

1 **Male song sparrows modulate their aggressive signaling in response to plumage signals:**  
2 **experiments with 3-D printed models**

3 **Michelle L. Beck <sup>a, b\*</sup>, Çağlar Akçay<sup>a, c\*</sup>, and Kendra B. Sewall <sup>a</sup>**

4 <sup>a</sup> Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA

5 <sup>b</sup> Department of Biology, Rivier University, Nashua, NH 03060, USA

6 <sup>c</sup> Department of Psychology, Koç University, Istanbul, 34450, Turkey

7 \*These authors contributed equally

8 Corresponding authors:

9 Michelle L Beck  
10 Department of Biology  
11 Rivier University  
12 Nashua, NH  
13 [mbeck@rivier.edu](mailto:mbeck@rivier.edu)

14  
15 Çağlar Akçay  
16 Department of Psychology  
17 Koç University  
18 Istanbul, Turkey  
19 [akcay.caglar@gmail.com](mailto:akcay.caglar@gmail.com)

20 **Abstract**

21 Competitive interactions among conspecifics are often resolved by assessing signals that  
22 honestly indicate individual fighting ability or dominance. In territorial species, signals of  
23 competitive ability are thought to function primarily during the early stages of territory  
24 establishment, but recent evidence suggests that these signals continue to influence  
25 interactions with floaters and neighbors well after territory establishment. Here, we examine  
26 the influence of the extent of chest spotting displayed by an intruding male on the response of  
27 territorial male song sparrows. We exposed males to 3-D printed models with large or small  
28 spotting area coupled with conspecific playback and recorded their behavior. We also assessed  
29 the response of a subset of males to both the 3-D printed models and a traditional, taxidermic  
30 mount to ensure the 3-D models were a realistic stimulus. We found no differences in the  
31 number of attacks or proximity to the model due to spotting area. However, territorial males  
32 produced more soft songs and tended to sing fewer loud songs, both of which predict attack in  
33 our population, in response to the model with less chest spotting. One possibility is that males  
34 with less chest spotting elicit a stronger response because they are seen as a greater threat.  
35 Based on our previous findings in this system, we think it is more likely that models with less  
36 chest spotting are perceived as subordinate and therefore easier to defeat, leading to a  
37 stronger response by territory holders. We found males were equally likely to attack 3-D  
38 printed models and a taxidermic mount but signaled more aggressively during trials with the  
39 taxidermic mount than the 3-D printed models. This suggests that birds recognized the 3-D  
40 models as meaningful stimuli but that the use of 3-D printed models should be validated  
41 through comparison to a traditional taxidermic mount when possible.

42 **Keywords:** 3-D printed model, Intrusion experiment, Male competition, Melanin, Plumage

43 colouration, Song sparrow, Taxidermic mount, Territorial aggression

44

45                   Intrasexual competition for access to mates or resources is a powerful selective force in  
46                   many animals. Competitive interactions can be costly, which can lead to the evolution of  
47                   signals that indicate dominance or fighting ability that can resolve these interactions without  
48                   physical fights (Smith & Parker, 1976; Smith & Price, 1973). For signaling systems to be stable,  
49                   the signaler must benefit from the receivers' response and the receivers must benefit from  
50                   responding to the information conveyed by the signal (Searcy & Nowicki, 2005; Smith & Parker,  
51                   1976). Additionally the signal must be honest, meaning that cheating - exaggerating one's level  
52                   of fighting ability - should occur infrequently in the population (Webster, Ligon, & Leighton,  
53                   2018). Reliable signals of dominance or resource holding potential are thought to be most  
54                   likely to evolve in species that live in groups or in species in which frequent challenges occur  
55                   among unfamiliar conspecifics (Rohwer, 1975, 1982; Senar, 2006). In this context, the honesty  
56                   of the signal is maintained by social costs because individuals signaling above their rank are  
57                   challenged and defeated repeatedly by group members. Once individuals are familiar with  
58                   each other, prior experience is expected to influence the outcome of competitive interactions  
59                   to a greater extent than a signal of fighting ability (Chaine, Shizuka, Block, Zhang, & Lyon, 2018;  
60                   Lemel & Wallin, 1993; Senar, 2006; Vedder, Schut, Magrath, & Komdeur, 2010).

61                   In territorial species, signals of competitive ability are thought to only function during  
62                   the initial stages of territory establishment when individuals are unfamiliar with each other  
63                   (Lemel & Wallin, 1993; Part & Qvarnstrom, 1997; Senar, 2006). Ornaments, such as bright  
64                   coloration, are traits that act as signals of mate quality or fighting ability, but are not used in  
65                   combat with other males. For instance, natural or experimentally induced variation in male  
66                   ornaments is related to their ability to acquire nest sites (Part & Qvarnstrom, 1997; Pryke &

67 Andersson, 2003a; Siefferman & Hill, 2005) or secure a high quality territory (Keyser & Hill,  
68 2000). However, following territory establishment, most social interactions will occur between  
69 neighbors with whom individuals are familiar and possession of a territory confers an  
70 ownership advantage thought to render a phenotypic signal of resource holding potential  
71 irrelevant (Rohwer, 1982; Senar, 1999). Despite this, recent studies indicate that male  
72 ornaments continue to function post-territory establishment as more ornamented territory  
73 holders often experience fewer intrusions from floaters and neighbors during the breeding  
74 season (Chaine & Lyon, 2008; Cline, Hatt, Conroy, & Cooper, 2016; Pryke & Andersson, 2003a;  
75 Pryke, Lawes, & Andersson, 2001). Additionally, male territory holders modulate their response  
76 to conspecific intruders based on the intruder's ornamentation and may either respond less  
77 strongly to more ornamented males or may respond more strongly to more ornamented  
78 individuals or to individuals that have ornamentation similar to their own (Chaine & Lyon, 2008;  
79 Martin et al., 2016; Pryke et al., 2001). These findings suggest that ornaments remain  
80 important signals of fighting ability or resource holding potential throughout the breeding  
81 season. Nevertheless, relatively few studies have examined the utility of ornaments in  
82 mediating social interactions post-territory establishment in species or populations with few  
83 floaters (but see Cline et al. 2016).

