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Abstract

In genomic selection (GS), genome-wide SNP markers are used to generate genomic
estimated breeding values (gEBVS) for selection candidates. The application of GS in
shellfish looks promising and has the potential to help in dealing with one of the main
issues currently affecting Pacific oyster production worldwide, which is the “summer
mortality syndrome”. This causes periodic mass mortality in farms worldwide and has
mainly been attributed to a specific variant of the Ostreid herpesvirus (OsHV-1-pvar).
In the current study, we evaluated the potential of genomic selection for host
resistance OsHYV in Pacific oysters, and compared it to pedigree-based approaches.
An OsHV-1 disease challenge was performed using an immersion-based virus
exposure treatment for oysters for seven days. 768 samples were genotyped using
the medium density SNP array for oysters. GWAS was performed for the survival trait
using a GBLUP approach in BLUPF90 software. Heritability ranged from 0.25+0.05 to
0.37+0.05 (meanzs.e) based on pedigree and genomic information, respectively.
Genomic prediction was more accurate than pedigree prediction, and SNP density
reduction had little impact on prediction accuracy until marker densities dropped below
~500 SNPs. This demonstrates the potential for GS in Pacific oyster breeding
programs and importantly, demonstrates that a low number of SNPs might suffice to
obtain accurate gEBVs, thus potentially making the implementation of GS more cost

effective.
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Introduction

The use of genomic information to predict breeding values for selection candidates
has become commonplace in advanced breeding programmes. Genomic selection
(GS, proposed by Meuwissen et al. (2001), uses genome-wide markers to capture
genetic variation in the trait of interest, even if the trait is highly polygenic. GS involves
measurements of trait values and genotypes in a reference or training population,
training of the genomic prediction model, and then use of this model to predict
genomic breeding values (gEBVS) for selection candidates (Goddard and Hayes

2007).

High throughput genome-wide genotyping is a major component of genomic selection
programmes. SNP arrays have enabled routine genotyping, facilitating the typing of
many thousands of SNP markers dispersed throughout the genome of multiple
individuals of the target species. Accordingly, SNP arrays have been developed for
many important finfish aquaculture species such as Atlantic salmon, rainbow trout,
catfish and carp among others (Houston et al. 2014; Yafiez et al. 2016; Palti et al.
2015; Liu et al. 2014; Xu et al. 2014). In addition, two SNP arrays have been recently
developed for Pacific oyster (C. gigas); a combined-species medium density array for
Pacific oyster and European flat oyster (O.edulis) (Gutierrez et al. 2017) and a high
density array for Pacific oyster (Qi et al. 2017). Moreover, a high density linkage map
containing ~20K SNPs has recently been created and aligned with the physical
reference genome assembly (Gutierrez et al. 2018a; Zhang et al. 2012). Using such
arrays, several studies have demonstrated that genomic selection for aquaculture
species results in improved accuracy compared to traditional pedigree-based

approaches; for example in Atlantic salmon (Robledo et al. 2018), coho salmon


https://doi.org/10.1101/754473
http://creativecommons.org/licenses/by-nc-nd/4.0/

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

bioRxiv preprint doi: https://doi.org/10.1101/754473; this version posted September 5, 2019. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(Barria et al. 2018), rainbow trout (Vallejo et al. 2018), common carp (Palaiokostas et

al. 2018b), and Pacific oyster (Gutierrez et al. 2018b).

One of the main issues currently affecting oyster production worldwide is the“summer
mortality syndrome”. These events cause periodic mass mortality in farms worldwide
and have been mainly attributed to a specific variant of the ostreid herpesvirus (OsHV-
1-pvar) (Segarra et al. 2010), amongst other factors (de Lorgeril et al. 2018; Petton et
al. 2015; Malham et al. 2009). Selective breeding to improve resistance to OsHV-1
may have potential as a prevention strategy, and there is significant additive genetic
variation in survival during OsHV-1 infection, with estimated heritability values ranging
from 0.12 to 0.63 (Azéma et al. 2017; Camara et al. 2017; Dégremont et al. 2015b;
Gutierrez et al. 2018a). However, QTL and GWAS approaches to investigate the
genetic architecture of host resistance to the virus have suggested that the trait may
be polygenic (Gutierrez et al. 2018a; Sauvage et al. 2010). For that reason, marker-
assisted selection for OsHV-1 resistance is unlikely to be effective, and the trait is a

good candidate for genomic selection.

