcriptional capacity is limiting and
239  distributed between the two gene copies of diploids. This was confirmed by analysis of the
240 nascent intensity of the rbp7 mMRNA in a heterozygous deletion strain which showed no

241  increased rates in the remaining copy (Figure 3C).

242  To investigate further the mechanism behind scaling of transcription rates, we designed an
243 orthogonal modelling approach where transcription is modelled as RNAPII particles hopping
244  on a gene represented by a lattice (Figure 3D). This approach, which is based on a totally
245  asymmetric simple exclusion process (TASEP), has been used successfully to study

246  transcription and translation [6,39—42]. In our model, a gene is represented by a lattice of
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247 length L; and non-bursty transcription is modelled using three rates: i) the transcription
248 initiation rate a is the rate at which RNAPII molecules enter the first site of the lattice (gene);
249 i) the elongation rate g is the rate at which RNAPII molecules hop one site forward on the
250 lattice (gene); and iii) the termination rate y is the rate at which the RNAPII molecule which
251  sits on the last site of the gene leaves the lattice and produces a full length mRNA (Figure
252 3D). We incorporated this model in the agent-based framework from Figure 2 assuming

253  each rate could be linearly coupled to cell size.

254 By sampling the rates a, and y over physiological time scales estimated from previous
255  studies (Methods) we found that coupling of initiation rates with size produced the most
256  robust linear scaling (Figure 3E) and the strongest positive correlation of nascent intensities
257  with size (Figure S3D). Although a model coupling transcription elongation rates with cell
258  size could also generate linear scaling in some parameter regions (Figure 3E, S3D), these
259  required elongation rates to be much slower than experimental measurements either in
260 yeast or metazoans which report elongation rates of around 2kb/min (Figure S3F) [38,43—
261  47]. Importantly, linear scaling could only be observed in regimes with slow initiation rates
262 relative to elongation and termination indicating that initiation is rate limiting (Figure S3E).
263 Interestingly, this also suggests that fast, non-limiting initiation rates could be a mechanism
264 by which some genes escape scaling (e.g. rpb3; Figure 2B). Finally, these results were
265 confirmed by ABC inference analysis of nascent sites intensities data using the same
266 TASEP model for 3 genes in different strains which showed clear preference for the initiation
267 model (Figure S3G). This in silico analysis indicates that scaling of initiation rates with cell

268  size is the likely mechanism of scaling.

269  The initiation model generated two important predictions. First, the model predicts that, even
270  for non-bursty genes, cells in a population are not all actively transcribing at all times and the
271  frequency of active transcription should increase with cell size. To test this prediction, we
272 compared the fraction of cells with a nascent transcription site (“active cell fraction”) in wee1-
273 50, wt, cdc15-22 and diploid cells. As predicted by the model, a clear increase in the fraction
274  of transcriptionally active cells with size could be observed (Figure 3F). Moreover, a strong
275  positive correlation of the active cells fraction with cell length was apparent when calculated
276  in sliding windows of increasing cell numbers during the normal cell cycle (Figure S3I). The
277  second prediction of the initiation scaling model is a strong positive correlation between the
278  number of transcribing RNAPII and cell size (Figure S3D). To test this, we analysed RNAPII
279 occupancy across the genomes of wt, wee?-50 and cdc25-22 cells by chromatin
280 immunoprecipitation followed by next generation sequencing (ChIP-seq). We used three

281 antibodies against total RNAPII and Serine 5 phosphorylation of its carboxy terminal domain
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282  (CTD, methods). Using data normalised to occupancy at histone genes (methods) we
283  could observe a significant increase in overall RNAPII occupancy with size consistent with
284  previous observation and confirming model predictions (Figure 3G) [3]. Importantly, we did
285 not find evidence for a redistribution of RNAPII from the 5’ to the 3’ of genes in larger cells
286  which makes regulation of scaling at the level of RNAPII pause/release unlikely (Figure 3H,
287  83J). This profile was also reproduced quantitatively in our minimal TASEP model (Figure
288 3D, data not shown). In summary, our in silico and experimental data indicate that
289  transcriptional scaling is mediated by an increase in RNAPII initiation rates coordinated with
290 cell size. In addition, our modelling data together with the increase in RNAPII occupancy
291  observed in larger cells suggest that RNAPII could be a limiting factor for transcription as cell

292 size increases.
293
294 RNAPII amounts on chromatin increases with cell size.

295  If scaling of initiation rates is the mechanism behind scaling and RNAPII is limiting, the
296  amount of RNAPII complexes on the genome of single cells should increase during the cell
297  cycle. To test this hypothesis, we measured localisation of RNAPII in single cells by live-cell
298 imaging. To do this, we tagged components of the RNAPII complex with green fluorescent
299  protein (GFP) and imaged them during the cell cycle (Figure 4A, S4A). First, we observed
300 that the cellular concentration of Rpb1 and Rpb9, two RNAPII subunits, remained constant
301 during the fission yeast G2 growth phase (Figure 4B, S4B). This indicates that scaling of
302 transcription initiation is not controlled by regulation of the cellular concentration RNAPII. Our
303 image data show that a very large fraction of the tagged RNAPII subunits localises in the
304 nucleus in the DAPI-positive area (Figure 4A). We therefore asked whether the amount of
305 RNAPII on chromatin changes with cell size during the cell cycle. To assess this, we
306 measured fluorescence intensities of the nuclear region occupied by RNAPII subunits
307 (Figure 4C, S4C). Strikingly, the signal for both Rpb1 and Rpb9 increases steadily during
308 fission yeast G2 phase where most cell size increase occurs (Figure 4C, S4C). Importantly
309 this was not the case for another DNA bound protein the histone Hta2 (H2A beta), (Figure.
310 4D-E). This is consistent with the prediction of the initiation scaling model in the previous
311  section and indicates that RNAPII quantities are likely to be limiting for transcription. In
312 summary, these experiments indicate that increased initiation rates that mediate scaling are
313  sustained by efficient import of RNAPII in the nucleus together with rapid recruitment onto

314 chromatin.

315

316  The nucleus is the scaling unit
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317 In fission yeast and other organisms, nuclear and cytoplasmic volume are intimately
318 connected [48]. As scaling of initiation rates depends on RNAPII levels in the nucleus we
319 wondered whether nuclear size rather than cell size itself could be the quantitative

320 determinant of scaling.

321 To test this idea, we analysed nascent site intensities of cdc77-119 mutant cells cultivated at
322  non-permissive temperature. Under these conditions, cells elongate, undergo mitosis and
323  nuclear division but do not divide (Figure 5A) [49]. Strikingly, scaling of nascent site
324  intensities of individual nuclei with cell size was not apparent in this system (Rpearson = 0.06,
325 Figure 5B, right). Scaling was only restored when all nascent sites present in a cell were
326  added together (Rpearson = 0.46, Figure 5B, left). This mirrors data from multinucleated cells
327 showing that while the overall nuclear volume scales with cell volume, the volume of
328 individual nuclei is proportional to their surrounding cytoplasmic volume [48]. Consistent
329  with this, the ratios of nascent site intensities between nuclei of cdc11-119 cells were weakly
330 correlated with their immediate cytoplasmic volumes (Figure S5A). This indicates that the

331  cell “scaling unit” could be the nucleus and not the whole cell.