84           Conspicuous colouration is a signal used to mediate aggressive interactions in a variety  
85 of taxa including insects (Tibbetts & Dale, 2004), reptiles (Ligon & McGraw, 2016; Mafli,  
86 Wakamatsu, & Roulin, 2011; Martin et al., 2016; Seddon & Hews, 2016), fish (Johnson & Fuller,  
87 2015; Schweitzer, Motreuil, & Dechaume-Moncharmont, 2015), and has been especially well  
88 studied in birds (reviewed in Senar, 2006; Tibbetts & Safran, 2009). In birds, conspicuous

89 colouration can be produced by feather microstructure or by the deposition of pigments, such  
90 as carotenoids or melanins in feathers. Melanin-based colouration produces brown, black, and  
91 reddish plumage and the role of melanin-based traits in mediating competitive interactions has  
92 frequently been assessed. A number of studies have found larger or darker melanin-based  
93 plumage patches are associated with higher social status in flocks (Rohwer, 1975, 1977) and  
94 greater fighting ability or dominance (Chaine & Lyon, 2008; Chaine, Tjernell, Shizuka, & Lyon,  
95 2011; Dunn, Whittingham, Freeman-Gallant, & DeCoste, 2008; Gonzalez, Sorci, Smith, & de  
96 Lope, 2002; Santos, Scheck, & Nakagawa, 2011; Tarof, Dunn, & Whittingham, 2005). In  
97 territory holding species, darker males respond more strongly to model intruders and darker  
98 model intruders are subject to more attacks and are approached more quickly than lighter  
99 models (Chaine & Lyon, 2008). But, darker territory holding males are themselves subject to  
100 more intrusions than lighter males (Chaine & Lyon, 2008). However, the consistency of some of  
101 these relationship has recently been questioned and much of this research has focused on the  
102 house sparrow (*Passer domesticus*, Kingma et al., 2008; Sanchez-Tojar et al., 2018). Further  
103 research on melanin-based ornaments in a greater variety of species and in species that are  
104 territorial is needed.

105 One approach used to determine if ornaments mediate aggressive interactions is to  
106 present conspecifics with one or several taxidermic mounts that vary in the size or reflectance  
107 of a colour patch and record the response of the focal individual (Chaine & Lyon, 2008; Coady &  
108 Dawson, 2013; Korsten, Dijkstra, & Komdeur, 2007; Pryke et al., 2001). Taxidermic mounts are  
109 advantageous because they provide a consistent stimulus which can permit focusing solely on  
110 the effects of colouration without confounding changes in behavior as can be seen when free

111 living individuals are manipulated or live decoys are used (Scriba & Goymann, 2008). However,  
112 the use of taxidermic mounts can be problematic. Taxidermic mounts necessitate collecting  
113 multiple individuals or attempting to find individuals that died from natural causes (Chaine &  
114 Lyon, 2008; Laubach, Blumstein, Romero, Sampson, & Foufopoulos, 2013). Further, mounts are  
115 likely to be subjected to attack during trials leading to cumulative damage over experiments or  
116 they must be protected in some way which leads to a less natural stimulus. Thus, a method of  
117 producing accurate models that are relatively easy to manipulate the ornamentation of or  
118 replace when needed would be ideal for studies focused on colouration in a variety of taxa.  
119 Recent advances in 3-D printing have allowed biologists to quickly and cheaply produce models  
120 for use in field research (Bentz, Philippi, & Rosvall, 2019; Fan et al., 2018; Igic et al., 2015). The  
121 advantages of 3-D printing over taxidermic models is that many copies, standardized in size and  
122 shape that are resistant to attacks can be produced. While several studies have utilized 3-D  
123 printed models in behavioral assays, few have compared the response of the same birds to  
124 both 3-D printed and traditional taxidermic models to determine if males respond similarly to  
125 both stimuli (but see Bentz et al., 2019 for a comparison of responses to 3-D models and live  
126 decoys with data gathered on different individuals).

127         Male song sparrows (*Melospiza melodia*) are territorial and possess brown spotting on  
128 their breast that ranges from reddish-brown to dark brown and varies in area (hereafter  
129 spotting area). The spotting is prominently displayed on the chest and is similar to spotting that  
130 acts as a signal in other species (Grunst & Grunst, 2015), but relatively little research has  
131 focused on the function of chest spotting in song sparrows. Male song sparrows occur in both  
132 urban and rural habitats and males in urban habitats display more extensive spotting and

133 greater territorial aggression than males in rural habitat (Beck, Davies, & Sewall, 2018; Davies &  
134 Sewall, 2016; Foltz et al., 2015). In rural (but not urban) habitats, territorial males with less  
135 extensive spotting area are more aggressive during a simulated territorial intrusion than males  
136 with more extensive spotting (Beck et al., 2018). This finding is interesting given that in other  
137 species, birds with larger melanin-based ornaments are generally found to display greater  
138 territorial aggression (reviewed in Santos et al., 2011; Senar, 2006).

139 In this study, our goal was to determine how chest spotting influences aggressive  
140 interactions between male song sparrows. To do this, we presented territorial males with 3-D  
141 printed model song sparrows painted with large or small spotting area on their chests, while  
142 standardizing for spotting reflectance. A second aim of our study was to verify that 3-D printed  
143 models can be used to assess territorial aggression. To this end, we also presented a subset of  
144 males with a taxidermic mount of a song sparrow in addition to the 3-D models to compare  
145 responses to models and mounts.

## 146 Methods

### 147 Subjects and study sites

148 We studied song sparrows in rural and urban habitats located in Montgomery County,  
149 VA from 15-18 May 2017. For the present study the subjects were 14 male song sparrows living  
150 on the Virginia Tech campus (urban habitat) and 14 males living in Heritage Park and Stroubles  
151 Creek Stream Restoration Site (rural habitats). The details of the sites, including levels of  
152 urbanization can be found in Davies et al. (2018). Seven of the urban birds and 1 of the rural  
153 birds were banded, the rest of them were non-banded. The trials were conducted on  
154 consecutive days approximately 24 hours apart to ensure the same male was sampled each

155 time. Each rural subject was tested twice in a counterbalanced order: once with a small spotting  
156 area model and once with a model with large spotting area. Eleven of the urban subjects were  
157 tested three times, once with a taxidermic mount, once with a small spotting area model and  
158 once with a large spotting area model. The remaining three were tested two times because  
159 they did not appear for the third trial: two of them were tested with the large and small-  
160 spotting area model and one with the mount and the small spotting area model. One more  
161 male in the urban habitat was tested only once, disappearing before the second trial. We  
162 included all males that had at least two trials in our comparisons. We only tested urban males  
163 with a mount, because we expected that if there is a difference in response to the 3-D models  
164 relative to the taxidermic mount it would be in the direction of a lower response and using the  
165 more aggressive urban males gave us a better chance to detect that difference.  
166 3-D printing models

167 The original file for the model was made in Autodesk 123D app from a series of pictures  
168 of a plastic bird model, and then edited using Autodesk Meshmixer and saved as a .stl file. The  
169 model was designed such that there were no legs but it could be placed on the belly to stand  
170 upright (see Fig. 1 and the supplementary .stl file). We printed 6 models and then painted the  
171 models using acrylic paint to imitate the song sparrow plumage. Three of the models were  
172 painted with small spotting area (mean  $\pm$  SE,  $119.28 \pm 0.880 \text{ mm}^2$ , range 117.5-120.3  $\text{mm}^2$ ) and  
173 the other three were painted with a large spotting area  $283.9 \pm 45.61 \text{ mm}^2$ , range 238.3-329.5  
174  $\text{mm}^2$ ). We also used a taxidermic mount of a song sparrow to compare responses to the model  
175 (badge area  $259.62 \text{ mm}^2$ ).