Substantial efforts have been made to establish selective breeding programs for
Pacific oyster, with OsHV-1 resistance as a primary target trait (Dégremont et al.

2010; Dégremont et al. 2015a; Camara and Symonds 2014). An encouraging
response to selection for resistance has been observed in Pacific oyster spat after four
generations of mass selection (Dégremont et al. 2015c), while family based selection
breeding programs have shown encouraging results after a few generations (Camara
et al. 2017). Given that Pacific oysters account for 98% of global oyster production,
which was estimated at ~0.6 M tons in 2016 (FAO, 2018), this pathogen is a
significant problem for global aquaculture. Genomic tools can enhance selective

breeding in aquaculture species via improvements in selection accuracy
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95 corresponding to increased genetic gain, together with improved control of inbreeding

96 (Houston 2017).

97  The aim of this study was to investigate the genetic architecture of resistance to

98  OsHV-1 infection in a Pacific oyster population from New Zealand by a disease

99 challenge experiment followed by a genome wide association study (GWAS), and to
100 evaluate the use of genomic prediction to inform the implementation of genomic

101  selection in selective breeding programmes.

102

103 Methods

104  Source of oysters and disease challenge

105  Families were produced at the Cawthron Institute’s hatchery in Nelson, NZ as part of
106  the 2015 cohort in an ongoing commercial selective breeding program. Families within
107  this cohort can be separated in two groups: the “Nucleus” group which originated from
108  survivors of OsHV-1 exposure with expected higher levels of resistance to OsHV-1,
109  and the “Down-selected” group originating from families that have shown poor survival
110  to the virus. Estimated breeding values based on field challenge survival were used to
111 select the parents from the previous 2013 cohort to form the nucleus and down-

112  selected full-sib families.

113 The OsHV-1 challenge experiment was performed on 1860 animals approximately 4

114  months post-spawning using the immersion challenge model described in Camara et
115  al. (2017). In brief, viral stock is obtained from oysters with confirmed high virus loads
116  which are homogenised, and after serial filtering steps the supernatant is

117  cryopreserved in a 10 % glycerol and 10 % foetal calf serum solution. The same

118  process was used to prepare a negative control stock from virus-free oysters.
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119  Subsequently, groups of 20 oysters derived from each of 31 full sibling families were
120 exposed to one of three treatments; (i) a high concentration of the virus, (ii) a low

121 concentration of the virus, and (iii) a mock-challenged negative control (total n =

122 1860). Inoculation for the high virus concentration (hv) was prepared by diluting 4 mL
123 of the virus stock in 7.7 L of artificial seawater (ASW), same procedure was followed
124  for the negative control (no virus stock). The inoculation for the low virus concentration
125  (Iv) was a 10-fold dilution with ASW of the high virus concentration water. All families
126  from the 2015 cohort with sufficient available spat were challenged. The oysters were
127 randomly sampled from their family-specific upwelling tanks in the virus-free nursery,
128 cleaned and placed in family-specific mesh bags which were transferred to three 120
129 L tanks in a pre-determined pattern to spread the families evenly throughout the tank
130 in a grid system. Inoculation water (7 L/tank) was added to the tanks, and after 16 h
131  incubation a further 73 L ASW was added to each tank with constant aeriation and
132  temperature of 21 °C. Water samples (100 uL) were collected daily from each tank
133  and frozen prior to gPCR analysis to confirm viral load in the treatments and control.
134  ASW was replaced every second day with the same volume of newly prepared ASW
135 and microalgal feed in the form of 120 ml axenically-cultured Isochrysis galbana was
136 added to each tank. The oysters were assessed for signs of life daily for 7 days after

137  inoculation. Dead oysters were removed, counted, and frozen until DNA extraction.

138

139  SNP array genotyping

140 Genomic DNA was extracted from the whole oyster (minus the shell) using the
141  E.Z.N.A. Mollusc DNA Kit (Omega Biotek), quantified on Qubit and the DNA integrity

142 was checked on a 1% agarose gel. Following quality control (QC) and considering the
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143 384 well configuration of the array, 768 samples (718 progenies and 44 parents) were
144  sent for genotyping to ThermoFisher Scientific (Santa Clara, USA) using the recently
145  developed Affymetrix SNP medium density SNP array for oysters (Gutierrez et al.

