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Abstract 22 

In genomic selection (GS), genome-wide SNP markers are used to generate genomic 23 

estimated breeding values (gEBVs) for selection candidates. The application of GS in 24 

shellfish looks promising and has the potential to help in dealing with one of the main 25 

issues currently affecting Pacific oyster production worldwide, which is the “summer 26 

mortality syndrome”. This causes periodic mass mortality in farms worldwide and has 27 

mainly been attributed to a specific variant of the Ostreid herpesvirus (OsHV-1-μvar). 28 

In the current study, we evaluated the potential of genomic selection for host 29 

resistance OsHV in Pacific oysters, and compared it to pedigree-based approaches. 30 

An OsHV-1 disease challenge was performed using an immersion-based virus 31 

exposure treatment for oysters for seven days. 768 samples were genotyped using 32 

the medium density SNP array for oysters. GWAS was performed for the survival trait 33 

using a GBLUP approach in BLUPF90 software. Heritability ranged from 0.25±0.05 to 34 

0.37±0.05 (mean±s.e) based on pedigree and genomic information, respectively. 35 

Genomic prediction was more accurate than pedigree prediction, and SNP density 36 

reduction had little impact on prediction accuracy until marker densities dropped below 37 

~500 SNPs. This demonstrates the potential for GS in Pacific oyster breeding 38 

programs and importantly, demonstrates that a low number of SNPs might suffice to 39 

obtain accurate gEBVs, thus potentially making the implementation of GS more cost 40 

effective. 41 

 42 

 43 

 44 
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Introduction 46 

The use of genomic information to predict breeding values for selection candidates 47 

has become commonplace in advanced breeding programmes. Genomic selection 48 

(GS, proposed by Meuwissen et al. (2001), uses genome-wide markers to capture 49 

genetic variation in the trait of interest, even if the trait is highly polygenic. GS involves 50 

measurements of trait values and genotypes in a reference or training population, 51 

training of the genomic prediction model, and then use of this model to predict 52 

genomic breeding values (gEBVs) for selection candidates (Goddard and Hayes 53 

2007). 54 

High throughput genome-wide genotyping is a major component of genomic selection 55 

programmes. SNP arrays have enabled routine genotyping, facilitating the typing of 56 

many thousands of SNP markers dispersed throughout the genome of multiple 57 

individuals of the target species. Accordingly, SNP arrays have been developed for 58 

many important finfish aquaculture species such as Atlantic salmon, rainbow trout, 59 

catfish and carp among others (Houston et al. 2014; Yáñez et al. 2016; Palti et al. 60 

2015; Liu et al. 2014; Xu et al. 2014). In addition, two SNP arrays have been recently 61 

developed for Pacific oyster (C. gigas); a combined-species medium density array for 62 

Pacific oyster and European flat oyster (O.edulis) (Gutierrez et al. 2017) and a high 63 

density array for Pacific oyster (Qi et al. 2017). Moreover, a high density linkage map 64 

containing ~20K SNPs has recently been created and aligned with the physical 65 

reference genome assembly (Gutierrez et al. 2018a; Zhang et al. 2012). Using such 66 

arrays, several studies have demonstrated that genomic selection for aquaculture 67 

species results in improved accuracy compared to traditional pedigree-based 68 

approaches; for example in Atlantic salmon (Robledo et al. 2018), coho salmon 69 
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(Barría et al. 2018), rainbow trout (Vallejo et al. 2018), common carp (Palaiokostas et 70 

al. 2018b), and Pacific oyster (Gutierrez et al. 2018b). 71 

One of the main issues currently affecting oyster production worldwide is the“summer 72 

mortality syndrome”. These events cause periodic mass mortality in farms worldwide 73 

and have been mainly attributed to a specific variant of the ostreid herpesvirus (OsHV-74 