176



177

178 Figure 1. The six 3-D printed model song sparrows used in the behavioral trials. The three  
179 models on the left have large spotting area and the three on the right small spotting area.

180

181 *Stimuli and trial procedure*

182 The stimulus songs were recorded from song sparrows in Blacksburg, VA or Radford, VA  
183 using a Sennheiser directional microphone (ME66/K6) and Marantz PMD 660 or 661 solid state  
184 recorder. We selected stimulus songs based on the quality of recording. We added a silent  
185 period at the end of the song to create a 10 second playback clip using Syrinx (John Burt,  
186 Seattle, WA). We made 25 different stimuli tapes from 13 different males. Each subject  
187 received a single stimulus song type for all experimental conditions. The stimuli used for each  
188 subject came from birds that lived at least 2 km away from the subject.

189 The trials started when a singing male was located and a brief period of playback was  
190 used to identify the center of the male's territory. The experimenter placed a tripod in the  
191 center of a territory near natural perches and placed a wireless speaker (VictSing model C6) on  
192 the tripod at a height of about 1 m. The taxidermic mount or the 3-D printed model was placed  
193 on top of the tripod above the speaker and covered with a cloth. The speaker was connected to

194 a smartphone via Bluetooth, and the experimenter controlled the playback at a distance of  
195 about 15-20m.

196 With the model or mount covered, the behavior of the male was recorded for three  
197 minutes after the first response to the playback to obtain a baseline aggressive response.  
198 Following the pre-model period, we paused the playback and removed the cloth by walking  
199 over to the tripod and then restarted the playback. This model period of the trial lasted from  
200 the first time the subject entered within a 5m radius of the model/mount (as we wanted to  
201 ensure that the subjects saw the model or the mount) until either an attack (physically touching  
202 the model or mount) or 5 minutes has elapsed.

203 *Response measures*

204 We recorded the trial using the same recording equipment as above, narrating the  
205 behavior of the subject. We noted two aggressive behaviors, attacks and distance to the  
206 speaker, and three aggressive signaling behaviors, loud songs, soft songs (low amplitude songs),  
207 and wing waves. Loud song and soft songs were classified in the field by either CA or MLB; this  
208 method has been shown to be reliable in this species (Anderson, Searcy, Peters, & Nowicki,  
209 2008). Soft songs and wing waves have been shown to be reliable signals of aggression (i.e.  
210 predicting a subsequent attack on a taxidermic mount) in multiple populations of this species,  
211 including the present one (Açkay, Beck, & Sewall, in review Akçay, Tom, Campbell, & Beecher,  
212 2013; Searcy, Akçay, Nowicki, & Beecher, 2014; Searcy, Anderson, & Nowicki, 2006).

213 We scanned and annotated the trial recordings using Syrinx to extract the following  
214 information: Proportion of the trial spent within 1m of the speaker and counts of loud songs,

215 soft songs and wing waves for each period. We converted the counts into rates by dividing the  
216 counts by the duration of the period to account for unequal observation durations.

217 *Data analysis*

218 The response variables were not normally distributed and we used non-parametric tests  
219 throughout. We first asked whether the models elicited different responses than a taxidermic  
220 mount in urban birds. For this, we compared the proportion of the trial within 1 m, loud song  
221 rates, soft song rates and wing waves in the urban subjects that received the mount treatment  
222 as well as at least one 3-D printed model (n=12). Eleven of the 12 subjects received both large  
223 and small spotting area 3-D models. For these subjects we averaged their responses to these  
224 models and compared the responses to mount with the responses to the 3-D printed models  
225 with a Wilcoxon signed-rank test. For individuals that received 3 trials, we used a Friedman's  
226 test to determine if responses differed due to trial order.

227 Then we compared the responses to the small and large spotting area models using all  
228 the subjects that received both stimuli (n=27). We used a permutation test to test the main  
229 effect of condition (a within subject variable) and habitat (a between subject variable) and their  
230 interaction using the ezPerm function in the R package ez (Lawrence, 2016). Because  
231 behavioural studies frequently have issues with low statistical power, we did not perform a  
232 Bonferroni correction (Nakagawa, 2004).

233 *Ethical note*

234 This research adheres to the ABAS/ABS Guidelines for the Use of Animals in Research.  
235 All of our methods were approved by the Virginia Tech IACUC committee (BIOL 15-185). VA-  
236 DGIF (permit 48639), USGS bird banding lab (permit 23818) and the US Fish and Wildlife Service

