

1 **Chromosomal rearrangements and loss of subtelomeric adhesins linked to clade-
2 specific phenotypes in *Candida auris***
3

4 José F. Muñoz¹, Rory M. Welsh², Terrance Shea¹, Dhwani Batra³, Lalitha Gade², Anastasia P.
5 Litvintseva², and Christina A. Cuomo¹
6

7 ¹ Broad Institute of MIT and Harvard, Cambridge, MA, USA; ² Mycotic Diseases Branch, and ³
8 Division of Scientific Resources, Centers for Disease Control and Prevention, U.S. Department
9 of Health and Human Services, Atlanta, GA, USA.

10
11 **ABSTRACT**

12 *Candida auris* is an emerging fungal pathogen of rising concern due to its increasing incidence,
13 its ability to cause healthcare-associated outbreaks and antifungal resistance. Genomic analysis
14 revealed that early cases of *C. auris* that were detected contemporaneously were
15 geographically stratified into four major clades. Clade II, also termed East Asian clade, consists
16 of the initial isolates described from cases of ear infection, is less frequently resistant to
17 antifungal drugs and to date, the isolates from this group have not been associated with
18 outbreaks. Here, we generate nearly complete genomes (“telomere-to-telomere”) of an isolate
19 of this clade and of the more widespread Clade IV. By comparing these to genome assemblies
20 of the other two clades, we find that the Clade II genome appears highly rearranged, with 2
21 inversions and 9 translocations resulting in a substantially different karyotype. In addition, large
22 subtelomeric regions have been lost from 10 of 14 chromosome ends in the Clade II genomes.
23 We find that shorter telomeres and genome instability might be a consequence of a naturally
24 occurring loss-of-function mutation in *DCC1* exclusively found in Clade II isolates, resulting in a
25 hypermutator phenotype. We also determine that deleted subtelomeric regions might be linked
26 to clade-specific adaptation as these regions are enriched in Hyr/Iff-like cell surface proteins,
27 novel candidate cell surface proteins, and an ALS-like adhesin. The presence of these cell
28 surface proteins in the clades responsible for global outbreaks causing invasive infections
29 suggests an explanation for the different phenotypes observed between clades.
30

31 **IMPORTANCE**

32 *Candida auris* was unknown prior to 2009 and since then it has quickly spread around the world,
33 causing outbreaks in healthcare facilities and representing a high fraction of candidemia cases
34 in some regions. The emergence of *C. auris* is a major concern, since it is often multidrug-
35 resistant, easily spread between patients, and causes invasive infections. While isolates from

36 three global clades cause invasive infections, isolates from Clade II primarily cause ear
37 infections and have not been implicated in outbreaks, though cases of Clade II infections have
38 been reported on different continents. Here, we describe genetic differences between Clade II
39 and Clades I, III and IV, including a loss-of-function mutation in a gene associated with telomere
40 length maintenance and genome stability, and the loss of cell wall proteins involved in adhesion
41 and biofilm formation, that may suggest an explanation for the lower virulence and potential for
42 transmission of Clade II isolates.

43

44 **OBSERVATION**

45 The emerging fungal pathogen *Candida auris* is increasingly reported as the cause of infections
46 and has become a leading cause of invasive candidiasis in some hospitals, often in severely ill
47 patients (1). *C. auris* isolates are commonly resistant to one or more antifungal drugs and can
48 survive for long periods both in the clinical environment and as a commensal on skin (2). Initially
49 identified in cases of ear infection in Japan and South Korea (3, 4), cases of systemic infection
50 were soon after reported in India, South Africa, and Venezuela (5–7).