332  We next analysed scaling in conditions where the correlation between cell and nuclear size
333 is compromised. Pom1 is a regulator of cell polarity and division which when deleted leads to
334 increased size variability at cell birth due to cell partitioning errors [50]. We analysed
335  expression of three mRNA by smFISH in pom71A mutant cells expressing a marker of the
336 nuclear envelope to allow measurement of nuclear size (Figure 5C). As expected cell and
337 nuclear size show smaller correlation in the pom71A mutants compared to wt cells (Figure
338  S5B). Scaling in this system was comparable to wt cells with the exception that pom1A
339 mutants showed a higher y-axis intercept when mRNA numbers are plotted as a function of
340 cell size (Figure S5C). This indicates that mRNA concentrations in pom1A cells are higher in
341  smaller cells after birth and negatively correlated with cell size (Figure 5D). This deviation
342  from perfect concentration homeostasis is also observed but to a lower degree in wt cells
343  (Figure 5D) as reported for mammalian cells [4]. Moreover, mMRNA numbers divided by
344 nuclear volume show a negative correlation with nuclear volume (Figure S5D). The
345 modelling approach described in Figure 2 which is based on transcription scaling with cell
346  size and binomial partitioning of MRNAs based on daughter cell sizes failed to capture this
347  behaviour (Figure 5E, magenta line). However, a modified model coupling transcription
348 rates to nuclear size instead produced a good fit to the data (Figure 5E, S5F green line).
349  Together, this analysis suggests that beside the nucleus being the scaling unit, nuclear size

350 could be an important determinant of scaling.

351
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352 A mechanistic model of scaling

353 We used the results from this study to develop a mechanistic model of scaling centred
354 around RNAPIlI mediated transcription (see also [19,20]). (Figure 5F, methods). In this
355 model the rates of RNAPIlI complex synthesis and maturation scale with cell size. This is
356  consistent with our smFISH and live-cell imaging data showing that RNAPII subunits have a
357 constant cellular concentration during the cell cycle (Figure 1 and 4). RNAPII is then
358 transported to the nucleus with a rapid rate that is depleting cytosolic RNAPII (as observed
359 in live-cell imaging data; Figure 4). Once in the nucleus, RNAPII binds to DNA with a
360 constant high affinity and transcription rates are proportional to the numbers of DNA-RNAPII
361 complexes present on each gene at any given time consistent with scaling of initiation rates
362  (Figure 3). Finally, RNAPII levels is set to be limiting in line with the initiation scaling model
363  (Figure 3), the behaviour of diploid and heterozygous mutants (Figure 3) [10] and with the
364 fact that the cell synthetic capacity is titrated against the number of genes in heterokaryons
365  [4]. Moreover, this assumption fits the observation that many RNAPII subunits are limiting for
366  growth in fission yeast [51-53]. The high affinity and the limiting amount of RNAPII ensures
367 that the majority of RNAPIlI molecules are bound to DNA and increase with cell size
368  consistent with our imaging data (Figure 4) and with biochemical evidence from mammalian
369 cells [4]. Finally, DNA replication occurs close to cell division and each daughter cell inherits
370  about half of the DNA-bound RNAPII mostly independent of its size as observed in our live
371  cell imaging experiment (Figure 4C, S4C). This simple model is able to capture the different
372  features of our data. First, it retrieved the scaling of DNA-bound RNAPII with cell size while
373  keeping the overall cellular concentration constant as observed in Figure 4 (Figure S5E).
374  Second, it explained the scaling of mMRNA numbers with cell size including the higher mRNA
375 concentration observed in smaller cells (Figure 5E). As this mechanistic model relies on
376  both cell size mediated production of RNAPII and nuclear mediated partitioning of RNAPII it
377  captures better the negative correlation between mRNA numbers over nuclear area and cell
378  size than a purely nuclear size mediated transcriptional scaling (Figure S5E, compare blue
379 and green line). Overall, this simple mechanistic model of RNAPII transcription by
380 integrating the experimental findings from this study, explains the origin of transcriptional
381 scaling and its subtler features and identifies the competition between genes for the limited

382  pool of transcriptional machinery as central to the phenomenon of transcriptional scaling.
383
384 CONCLUSIONS

385 We performed an extensive experimental and modelling study of gene expression scaling

386  with cell size in single fission yeast cells. We found that scaling is a pervasive feature of
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387 gene expression that impinges on constitutive and regulated expression. We then showed
388 that scaling relies on an increase in RNAPII initiation rates with cell size and a concentration
389 independent recruitment of a limiting RNAPII on the genome. Finally, we propose that the

390 nucleus is the scaling unit and that nuclear size may participate in setting scaling levels.

391  Our work supports a simple and robust model for the scaling of gene expression with cell
392  size in which the competition between promoters for a limited pool of RNAPII determines
393 their relative strength. Because RNAPII maintains a constant concentration as cell size
394 increases (as proteins do in general), the number of RNAPIlI complexes increase linearly
395  with cell size. cell size increase will not affect the relative strength of promoters, but will
396  cause their absolute rate of transcriptional initiation to scale linearly with cell size, exactly as

397  required to produce the observed gene expression scaling.

398  Our model assumes that the general and specific transcription factors that regulate relative
399  promoter strength are in excess even in small cells, and thus are not affected by cell size. To
400 gain a deeper mechanistic understanding of scaling, it will be important to determine whether
401 this assumption is met for most regulators or if some escape the rule. It could also inform
402 about mechanisms through which some mRNA escape regulation by scaling as our
403  modelling results suggest that non-limiting initiation rates can produce this behaviour [10—
404  12]. Another interesting question will be to determine the role of chromatin remodellers in
405 facilitating transcription initiation in larger cells. It is possible that a more permissive
406  chromatin environment in large cells synergises with increased RNAPII local concentrations

407  to support higher transcription rates of inducible genes.

408 Recent evidence suggests that, in mammals, burst size is regulated at the level of the
409  proximal promoter sequence, while distal enhancers are involved in setting burst frequency
410 [54]. Moreover, burst initiation and RNAPII pause/release but not RNAPII recruitment have
411  been shown to be regulated in response to biological perturbations [55]. Our model of
412 scaling through initiation of RNAPII transcription fits well with these data as this process is
413  independent of both gene activation and control of burst frequency. It is also consistent with
414  the observation that promoters maintain their relative expression levels in changing growth
415  conditions [56].

416  Our observation that scaling is regulated at the level of single nuclei in multinucleated cells
417 and may be linked to nuclear size is interesting. RNA synthesis levels have been connected
418  to nuclear size in other systems such as multinucleated muscle cells [57], or for the HTLV-1
419 mRNA [58]. It could reflect a higher availability of RNA polymerases around larger nuclei as
420 these tend to be surrounded by larger cytoplasmic volume (Figure S5A) [48,57].

421 Interestingly, the nucleus was also found to be an independent transcriptional unit in mature
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422  osteoclasts [59] and in multinucleated fungi where nuclei retain local control of cell cycle
423  periodic transcription [60,61]. This suggests that more complex feedback and molecular

424  mechanisms may also be at play.