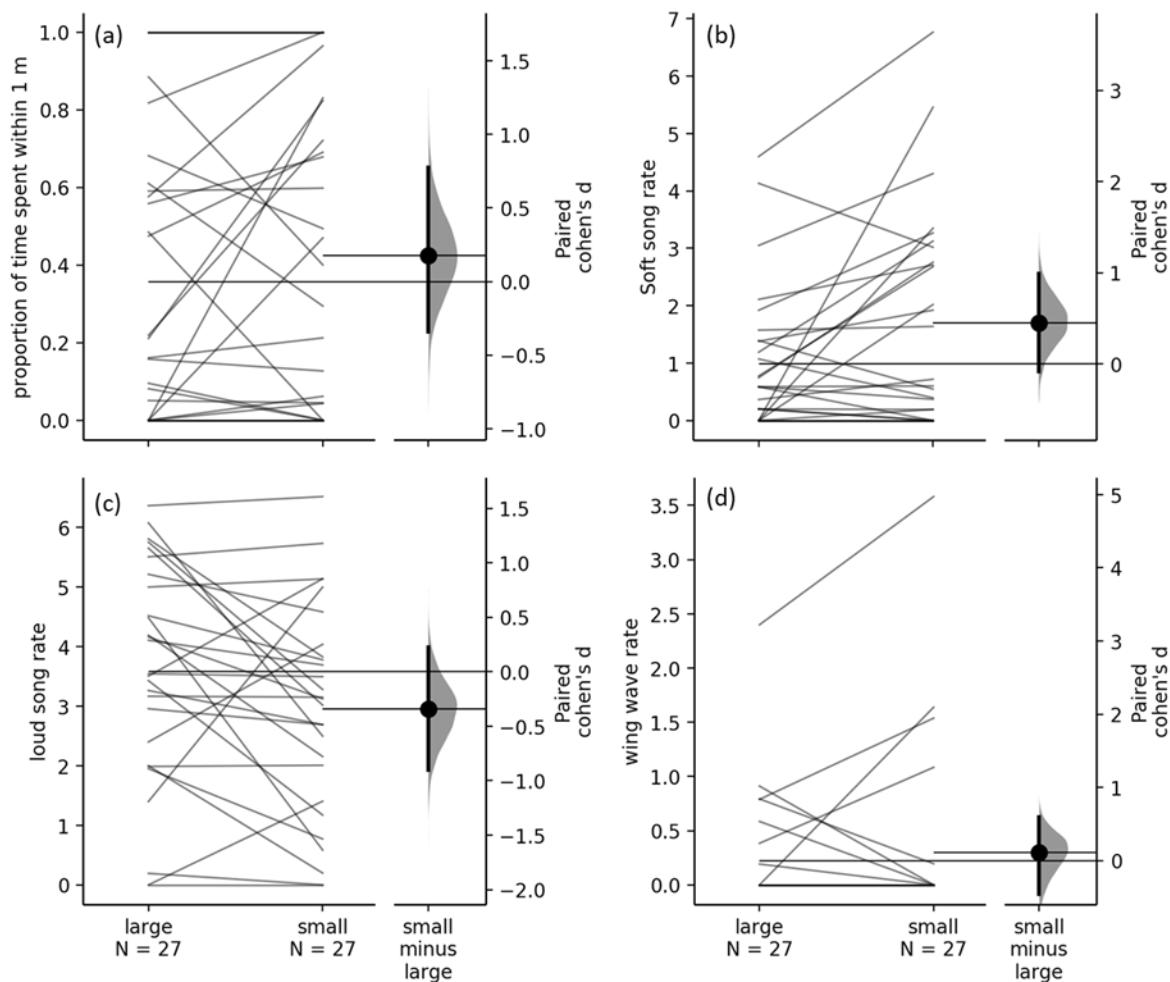
237 (MB08005B-0). We sampled 28, after-hatch year, wild, male song sparrows (*Melospiza*  
238 *melodia*). Many of these birds are found in urban areas where they commonly experience  
239 human disturbance. During observations, we remained 15-20 m away from the focal male  
240 which should have limited our effect on his behaviour and the trials were brief, only 8 minutes  
241 or until the male attacked the model. We did not capture males for this study (some were  
242 previously banded for studies in past years) and thus this was a minimally invasive project.  
243 Males that were previously captured were banded with one USGS metal band (size 1B) and 3  
244 coloured leg bands (diameter 2.8 mm). These bands were not removed so that birds could be  
245 identified in future years. Leg bands are small, lightweight, and commonly used by  
246 ornithologists around the globe and should have minimal effect on a bird.

247

## 248 **Results**

### 249 *Spotting area and male territorial aggression*

250 The proportion of the trial spent within 1m of the 3-D models did not differ between the  
251 small- and large-spotting area models. However, habitat had a strong effect with urban birds  
252 spending more time within 1m of the models than rural birds as has been found in previous  
253 studies in this population (Davies & Sewall, 2016; Foltz et al., 2015). The interaction between  
254 habitat and condition was not significant (Table1, Fig 2a).


255

256 Table 1. P-values from the permutation test on territorial aggression of male song sparrows  
257 during the presentation of 3-D printed models with large or small chest spotting in urban and  
258 rural habitats (1000 permutations).

259

|                          | Proportion of time spent within 1m | Loud song rate | Soft song rate | Wing wave rate |
|--------------------------|------------------------------------|----------------|----------------|----------------|
| <b>Habitat</b>           | <b>0.001</b>                       | 0.394          | 0.065          | <b>0.010</b>   |
| <b>Condition</b>         | 0.27                               | 0.058          | <b>0.010</b>   | 0.511          |
| <b>Habitat*Condition</b> | 0.52                               | 0.216          | 0.56           | 0.411          |

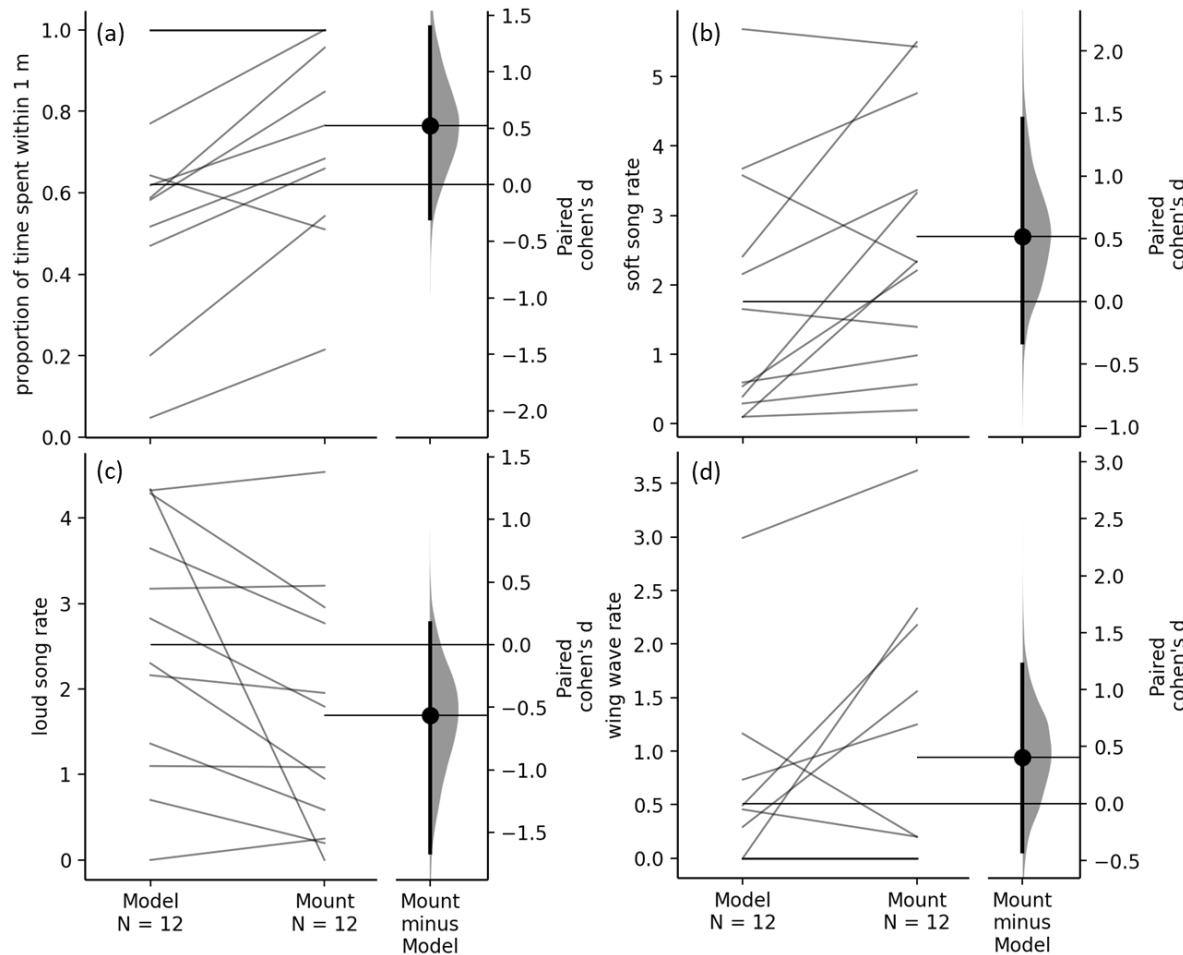
260



261

262 Figure 2: The responses of territorial male song sparrows to 3-D printed models with small or  
263 large spotting area in a) proportion of time spent within 1m, b) soft song rates, c) loud song  
264 rates, and d) wing wave rates. Rates are per minute. The lines are individual subjects.