1-μvar) (Segarra et al. 2010), amongst other factors (de Lorgeril et al. 2018; Petton et 75 

al. 2015; Malham et al. 2009). Selective breeding to improve resistance to OsHV-1 76 

may have potential as a prevention strategy, and there is significant additive genetic 77 

variation in survival during OsHV-1 infection, with estimated heritability values ranging 78 

from 0.12 to 0.63 (Azéma et al. 2017; Camara et al. 2017; Dégremont et al. 2015b; 79 

Gutierrez et al. 2018a). However, QTL and GWAS approaches to investigate the 80 

genetic architecture of host resistance to the virus have suggested that the trait may 81 

be polygenic (Gutierrez et al. 2018a; Sauvage et al. 2010). For that reason, marker-82 

assisted selection for OsHV-1 resistance is unlikely to be effective, and the trait is a 83 

good candidate for genomic selection.  84 

Substantial efforts have been made to establish selective breeding programs for 85 

Pacific oyster, with OsHV-1 resistance as a primary target trait (Dégremont et al. 86 

2010; Dégremont et al. 2015a; Camara and Symonds 2014). An encouraging 87 

response to selection for resistance has been observed in Pacific oyster spat after four 88 

generations of mass selection (Dégremont et al. 2015c), while family based selection 89 

breeding programs have shown encouraging results after a few generations (Camara 90 

et al. 2017). Given that Pacific oysters account for 98% of global oyster production, 91 

which was estimated at ~0.6 M tons in 2016 (FAO, 2018), this pathogen is a 92 

significant problem for global aquaculture. Genomic tools can enhance selective 93 

breeding in aquaculture species via improvements in selection accuracy 94 
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corresponding to increased genetic gain, together with improved control of inbreeding 95 

(Houston 2017).  96 

The aim of this study was to investigate the genetic architecture of resistance to 97 

OsHV-1 infection in a Pacific oyster population from New Zealand by a disease 98 

challenge experiment followed by a genome wide association study (GWAS), and to 99 

evaluate the use of genomic prediction to inform the implementation of genomic 100 

selection in selective breeding programmes. 101 

 102 

Methods 103 

Source of oysters and disease challenge 104 

Families were produced at the Cawthron Institute’s hatchery in Nelson, NZ as part of 105 

the 2015 cohort in an ongoing commercial selective breeding program. Families within 106 

this cohort can be separated in two groups: the “Nucleus” group which originated from 107 

survivors of OsHV-1 exposure with expected higher levels of resistance to OsHV-1; 108 

and the “Down-selected” group originating from families that have shown poor survival 109 

to the virus. Estimated breeding values based on field challenge survival were used to 110 

select the parents from the previous 2013 cohort to form the nucleus and down-111 

selected full-sib families.  112 

The OsHV-1 challenge experiment was performed on 1860 animals approximately 4 113 

months post-spawning using the immersion challenge model described in Camara et 114 

al. (2017). In brief, viral stock is obtained from oysters with confirmed high virus loads 115 

which are homogenised, and after serial filtering steps the supernatant is 116 

cryopreserved in a 10 % glycerol and 10 % foetal calf serum solution. The same 117 

process was used to prepare a negative control stock from virus-free oysters. 118 
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Subsequently, groups of 20 oysters derived from each of 31 full sibling families were 119 

exposed to one of three treatments; (i) a high concentration of the virus, (ii) a low 120 

concentration of the virus, and (iii) a mock-challenged negative control (total n = 121 

1860). Inoculation for the high virus concentration (hv) was prepared by diluting 4 mL 122 

of the virus stock in 7.7 L of artificial seawater (ASW), same procedure was followed 123 

for the negative control (no virus stock). The inoculation for the low virus concentration 124 

(lv) was a 10-fold dilution with ASW of the high virus concentration water. All families 125 

from the 2015 cohort with sufficient available spat were challenged. The oysters were 126 

randomly sampled from their family-specific upwelling tanks in the virus-free nursery, 127 

cleaned and placed in family-specific mesh bags which were transferred to three 120 128 