51

52 Initial genomic analysis of the outbreak identified four major genetic groups corresponding to
53 these geographic regions or Clades I, II, III, and IV (8). Clades I, III, and IV are responsible for
54 the ongoing and difficult to control outbreaks in healthcare facilities worldwide (9). Clade II, also
55 termed the East Asia clade, is predominantly associated with cases of ear infection and appears
56 to be less resistant to antifungals than other clades (10). While a reference genome assembly of
57 a Clade I isolate is commonly used for SNP analyses, the karyotype is known to vary based on
58 whole genome alignment with an assembly of a Clade III isolate (11) and wider analysis of
59 chromosomal sizes (12). To better understand the emergence of this species and phenotypic
60 differences between clades, here we leverage complete reference genomes for isolates from
61 Clades II and IV. We find that the genome of Clade II is highly rearranged and is missing large
62 subtelomeric regions that include candidate cell wall proteins found in all of the other three
63 clades, which may help explain the major difference in clinical presentation between isolates
64 from this clade and those from the global expanding clades causing outbreaks.

65

66 **Large chromosomal rearrangements and deletions in *C. auris* Clade II**

67 To investigate genomic differences between clades, we generated complete chromosome scale
68 assemblies for isolates from Clades II and IV. Genome assemblies of B11245 (Clade IV) and
69 B11220 (Clade II) consisted of 7 nuclear contigs corresponding to complete chromosomes with

70 telomeres at both ends, excluding one end that corresponds to rDNA in each assembly and one
71 additional end in B11220 (**Supplementary Table 1**). While the number of chromosomes and
72 total genome size is similar (average 12.3 Mb), chromosome lengths can differ by up to 1.1 Mb
73 in Clade II relative to Clades I, III and IV (**Figure 1a; Supplementary Table 1**). By aligning
74 these genomes with those previously published (11), we found evidence of large chromosomal
75 rearrangements (> 10 kb) between the *C. auris* clades (**Figure 1b to d; Supplementary Table**
76 **1**). Notably, the genome of Clade II (B11220) is the most highly rearranged compared to the
77 other three, with two inversions and 9 translocations resulting in large changes in chromosome
78 size (**Figure 1b**). Fewer chromosomal rearrangements were detected in the most distantly
79 related isolate Clade IV (B11245), including two inversions located in chromosome 1 (**Figure**
80 **1c**). The Clade III genome (B11221) contains one inversion in chromosome 1 and two
81 translocations in chromosome 1 and 3 ((11); **Figure 1d**). These alterations in karyotype, most
82 dramatically of Clade II, likely serve as a barrier to the production of viable progeny following
83 mating and recombination.

84

85 In addition to rearrangements, we identified large genomic regions that were missing in one or
86 more clades, predominantly subtelomeric regions that are absent in Clade II relative to Clades I,
87 III and IV. Comparing the Clade I (B8441) and Clade II (B11220) genomes, we identified 11
88 large regions (>5 kb) absent in Clade II that encompassed 226 kb and 74 genes; 10 of these 11
89 regions are subtelomeric in B8441 (**Figure 1b; Supplementary Table 2**). Comparing with
90 assemblies of Clade III (B11221) and Clade IV (B11245), we confirmed that these regions were
91 also subtelomeric and only absent in Clade II. These subtelomeric deletions are a common
92 feature of isolates from Clade II, as these regions are also absent in five other Clade II isolates
93 from United States and South Korea, based on aligning whole genome sequence to B8441
94 (**Supplementary Table 3**). To search for genetic variation that could explain these dramatic
95 changes in genome integrity in Clade II, we examined loss-of-function mutations found
96 exclusively in Clade II isolates (**Supplementary Note**). We found that Clade II isolates have a
97 loss-of-function mutation in *DCC1* (B9J08_000232), specifically a point mutation near the
98 beginning of the protein (amino acid change=Y10*; codon change=taC/taG; **Supplementary**
99 **Table 3**). As mutations in *DCC1* in *Saccharomyces cerevisiae* result in shorter telomeres (13)
100 and genome instability (14), this suggests that this naturally occurring loss of function mutation
101 in Clade II might contribute to shorter telomeres and genome rearrangements observed in this
102 clade.