265


266 In the signaling variables, there was a significant difference in rates of soft songs given in  
267 response to small and large spotting area models: subjects tended to give more soft songs in  
268 response to the models with small spotting area. The effect of habitat approached significance  
269 with urban birds tending to sing more soft songs, and the interaction effect was not significant  
270 (Table 1, Fig. 2b). Loud song rates showed a tendency to differ between conditions as well with  
271 subjects singing fewer loud songs to models with small spotting area (Fig. 2c). Finally, subjects  
272 did not differ in their wing wave rates between conditions, but urban birds gave significantly  
273 more wing waves (Fig. 2d, only one rural bird gave any wing waves).

274 Four subjects out of 27 (14.8%) attacked the model with small spotting area, whereas  
275 one subject (3.7%) attacked the large spotting area models. The difference was not significant  
276 by a chi-square test;  $\chi^2=1.98$ ,  $p= 0.16$ . Two out of 11 subjects attacked the taxidermic mount  
277 (18.2%).

278 *Response to 3-D printed models and the taxidermic mount*

279 During the pre-model period, there were significant differences between the model and  
280 mount in proportion of time spent within 1 m ( $V=57$ ,  $n=12$ ,  $p=0.037$ ): subjects spent significantly  
281 less time near the speaker in the mount trials than in the model trials before the model or  
282 mount was revealed. No other significant differences were detected for the pre-model period  
283 (all  $p \geq 0.38$ ). During the model presentation, there were significant differences between the  
284 responses to the taxidermic mount and the 3-D models. Subjects spent more time within 1m of  
285 the mount than the model ( $V=1$ ,  $n=12$ ,  $p = 0.01$ , Fig. 3a); sang more soft songs ( $V=13$ ,  $n=12$ ,  $p =$   
286  $0.04$ , Fig. 3b), and more loud songs ( $V=67$ ,  $n=12$ ,  $p = 0.03$ , Fig. 3c) to the mount than to the 3-D  
287 models. Rates of wing waves did not differ significantly between the mount and the 3-D

288 models (V=5, n=12, p = 0.15, Fig. 3d). The birds showed no signs of habituation as none of the  
289 response variables differed by trial number (all p > 0.15).



290

291 Figure 3. The responses of territorial male song sparrows to 3-D printed models and a  
292 taxidermic mount in a) proportion of time spent within 1m, b) soft song rates, c) loud song  
293 rates, and d) wing wave rates. Rates are per minute. The lines are individual subjects.

294

## 295 Discussion

296 In this study we had two aims: 1) to determine whether male song sparrows respond  
297 differently to intruders based on the extent of chest spotting and 2) to determine whether a 3-  
298 D printed model can be effectively used to replace taxidermic mounts to study plumage signals.

299 We found that when birds were presented with 3-D printed models with different sized  
300 spotting areas, they responded with more aggressive signaling towards the models with less  
301 chest spotting. We found that responses to the mount and 3-D printed models did differ  
302 significantly with the taxidermic mount eliciting a stronger aggressive response though the  
303 mount and 3-D models were attacked at similar rates.

304 *Spotting area as a signal of aggression*

305 We expected to find a difference in aggressive and signaling behaviours in response to  
306 variation in spotting area. However, we only found a difference in soft songs and a trend for  
307 loud songs, but no differences in attack or proximity to the model. Because spotting area is a  
308 visual stimulus, relatively close approach may be necessary for assessment, leading to a lack of  
309 difference between treatments. Furthermore, the lack of behavioural response by the model  
310 may lead males to remain in close proximity to the model, irrespective of differences in spotting  
311 area. More soft songs were produced in response to the models with less chest spotting and  
312 soft songs are the most reliable signal of aggression in this species (Akçay et al., 2013; Searcy et  
313 al., 2006). Similarly, models with small spotting area tended to elicit lower rates of loud songs  
314 than models with large spotting area, and low rates of loud singing are predictive of physical  
315 attack in our population (Akçay et al. in review). Thus, these two findings can be interpreted as  
316 a difference in aggressive signaling, even though there was no difference in approach or  
317 attacks.

318 A difference in responses to chest spotting size is consistent with chest spotting serving  
319 as a signal reflecting status or resource holding potential in song sparrows. However, whether  
320 higher aggression towards males with small spotting area means that these are perceived to be

321 a greater threat or are viewed as easier to defeat requires further testing. Subjects may  
322 respond with greater intensity to small spotting models because these represents a greater  
323 threat. Alternatively, subjects may respond more strongly to small spotting area models  
324 because these represent a lower threat which makes investment in aggressive behaviours less  
325 costly (in terms of risk of retaliation and injury) than it would be in response to a higher threat  
326 opponent with a large spotting area (Pryke & Andersson, 2003a; Searcy & Beecher, 2009). We  
327 think this latter explanation is more likely because urban male song sparrows have more  
328 extensive chest spotting and display greater territorial aggression than rural males (Beck et al.,  
329 2018; Davies & Sewall, 2016). The negative association between spotting area and territorial  
330 aggression we previously found in rural males may be the result of rural males with less chest  
331 spotting being frequently challenged or experiencing higher rates of intrusion, leading them to  
332 resort to overt aggression more frequently to defend their territory.

333 Plumage colouration does play a key role in mediating aggressive interactions between  
334 neighbors and floaters in a number of other territorial bird species, just as we have found in this  
335 study. In other avian species, individuals are less likely to approach or challenge more  
336 ornamented individuals or models (Pryke et al., 2001) and are more likely to challenge  
337 individuals with reduced or missing ornaments (Chaine & Lyon, 2008; Cline et al., 2016; Pryke &  
338 Andersson, 2003a, 2003b). Indeed, more ornamented territory holders experience lower rates  
339 of intrusion by conspecific males (Pryke & Andersson, 2003b; Pryke et al., 2001) while males  
340 with reduced ornaments experience much greater rates (Chaine & Lyon, 2008; Cline et al.,  
341 2016). Territorial males could receive intrusions from more distant neighbors who are  
342 prospecting for extra-pair mating opportunities or a higher quality territory. These individuals

343 will be less familiar with each other and a signal of fighting ability could be beneficial in this  
344 context. While non-territorial “floaters” occur in island populations of song sparrows (Arcese,  
345 1987), the number of floaters in our population is currently unknown and assessing the  
346 occurrence of floaters as well as the size and reflectance of their chest spotting would be  
347 helpful, since frequent interactions with floaters would make a signal associated with resource  
348 holding potential or aggression more likely to persist in a territorial species.