L tanks in a pre-determined pattern to spread the families evenly throughout the tank 129 

in a grid system. Inoculation water (7 L/tank) was added to the tanks, and after 16 h 130 

incubation a further 73 L ASW was added to each tank with constant aeriation and 131 

temperature of 21 °C. Water samples (100 µL) were collected daily from each tank 132 

and frozen prior to qPCR analysis to confirm viral load in the treatments and control.  133 

ASW was replaced every second day with the same volume of newly prepared ASW 134 

and microalgal feed in the form of 120 ml axenically-cultured Isochrysis galbana was 135 

added to each tank. The oysters were assessed for signs of life daily for 7 days after 136 

inoculation. Dead oysters were removed, counted, and frozen until DNA extraction.  137 

 138 

SNP array genotyping 139 

Genomic DNA was extracted from the whole oyster (minus the shell) using the 140 

E.Z.N.A. Mollusc DNA Kit (Omega Biotek), quantified on Qubit and the DNA integrity 141 

was checked on a 1% agarose gel. Following quality control (QC) and considering the 142 
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384 well configuration of the array, 768 samples (718 progenies and 44 parents) were 143 

sent for genotyping to ThermoFisher Scientific (Santa Clara, USA) using the recently 144 

developed Affymetrix SNP medium density SNP array for oysters (Gutierrez et al. 145 

2017). All dead oysters were genotyped, as well as 16 surviving oysters from each 146 

family (8 from each treatment) when possible, therefore, the number of genotyped 147 

individuals per family ranged from 16 to 40 depending on the DNA quality and the 148 

number of mortalities per family in each condition (hv or lv) (Table S1 and S2). After 149 

genotyping, initial QC steps were performed using the Axiom Analysis Suite v2.0.0.35, 150 

and 762 individuals and 22,535 SNPs were retained following the “best practices 151 

workflow”, which included ‘PolyHighResolution’ and ‘NoMinorHom’ SNPs only, a 152 

sample and SNP call threshold of 90 %, plus a manual inspection and removal of 153 

selected SNPs with unusual clustering patterns. The SNPs were then checked for 154 

Mendelian errors using Plink 1.9 (Chang et al. 2015), leaving a total of 21,338 SNPs 155 

and 762 individual animals that were used for the linkage map construction. Final 156 

filtering of the SNP set was performed using the GenABEL package (Aulchenko et al. 157 

2007) in R, using the check.markers module to retain SNPs with a MAF > 0.01 and 158 

allow a deviation from Hardy-Weinberg Equilibrium < 1 x 10-6, leaving 17,919 filtered 159 

SNPs that were used for heritability, GWAS and GS analyses. 160 

Linkage mapping 161 

Due to the lack of a chromosome-anchored reference genome assembly for Pacific 162 

oyster, the genotype data were used to construct a high density linkage map. The 163 

maps from a total of 21,338 SNPs were constructed using the software Lep-map 3 164 

(Rastas 2017). The nuclear families used for the generation of this map were assigned 165 

using the SNP data and the software Cervus (Kalinowski et al. 2007) as described by 166 

Gutierrez et al. (2017), and confirmed through the IBD module in Lep-map3. Putative 167 
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erroneous or missing parental genotypes were re-called using the “ParentCall2” 168 

module. Linkage groups were identified using the “SeparateChromosomes2” module 169 

using a LodLimit = 31 and distortionLod = 1. Data were then filtered to remove 170 

markers from families showing significant segregation distortions 171 

(“dataTolerance=0.001”) and the “OrderMarkers2” module was applied to order the 172 

markers within the linkage groups. Individuals showing excessive recombination were 173 

also removed from the data as this indicated a potential problem with genotyping or 174 

family assignment for this individual. Additionally, markers that could not be assigned 175 

were positioned according to our previously developed linkage map (Gutierrez et al. 176 

2018a). 177 

Estimation of genetic parameters for OsHV-1 resistance 178 

Genetic parameters for the OsHV-1 resistance traits were estimated using a linear 179 

mixed model approach fitting animal as a random effect and tank as fixed effect, using 180 