425  An important result from our study, which is not directly related to scaling, is the absence of
426  bursty transcription for most fission yeast genes tested. This is in line with previous

427  observations in budding yeast and plants [29,38,62]. Transcriptional bursts result in high

428  gene expression noise and are associated with Fano factors (%2 of mMRNA numbers) greater

429 than 1, whereas Poissonian birth-death processes have a Fano factor = 1. Our finding that
430  most transcription followed a non-bursty regime relied on our modelling taking cell size and
431  the cell cycle into account explicitly. Without doing so, all genes in this study have been
432  thought to have bursty expression as Fano factors calculated on the raw counts were well
433  above 1 (not shown). This reiterates the importance of studying gene expression considering
434  potential confounding effects of morphological features such as cell size and the cell cycle
435  [23,24,29,63,64].

436  Finally, in addition to progressing our understanding of the mechanisms behind scaling, this
437  study provides a large quantitative dataset of gene expression and cell size measurement in
438  over 20000 cells in various conditions. This will support future modelling efforts aimed at

439  understanding regulation of gene expression.
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454 METHODS
455 Strains and culture conditions

456  The strains and their genotypes that were used in this study are listed in Table S$1. Genetic
457  crossing confirmed by polymerase chain reaction was used for strains generated unless
458  otherwise specified. Strains were revived from glycerol frozen stocks on solid yeast extract
459  agar (YE agar), or YE agar supplemented with 25 mg ' adenine, L-histidine, L-leucine,
460 uracil, L-lysine, and L-arginine (Sigma), and with or without appropriate antibiotics for
461  selection. YE agar plates were incubated for approximately 48 h at 32°C in a static incubator
462  until visible large colonies could be observed. Single colonies were transferred into liquid
463  yeast extract medium (YE), in YE supplemented as above (YES), Edinburgh minimal
464  medium (EMM), or EMM supplemented as above (EMMS), unless otherwise indicated in
465  figure legends, and incubated at 170 rpm in a shaking incubator. Temperature sensitive
466  strains were grown at 32°C and shifted to 36.5°C for the time indicated in figure legends. For
467  the induction of sib7 expression, the strains were grown at 25°C to an optical density at 600
468 nm (ODsgo) of =0.4 and treated with 2,2-dipyridyl (DIP; ACROS) at a final concentration of
469 250 pM for the time indicated in figure legends, or left untreated. For measuring mRNA
470 decay rates, cells were grown in YE at 25°C to ODego =0.4; cells were treated with thiolutin
471  (AXXORA) for the time indicated at a final concentration of 15 pg/ml, or left untreated. For
472  urg1 induction, cells were grown in EMM supplemented with or without 0.25 mg/ml uracil for
473  the time indicated. For transcription inhibition, log phase cultures (OD600~0.5) were treated
474  with thiolutin (15 ug/ml) and same volume of DMSO (used for dissolve thiolutin) was added
475 to thiolutin untreated culture. Samples were taken at 0, 25, 35, 45 mins and processed as for

476  smFISH. For live-cell experiments, cells were grown in EMMS in syphonstats — chemostat-

477  like devices (http:/klavinslab.org/hardware.html) which maintain the turbidity of liquid
478  cultures by diluting with fresh medium appropriately — and maintained at ODeggo 0.4 at 32°C
479 by frequent dilution [65].

480 RNA single molecule fluorescence in situ hybridisation (smFISH)

481  All smFISH datasets are described in Table S2. All the mRNA counts, nascent site
482 intensities and cell size measurements are available in Table S3. smFISH samples were
483  prepared according to a method modified from published protocols [66,67]. Briefly, cells
484  were fixed in 4% formaldehyde and the cell wall partially digested using zymolyase. Cells
485  were permeabilised in 70% ethanol, pre-blocked with bovine serum albumin and salmon
486  sperm DNA, and incubated overnight with custom Stellaris oligonucleotide sets (Biosearch
487  Technologies) labelled with CAL Fluor Red 610, Quasar 670, or Quasar 570 (probe

488  sequences are listed in Table S4). Cells were mounted in ProLong™ Gold antifade
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489  mountant with DAPI (Molecular Probes), and imaged on a Leica TCS Sp8 confocal
490  microscope, using a 63x oil objective (NA 1.40). Optical z sections were acquired (0.3 ym
491  step size) for each scan to cover the entire depth of cells. Cell boundaries were outlined
492  manually and single mRNA molecules were identified and counted using the FISH-quant
493  MATLAB package [68]. Cell area, length, and width were quantified using custom ImageJ
494  macros. The technical error in FISH-quant detection was estimated at 6-7% by quantifying
495  rpb1 mRNA foci with two sets of probes labelled with different dyes. The nascent mRNA foci
496  were identified and quantified using intensity information from the above-mentioned FISH
497  quantification where an intensity 2.5 to 3-fold above the modal intensity within the same cell
498 was chosen as a threshold for nascent mMRNA. The quality of the identification of nascent
499 sites was validated manually by visualising high intensity foci in the nucleus, with an

500 accuracy of over 90% in all three strains (wild-type, cdc25-22, and wee1-50).
501 ChlP-seq

502 Chromatin immunoprecipitation (ChlP) assays was carried out essentially according to
503 published methods [69]. In brief, cells were grown in YES to an OD600 of ~ 0.8 and fixed
504  with formaldehyde solution (1% final) and then quenched with glycine. After washing twice
505  with cold PBS (phosphate-buffed saline), cells were re-suspended in lysis buffer containing
506 proteases inhibitors and disrupted vigorously with acid-washed glass beads 8-11 times for
507 20 sec in a FastPrep instrument. Samples were then sonicated in Bioruptor (at High setting
508 and 6 times 5 mins with 30 secs ON/30 secs OFF). Chromatin were immunoprecipitated with
509 antibody against Rpb1 (ab817) or Rpb1 CTD-ser 5 (ab5408 or sigma 04-1572), which were
510 coupled to Dynabead protein-G and protein-A and Dynabead sheep anti-mouse or rat IgG
511  (Invitrogene). DNA was purified from immunoprecipitated samples using MinElute Qiagen
512  kit. Quantification of the DNA was done using QuDye dsDNA HS assay kit and quality was

513  verified using Bioanalyzer.

514  For sequencing DNA from immunoprecipitated samples, the libraries were made using the
515 NEBNext ChIP-Seq Library Prep Master Mix Set for Illumina (E6240S) with the indexes
516  provided in NEBBext Multiplex Oligos for lllumina (Index Primers Set1,2 and 3). Negative
517 control DNA are those from the same chromatin extracts without going through
518 immunoprecipitation steps. Pools of libraries were sequenced on an lllumina HiSeq 2500
519 instrument at the MRC LMS genomics facility. Paired-end reads (100 nt) were generated
520 from two pools of 12 or 18 samples per sequencing lane. Data were processed using RTA
521  1.18.64, with default filter and quality settings. The reads were de-multiplexed with bcl2fastg-
522 1.8.4 (CASAVA, allowing 0 mismatches).