349 The findings in the current study support the hypothesis that spotting area is a signal  
350 used in male competitive interactions and influences receiver territorial aggression in song  
351 sparrows, although the mechanism of the association between the signal and aggression is  
352 unknown. To address this question, we are currently completing an experimental manipulation  
353 of the spotting area in male song sparrows and assessing the behavioural and hormonal  
354 consequences of these manipulations.

355 *3-D printed models as a tool for behavioural assays*

356 A second aim of our study was to assess the use of 3-D printed models as a replacement  
357 for taxidermic mounts in behavioural assays of aggression. While the use of 3-D printed models  
358 is becoming more common, relatively few studies have compared traditional taxidermic models  
359 and 3-D printed ones to ensure the 3-D model provides a biologically meaningful stimulus,  
360 particularly for behavioural studies (but see Bentz et al., 2019; Igic et al., 2015; Watson &  
361 Francis, 2015). We found our subjects in the urban areas responded to the taxidermic mount  
362 with greater territorial aggression than the 3-D printed models although they still responded to,  
363 and in some cases attacked, the 3-D printed models. The attack rates of birds which were  
364 tested with both 3-D models and the taxidermic mount were comparable (2 out of 11 birds

365 attacked the mount, 3 out of 11 attacked the small-spotting 3-D model, and 1 out of 11  
366 attacked the large-spotting 3-D model). Because we only had a single taxidermic mount, we  
367 cannot draw strong conclusions about the equivalence or lack thereof, of 3-D models and  
368 taxidermic mounts. Our results suggest researchers should validate their use of 3-D printed  
369 models by comparison to more realistic taxidermic mounts.

370 Though their validity across study systems still requires testing, 3-D printed models  
371 provide a very promising avenue for ecological research, including behavioural ecology. For  
372 intrusion experiments, the presence of a model presents a more realistic stimulus than song  
373 playback alone and can lead to stronger, and likely more realistic, behavioural and hormonal  
374 responses in some species (Chantrey & Workman, 1984; Wingfield & Wada, 1989). One major  
375 advantage of using 3-D printed models is the ability to manipulate shape, colour, posture, etc.  
376 of the visual stimuli and therefore gain more experimental control over treatments. Another  
377 advantage is that it is easy to 3-D print many models to reduce or completely avoid  
378 pseudoreplication without impacting wild populations by collecting specimens for taxidermic  
379 mounts (pseudoreplication was an issue in our study given we only had access to a single  
380 taxidermic mount). Indeed, 3-D printing has been used with great efficacy in several recent  
381 studies in birds (Fan et al., 2018; Igic et al., 2015; O'Connor, Brigham, & McKechnie, 2018) and  
382 other taxa (Watson & Francis, 2015), which suggests this technique can enhance a variety of  
383 ecological studies (Behm, Waite, Hsieh, & Helmus, 2018). We therefore believe that going  
384 forward 3-D printing will be a major benefit for behavioural ecology.

385

386 **Competing interests**

387 We have no competing interests.

388

389 **References.**

390

391 Akçay, Ç. I., Tom, M. E., Campbell, S. E., & Beecher, M. D. (2013). Song type matching is an  
392 honest early threat signal in a hierarchical animal communication system. *Proceedings  
393 of the Royal Society B: Biological Sciences*, 280(1756), 1-8. doi:  
394 <https://doi.org/10.1098/rspb.2012.2517>

395 Anderson, R. C., Searcy, W. A., Peters, S., & Nowicki, S. (2008). Soft song in song sparrows:  
396 Acoustic structure and implications for signal function. [Article]. *Ethology*, 114(7), 662-  
397 676. doi: 10.1111/j.1439-0310.2008.01518.x

398 Arcese, P. (1987). Age, intrusion pressure and defense against floaters by territorial male song  
399 sparrows. *Animal Behaviour*, 35, 773-784. doi: 10.1016/s0003-3472(87)80114-8

400 Beck, M. L., Davies, S., & Sewall, K. B. (2018). Urbanization alters the relationship between  
401 coloration and territorial aggression, but not hormones, in song sparrows. *Animal  
402 Behaviour*, 142, 119-128. doi: <https://doi.org/10.1016/j.anbehav.2018.06.012>

403 Behm, J. E., Waite, B. R., Hsieh, S. T., & Helmus, M. R. (2018). Benefits and limitations of three-  
404 dimensional printing technology for ecological research. *Bmc Ecology*, 18. doi:  
405 [10.1186/s12898-018-0190-z](https://doi.org/10.1186/s12898-018-0190-z)

406 Bentz, A. B., Philippi, K. J., & Rosvall, K. A. (2019). Evaluating seasonal patterns of female  
407 aggression: Case study in a cavity-nesting bird with intense female-female competition.  
408 *Ethology*, 125(8), 555-564. doi: 10.1111/eth.12881

409 Chaine, A. S., & Lyon, B. E. (2008). Intrasexual selection on multiple plumage ornaments in the  
410 lark bunting. *Animal Behaviour*, 76, 657-667. doi: 10.1016/j.anbehav.2008.03.014

411 Chaine, A. S., Shizuka, D., Block, T. A., Zhang, L., & Lyon, B. E. (2018). Manipulating badges of  
412 status only fools strangers. *Ecology Letters*, 21(10), 1477-1485. doi: 10.1111/ele.13128

413 Chaine, A. S., Tjernell, K. A., Shizuka, D., & Lyon, B. E. (2011). Sparrows use multiple status  
414 signals in winter social flocks. *Animal Behaviour*, 81(2), 447-453. doi:  
415 <https://doi.org/10.1016/j.anbehav.2010.11.016>

416 Chantrey, D. F., & Workman, L. (1984). Song and plumage effects on aggressive display by the  
417 European Robin *Erithacus rubecula*. *Ibis*, 126(3), 366-371. doi: doi:10.1111/j.1474-  
418 919X.1984.tb00257.x

419 Cline, M. H., Hatt, J. L., Conroy, M. J., & Cooper, R. J. (2016). Experimental evidence for a  
420 phenotypic trait as an age-dependent intrasexual social signal between familiar  
421 individuals. [Article]. *Animal Behaviour*, 111, 319-327. doi:  
422 [10.1016/j.anbehav.2015.11.004](https://doi.org/10.1016/j.anbehav.2015.11.004)