146  2017). All dead oysters were genotyped, as well as 16 surviving oysters from each
147  family (8 from each treatment) when possible, therefore, the number of genotyped

148 individuals per family ranged from 16 to 40 depending on the DNA quality and the

149  number of mortalities per family in each condition (hv or Iv) (Table S1 and S2). After
150  genotyping, initial QC steps were performed using the Axiom Analysis Suite v2.0.0.35,
151  and 762 individuals and 22,535 SNPs were retained following the “best practices

152 workflow”, which included ‘PolyHighResolution’ and ‘NoMinorHom’ SNPs only, a

153  sample and SNP call threshold of 90 %, plus a manual inspection and removal of

154  selected SNPs with unusual clustering patterns. The SNPs were then checked for

155  Mendelian errors using Plink 1.9 (Chang et al. 2015), leaving a total of 21,338 SNPs
156  and 762 individual animals that were used for the linkage map construction. Final

157  filtering of the SNP set was performed using the GenABEL package (Aulchenko et al.
158  2007) in R, using the check.markers module to retain SNPs with a MAF > 0.01 and
159  allow a deviation from Hardy-Weinberg Equilibrium < 1 x 10, leaving 17,919 filtered

160  SNPs that were used for heritability, GWAS and GS analyses.
161  Linkage mapping

162  Due to the lack of a chromosome-anchored reference genome assembly for Pacific
163  oyster, the genotype data were used to construct a high density linkage map. The

164  maps from a total of 21,338 SNPs were constructed using the software Lep-map 3

165 (Rastas 2017). The nuclear families used for the generation of this map were assigned
166  using the SNP data and the software Cervus (Kalinowski et al. 2007) as described by

167  Gutierrez et al. (2017), and confirmed through the IBD module in Lep-map3. Putative


https://doi.org/10.1101/754473
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/754473; this version posted September 5, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

168  erroneous or missing parental genotypes were re-called using the “ParentCall2”

169 module. Linkage groups were identified using the “SeparateChromosomes2” module
170  using a LodLimit = 31 and distortionLod = 1. Data were then filtered to remove

171 markers from families showing significant segregation distortions

172 (“dataTolerance=0.001") and the “OrderMarkers2” module was applied to order the
173 markers within the linkage groups. Individuals showing excessive recombination were
174  also removed from the data as this indicated a potential problem with genotyping or
175  family assignment for this individual. Additionally, markers that could not be assigned
176  were positioned according to our previously developed linkage map (Gutierrez et al.

177  2018a).
178  Estimation of genetic parameters for OsHV-1 resistance

179  Genetic parameters for the OsHV-1 resistance traits were estimated using a linear

180  mixed model approach fitting animal as a random effect and tank as fixed effect, using
181  ASReml 4 (Gilmour et al. 2014) with the following model, but adjusted to the logit-link
182  function:

183

184 y=X+Zu+e

185

186  where y is the observed trait, u is the vector of additive genetic effects, e is the

187  residual error, and X and Z the corresponding incidence matrices for fixed effects and
188  additive effects, respectively. The (co)variance structure for the genetic effect was
189 calculated either using pedigree (A) or genomic (G) matrices (i.e. u ~ N(0, Aoa ?) or

190 N(0, Goa ?)), where G is the genomic relationship matrix and o is the genetic
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191  variance. The heritability of the traits was estimated using the additive genetic

192  variance and total phenotypic variance, as follows:

193

194 h?= 0%/ 0%

195

196 where 02 a is the additive genetic variance and o? p is the total phenotypic variance
197 whichisasumof 024 +0 2. To account for the binary nature of the traiti.e. 0

198  (mortality) or 1 (survival), heritability was adjusted to the underlying liability scale using
199 the logit-link function which implies a correction of the residual variance by the factor
200 T%/3. The genomic relationship matrix required for the analysis was obtained

201  according to (VanRaden 2008) using the BLUPF90 software (Misztal et al. 2002)

202 based on the final set of 17,919 filtered SNPs.

203 Genome-wide association studies

204  Association analyses were run using the BLUPF90 software (Misztal et al. 2002) using
205 a GBLUP approach and taking tank as a fixed effect. In this case, association

206 analyses were performed for single SNPs and also for moving windows of 10, 20 and
207 50 adjacent SNPs (based on the linkage map position) that were created using

208 POSTGSF90 (Aguilar et al. 2010).

209 Genomic Selection

210 For the estimation of genomic prediction values, the genotype data used
211 corresponded to the same 17,919 SNPs used for the GWAS analyses. Estimated
212 breeding values were obtained using either pedigree-based BLUP (PBLUP) or

213 Genomic best linear unbiased prediction (GBLUP) using the linear model described
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214  above. The accuracy of genomic selection was estimated by fivefold cross validation
215  (training set 80%, validation set 20%), which were each repeated 10 times.