523  ChlIP-seq analysis
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524 A description of ChlIP-seq libraries can be found in Table S5. Sequencing reads were
525 aligned to the fission yeast genome as available in PomBase in July 2019 using BWA
526  [70,71]. For figure 3G, RNAPII occupancy counts were extracted for each transcript using
527 HTseq [72] and the fission yeast annotation available in PomBase in July 2019 [71]. Data
528 were normalised using DESeq2 and scaled using the mean counts of fission yeast histone
529 genes as a scaling factor to allow comparison of global RNAPII occupancy between size
530 mutants [73]. Amounts of histone proteins are thought to scale with DNA content rather than
531 cell volume and are commonly used as normalisation factors for absolute proteomics
532  measurements [74]. Moreover, average synthesis rates of histones were found to remain
533 constant across a wide range of sizes in budding yeast (Kurt Schmoller personal
534  communication). For figures 3H and S3I, RNAPII immunoprecipitation data were normalised
535  with their respective input and average gene analysis was performed using the deeptools

536  analysis suite [75].

537 Live-cell microscopy and analysis

538  Strains of interest and wild-type ySBM2 were grown from single colonies in 5 ml YES before
539 they were transferred into syphonstats and maintained at ODegoy 0.4 overnight in EMMS.
540  Prior to microscopy, ySBM2 cells were mixed at a 1:10 ratio with each strain of interest and
541  diluted to a final ODsgo of 0.3 in fresh EMMS. Cells were loaded directly into a CellASIC®
542  ONIX Y04C-02 microfluidic plate (EMD Millipore) according to the manufacturer instructions.
543  Fresh EMMS was continually perfused through the growth chamber with a constant pressure
544  of 6.9 kPa (approximately 3 ul/h). Cells were imaged on an Olympus IX70 inverted widefield
545 fluorescence microscope with an environmental chamber maintained at 32°C, with a high
546  precision motorised XYZ stage (ASl), controlled with yManager version 1.4.22 [76]. Cells
547  were continually imaged at a 10 minute interval with a 40x objective (NA 0.95, UPlanSApo;
548  Olympus) with brightfield (30 ms exposure), GFP (250 ms exposure, emission filter Semrock
549  514/30 nm), and dsRed (500 ms exposure, emission filter Semrock 617/73 nm) channels
550 captured by a Hamamatsu Orca Flash 4.0 V2 sCMOS camera, with illumination provided by
551 a Lumencor Spectra X LED light source set to 20% power. For each of the four growth
552 chambers within the microfluidic plate, three positions were defined, each of which was
553  focussed using the software autofocus using the brightfield channel; since this feature was
554  generally inaccurate, a 3 ym Z-stack was used around the autofocus position to ensure that

555  at least one Z-position was in focus for each position.

556 Initial analysis was performed with Fiji — a derivative of ImageJ — with time-lapses assembled
557 if necessary, and in-focus slices for each time-point selected using a custom macro (written
558 by Stephen Rothery, Facility for Imaging by Light Microscopy, Imperial College London),
559  resulting in a 4-dimensional OME-TIFF file for each field-of-view (XYCT). Each file was
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560 subsequently analysed using a series of custom Python scripts utilising the scikit-image,
561  SciPy, NumPy, and pandas packages extensively among others. The scripts permit the
562  semi-automated definition of cell boundaries (segmentation) within the brightfield channel,
563 followed by the quantification of fluorescence within cell boundaries, identification of nuclei,
564  further quantification within nuclear boundaries, and assignment of cells into lineages. Cell
565 segmentation was effected using a custom ‘balloon-filling’ algorithm, in which a connected
566  series of nodes is ‘inflated’ from its centre inducing an outwards force on all nodes; this
567  outward force is counteracted by an ‘image force’, which applies an opposing force inversely
568  proportional to the intensity of pixels neighbouring the node, this has the effect of preventing
569 nodes from expanding through areas of low light intensity — which generally surrounds the
570  cell boundary; finally each node is also affected by its direct neighbouring nodes which pull
571 each node sideways according to their position, ensuring smooth contours. Together, after
572 multiple iterations, nodes migrate from a central location until the forces equilibrate at areas
573  of low light intensity (generally the edge of the cell). This procedure can be performed in an
574  automated manner in which iterations cease when the area contained within the nodes does
575 not significantly change, or in a supervised manner, in which further iterations are prompted
576  manually via a keyboard command, with progress displayed via a graphical interface. Initial
577  centres of cells are defined either by manually clicking, or by the centre of the cell in the
578  previous frame. Nuclei are defined as areas within the cell boundary which have red
579 fluorescence pixel intensity values greater than 1.1 standard deviations above the mean
580 intensity within the whole cell boundary. Time from mitosis is defined as the number of hours
581 from the point at which the number of detected nuclei increases from one to two.
582  Fluorescence intensity is adjusted for uneven illumination according to a series of empty
583 fields imaged using the same settings. Background and autofluorescence is determined from
584  wild-type cells cultured within the same field-of-view, with the mean level of fluorescence
585  within these cells subtracted from measurements. Fluorescence is normalised by cell or
586 nuclear area by dividing total fluorescence of all pixels within their respective boundary by

587 the area of that boundary. Scripts are available upon request.

588 For live cell imaging in Figure S4, cells were imaged in ibidi microfluidic channel slides
589  (pslide VI 0.4, #80601) instead of a CellASIC ONIX microfluidic plate. 30 pL of cells sampled
590 from syphonstat cultures maintained at OD600=0.5 for at least 15 generations were loaded
591 into channels of a pre-warmed slide. 40 pL of pre-warmed EMMS was then added to each
592  reservoir of channels, followed by 10 pL of mineral oil (Sigma, M5904) to prevent

593  evaporation during imaging. Live-cell microscopy was performed as described above.

594 Image analysis was semi-automated and performed using custom interactive MATLAB

595  scripts available upon request. Tracks corresponding to individual cell cycles are recorded
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596 by user clicking. Only cell cycles for which cells remained in in focus for at least the 2 hours
597  preceding mitosis were collected. Local background subtraction was automatically applied to
598 fluorescence images. Cell segmentation was performed automatically based on thresholding
599 of the brighfield images. Nuclear segmentation was performed automatically based on

600 thresholding of the uch2-mCherry fluorescence images.
601  Cell size measurements

602  We extracted both cell area and cell length measurements form the smFISH images as
603  proxies for cell volume. We observed that both measurements support robustly data
604  characteristics such as scaling of mMRNA numbers and positive intercepts. We used cell
605 length as a proxy for cell volume throughout the manuscript as it proved to be a simpler and
606  more consistent measure. Importantly, as fission yeast has a cylindrical shape, its length is
607  directly proportional to its volume. For the nucleus, we acquired area measurements only. As
608 the nucleus is spherical, area and volume are not proportional. We have therefore derived

609  volume estimates from area measurements assuming a perfect sphere using:
610 volume = 4/3* T *(area/)*?

611

612  Mathematical modelling

613  We use agent-based simulations of stochastic gene expression coupled to cell size in

614  growing and dividing cells (Figure 2A) [24]. We assume cells grow exponentially with a
615  constant growth rate from birth to division that is sampled from a truncated Gaussian

616  distribution with mean m, and standard deviation g,. A cell that is born with birth length L;
617  grows until it reaches the division length L. We use a phenomenological model of cell size
618  control that relates the final size to initial size through a noisy linear map, which captures

619  experimentally observed variability and correlations in cell size [77-79].