ASReml 4 (Gilmour et al. 2014) with the following model, but adjusted to the logit-link 181 

function: 182 

 183 

y = X + Zu + e 184 

  185 

where y is the observed trait, u is the vector of additive genetic effects, e is the 186 

residual error, and X and Z the corresponding incidence matrices for fixed effects and 187 

additive effects, respectively. The (co)variance structure for the genetic effect was 188 

calculated either using pedigree (A) or genomic (G) matrices (i.e. u ~ N(0, Aσa 2) or 189 

N(0, Gσa 2)), where G is the genomic relationship matrix and σ2 is the genetic 190 
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variance. The heritability of the traits was estimated using the additive genetic 191 

variance and total phenotypic variance, as follows: 192 

 193 

h2 = σ2a / σ2p 194 

 195 

where σ2 a is the additive genetic variance and σ2 p is the total phenotypic variance 196 

which is a sum of σ 2 
a   + σ 2e . To account for the binary nature of the trait i.e. 0 197 

(mortality) or 1 (survival), heritability was adjusted to the underlying liability scale using 198 

the logit-link function which implies a correction of the residual variance by the factor 199 

π2/3. The genomic relationship matrix required for the analysis was obtained 200 

according to (VanRaden 2008) using the BLUPF90 software (Misztal et al. 2002) 201 

based on the final set of 17,919 filtered SNPs. 202 

Genome-wide association studies 203 

Association analyses were run using the BLUPF90 software (Misztal et al. 2002) using 204 

a GBLUP approach and taking tank as a fixed effect. In this case, association 205 

analyses were performed for single SNPs and also for moving windows of 10, 20 and 206 

50 adjacent SNPs (based on the linkage map position) that were created using 207 

POSTGSF90 (Aguilar et al. 2010).  208 

Genomic Selection 209 

For the estimation of genomic prediction values, the genotype data used 210 

corresponded to the same 17,919 SNPs used for the GWAS analyses. Estimated 211 

breeding values were obtained using either pedigree-based BLUP (PBLUP) or 212 

Genomic best linear unbiased prediction (GBLUP) using the linear model described 213 
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above. The accuracy of genomic selection was estimated by fivefold cross validation 214 

(training set 80%, validation set 20%), which were each repeated 10 times. 215 

Phenotypes (binary survival) from the validation population were masked and 216 

breeding values were estimated using ASReml 4 using the linear mixed model 217 

described above. Prediction accuracy was calculated as the correlation between the 218 

predicted EBVs of the validation set and the actual phenotypes divided by the square 219 

root of the heritability estimated in the validation population [~r(y1, y2)/h]. Mean 220 

prediction accuracy values obtained from the different sets were compared between 221 

the pedigree and genomic approaches. 222 

To assess the utility of low density SNP panels for breeding value prediction, two 223 

strategies for in silico selection of the SNPs were used. First, the low density SNP 224 

panel for use in the computing the genomic relationship matrix was selected by a 225 

progressive increase of the MAF threshold from 0.01 to 0.475 resulting in a 226 

progressive reduction in number of markers; Secondly, the low density SNP panel was 227 

selected using a strategy of random “thinning” of SNPs from the full dataset (15K, 228 

10K, 5K, 2.5K, 1K, and down to 500 SNPs). 229 

Results  230 

Challenge survival and heritability 231 

After the seven days of the disease challenge the average mortality per family for the 232 

entire challenge was 16.8 % and 24.7% for the LV and HV conditions, respectively, 233 

but with substantial variation in mortality levels between families (Table S2). High 234 

phenotypic correlations were observed between the family-level mortality rates in 235 

these two scenarios (R = 0.8; r2 = 0.64) as can be observed in (Figure 1 and Figure 236 
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S1). Within the 718 genotyped samples (progenies) that were part of the challenge, 237 

the mortality level was 33 %. 238 

 239 

 240 

Figure 1. Average survival (s.e) for the 31 families included in the disease challenge  241 