216  Phenotypes (binary survival) from the validation population were masked and

217  breeding values were estimated using ASReml 4 using the linear mixed model

218 described above. Prediction accuracy was calculated as the correlation between the

219 predicted EBVs of the validation set and the actual phenotypes divided by the square
220 root of the heritability estimated in the validation population [~r(y1, y2)/h]. Mean

221 prediction accuracy values obtained from the different sets were compared between

222  the pedigree and genomic approaches.

223  To assess the utility of low density SNP panels for breeding value prediction, two

224  strategies for in silico selection of the SNPs were used. First, the low density SNP

225  panel for use in the computing the genomic relationship matrix was selected by a

226  progressive increase of the MAF threshold from 0.01 to 0.475 resulting in a

227  progressive reduction in number of markers; Secondly, the low density SNP panel was
228 selected using a strategy of random “thinning” of SNPs from the full dataset (15K,

229 10K, 5K, 2.5K, 1K, and down to 500 SNPs).

230 Results

231 Challenge survival and heritability

232 After the seven days of the disease challenge the average mortality per family for the
233 entire challenge was 16.8 % and 24.7% for the LV and HV conditions, respectively,
234  but with substantial variation in mortality levels between families (Table S2). High

235  phenotypic correlations were observed between the family-level mortality rates in

236 these two scenarios (R = 0.8; r>=0.64) as can be observed in (Figure 1 and Figure
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237  S1). Within the 718 genotyped samples (progenies) that were part of the challenge,

238 the mortality level was 33 %.

239
100 LR 2
Hﬁ’ { :
EH' ) { !
75 }i
*
: *
S w0
2 q
>
"
25
ol
6936 21 38 13 20 49 24 65 25 3044 14223135 11 15 16 27 1217101928 2 182332 1 41
240 Family number

241  Figure 1. Average survival (s.e) for the 31 families included in the disease challenge

242

243  There were 762 individuals (718 progenies + 44 parents) with genotype data that

244  passed QC and had accurate pedigree as confirmed by the family assignment

245  software. Based on these data 30 families were consistent with the expected pedigree
246  (although a small number of erroneously assigned individuals were identified and

247  corrected based on genotype information. Only one family (id = 24) could not be

248  assigned to both parents, suggesting that the dam was not included within the

249  genotyped candidate parents, probably due to miss-labelling during the crosses.
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250 Making use of the updated pedigree information, the estimated heritability for the

251  binary survival trait was 0.25 + 0.05. These estimates were higher when using the

252 genomic kinship matrix, with 0.37 + 0.05. This gives evidence that there is a significant
253  genetic component involved in the resistance to OsHYV in Pacific oyster in these

254  populations.

255  Linkage map

256  The linkage mapping was performed using 30 full sibling families comprising 691

257  progenies and 43 parents (one family was discarded as both parents were not

258  assigned). The linkage map contains 19,926 SNPs distributed on 10 LGs (in

259  accordance with the Pacific oyster karyotype), with a length of 941 cM for the male
260 map and 992 cM for the female map. 18,554 SNPs were mapped on the analysed

261 families while the position of 1,372 SNPs was estimated from our previously published
262 linkage map. Additionally, 14,058 SNPs are shared between the current and the

263  previously published map obtained from a different population (Gutierrez et al. 2018a).
264 The ~20 K mapped SNPs correspond to 1,880 scaffolds and 133 contigs, according to
265 the latest oyster genome assembly (GCA_000297895.1, Zhang et al. 2012). We

266  observed that approximately 38 % (719 out 1,880) of the scaffolds with informative
267  markers show evidence of errors in the assembly, due to assignment to at least two
268  distinct LGs in our map, following similar pattern described in our previous linkage

269  map (Gutierrez et al. 2018a; Hedgecock et al. 2015).