423 Coady, C. D., & Dawson, R. D. (2013). Subadult plumage color of female tree swallows  
424 (*Tachycineta bicolor*) reduces conspecific aggression during the breeding season. *Wilson  
425 Journal of Ornithology*, 125(2), 348-357. doi: 10.1676/12-155.1

426 Davies, S., & Sewall, K. B. (2016). Agonistic urban birds: elevated territorial aggression of urban  
427 song sparrows is individually consistent within a breeding period. *Biology Letters*, 12(6).  
428 doi: 10.1098/rsbl.2016.0315

429 Dunn, P. O., Whittingham, L. A., Freeman-Gallant, C. R., & DeCoste, J. (2008). Geographic  
430 variation in the function of ornaments in the common yellowthroat *Geothlypis trichas*.  
431 *Journal of Avian Biology*, 39(1), 66-72. doi: 10.1111/j.2008.0908-8857.04113.x

432 Fan, M., Teunissen, N., Hall, M. L., Aranzamendi, N. H., Kingma, S. A., Roast, M., . . . Peters, A.  
433 (2018). From ornament to armament or loss of function? Breeding plumage acquisition  
434 in a genetically monogamous bird. *Journal of Animal Ecology*, 87(5), 1274-1285. doi:  
435 10.1111/1365-2656.12855

436 Foltz, S. L., Ross, A. E., Laing, B. T., Rock, R. P., Battle, K. E., & Moore, I. T. (2015). Get off my  
437 lawn: increased aggression in urban song sparrows is related to resource availability.  
438 *Behavioral Ecology*, 26(6), 1548-1557. doi: 10.1093/beheco/arv111

439 Gonzalez, G., Sorci, G., Smith, L. C., & de Lope, F. (2002). Social control and physiological cost of  
440 cheating in status signalling male house sparrows (*Passer domesticus*). *Ethology*, 108(4),  
441 289-302. doi: 10.1046/j.1439-0310.2002.00779.x

442 Grunst, A. S., & Grunst, M. L. (2015). Context-dependent relationships between multiple sexual  
443 pigments and paternal effort. *Behavioral Ecology*, 26(4), 1170-1179. doi:  
444 10.1093/beheco/arv066

445 Igic, B., Nunez, V., Voss, H. U., Croston, R., Aidala, Z., Lopez, A. V., . . . Hauber, M. E. (2015).  
446 Using 3D printed eggs to examine the egg-rejection behaviour of wild birds. *Peerj*, 3. doi:  
447 10.7717/peerj.965

448 Johnson, A. M., & Fuller, R. C. (2015). The meaning of melanin, carotenoid, and pterin pigments  
449 in the bluefin killifish, *Lucania goodei*. *Behavioral Ecology*, 26(1), 158-167. doi:  
450 10.1093/beheco/aru164

451 Keyser, A. J., & Hill, G. E. (2000). Structurally based plumage coloration is an honest signal of  
452 quality in male blue grosbeaks. *Behavioral Ecology*, 11(2), 202-209. doi:  
453 10.1093/beheco/11.2.202

454 Kingma, S. A., Szentirmai, I., Szekely, T., Bokony, V., Bleeker, M., Liker, A., & Komdeur, J. (2008).  
455 Sexual selection and the function of a melanin-based plumage ornament in polygamous  
456 penduline tits *Remiz pendulinus*. *Behavioral Ecology and Sociobiology*, 62(8), 1277-1288.  
457 doi: 10.1007/s00265-008-0556-x

458 Korsten, P., Dijkstra, T. H., & Komdeur, J. (2007). Is UV signalling involved in male-male  
459 territorial conflict in the blue tit (*Cyanistes caeruleus*)? A new experimental approach.  
460 *Behaviour*, 144, 447-470. doi: 10.1163/156853907780756030

461 Laubach, Z. M., Blumstein, D. T., Romero, L. M., Sampson, G., & Foufopoulos, J. (2013). Are  
462 white-crowned sparrow badges reliable signals? *Behavioral Ecology and Sociobiology*,  
463 67(3), 481-492. doi: 10.1007/s00265-012-1468-3

464 Lawrence, M. A. (2016). ez-package. Vienna, Austria. Retrieved from <https://cran.r-project.org/web/packages/ez/index.html>

465 Lemel, J., & Wallin, K. (1993). Status signaling, motivational condition and dominance-an  
466 experimental study in the great tit, *Parus major* L. *Animal Behaviour*, 45(3), 549-558.  
467 doi: 10.1006/anbe.1993.1065

469 Ligon, R. A., & McGraw, K. J. (2016). Social costs enforce honesty of a dynamic signal of  
470 motivation. *Proceedings of the Royal Society B-Biological Sciences*, 283(1841). doi:  
471 10.1098/rspb.2016.1873

472 Mafli, A., Wakamatsu, K., & Roulin, A. (2011). Melanin-based coloration predicts aggressiveness  
473 and boldness in captive eastern Hermann's tortoises. *Animal Behaviour*, 81(4), 859-863.  
474 doi: 10.1016/j.anbehav.2011.01.025

475 Martin, M., Meylan, S., Haussy, C., Decenciere, B., Perret, S., & Le Galliard, J. F. (2016). UV color  
476 determines the issue of conflicts but does not covary with individual quality in a lizard.  
477 *Behavioral Ecology*, 27(1), 262-270. doi: 10.1093/beheco/arv149

478 Nakagawa, S. (2004). A farewell to Bonferroni: the problems of low statistical power and  
479 publication bias. *Behavioral Ecology*, 15(6), 1044-1045. doi: 10.1093/beheco/arh107

480 O'Connor, R. S., Brigham, R. M., & McKechnie, A. E. (2018). Extreme operative temperatures in  
481 exposed microsites used by roosting Rufous-cheeked Nightjars (*Caprimulgus ruficollis*):  
482 implications for water balance under current and future climate conditions. *Canadian  
483 Journal of Zoology*, 96(10), 1122-1129. doi: 10.1139/cjz-2017-0310

484 Part, T., & Qvarnstrom, A. (1997). Badge size in collared flycatchers predicts outcome of male  
485 competition over territories. *Animal Behaviour*, 54, 893-899. doi:  
486 10.1006/anbe.1997.0514

487 Pryke, S. R., & Andersson, S. (2003a). Carotenoid-based epaulets reveal male competitive  
488 ability: experiments with resident and floater red-shouldered widowbirds. *Animal  
489 Behaviour*, 66, 217-224. doi: 10.1006/anbe.2003.2193

490 Pryke, S. R., & Andersson, S. (2003b). Carotenoid-based status signalling in red-shouldered  
491 widowbirds (*Euplectes axillaris*): epaulet size and redness affect captive and territorial  
492 competition. *Behavioral Ecology and Sociobiology*, 53(6), 393-401. doi: 10.1007/s00265-  
493 003-0587-2