 242 

There were 762 individuals (718 progenies + 44 parents) with genotype data that 243 

passed QC and had accurate pedigree as confirmed by the family assignment 244 

software. Based on these data 30 families were consistent with the expected pedigree 245 

(although a small number of erroneously assigned individuals were identified and 246 

corrected based on genotype information. Only one family (id = 24) could not be 247 

assigned to both parents, suggesting that the dam was not included within the 248 

genotyped candidate parents, probably due to miss-labelling during the crosses. 249 
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Making use of the updated pedigree information, the estimated heritability for the 250 

binary survival trait was 0.25 ± 0.05. These estimates were higher when using the 251 

genomic kinship matrix, with 0.37 ± 0.05. This gives evidence that there is a significant 252 

genetic component involved in the resistance to OsHV in Pacific oyster in these 253 

populations. 254 

Linkage map 255 

The linkage mapping was performed using 30 full sibling families comprising 691 256 

progenies and 43 parents (one family was discarded as both parents were not 257 

assigned). The linkage map contains 19,926 SNPs distributed on 10 LGs (in 258 

accordance with the Pacific oyster karyotype), with a length of 941 cM for the male 259 

map and 992 cM for the female map. 18,554 SNPs were mapped on the analysed 260 

families while the position of 1,372 SNPs was estimated from our previously published 261 

linkage map. Additionally, 14,058 SNPs are shared between the current and the 262 

previously published map obtained from a different population (Gutierrez et al. 2018a). 263 

The ~20 K mapped SNPs correspond to 1,880 scaffolds and 133 contigs, according to 264 

the latest oyster genome assembly (GCA_000297895.1, Zhang et al. 2012). We 265 

observed that approximately 38 % (719 out 1,880) of the scaffolds with informative 266 

markers show evidence of errors in the assembly, due to assignment to at least two 267 

distinct LGs in our map, following similar pattern described in our previous linkage 268 

map (Gutierrez et al. 2018a; Hedgecock et al. 2015). 269 

Association analyses  270 

GWAS performed using the BLUPF90 software did not detect any single SNPs 271 

showing a major association with the trait, shown as % of genetic variance explained 272 
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by the SNP (Figure S2A). A similar situation was observed when a floating SNP 273 

window approach was taken, where variance values increased but not showing 274 

evidence of a major QTL (Figure 2 & Figure S2B-C). Particularly, regions on LG1, 275 

LG7, LG8 and LG10 seem to explain higher percentage of the genetic variance 276 

(between 1.2 and 1.67) although not high enough to suggest major-effect QTL, which 277 

implies a polygenic architecture to host resistance.  278 

 279 

Figure 2. GWAS performed using moving windows of 50 SNPs, according to position 280 

on the linkage map.  281 

Genomic Prediction 282 

Genomic prediction accuracy for the binary survival trait was analysed by randomly 283 

splitting the samples into training (80 %) and validation (20 %) sets for cross-284 

validation, and this was repeated ten times. The genomic prediction accuracy results 285 

show that prediction accuracies obtained using genomic information (G-matrix) are 286 
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higher than using the pedigree information (A-matrix) (Figure 3 & Table S3), with 287 

values ranging from 0.637 using pedigree to 0.758 using genomic information 288 

(increase of ~19 %). Two approaches were taken to evaluate the effect of marker 289 

density on genomic prediction accuracy. The first used progressive increase of minor 290 

allele frequency (MAF) threshold, resulting in progressive decrease in SNP number. 291 

The second involved choosing subsets of SNPs for the low density panels at random. 292 