270  Association analyses

271 GWAS performed using the BLUPF90 software did not detect any single SNPs

272 showing a major association with the trait, shown as % of genetic variance explained
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273 by the SNP (Figure S2A). A similar situation was observed when a floating SNP

274  window approach was taken, where variance values increased but not showing

275  evidence of a major QTL (Figure 2 & Figure S2B-C). Particularly, regions on LG1,
276  LG7, LG8 and LG10 seem to explain higher percentage of the genetic variance

277  (between 1.2 and 1.67) although not high enough to suggest major-effect QTL, which

278 implies a polygenic architecture to host resistance.
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279

280  Figure 2. GWAS performed using moving windows of 50 SNPs, according to position
281  on the linkage map.

282  Genomic Prediction

283  Genomic prediction accuracy for the binary survival trait was analysed by randomly
284  splitting the samples into training (80 %) and validation (20 %) sets for cross-
285 validation, and this was repeated ten times. The genomic prediction accuracy results

286  show that prediction accuracies obtained using genomic information (G-matrix) are
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287  higher than using the pedigree information (A-matrix) (Figure 3 & Table S3), with

288  values ranging from 0.637 using pedigree to 0.758 using genomic information

289  (increase of ~19 %). Two approaches were taken to evaluate the effect of marker

290 density on genomic prediction accuracy. The first used progressive increase of minor
291 allele frequency (MAF) threshold, resulting in progressive decrease in SNP number.
292  The second involved choosing subsets of SNPs for the low density panels at random.
293  Both thinning approaches showed little impact on prediction accuracy until marker

294  densities dropped below ~2,500 SNPs. With the MAF approach, the genomic

295  prediction accuracies obtained using the lower density SNP panels ranged from 0.755
296 to 0.693 (MAF>0.475 530 SNPs), while using the random subsets accuracies ranged

297 from 0.758 to 0.678 (500 SNPs).
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299  Figure 3. Genomic prediction results showing mean accuracies (s.d) obtained from

300 both pedigree A-matrix (PBLUP) and genomic matrix G-matrix (GBLUP)

301

302 Discussion

303 Disease challenge and heritability of OsHV-1 resistance

304 The disease challenge set-up was consistent for both the low and high virus

305 conditions showing high phenotypic correlation between family level mortality in the
306 two challenges. This suggests that the variation in family level mortality is likely to be
307 genetic, and the absence of mortality in the control group suggests that the challenge
308 group mortality is due to OsHV-1 (Table S2). Moderate levels of heritability of OsHV
309 resistance were observed in this study (0.25 - 0.37), which is similar to was has been
310 described in previous studies (Dégremont et al. 2015b; Azéma et al. 2017; Camara et
311 al. 2017), and higher than showed in our previous study in a different population with
312 lower overall mortality rate (Gutierrez et al. 2018a). Heritability estimates were higher
313  when using the genomic relationship matrix (GRM) compared to estimates obtained
314 using the pedigree-based relationship matrix. A possible reason for this is

315 overestimation of the additive genetic variance using a GRM due to high levels of

316 linkage disequilibrium generated by recent selective breeding (Palaiokostas et al.

317 2018a; Fernando et al. 2017).

318 Genome-wide association study

319  The linkage map construction resulted in ~20K SNPs distributed across 10 linkage
320 groups in similar positions as previously described in a different population (Gutierrez
321 etal. 2018a). As with previous linkage maps, the mapping of SNPs located within

322  single reference genome contigs to multiple linkage groups highlighted putative
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323 reference genome assembly errors (Hedgecock et al. 2015; Zhang et al. 2012). It is
324  worth noting that 99.8% of the markers were located on the same LG as positioned in
325  our previous map, which highlights the utility of the SNP chip across multiple

326  populations, and the reliability of both maps.

327 The association analyses for OsHV-1 survival suggest that OsHV resistance in the
328 Pacific oyster is likely controlled by multiple genomic regions in this population. Both
329 the single SNP and moving window approach did not show evidence of a major region
330 involved in the resistance. When the SNP window size was 50 the variance explained
331 by some regions located on LG1, LG7, LG8 and LG10 was higher but no region

332 explained more than 2 % of the genetic variance in the trait (Figure 2). Previous

333  research into the genetics of OsHV resistance has also suggested an oligogenic or
334 polygenic architecture of the trait which is consistent with our findings. In particular, a
335  previous study found that LG V, VI, VII & IX (which correspond to LG 6, LG 7, LG 8 &
336 LG 10 in our map) contain genomic regions associated to summer mortality resistance
337 (Sauvage et al. 2010). Additionally, we recently described that regions on multiple LGs
338 are likely involved in the resistance to OsHV in a Pacific oyster population from

339  Guernsey (Gutierrez et al. 2018a). When taken together, these studies suggest that

340 host resistance to OsHV in Pacific oyster is consistently a polygenic trait. .