103

104 **Depleted *Hyr/lff* and species-specific cell-wall protein families in *C. auris* Clade II**
105 The subtelomeric regions deleted in Clade II likely contribute to the phenotypic differences of
106 this clade, most notably by the loss of fourteen candidate adhesins present in Clades I, III and
107 IV. These include two sets of genes that contain predicted GPI anchors and secretion signals,
108 one set sharing sequence similarity to *C. albicans* adhesins from the *Hyr/lff* family and a second
109 set of clustered genes only found in *C. auris* and the closely related species *C. haemulonii* and
110 *C. duobushaemulonii* (**Figure 2a; Supplementary Table 2**). The *Hyr/lff* gene family was
111 previously noted to be the most highly enriched family in pathogenic *Candida* species and has
112 been associated with pathogenicity and virulence (15). Six of eight *Hyr/lff* proteins found in *C.*
113 *auris* contain intergenic tandem repeats, which modulate adhesion and virulence (16); five
114 *Hyr/lff* genes are deleted in Clade II (**Figure 2a; Supplementary Table 2**). The second set, *C.*
115 *auris*-specific candidate adhesins, are small proteins with serine/threonine-rich regions (9.0% to
116 17.3% Serine; 17.5% to 22.8% Threonine), and are tandemly located in subtelomeric regions
117 conserved in Clades I, III and IV, but absent in Clade II (**Figure 2a and b; Supplementary**
118 **Table 2**). The subtelomeric location and serine/threonine-rich region are properties shared with
119 *C. glabrata* *EPA* adhesins (17), and the expansion of *EPA* adhesins is linked to the emergence
120 of the ability to infect humans in the *C. glabrata* lineage (18). Several of the genes in deleted
121 regions of Clade II (three of the *C. auris*-clade specific adhesins, one *HYR-like* gene, and other
122 cell-wall associated proteins (*ALS4*, *CSA1* and *RBR3*)) were induced during developing *C. auris*
123 biofilms ((19); **Supplementary Table 2**), suggesting they play a role in biofilm formation. The
124 loss of adhesins-like genes in Clade II isolates could explain differences in infection and
125 environmental phenotypes between this clade and the others that are more commonly
126 observed.

127
128 **Phenotypic differences between *C. auris* clades correlate with adherence ability**
129 *Candida auris* can be easily transmitted within health care facilities, accelerated by the ability to
130 persist on plastic surfaces common in health care settings (2), which may be enhanced by its
131 ability to form biofilms. In addition, the ability of *C. auris* to form biofilms is associated with
132 increased resistance to all classes of antifungals (19) and might also enhance *C. auris* capacity
133 to colonize patients' skin further increasing patient to patient transmission and potentiating
134 outbreaks. These are features of isolates from Clades I, III and IV that are the primary cause of
135 invasive infections and are rarely reported from ear infections (10). The identification of these
136 candidate cell wall proteins that are absent in the highly rearranged genome of Clade II,
137 genomic changes likely due to a natural loss-of-function variant in *DCC1* in Clade II, highlights

138 the major differences that can occur between otherwise closely related isolates of a species.
139 These candidate cell wall proteins are strong candidates to explain the different phenotypic
140 properties of these clades, and further understand the emergence of this species.

141

142 **Methods**

143 **DNA Purification**

144 High molecular weight DNA for long read sequencing was obtained using the Epicentre
145 MasterPure yeast DNA purification kit (MPY80200). DNA for Illumina sequencing was extracted
146 using the ZYMO Research ZR Fungal/Bacterial DNA MiniPrep kit.