621 where a and b are size control parameters (a = 0 denotes a sizer mechanism and a = 1 an
622  adder mechanism) and 7, is a truncated Gaussian with mean zero and standard deviation
623  g;,. The dividing cell of length L; produces two daughter cells with birth sizes L'; and Lf =L,
624  where L'; = Lyny and ng is another truncated Gaussian with mean 0.5 and standard

625  deviation ;. The biomolecules such as MRNA molecules (except for DNA) are binomially

626  partitioned in the daughter cells with a probability proportional to the daughter cell size

627 L';. As shown in Figure 2A, we simulate a fixed number of cells, so upon cell division one of
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628  the existing cells (including one of the newly born daughter cells) is chosen randomly and
629  taken out of the simulation. This ensures we are simulating a constant number of cells in
630 time and can produce snap-shot data with the correct cell age and size distribution as

631  observed in the experimental data. This has been used in the simulations used in the ABC
632 inference (Figure 2). For the modelling results shown in Figure 3 and 5, where the results
633  are conditioned on cell size, we have used a simpler scheme [24], where upon cell division
634  only one of the daughter cells is followed modelling a single lineage (similar to the data
635 generated in a mother machine) [80]. The simulations are performed using a simple

636  algorithm that uses discretised time steps to simulate exactly the Gillespie method [81] with
637 time-dependent parameters [82]. The simulation code for inference is written in the Julia
638 programming language and the rest of simulations are performed in R. The codes are

639 available upon request.

640  Our main gene expression model is the so-called telegraph model or the two-state model
641  [83] where the gene can be in an ‘off’ or an ‘on’ state and transcription can only occur when
642  the gene is on (Figure 2A). If the gene is always on then this model reduces to a simple

643  non-bursty birth-death process with parameters transcription rate v and mRNA decay rate d.
644  Here the mRNA counts per cell have a Poisson distribution (in the absence of cell cycle

645  effects). In the limit where the duration of the promotor on-state is shorter than the mRNA life
646 time we have the bursty limit characterised by 3 parameters of average burst frequency k,,,,

647  average burst size v/k,;; and mRNA decay rate d. In this model, birth events are

648  simulated as geometrically distributed increases in mMRNA numbers [84]. For Figure 2B

649  model selection, we used four variants of this model including the Poisson and bursty limits
650  with or without transcriptional dependence to cell size. Transcriptional scaling is modelled as
651 linear dependence of transcription rate or burst size to cell size (v(L) = v,L, where, v, is a
652  constant and L,is the cell length). The models for the cell cycle regulated genes, assume that
653  there is a point in the cell cycle, where gene expression increases from a basal level to an
654  active level. ABC model selection in Figure 2E is performed on the data from the

655  transcription shut-off experiments of the 3 strains of wt, wee1-50, and cdc25-22. The 3

656 models included are all the Poisson limit with different scaling assumptions for transcription
657 and decay rates. Model one assumes transcriptional scaling with a single constant decay
658 rate across the 3 strains, the second model assumes also transcriptional scaling but with 3
659  different constant decay rates within each strain. And the third model assumes constant

660  transcription and decay rate that is proportional to inverse cell size across the 3 strains. The
661  priors used in the model selection, are wide over a physiological range. The model selection

662  results were not too senstivie to the choice of the priors.
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663  In Figure 3D a more detailed model of transcription is illustrated, which is based on the

664  totally asymmetric simple exclusion process (TASEP) [6,39—41]. Here, the promoter is

665 assumed to be always active, i.e. we are modelling a non-bursty gene. The gene is modelled
666  as a lattice of size L. Transcription starts by initiation through binding of a RNAPII molecule
667  to the first site on the gene with rate « if the site is empty. Elongation is modelled as hopping
668  of RNAPII forward with rate f if the next site is available. Termination is modelled with

669  RNAPII leaving the last site on the gene with rate y which gives rise to a fully transcribed
670  mRNA. In our model, we have ignored pausing, backtracking and incomplete termination. In
671  Figure 3E, we compare 3 variants of this model, where size scaling is through linear

672  coupling of initiation, elongation or termination rate to cell size. We chose L; = 20 for

673  computational efficiency and as it is larger than the typically observed number of RNAPIIs on
674  the genes, which is related to nascent site intensity (Figure 3A). In each model, we

675 randomly picked the initiation time scale t,;, elongation time scale through the whole gene
676 1g, and termination time scale 7 between 0.001-0.1 hours that produces average mRNA
677  numbers of between 20-30 for a moderately expressed gene. The lower limit on the time

678  scale is significantly shorter than the mRNA life time and the upper limit represents very slow
679  steps to achieve moderate transcription, given the mRNA life time, and is also slower than
680 the time-scales reported in the literature [cite]. The rates are inversely proportional to the

681 time-scalesas a =1/t;, f = L;/17z and y = 1/7;. Note that as 8 is the rate of hopping per
682  site, it is also proportional to the number of sites on the gene L;. We also performed an ABC
683  model selection using an implementation of our TASEP model in Julia on several datasets

684  (Figure S3G). We used the same prior as discussed above.

685  The nuclear scaling model and the RNAPII model in Figure 5E rely on both cell size and

686  nuclear size dynamics. It is known that nuclear size scales closely with cell size [48]. There
687  has not been much modelling of nuclear size control in the literature. We introduce a

688  phenomenological and passive model of cell and nuclear size control, extending the noisy
689 linear map of cell size control (Equation 1). We assume cellular exponential growth, cell size
690  control and division as before. We assume nuclear size also grows exponentially and follows

691 its own noisy linear map:
692 Ly = ay Ly;+ by + Npy

693  Cell division time is determined when cells reach their final size (L;). For simplicity, we

694  assume mitosis is taking place at cell division and the size of the newly divided daughter

695  cells and their nucleus is determined by L'; = Lgng and L'y; = Lysnyg, Where ng and nyg are

696 truncated correlated Gaussian noise with mean equal 0.5, standard deviations g; and ay4
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697  and correlation coefficient of p;. We choose p; = 0.5 based on analysis of our time-lapse
698 imaging data (Figure 4) and the rest of the parameters of our dual noisy linear map model of
699  cell and nuclear control were fitted on the static pom1 mutant size data using the ABC

700 inference.

701  Given, our dual noisy linear map model discussed above, in the nuclear scaling model

702  (Figure 5E), we assume transcription rate v to be linearly dependent on the nuclear size Ly
703  but mRNAs are partitioned upon division based on the size of the daughter cells (not nuclear
704  size of the daughter cells). In this model a small daughter cell is likely to inherit a nucleus of
705  average size, with transcription rates higher than expected from cell size, resulting in an

706 increase in MRNA concentration for small cells.

707  The RNAPII model (Figure 5F) provides a mechanistic RNAPII based model of

708 transcriptional scaling. In this hybrid deterministic and stochastic model, transcription,

709 translation, complex formation and maturation of RNAPII molecules are modelled as simple
710 cell size dependent production steps. The RNAPII is then transported to the nucleus by a
711  nuclear size dependent rate and it binds to DNA with high affinity with a rate that is

712  dependent on the concentration of DNA in the nucleus (inversely proportional to nuclear
713  size). In this model transcription rate of a gene is assumed to be proportional to the amount
714  of DNA-bound RNAPII.