341 Genomic selection

342  Genomic predictions (GBLUP) of breeding values for host resistance to OsHV are
343  likely to be more accurate than those based on pedigree (PBLUP) in this population.
344  The prediction accuracy values ranged from 0.678 to 0.758 for GBLUP (with SNP
345 densities ranging from 500 to 18K), while PBLUP only reached an accuracy of 0.637.

346  This result has been mirrored in other studies of genomic versus pedigree-based
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347  prediction of disease resistance breeding values for other important farmed fish

348  species, e.g Atlantic salmon (Tsai et al. 2015; Yoshida et al. 2017; @degard et al.

349 2014; Robledo et al. 2018), rainbow trout (Vallejo et al. 2017; Yoshida et al. 2018),
350 sea bream (Palaiokostas et al. 2016) and sea bass (Palaiokostas et al. 2018a).

351  Further, in shellfish similar findings have been observed for prediction of breeding

352  values for growth traits in scallop (Dou et al. 2016) and Pacific oyster (Gutierrez et al.
353 2018b). Therefore, the technical potential of genomic selection for expedited genetic
354 improvement in shellfish has been shown. However, the economic viability remains an
355 open question. The cost of genotyping is a key consideration for the commercial

356 implementation of genomic selection in shellfish. In the current study, <1000 SNPs
357 was a sufficient density to provide ~19 % increase in prediction accuracy versus

358 PBLUP. This raises the possibility of a low density genomic selection approach for
359 OsHV-1 resistance in oyster breeding, since low density genotyping can be

360 substantially cheaper than high density SNP arrays. It is worth noting that the training
361 and validation sets in the current study contain closely related animals, including full
362 siblings. As a result, these individuals will share large genomic segments, which can
363 be capture by the low density SNP panels. As the genetic distance between the

364 training and validation sets increased, genomic prediction accuracy is likely to

365 decrease markedly, as has been shown in other aquaculture species (Palaiokostas et
366 al., 2019). In addition, it has been demonstrated some populations of Pacific oysters
367 exhibit rapid decay of linkage disequilibrium (Gutierrez et al. 2017). As such, regular
368 testing on close relatives of breeding candidates is required to maintain prediction

369 accuracy, otherwise accuracy will decrease with successive generations of a breeding
370 programme. Having that said, this scenario is typical for aquaculture breeding

371 programs where testing of full-siblings of selection candidates is performed.
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372 Historically, the breeding programme for Pacific oysters run by the Cawthron Institute
373  has used broodstock which are put through grow-out in field environments and are
374  brought back into the hatchery for reproduction. As such, when OsHV outbreaks

375 occur, it has been common practice to breed from survivors of the highest performing
376  families. Genomic selection is best-suited to traits that are not measurable on the

377  selection candidates themselves, and helps selection of individuals from within a full
378 sibling family. When survivors are used as breeding candidates, these benefits are
379 somewhat negated. However, in the event that broodstock cannot be brought back
380 into a hatchery (e.g. due to a biosecurity issue) the practical value of genomic

381  selection would be much higher.

382  The Cawthron breeding programme found no evidence for the vertical transmission of
383 OsHV-1 in the hatchery, and the existing presence of OsHV-1 in wild populations

384 meant that the biosecurity implications of breeding from survivors were manageable.
385 Therefore the ability to select broodstock from large on-farm progeny trials exposed to
386 OsHV-1 enabled the benefits of within-family selection to be captured, rather than

387 relying only on among-family selection. Where vertical transmission occurs in the

388  hatchery or biosecurity is constraining, the option to breed from survivors may not be
389 available. In this case, genomic selection provides the opportunity for within family
390 selection even though the phenotype (e.g. survival) cannot be measured directly on

391  broodstock candidates.

392

393 Conclusion

394  The results from the current study provide evidence indicating that OsHV resistance is

395 polygenic in Pacific oyster, consistent with current literature and analyses across
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396 different populations. Due to the polygenic nature of the resistance, genomic selection
397 is a well-placed methodology for the improvement of current pedigree-based selection
398 schemes. Indeed results show that genomic prediction of OsHV-1 resistance is more
399  accurate than pedigree-based prediction even with a reduced number of SNPs (down
400 tolessthan 1,000 SNPs). These results suggest that low cost genotyping solutions
401  could be within reach to provide a G-matrix capable of generating accurate GEBV

402 values. The use of genomic data is likely to bring significant improvement to Pacific
403  oyster breeding programmes, particularly to improve selection of challenging traits that
404  rely on sib-testing (e.g. disease resistance) where genomic selection can more

405  effectively capture within-family variation.
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