147

148 **Genome assembly**

149 Chromosome-level assemblies for Clade IV (South America) strain B11245 (CDC AR 0386) and
150 Clade II (East Asia) strain B11220 (CDC AR 0381) were generated using an Oxford Nanopore
151 Technology Ligation Sequencing Kit 1D (SQK-LSK108), sequenced on a MinIon Flow Cell R9.4
152 (FLO-MIN106) and basecalled with Albacore v2.0.2. The total read depth was 88X (21.2 kb
153 N50) for B11245 and 51X (20.6 kb N50) for B11220. Reads were assembled using Canu v1.5
154 (genomeSize=12000000; stopOnReadQuality=false; correctedErrorRate=0.075) and Flye v
155 2.4.2 (genome-size=12000000) (20, 21). The most contiguous assembly was obtained with
156 Canu for B11245 and Flye for B11220. A tandem motif
157 (AGACACCACCTA{1,2}GAAA{1,2}CC{1,2}) was identified at contig ends; contig ends
158 missing this motif were aligned to the unassembled contigs and manually extended. Each
159 assembly had five iterations of Illumina read error correction using Pilon v1.12 (22). Assemblies
160 were aligned to each other and to B8441 and B11221 (11) using NUCmer (MUMmer v3.22)
161 (23), and rearrangement sites were manually inspected for read support. Gene annotation was
162 performed using RNA-Seq to improve gene structure predictions as previously described ((11);
163 **Supplementary Note**). The predicted gene number was highly similar across all *C. auris*
164 genomes, totaling 5,328 for B11220 and 5,506 for B11245. GPI anchored proteins were
165 predicted with PredGPI using the general model and selecting proteins with high probability (>
166 99.90% specificity) (24).

167

168 **Genome alignments**

169 Shared synteny regions of at least 10 kb were identified using NUCmer v3.22 (23).
170 Chromosomal rearrangements (translocations, inversions and deletions) were identified from
171 the alignments blocks based on alignment length, chromosome mapping, and orientation.

172 Illumina read alignments were manually inspected in Integrative Genomics Viewer (IGV) v2.3.72
173 (25) to confirm that the rearrangement junctions are well supported in each assembly. Illumina
174 sequence of 5 additional clade II isolates (B11808, B11809, B12043, B12081, and B14308)
175 were aligned to the B8441 genome using BWA mem v0.7.12 (26) and deleted regions identified
176 using CNVnator v0.3 (1 kb windows; *p*-value < 0.01) (27). Variants were identified between
177 these isolates using GATK v3.7 (28) (**Supplementary Note**).

178

179 **Data and resource availability**

180 The whole genome sequence and assemblies of B11220 and B11245 were deposited in NCBI
181 under BioProject PRJNA328792. Illumina sequence of Clade II isolates is available in BioProject
182 PRJNA328792. Isolates are available from the CDC and FDA Antimicrobial Resistance (AR)
183 Isolate Bank, <https://www.cdc.gov/drugresistance/resistance-bank/index.html>.

184

185 **Disclaimer**

186 The use of product names in this manuscript does not imply their endorsement by the US
187 Department of Health and Human Services. The finding and conclusions in this article are those
188 of the authors and do not necessarily represent the views of the Centers for Disease Control
189 and Prevention.

190

191 **Acknowledgements**

192 This project has been funded in part with Federal funds from the National Institute of Allergy and
193 Infectious Diseases, National Institutes of Health, Department of Health and Human Services,
194 under award U19AI110818 to the Broad Institute. CAC is a CIFAR fellow in the Fungal Kingdom
195 Program.

196

197 References

- 198 1. van Schalkwyk E, Mpembe RS, Thomas J, Shuping L, Ismail H, Lowman W, Karstaedt AS,
199 Chibabhai V, Wadula J, Avenant T, Messina A, Govind CN, Moodley K, Dawood H,
200 Ramjathan P, Govender NP. 2019. Epidemiologic Shift in Candidemia Driven by *Candida*
201 *auris*, South Africa, 2016–2017. Emerging Infectious Diseases 25:early online.
- 202 2. Welsh RM, Bentz ML, Shams A, Houston H, Lyons A, Rose LJ, Litvintseva AP. 2017.
203 Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast
204 *Candida auris* on a Plastic Health Care Surface. J Clin Microbiol 55:2996–3005.
- 205 3. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. 2009. *Candida*
206 *auris* sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an
207 inpatient in a Japanese hospital. Microbiol Immunol 53:41–44.
- 208 4. Kim M-N, Shin JH, Sung H, Lee K, Kim E-C, Ryoo N, Lee J-S, Jung S-I, Park KH, Kee SJ,
209 Kim SH, Shin MG, Suh SP, Ryang DW. 2009. *Candida haemulonii* and closely related
210 species at 5 university hospitals in Korea: identification, antifungal susceptibility, and clinical
211 features. Clin Infect Dis 48:e57-61.
- 212 5. Chowdhary A, Sharma C, Duggal S, Agarwal K, Prakash A, Singh PK, Jain S, Kathuria S,
213 Randhawa HS, Hagen F, Meis JF. 2013. New clonal strain of *Candida auris*, Delhi, India.
214 Emerging Infect Dis 19:1670–1673.
- 215 6. Magobo RE, Corcoran C, Seetharam S, Govender NP. 2014. *Candida auris*-associated
216 candidemia, South Africa. Emerging Infect Dis 20:1250–1251.
- 217 7. Calvo B, Melo ASA, Perozo-Mena A, Hernandez M, Francisco EC, Hagen F, Meis JF,
218 Colombo AL. 2016. First report of *Candida auris* in America: Clinical and microbiological
219 aspects of 18 episodes of candidemia. J Infect 73:369–374.

