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Abstract 20 

Competitive interactions among conspecifics are often resolved by assessing signals that 21 

honestly indicate individual fighting ability or dominance.  In territorial species, signals of 22 

competitive ability are thought to function primarily during the early stages of territory 23 

establishment, but recent evidence suggests that these signals continue to influence 24 

interactions with floaters and neighbors well after territory establishment.  Here, we examine 25 

the influence of the extent of chest spotting displayed by an intruding male on the response of 26 

territorial male song sparrows.  We exposed males to 3-D printed models with large or small 27 

spotting area coupled with conspecific playback and recorded their behavior.  We also assessed 28 

the response of a subset of males to both the 3-D printed models and a traditional, taxidermic 29 

mount to ensure the 3-D models were a realistic stimulus.  We found no differences in the 30 

number of attacks or proximity to the model due to spotting area.  However, territorial males 31 

produced more soft songs and tended to sing fewer loud songs, both of which predict attack in 32 

our population, in response to the model with less chest spotting.  One possibility is that males 33 

with less chest spotting elicit a stronger response because they are seen as a greater threat.  34 

Based on our previous findings in this system, we think it is more likely that models with less 35 

chest spotting are perceived as subordinate and therefore easier to defeat, leading to a 36 

stronger response by territory holders.  We found males were equally likely to attack 3-D 37 

printed models and a taxidermic mount but signaled more aggressively during trials with the 38 

taxidermic mount than the 3-D printed models.  This suggests that birds recognized the 3-D 39 

models as meaningful stimuli but that the use of 3-D printed models should be validated 40 

through comparison to a traditional taxidermic mount when possible.    41 
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Intrasexual competition for access to mates or resources is a powerful selective force in 45 

many animals.  Competitive interactions can be costly, which can lead to the evolution of 46 

signals that indicate dominance or fighting ability that can resolve these interactions without 47 

physical fights (Smith & Parker, 1976; Smith & Price, 1973).  For signaling systems to be stable, 48 

the signaler must benefit from the receivers’ response and the receivers must benefit from 49 

responding to the information conveyed by the signal (Searcy & Nowicki, 2005; Smith & Parker, 50 

1976).  Additionally the signal must be honest, meaning that cheating - exaggerating one’s level 51 

of fighting ability - should occur infrequently in the population (Webster, Ligon, & Leighton, 52 

2018).  Reliable signals of dominance or resource holding potential are thought to be most 53 

likely to evolve in species that live in groups or in species in which frequent challenges occur 54 

among unfamiliar conspecifics (Rohwer, 1975, 1982; Senar, 2006).  In this context, the honesty 55 

of the signal is maintained by social costs because individuals signaling above their rank are 56 

challenged and defeated repeatedly by group members.  Once individuals are familiar with 57 

each other, prior experience is expected to influence the outcome of competitive interactions 58 

to a greater extent than a signal of fighting ability (Chaine, Shizuka, Block, Zhang, & Lyon, 2018; 59 

Lemel & Wallin, 1993; Senar, 2006; Vedder, Schut, Magrath, & Komdeur, 2010).   60 

In territorial species, signals of competitive ability are thought to only function during 61 

the initial stages of territory establishment when individuals are unfamiliar with each other 62 

(Lemel & Wallin, 1993; Part & Qvarnstrom, 1997; Senar, 2006).  Ornaments, such as bright 63 

coloration, are traits that act as signals of mate quality or fighting ability, but are not used in 64 

combat with other males.  For instance, natural or experimentally induced variation in male 65 

ornaments is related to their ability to acquire nest sites (Part & Qvarnstrom, 1997; Pryke & 66 
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Andersson, 2003a; Siefferman & Hill, 2005) or secure a high quality territory (Keyser & Hill, 67 

2000).  However, following territory establishment, most social interactions will occur between 68 

neighbors with whom individuals are familiar and possession of a territory confers an 69 

ownership advantage thought to render a phenotypic signal of resource holding potential 70 

irrelevant (Rohwer, 1982; Senar, 1999).  Despite this, recent studies indicate that male 71 

ornaments continue to function post-territory establishment as more ornamented territory 72 

holders often experience fewer intrusions from floaters and neighbors during the breeding 73 

season (Chaine & Lyon, 2008; Cline, Hatt, Conroy, & Cooper, 2016; Pryke & Andersson, 2003a; 74 

Pryke, Lawes, & Andersson, 2001).  Additionally, male territory holders modulate their response 75 

to conspecific intruders based on the intruder’s ornamentation and may either respond less 76 

strongly to more ornamented males or may respond more strongly to more ornamented 77 

individuals or to individuals that have ornamentation similar to their own (Chaine & Lyon, 2008; 78 