715  In this hybrid deterministic and stochastic model, RNAPII dynamics are modelled

716  deterministically by a series of ODEs inside growing and dividing cells, while transcription of
717  mRNA is modelled stochastically. Upon cell division, we assume mRNA are partitioned

718  binomially according to the size of the daughter cells. The free cytosolic and nuclear RNAPII
719  are portioned binomially according to the size of the daughter cells and their nucleus. The
720  scaling in this model comes about from sequestration of RNAPII on the DNA. The model is
721  very robust to different model parameters and assumptions as long as the level of free

722  cytosolic and nuclear RNAPII is much smaller than the DNA bound RNAPII. The qualitative
723  model results for Rpb1 shown in Figure 5E, are obtained by using the parameters of the
724  dual noisy linear map model discussed above for the pom1 mutant, tuning RNAPII

725  parameters to obtain about 10% free RNAPII and linear scaling of DNA bound RNAPII, as
726  well as setting the transcription rate to match expression levels of Rpb1. The model without
727  any further tuning recovers deviation from concentration homeostasis observed at small cell

728 sizes, which is observed for the different genes in the WT and Pom1 mutant strains.

729 ABC inference and model selection
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730 In this study we have used Approximate Bayesian Computation (ABC) for inference. When
731  the likelihood function is intractable, we require a tool for carrying out inference without it.
732 ABC is precisely such a tool. The algorithm originated in the 1980s and 90s (see e.g. [85]).
733 For review of more recent developments, see [15]. ABC aims to carry out Bayesian

734  inference without having to evaluate the likelihood function. Given data D and model with

735  parameter set 6, this is done by approximating the posterior distribution:

polny = PLIOPE)

736 PD) P(8]p(D,Dy) <€)

737  Where Dy is a set of data generated from the model with parameters 6, sampled from the
738  prior P(0), p(D, Dg) is a distance measure that is defined on the set of such datasets (or their
739  summary statistics) and ¢ is a tolerance, representing the degree of approximation we are
740  willing to accept. The simplest ABC algorithm, that is based on sampling 6 repeatedly and
741  rejecting the ones that produce data with larger distance than our tolerance (which is called
742 ABC rejection sampling [86]), is too inefficient. Much work has been carried out over the past
743  decade in this area, leading to a variety of different implementations with much more

744  favourable scaling of computation time with the dimensionality of the parameter space [86].
745  For the purpose of this project we will use a Sequential Monte Carlo implementation, based
746  on the implementations of Toni et. al [87] (ABC-SMC) and Lenormand et.al [88] (APMC). In
747  the ABC-SMC, one fixes the size of the posterior sample, N, and a finite sequence of

748  decreasing tolerances, {&;}, a priori. The primary differences between APMC and ABC-SMC
749  are firstly that the sequence of epsilons is not determined a priori; it is dynamically

750  determined from the previous iteration’s distribution of errors until a stopping criterion

751  (paccyiy) is fulfilled and secondly that simulations from earlier iterations are not discarded.
752  ABC lends itself very naturally to model selection [86,87]. In essence, all we have to do is to
753  extend our priors to one extra dimension, representing different models. Formally, we require
754  ajoint prior distribution over models and parameters, P(M, 8). We have combined the model
755  selection aspects of ABC-SMC implementation and adaptive aspect of APMC to obtain our
756  APMC with model selection algorithm.

757  In order to apply our APMC algorithm, we need to choose an appropriate distance p(D, Dg).
758  As the problem at hand is stochastic in nature, we have chosen to use sum of square

759  differences of summary statistics of the data and simulated data in the distance measure:

_ my(D) — m;(Dy)\’
760 P Do) = \/Zz( sd(m;(D)) )

761  where, we used central sample moments and cross moments m;(D) of our data up to order

762 3. With our data sample sizes, moments beyond the first three are usually too noisy to be
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useful. Also, each term in the distance measure are weighted by the bootstrap estimates of
standard deviation of the central moments. This rescales the terms in the sum appropriately

and downweighs the noisier moments, helping to prevent overfitting of the data.
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768  FIGURE LEGENDS
769

770  Figure 1: Gene expression scaling is a single cell attribute of constitutive and
771 inducible gene expression. A. Representative images of an smFISH experiment. The
772 rpb1, rpb2, and rpb3 mMRNA are labelled in wee1-50, cdc25-22, and wt cells. Overlay of the
773  three channels and DAPI staining of DNA are shown in the last column. The white scale bar
774  represents 5um. B. Log» average copies/cell of 7 mRNAs in wee1-50 (green) and cdc25-22
775  (red) cells plotted against logz> average copies/cell of the same mRNAs in wt cells. mRNA
776  common names are shown on the figure. Plain line shows equality and dotted lines values 2
777  fold up or down. C. rpb7 mRNA copies/cell plotted against cell length for wee 7-50 (green), wt
778  (blue), cdc25-22 (red) and wt diploid cells (orange). D. ace2 mRNA copies/cell plotted
779  against cell length for wee-50 (green), wt (blue), cdc25-22 (red) and wt diploid cells
780  (orange). E. urg? mRNA copies/cell plotted against cell length for wee 7-50 (green), wt (blue),
781  cdc25-22 (red) cells. Cells were analysed 3h after addition of uracil to the medium. F. same
782 as C. with all the cells in grey. The solid line shows median counts in running windows
783 sampled from 100 bootstrap samples of the experimental data and the shaded area
784  represents 95% confidence intervals. Only cells above the dotted lines were considered as
785  expressing the mRNA and were used for the running window analysis. G. same as D. with
786  all the cells in grey. The solid line shows median counts in running windows sampled from
787 100 bootstrap samples of the experimental data and the shaded area represents 95%
788  confidence intervals. Only cells above the dotted lines were considered as expressing the
789 mRNA and were used for the running window analysis. H. same as E. with all the cells in
790 grey. The solid line shows median counts in running windows sampled from 100 bootstrap
791  samples of the experimental data and the shaded area represents 95% confidence intervals.
792  Only cells above the dotted lines were considered as expressing the mRNA and were used

793  for the running window analysis.
794

795  Figure 2: Coordination of transcription rates to cell size and not burst frequency nor
796 mRNA decay rates mediates scaling. A. Cartoon of the modelling strategies used in this
797  section (methods). Domino-like shapes represent cells/agents with mRNA pictured as
798  yellow dots. Modelling of the cell cycle uses a noisy linear map framework and population
799  size is kept constant by removing a random cell for every division event. The left part of the
800 figures represents the two states model of gene expression. The transcription rate v and
801 degradation rate d can be coupled to cell length (L). B. Bar chart showing the sum of particle

802  weights for four models of transcription scaling after model selection analysis. Results for
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803  genes with three types of regulation are shown. Constitutive: constitutively expressed genes,
804  Periodic: cell cycle regulated genes, Regulated: genes regulated by external stimuli. For
805 regulated genes, times after addition of 2,2-dipyridyl (sib1) or uracil (urg1) are shown. The
806 four types of model used in this analysis are marked on the right. Poisson: non-bursty
807 transcription, Bursty: bursty transcription, Constant: constant transcription rates during the
808  cell cycle, Scaling: transcription rates scaling with cell length (methods). C. Simulation of
809 mRNA numbers during the cell-cycle using a model where transcription is scaling under a
810 poisson regime. Coefficients of variation (CV) are plotted as a function of mean simulated
811 mRNA numbers for each particle of each mRNA. Yellow circles denote the median of
812 simulated data for all particles of a given mRNA. Red circles denote median for all
813  experimental data used for parameter inference. D. Expression correlation between pairs of
814  mRNA in single cells. smFISH experimental measurements are marked by orange dots with
815 the 95% confidence interval shown with orange bars. 95% confidence intervals for
816  correlations obtained from model simulations as in C are shown with blue bars. Red bars
817 show the 95% confidence interval for simulations including 20% additional extrinsic noise
818 (methods). E. Bar chart showing the sum of particle weights for three models of mRNA
819 degradation after model selection analysis. Decay rate scaling: transcription constant and
820 degradation rates scale with cell length, Constant single: wt, wee1-50, and cdc25-22 cells
821 have an identical constant degradation rate during the cell cycle with transcriptional scaling.
822 Constant multiple: wt, wee7-50, and cdc25-22 cells have distinct constant degradation rates

823  during the cell cycle with transcriptional scaling.