220 8. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo
221 AL, Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen
222 K, Asghar RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP. 2017. Simultaneous
223 Emergence of Multidrug-Resistant *Candida auris* on 3 Continents Confirmed by Whole-
224 Genome Sequencing and Epidemiological Analyses. *Clin Infect Dis* 64:134–140.

225 9. Chow NA, Gade L, Tsay SV, Forsberg K, Greenko JA, Southwick KL, Barrett PM, Kerins JL,
226 Lockhart SR, Chiller TM, Litvintseva AP, US *Candida auris* Investigation Team. 2018.
227 Multiple introductions and subsequent transmission of multidrug-resistant *Candida auris* in
228 the USA: a molecular epidemiological survey. *Lancet Infect Dis*.

229 10. Welsh RM, Sexton DJ, Forsberg K, Vallabhaneni S, Litvintseva A. 2019. Insights into the
230 Unique Nature of the East Asian Clade of the Emerging Pathogenic Yeast *Candida auris*.
231 *Journal of Clinical Microbiology* 57:e00007-19.

232 11. Muñoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, Farrer RA, Litvintseva AP,
233 Cuomo CA. 2018. Genomic insights into multidrug-resistance, mating and virulence in
234 *Candida auris* and related emerging species. *Nat Commun* 9:5346.

235 12. Bravo Ruiz G, Ross ZK, Holmes E, Schelenz S, Gow NAR, Lorenz A. 2019. Rapid and
236 extensive karyotype diversification in haploid clinical *Candida auris* isolates. *Curr Genet*.

237 13. Askree SH, Yehuda T, Smolikov S, Gurevich R, Hawk J, Coker C, Krauskopf A, Kupiec M,
238 McEachern MJ. 2004. A genome-wide screen for *Saccharomyces cerevisiae* deletion
239 mutants that affect telomere length. *Proc Natl Acad Sci USA* 101:8658–8663.

240 14. Yuen KWY, Warren CD, Chen O, Kwok T, Hieter P, Spencer FA. 2007. Systematic genome
241 instability screens in yeast and their potential relevance to cancer. *Proc Natl Acad Sci USA*
242 104:3925–3930.

243 15. Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E,
244 Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S,
245 Costanzo MC, Fitzpatrick DA, de Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C,
246 Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC,
247 Schmitzberger FF, Sherlock G, Shah P, Silverstein KA, Skrzypek MS, Soll D, Staggs R,
248 Stansfield I, Stumpf MP, Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman
249 J, Gow NA, Lorenz MC, Birren BW, Kellis M, Cuomo CA. 2009. Evolution of pathogenicity
250 and sexual reproduction in eight *Candida* genomes. *Nature* 459:657–62.

251 16. Bates S, de la Rosa JM, MacCallum DM, Brown AJ, Gow NA, Odds FC. 2007. *Candida*
252 *albicans* Iff11, a secreted protein required for cell wall structure and virulence. *Infect Immun*
253 75:2922–8.