494 Pryke, S. R., Lawes, M. J., & Andersson, S. (2001). Agonistic carotenoid signalling in male red-  
495 collared widowbirds: aggression related to the colour signal of both the territory owner  
496 and model intruder. *Animal Behaviour*, 62, 695-704. doi: 10.1006/anbe.2001.1804

497 Rohwer, S. (1975). The social significance of avian winter plumage variability. *Evolution*, 29(4),  
498 593-610. doi: 10.2307/2407071

499 Rohwer, S. (1977). Status Signaling in Harris Sparrows: Some Experiments in Deception.  
500 *Behaviour*, 61(1/2), 107-129. doi: 10.1016/0003-3472(78)90090-8

501 Rohwer, S. (1982). The Evolution of Reliable and Unreliable Badges of Fighting Ability. *American  
502 Zoologist*, 22(3), 531-546. doi: 10.1093/icb/22.3.531

503 Sanchez-Tojar, A., Nakagawa, S., Sanchez-Fortun, M., Martin, D. A., Ramani, S., Girndt, A., ...  
504 Schroeder, J. (2018). Meta-analysis challenges a textbook example of status signalling  
505 and demonstrates publication bias. *eLife*, 7. doi: 10.7554/eLife.37385

506 Santos, E. S. A., Scheck, D., & Nakagawa, S. (2011). Dominance and plumage traits: meta-  
507 analysis and metaregression analysis. *Animal Behaviour*, 82(1), 3-19. doi:  
508 10.1016/j.anbehav.2011.03.022

509 Schweitzer, C., Motreuil, S., & Dechaume-Moncharmont, F. X. (2015). Coloration reflects  
510 behavioural types in the convict cichlid, *Amatitlania squia*. *Animal Behaviour*, 105, 201-  
511 209. doi: 10.1016/j.anbehav.2015.04.024

512 Scriba, M., & Goymann, W. (2008). The decoy matters! Hormonal and behavioural differences  
513 in the reaction of territorial European robins towards stuffed and live decoys. *General*  
514 and *Comparative Endocrinology*, 155(3), 511-516. doi: 10.1016/j.ygcen.2007.08.001

515 Searcy, W. A., Akçay, C., Nowicki, S., & Beecher, M. D. (2014). Aggressive Signaling in Song  
516 Sparrows and Other Songbirds. In M. Naguib, L. Barrett, H. J. Brockmann, S. Healy, J. C.  
517 Mitani, T. J. Roper & L. W. Simmons (Eds.), *Advances in the Study of Behavior*, Vol 46  
518 (Vol. 46, pp. 89-125). San Diego: Elsevier Academic Press Inc.

519 Searcy, W. A., Anderson, R. C., & Nowicki, S. (2006). Bird song as a signal of aggressive intent.  
520 *Behavioral Ecology and Sociobiology*, 60(2), 234-241. doi: 10.1007/s00265-006-0161-9

521 Searcy, W. A., & Beecher, M. D. (2009). Song as an aggressive signal in songbirds. *Animal*  
522 *Behaviour*, 78(6), 1281-1292. doi: 10.1016/j.anbehav.2009.08.011

523 Searcy, W. A., & Nowicki, S. (2005). *Evolution of Animal Communication: Reliability and*  
524 *Deception in Signaling Systems*.

525 Seddon, R. J., & Hews, D. K. (2016). Phenotypic correlates of melanization in two *Sceloporus*  
526 *occidentalis* (Phrynosomatidae) populations: Behavior, androgens, stress reactivity, and  
527 ectoparasites. *Physiology & Behavior*, 163, 70-80. doi: 10.1016/j.physbeh.2016.04.039

528 Senar, J. C. (1999). Plumage coloration as a signal of social status. In N. J. Adams & R. H. Slotow  
529 (Eds.), *Proceedings of the 22nd International Ornithology Conference*, Durbin.  
530 Johannesburg: Birdlife.

531 Senar, J. C. (2006). Color displays and intrasexual signals of aggression and dominance. In G. E.  
532 Hill & K. J. McGraw (Eds.), *Bird Coloration Function and Evolution* (Vol. 2, pp. 87-136).  
533 Cambridge: Harvard University Press.

534 Siefferman, L., & Hill, G. E. (2005). UV-blue structural coloration and competition for nestboxes  
535 in male eastern bluebirds. *Animal Behaviour*, 69, 67-72. doi:  
536 10.1016/j.anbehav.2003.12.026

537 Smith, J. M., & Parker, G. A. (1976). The logic of asymmetric contests. *Animal Behaviour*, 24,  
538 159-175. doi: 10.1016/s0003-3472(76)80110-8

539 Smith, J. M., & Price, G. R. (1973). The logic of animal conflict. *Nature*, 246(5427), 15-18. doi:  
540 10.1038/246015a0

541 Tarof, S. A., Dunn, P. O., & Whittingham, L. A. (2005). Dual functions of a melanin-based  
542 ornament in the common yellowthroat. *Proceedings of the Royal Society B-Biological*  
543 *Sciences*, 272(1568), 1121-1127.

544 Tibbetts, E. A., & Dale, J. (2004). A socially enforced signal of quality in a paper wasp. *Nature*,  
545 432, 218-222.

546 Tibbetts, E. A., & Safran, R. J. (2009). Co-evolution of plumage characteristics and winter  
547 sociality in New and Old World sparrows. *Journal of Evolutionary Biology*, 22(12), 2376-  
548 2386. doi: 10.1111/j.1420-9101.2009.01861.x

549 Vedder, O., Schut, E., Magrath, M. J. L., & Komdeur, J. (2010). Ultraviolet crown colouration  
550 affects contest outcomes among male blue tits, but only in the absence of prior  
551 encounters. *Functional Ecology*, 24(2), 417-425. doi: 10.1111/j.1365-2435.2009.01660.x

552 Watson, C. M., & Francis, G. R. (2015). Three dimensional printing as an effective method of  
553 producing anatomically accurate models for studies in thermal ecology. *Journal of*  
554 *Thermal Biology*, 51, 42-46. doi: 10.1016/j.jtherbio.2015.03.004

555 Webster, M. S., Ligon, R. A., & Leighton, G. M. (2018). Social costs are an underappreciated  
556 force for honest signalling in animal aggregations. *Animal Behaviour*, 143, 167-176. doi:  
557 10.1016/j.anbehav.2017.12.006

558 Wingfield, J. C., & Wada, M. (1989). Change in plasma levels of testosterone during male-male  
559 interactions in the song sparrow, *Melospiza melodia*: time course and specificity of  
560 response. *Journal of Comparative Physiology a-Sensory Neural and Behavioral*  
561 *Physiology*, 166(2), 189-194. doi: [https://doi-](https://doi-org.ezproxy.lib.vt.edu/10.1007/BF00193463)  
562 [org.ezproxy.lib.vt.edu/10.1007/BF00193463](https://doi-org.ezproxy.lib.vt.edu/10.1007/BF00193463)

563

564