Both thinning approaches showed little impact on prediction accuracy until marker 293 

densities dropped below ~2,500 SNPs. With the MAF approach, the genomic 294 

prediction accuracies obtained using the lower density SNP panels ranged from 0.755 295 

to 0.693 (MAF>0.475 530 SNPs), while using the random subsets accuracies ranged 296 

from 0.758 to 0.678 (500 SNPs). 297 

 298 
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Figure 3. Genomic prediction results showing mean accuracies (s.d) obtained from 299 

both pedigree A-matrix (PBLUP) and genomic matrix G-matrix (GBLUP) 300 

 301 

Discussion 302 

Disease challenge and heritability of OsHV-1 resistance 303 

The disease challenge set-up was consistent for both the low and high virus 304 

conditions showing high phenotypic correlation between family level mortality in the 305 

two challenges. This suggests that the variation in family level mortality is likely to be 306 

genetic, and the absence of mortality in the control group suggests that the challenge 307 

group mortality is due to OsHV-1 (Table S2). Moderate levels of heritability of OsHV 308 

resistance were observed in this study (0.25 - 0.37), which is similar to was has been 309 

described in previous studies (Dégremont et al. 2015b; Azéma et al. 2017; Camara et 310 

al. 2017), and higher than showed in our previous study in a different population with 311 

lower overall mortality rate (Gutierrez et al. 2018a). Heritability estimates were higher 312 

when using the genomic relationship matrix (GRM) compared to estimates obtained 313 

using the pedigree-based relationship matrix. A possible reason for this is 314 

overestimation of the additive genetic variance using a GRM due to high levels of 315 

linkage disequilibrium generated by recent selective breeding (Palaiokostas et al. 316 

2018a; Fernando et al. 2017).  317 

Genome-wide association study 318 

The linkage map construction resulted in ~20K SNPs distributed across 10 linkage 319 

groups in similar positions as previously described in a different population (Gutierrez 320 

et al. 2018a). As with previous linkage maps, the mapping of SNPs located within 321 

single reference genome contigs to multiple linkage groups highlighted putative 322 
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reference genome assembly errors (Hedgecock et al. 2015; Zhang et al. 2012). It is 323 

worth noting that 99.8% of the markers were located on the same LG as positioned in 324 

our previous map, which highlights the utility of the SNP chip across multiple 325 

populations, and the reliability of both maps.  326 

The association analyses for OsHV-1 survival suggest that OsHV resistance in the 327 

Pacific oyster is likely controlled by multiple genomic regions in this population. Both 328 

the single SNP and moving window approach did not show evidence of a major region 329 

involved in the resistance. When the SNP window size was 50 the variance explained 330 

by some regions located on LG1, LG7, LG8 and LG10 was higher but no region 331 

explained more than 2 % of the genetic variance in the trait (Figure 2). Previous 332 

research into the genetics of OsHV resistance has also suggested an oligogenic or 333 

polygenic architecture of the trait which is consistent with our findings. In particular, a 334 

previous study found that LG V, VI, VII & IX (which correspond to LG 6, LG 7, LG 8 & 335 

LG 10 in our map) contain genomic regions associated to summer mortality resistance 336 

(Sauvage et al. 2010). Additionally, we recently described that regions on multiple LGs 337 

are likely involved in the resistance to OsHV in a Pacific oyster population from 338 

Guernsey (Gutierrez et al. 2018a). When taken together, these studies suggest that 339 

host resistance to OsHV in Pacific oyster is consistently a polygenic trait. .  340 

Genomic selection 341 

Genomic predictions (GBLUP) of breeding values for host resistance to OsHV are 342 

likely to be more accurate than those based on pedigree (PBLUP) in this population. 343 

The prediction accuracy values ranged from 0.678 to 0.758 for GBLUP (with SNP 344 

densities ranging from 500 to 18K), while PBLUP only reached an accuracy of 0.637. 345 

This result has been mirrored in other studies of genomic versus pedigree-based 346 
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prediction of disease resistance breeding values for other important farmed fish 347 

species, e.g Atlantic salmon (Tsai et al. 2015; Yoshida et al. 2017; Ødegård et al. 348 

2014; Robledo et al. 2018), rainbow trout (Vallejo et al. 2017; Yoshida et al. 2018), 349 

sea bream (Palaiokostas et al. 2016) and sea bass (Palaiokostas et al. 2018a). 350 