254 17. De Las Peñas A, Pan S-J, Castaño I, Alder J, Cregg R, Cormack BP. 2003. Virulence-
255 related surface glycoproteins in the yeast pathogen *Candida glabrata* are encoded in
256 subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing.
257 *Genes Dev* 17:2245–2258.

258 18. Gabaldón T, Martin T, Marcet-Houben M, Durrens P, Bolotin-Fukuhara M, Lespinet O,
259 Arnaise S, Boisnard S, Aguilera G, Atanasova R, Bouchier C, Couloux A, Creno S, Almeida
260 Cruz J, Devillers H, Enache-Angoulvant A, Guitard J, Jaouen L, Ma L, Marck C, Neuvéglise
261 C, Pelletier E, Pinard A, Poulain J, Recoquillay J, Westhof E, Wincker P, Dujon B,
262 Hennequin C, Fairhead C. 2013. Comparative genomics of emerging pathogens in the
263 *Candida glabrata* clade. *BMC Genomics* 14:623.

264 19. Kean R, Delaney C, Sherry L, Borman A, Johnson EM, Richardson MD, Rautemaa-
265 Richardson R, Williams C, Ramage G. 2018. Transcriptome Assembly and Profiling of

266 *Candida auris* Reveals Novel Insights into Biofilm-Mediated Resistance. *mSphere*
267 3:e00334-18.

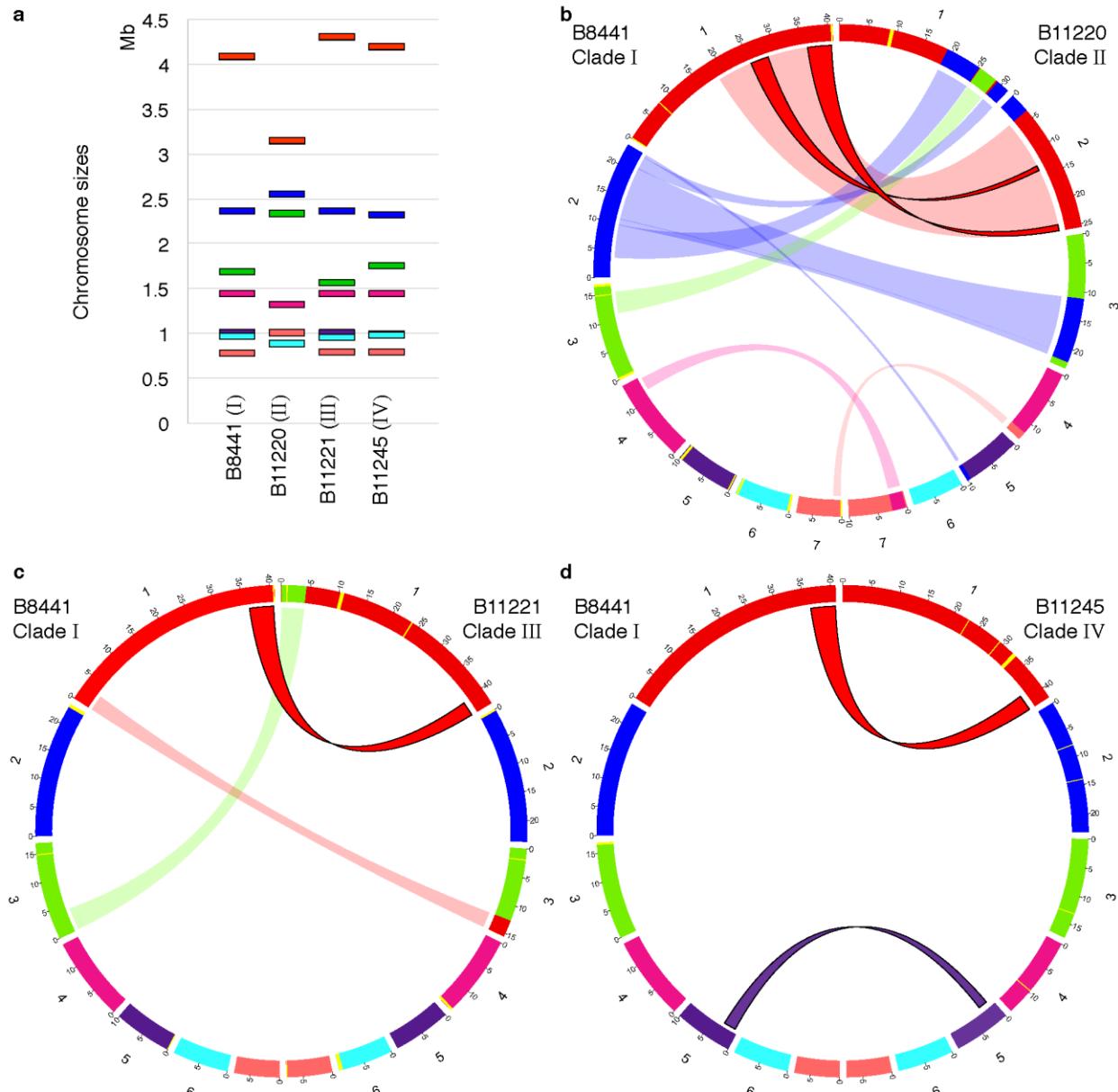
268 20. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable
269 and accurate long-read assembly via adaptive k-mer weighting and repeat separation.
270 *Genome Res* 27:722–736.