824  Figure 3: Coordination of RNAPII initiation rates with cell size as the main mechanism
825 of scaling. A. rpb7 normalised nascent sites intensities plotted against their respective cell
826 length for wee7-50 (green), wt (blue), cdc25-22 (red). B. same as A. with all the cells in grey.
827  The solid line shows median counts in running windows sampled from a count distribution
828 identical to the experimental data. Shaded area represents 95% confidence intervals
829 (methods). Cells with no nascent sites are excluded. Pearson correlation coefficient of
830 nascent site intensity and length is shown. C. Boxplots of normalised nascent intensities for
831 rpb1 and the cell cycle regulated genes ace2, mid2 and fkh2. Intensities are compared
832  between haploid (green), diploid (yellow, orange), and rpb1 heterozygote deletion cells
833  (purple). For diploid cells the yellow boxplot shows intensities of single nascent sites, and
834  orange boxplots show the total nascent intensities per cell. D. Cartoon of the TASEP
835 modelling strategy of RNAPII transcription. A gene is represented by a lattice of length Le.
836  RNAPII molecules enter the lattice at a rate a (Initiation), hop through the lattice at a rate 8
837  (Elongation) and exit the lattice at a rate y (Termination, methods). E. Transcription linear

838 scaling captured by the TASEP model where rates a (Initiation), B (Elongation) or y
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839  (Termination) are linked to cell length. Simulations where run with each model with 500
840 random sets of TASEP parameters a,f and y over times scales of 0.001 to 0.1 hours
841  (methods). Deviation from linearity is shown for parameter samples in each of the 3 model
842  variants. For each parameter set 1500 cells are simulated and two linear regressions are
843  done on the mRNA numbers vs cell length data for the smaller and larger half of simulated
844  cells. The deviation from linearity is estimated as the difference between the linear
845  regression coefficients of small vs large cells. Values close to zero indicate a linear scaling
846 and larger values indicate saturation of mRNA numbers at large cells. The dashed line
847  shows the error in estimating the slope of the linear fit. Note that the initiation model shows
848 the most robust linearity. F. Fraction of cells with a nascent site (“Transcribing fraction”)
849  plotted as a function of mean cell length for the rob7 mRNA in a series of strains of different
850 average length. Strains names are labelled next to the data points. Red line shows linear
851  regression and R? is shown in the top left corner. G. Chromatin immunoprecipitation analysis
852  of RNAPII occupancy in wee1-50 (green), wt (blue), and cdc25-22 (red) cells. RNAP ChIP-
853 seq data for antibodies against Serine 5 CTD phosphorylation (left, middle) and total
854  Rbp1(right) are shown. RNAP occupancy values were normalised using DEseq2 and scaled
855 using occupancy at histone genes (methods). H. RNAPII occupancy 5’/3’ ratio in wee1-50
856  (green), wt (blue), and cdc25-22 (red) cells. RNAP ChIP-seq data for antibodies against
857 Serine 5 CTD phosphorylation (left, middle) and total Rbp1(right) are shown. RNAP
858  occupancy values were normalised to input samples and each gene was divided into 100
859  bins using the deeptools package. Ratios between mean occupancy in bins 1-50 compared
860 to bins 51-100 are shown (methods). Note that ratios are not changing with size and are

861  consistently lower than 1.

862  Figure 4: Nuclear RNA Polymerase Il concentration increases with cell size. A.
863  Confocal images of Rpb1, Rpb9, and Hta2 proteins tagged with GFP in wt fission yeast cells.
864  DAPI straining for DNA and overlay of both channels are shown. The white scale bar
865 represents 5um. B. Widefield fluorescence data from live-cell imaging RNAPII subunit Rpb9.
866  Normalised intensity/cell as a proxy for total cellular protein concentration is plotted along
867 time relative to the mitotic phase of the cell cycle. C. Widefield fluorescence data from live-
868 cell imaging RNAPII subunit Rpb9. Total pixel intensity in the area of strong fluorescence
869  signal as a proxy for chromatin bound amounts is plotted along time relative to the mitotic
870 phase of the cell cycle. D. As in B. but for the histone protein Hta2. E. As in C. but for the
871  histone protein Hta2.

872  Figure 5: The nucleus is the scaling unit. A. Representative smFISH images for the rpb1
873 and rpb2 mRNA in cdc11-119 grown at non-permissive temperature. The white scale bar

874  represents 5um. B. rpb1 normalised nascent sites intensities per nucleus (blue) or per cell
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875  (orange) plotted as a function of each cell respective size. Red lines are regression lines
876  from linear models. The white scale bar represents 5um. C. Representative smFISH images
877  for the rpb1, rpb2, and shd? mRNA in wt and pom1 deletion mutants carrying the Cut11-
878  GFP nuclear marker (left column). Overlay is shown on the right. The white scale bar
879 represents 5um. D. mRNA concentration (mRNA/cell length) for the rpb1, rpb2, and shd1
880 mRNA in wt (black) and pom1 deletion mutants (red). The solid line shows median counts in
881  running windows sampled from a count distribution identical to the experimental data.
882 Shaded area represents 95% confidence intervals. E. rpb1 concentrations measured by
883  smFISH are plotted as a function of cell length. Running average for the experimental data
884  (grey) or derived from model predictions assuming transcription rates scaling with cell length
885  (magenta), nuclear area (green), or predicted from a mechanistic model of RNAPII prediction
886 are shown (light blue). F. Cartoon representation of a mechanistic model of RNAPII

887  transcription (see Methods for details and parameters).