Further, in shellfish similar findings have been observed for prediction of breeding 351 

values for growth traits in scallop (Dou et al. 2016) and Pacific oyster (Gutierrez et al. 352 

2018b). Therefore, the technical potential of genomic selection for expedited genetic 353 

improvement in shellfish has been shown. However, the economic viability remains an 354 

open question. The cost of genotyping is a key consideration for the commercial 355 

implementation of genomic selection in shellfish. In the current study, <1000 SNPs 356 

was a sufficient density to provide ~19 % increase in prediction accuracy versus 357 

PBLUP. This raises the possibility of a low density genomic selection approach for 358 

OsHV-1 resistance in oyster breeding, since low density genotyping can be 359 

substantially cheaper than high density SNP arrays. It is worth noting that the training 360 

and validation sets in the current study contain closely related animals, including full 361 

siblings. As a result, these individuals will share large genomic segments, which can 362 

be capture by the low density SNP panels. As the genetic distance between the 363 

training and validation sets increased, genomic prediction accuracy is likely to 364 

decrease markedly, as has been shown in other aquaculture species (Palaiokostas et 365 

al., 2019). In addition, it has been demonstrated some populations of Pacific oysters 366 

exhibit rapid decay of linkage disequilibrium (Gutierrez et al. 2017). As such, regular 367 

testing on close relatives of breeding candidates is required to maintain prediction 368 

accuracy, otherwise accuracy will decrease with successive generations of a breeding 369 

programme. Having that said, this scenario is typical for aquaculture breeding 370 

programs where testing of full-siblings of selection candidates is performed.  371 
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Historically, the breeding programme for Pacific oysters run by the Cawthron Institute 372 

has used broodstock which are put through grow-out in field environments and are 373 

brought back into the hatchery for reproduction. As such, when OsHV outbreaks 374 

occur, it has been common practice to breed from survivors of the highest performing 375 

families. Genomic selection is best-suited to traits that are not measurable on the 376 

selection candidates themselves, and helps selection of individuals from within a full 377 

sibling family. When survivors are used as breeding candidates, these benefits are 378 

somewhat negated. However, in the event that broodstock cannot be brought back 379 

into a hatchery (e.g. due to a biosecurity issue) the practical value of genomic 380 

selection would be much higher.  381 

The Cawthron breeding programme found no evidence for the vertical transmission of 382 

OsHV-1 in the hatchery, and the existing presence of OsHV-1 in wild populations 383 

meant that the biosecurity implications of breeding from survivors were manageable. 384 

Therefore the ability to select broodstock from large on-farm progeny trials exposed to 385 

OsHV-1 enabled the benefits of within-family selection to be captured, rather than 386 

relying only on among-family selection. Where vertical transmission occurs in the 387 

hatchery or biosecurity is constraining, the option to breed from survivors may not be 388 

available. In this case, genomic selection provides the opportunity for within family 389 

selection even though the phenotype (e.g. survival) cannot be measured directly on 390 

broodstock candidates. 391 

 392 

Conclusion 393 

The results from the current study provide evidence indicating that OsHV resistance is 394 

polygenic in Pacific oyster, consistent with current literature and analyses across 395 
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different populations. Due to the polygenic nature of the resistance, genomic selection 396 

is a well-placed methodology for the improvement of current pedigree-based selection 397 

schemes. Indeed results show that genomic prediction of OsHV-1 resistance is more 398 

accurate than pedigree-based prediction even with a reduced number of SNPs (down 399 

to less than   1,000 SNPs). These results suggest that low cost genotyping solutions 400 

could be within reach to provide a G-matrix capable of generating accurate GEBV 401 

values. The use of genomic data is likely to bring significant improvement to Pacific 402 

oyster breeding programmes, particularly to improve selection of challenging traits that 403 

rely on sib-testing (e.g. disease resistance) where genomic selection can more 404 

effectively capture within-family variation.  405 
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