271 21. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads using
272 repeat graphs. *Nat Biotechnol* 37:540–546.

273 22. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q,
274 Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial
275 variant detection and genome assembly improvement. *PLoS one* 9:e112963.

276 23. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004.
277 Versatile and open software for comparing large genomes. *Genome Biol* 5:R12.

278 24. Pierleoni A, Martelli PL, Casadio R. 2008. PredGPI: a GPI-anchor predictor. *BMC*
279 *Bioinformatics* 9:392.


280 25. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP.
281 2011. Integrative genomics viewer. *Nature Biotechnology* 29:24–26.

282 26. Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-
283 MEM. *arXiv:13033997 [q-bio]*.

284 27. Abyzov A, Urban AE, Snyder M, Gerstein M. 2011. CNVnator: an approach to discover,
285 genotype, and characterize typical and atypical CNVs from family and population genome
286 sequencing. *Genome Res* 21:974–984.

287 28. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,
288 Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The Genome Analysis Toolkit: a
289 MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res*
290 20:1297–303.

291

292

293 **Figure 1. Karyotypic variation and chromosomal rearrangements in *Candida auris*.** (a) Chromosome sizes are based on complete chromosome scale contigs. (b-d) Circos plots showing syntetic chromosomes by color and links for inversions (twisted filled links) and translocations (flat transparent links) using B8441 (Clade I) as reference compared to B11220 (Clade II; b), B11221 (Clade III; c), and B11245 (Clade IV; d). Scaffolds/contigs to chromosome mapping for these genome assemblies is included in **Supplementary Table 4**.