888  Figure S1 related to Figure 1. A. Cell length distribution for the 111 datasets described in
889  this study. Colours represent different genotypes. Datasets are described in Table S2.
890 Coloured lines show the interquartile range for all the wee7-50 (green), wt (blue), cdc25-22
891 (red), diploid and heterozygote deletions (orange) and pom171A (light blue) cells. B. Top:
892  Pooled count distribution of 7 constitutively expressed genes in wee7-50 (green), wt (blue),
893  and cdc15-22 (red) cells. Bottom: Median counts of 7 constitutively expressed genes as a
894  function of cell length in running windows sampled from a count distribution identical to the
895  experimental data. Shaded area represents 95% confidence intervals (methods). Data from
896 wee1-50, wt, cdc15-22 cells are pooled and gene names are indicated next to their
897  respective data line. C. Deviation from linearity is plotted as a function of linearity P-values
898  (see Figure 3E, methods). Low P-values mean significant deviation from linearity. Colours
899 are as in panel A. P-values equal 0.05 and 0.001 are shown with dashed lines and
900 annotated. D. rob7 mRNA copies/cell plotted against cell length for diploid (orange), cdc25-
901 22 (red) and rpb1 heterozygote diploid (purple). The solid line shows median counts in
902 running windows sampled from a count distribution identical to the experimental data.
903 Shaded area represents 95% confidence intervals (methods). E. myo7 mRNA copies/cell
904 plotted against cell length for diploid (orange), cdc25-22 (red) and myo1 heterozygote diploid
905 (purple). The solid line shows median counts in running windows sampled from a count
906 distribution identical to the experimental data. Shaded area represents 95% confidence
907 intervals (methods). F. pan1T mRNA copies/cell plotted against cell length for diploid
908 (orange), cdc25-22 (red) and pani heterozygote diploid (purple). The solid line shows
909 median counts in running windows sampled from a count distribution identical to the

910 experimental data. Shaded area represents 95% confidence intervals (methods). G.
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911 Representative images of an smFISH experiment for cell cycle regulated genes. The mid2,
912  fkh2, and ace2 mRNA are labelled in wee1-50, cdc25-22 and wt cells. Overlay of the three
913 channels and DAPI staining of DNA is shown on the last column. The white scale bar
914  represents 5um. H. Representative images of an smFISH experiment for a gene regulated
915 by external conditions (urg?). The urg1, ace2, and rpb7 mRNA are labelled in wt cells
916  before, 3 hours and 12 hours after addition of uracil to the culture. Overlay of the three
917 channels and DAPI staining of DNA is shown on the last column. The white scale bar
918 represents 5um. I. mid2 mRNA copies/cell plotted against cell length for wee7-50 (green), wt
919  (blue), cdc25-22 (red). The solid line shows median counts in running windows sampled
920 from a count distribution identical to the experimental data. Shaded area represents 95%
921  confidence intervals (methods). Only cells above the dotted lines were considered as
922  expressing the mRNA and were used for the running window analysis. J. fkh2 mRNA
923  copies/cell plotted against cell length for wee7-50 (green), wt (blue), cdc25-22 (red). The
924  solid line shows median counts in running windows sampled from a count distribution
925 identical to the experimental data. Shaded area represents 95% confidence intervals
926  (methods). Only cells above the dotted lines were considered as expressing the mRNA and
927  were used for the running window analysis. K. sib7 mRNA copies/cell plotted against cell
928 length for wt cells before (light blue), 20min after (blue) or 45min (pink) after addition of 2,2-
929  dipyridyl (DIP). The solid line shows median counts in running windows sampled from a
930 counts distribution identical to the experimental data. Shaded area represents 95%

931 confidence intervals (methods).

932  Figure S2 related to Figure 2. A. Representative images of smFISH experiments for the
933 rpb1 mRNA in cells before (t = 0) and after a 45min (t = 45) treatment with 15 pg/ml of
934  Thiolutin. Note the number of MRNA dots decreases with time and that the transcription foci
935 disappear after treatment. The white scale bar represents 5um. B. Left: mRNA half-lives
936 were measured after Thiolutin treatment in bins of increasing cell length for the rpb1 (2
937 repeats) and rpb2 mRNA in wee1-50, wt, and cdc25-22 cells (left). Right: mRNA half-lives
938  were measured after nmt41 promoter switch-off in bins of increasing cell length for the rpb1,
939  rpb2 and rip1 mMRNA in wt cells.

940 Figure S3 related to figure 3. A. Representative images of smFISH experiments for the
941  rpb1 mRNA in haploid and diploid cells. Nascent transcription sites are indicated with white
942  arrows. The white scale bar represents 5um. B. Fraction of cells with 1, 2, or 3 nascent sites
943 (asin A) in haploid and diploid cells. Note the diploid cells have mostly 2 sites validating our
944  approach specificity and sensitivity to detect nascent transcription sites. C. Boxplot of
945 nascent sites intensities for the rpb7 gene in wee1-50 (green), wt (blue) and cdc25-22 (red)

946 (related to Figure 3A). D. Pearson correlation between mRNA numbers and cell length for
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947  the simulation data from Figure 3E. E. Histogram of ratio of initiation time scale (1/«) and

948 the sum of elongation time scale and termination time scale (%G+%) for parameter sets

949  resulting in linear scaling and parameter sets resulting in saturating transcription scaling
950 indicating that initiation rate should be limiting for linear transcriptional scaling. F. Elongation
951 time of a 2kb gene obtained from the simulations from Figure 3E for the models with
952 Initiation rates (a, green) and elongation rates (3, red) coupled with size. Only simulation that
953  achieved linearity are shown. Elongation time from published experimental measurements of
954  elongation rates (1-2kb/min) are shown. Note that the elongation scaling simulations require
955  elongation rates much slower than experimentally measured in order to achieve linearity. G.
956 ABC model selection results between the initiation scaling and elongation scaling TASEP
957 models for 3 genes across several strains. H. Distribution of the correlations of frequencies
958  of actively transcribing cells with cell length for different parameter sets from the Figure 3E
959  simulations. Note the strong positive correlations as observed in experimental data (Figure
960 3F). I. Boxplot of correlations between normalised intensities of the rpb1 mRNA and cell
961 length for all cell genotypes in sliding windows or containing different number of cells. Each
962  box represents a window of a given width. Sliding windows are shifted with increment of 1
963  cell along all cells ordered by length. Note that correlations are mainly positive. J. Average
964  gene analysis for the RNAPII ChIP-seq data from Figure 3H. Data were normalised to input
965 samples and split in 200 bins (50: upstream, 100: gene, 50: downstream) using the

966  deeptools package.

967 Figure S4 related to figure 4. A. Representative image of a single cell followed for a full
968  cell-cycle using ibidi slides. Brightfield (top), the nuclear marker Uch2 (middle) and the
969 RNAPII subunit Rpb1 bottom. B. Rpb1 normalised intensity/cell as a proxy for total cellular
970 protein concentration is plotted along time relative to the mitotic phase of the cell cycle. C.
971  Rpb9 total pixel intensity in the area of strong fluorescence signal (green mask in A) as a
972  proxy for chromatin bound amounts is plotted along time relative to the mitotic phase of the

973  cell cycle.

974  Figure S5 related to figure 5. A. Ratios of nascent site intensities of bi-nucleated cdc11-
975 119 cells plotted as a function of the ratio of local cytoplasmic volumes (methods). The
976  black line is the regression line from a linear model. B. Correlation between cell length and
977 nuclear area in pom1A (red) and wt (black) cells. Pearson corretions are shown. C. As in
978  Figure 5D for mRNA numbers. D. As in Figure 5D for mRNA numbers/nuclear volume
979 plotted as a function of nuclear volume. E. Simulation data from the model described in
980 Figure 5F. DNA bound RNAPII is plotted as a function of cell length. Magenta lines show a

981  running average. F. As in Figure 5E for mRNA numbers divided by nuclear area.
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