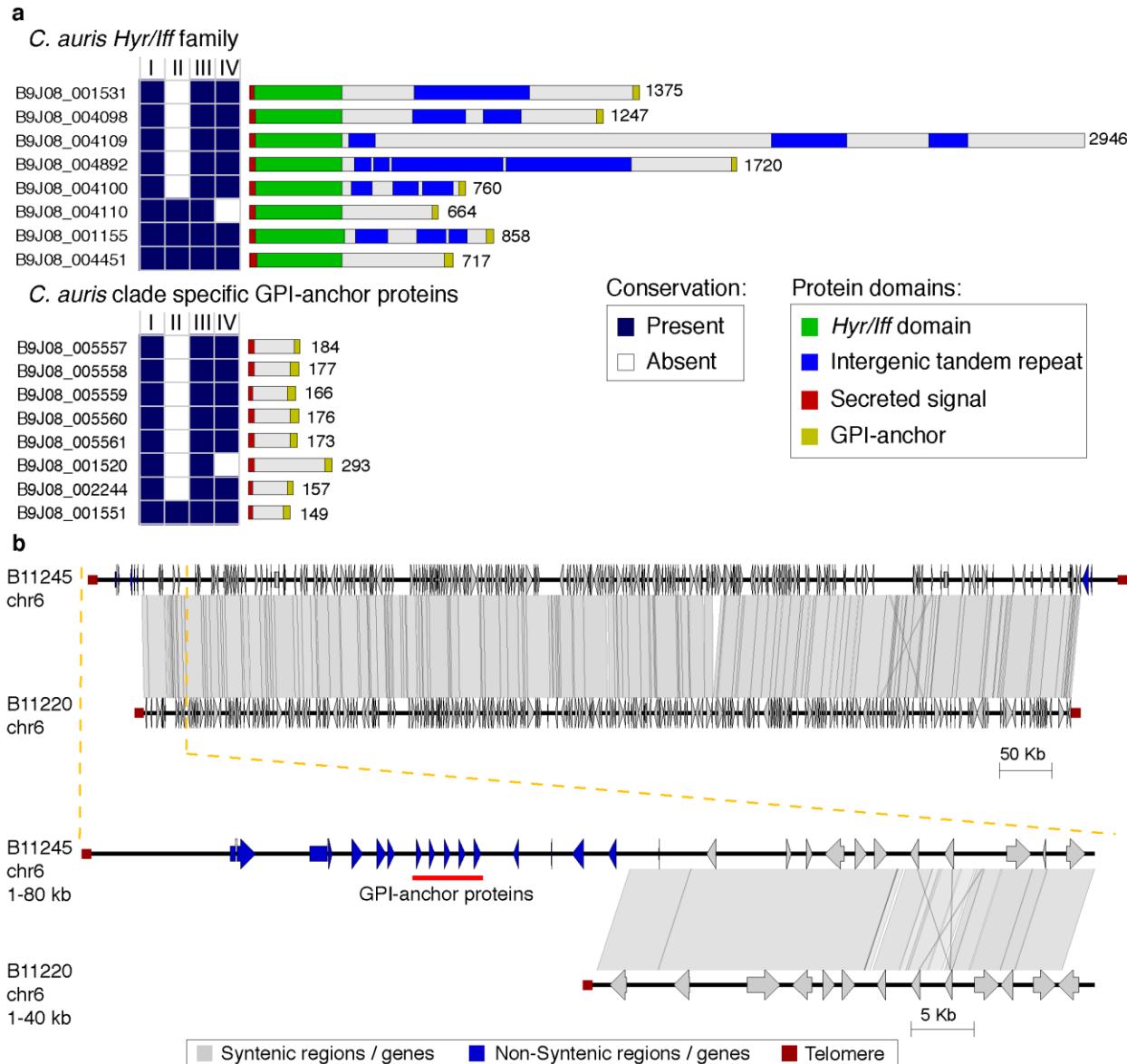
294

295

296

297

298


299

300

301

302

303

304
305 **Figure 2. Differences in the repertoire GPI-anchor proteins in *Candida auris*.** (a)
306 Conserved domains in two clusters of GPI-anchor found in *C. auris* B8441. (top) *Hyr/Iff* GPI-
307 anchor family and (bottom) *C. auris* clade-specific GPI-anchor protein. Conservation across *C.*
308 *auris* strains representing Clades I, II, III and IV is color-coded indicating whether the gene is
309 present (dark blue) or absent (white). (b) Chromosome wide synteny between B11245 (Clade
310 IV) and B11220 (Clade II). Chromosome 6 includes telomeres at both ends in both strains (dark
311 red square). Shared synteny regions based on genome alignment (blastn) are depicted in gray
312 vertical blocks connecting the chromosome regions. Depicted genes in blue and light gray
313 arrows showing the direction of transcription are color-coded according to the location in
314 conserved (gray) or non-conserved (blue) regions. The top comparison corresponds to the
315 entire chromosome 6, and the bottom comparison corresponds to a zoom in of the subtelomeric
316 region depleted in Clade II (B11220), which encompasses *auris*-clade specific adhesins in
317 tandem (red line).