Martin et al., 2016; Pryke et al., 2001).  These findings suggest that ornaments remain 79 

important signals of fighting ability or resource holding potential throughout the breeding 80 

season.  Nevertheless, relatively few studies have examined the utility of ornaments in 81 

mediating social interactions post-territory establishment in species or populations with few 82 

floaters (but see Cline et al. 2016).   83 

Conspicuous colouration is a signal used to mediate aggressive interactions in a variety 84 

of taxa including insects (Tibbetts & Dale, 2004), reptiles (Ligon & McGraw, 2016; Mafli, 85 

Wakamatsu, & Roulin, 2011; Martin et al., 2016; Seddon & Hews, 2016), fish (Johnson & Fuller, 86 

2015; Schweitzer, Motreuil, & Dechaume-Moncharmont, 2015), and has been especially well 87 

studied in birds (reviewed in Senar, 2006; Tibbetts & Safran, 2009).  In birds, conspicuous 88 
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colouration can be produced by feather microstructure or by the deposition of pigments, such 89 

as carotenoids or melanins in feathers.  Melanin-based colouration produces brown, black, and 90 

reddish plumage and the role of melanin-based traits in mediating competitive interactions has 91 

frequently been assessed.  A number of studies have found larger or darker melanin-based 92 

plumage patches are associated with higher social status in flocks (Rohwer, 1975, 1977) and 93 

greater fighting ability or dominance (Chaine & Lyon, 2008; Chaine, Tjernell, Shizuka, & Lyon, 94 

2011; Dunn, Whittingham, Freeman-Gallant, & DeCoste, 2008; Gonzalez, Sorci, Smith, & de 95 

Lope, 2002; Santos, Scheck, & Nakagawa, 2011; Tarof, Dunn, & Whittingham, 2005).  In 96 

territory holding species, darker males respond more strongly to model intruders and darker 97 

model intruders are subject to more attacks and are approached more quickly than lighter 98 

models (Chaine & Lyon, 2008).  But, darker territory holding males are themselves subject to 99 

more intrusions than lighter males (Chaine & Lyon, 2008).  However, the consistency of some of 100 

these relationship has recently been questioned and much of this research has focused on the 101 

house sparrow (Passer domesticus, Kingma et al., 2008; Sanchez-Tojar et al., 2018).  Further 102 

research on melanin-based ornaments in a greater variety of species and in species that are 103 

territorial is needed. 104 

One approach used to determine if ornaments mediate aggressive interactions is to 105 

present conspecifics with one or several taxidermic mounts that vary in the size or reflectance 106 

of a colour patch and record the response of the focal individual (Chaine & Lyon, 2008; Coady & 107 

Dawson, 2013; Korsten, Dijkstra, & Komdeur, 2007; Pryke et al., 2001).  Taxidermic mounts are 108 

advantageous because they provide a consistent stimulus which can permit focusing solely on 109 

the effects of colouration without confounding changes in behavior as can be seen when free 110 
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living individuals are manipulated or live decoys are used (Scriba & Goymann, 2008).  However, 111 

the use of taxidermic mounts can be problematic.  Taxidermic mounts necessitate collecting 112 

multiple individuals or attempting to find individuals that died from natural causes (Chaine & 113 

Lyon, 2008; Laubach, Blumstein, Romero, Sampson, & Foufopoulos, 2013).  Further, mounts are 114 

likely to be subjected to attack during trials leading to cumulative damage over experiments or 115 

they must be protected in some way which leads to a less natural stimulus.  Thus, a method of 116 

producing accurate models that are relatively easy to manipulate the ornamentation of or 117 

replace when needed would be ideal for studies focused on colouration in a variety of taxa.  118 

Recent advances in 3-D printing have allowed biologists to quickly and cheaply produce models 119 

for use in field research (Bentz, Philippi, & Rosvall, 2019; Fan et al., 2018; Igic et al., 2015).  The 120 

advantages of 3-D printing over taxidermic models is that many copies, standardized in size and 121 

shape that are resistant to attacks can be produced.  While several studies have utilized 3-D 122 

printed models in behavioral assays, few have compared the response of the same birds to 123 

both 3-D printed and traditional taxidermic models to determine if males respond similarly to 124 

both stimuli (but see Bentz et al., 2019 for a comparison of responses to 3-D models and live 125 

decoys with data gathered on different individuals).  126 

Male song sparrows (Melospiza melodia) are territorial and possess brown spotting on 127 

their breast that ranges from reddish-brown to dark brown and varies in area (hereafter 128 

spotting area).  The spotting is prominently displayed on the chest and is similar to spotting that 129 

acts as a signal in other species (Grunst & Grunst, 2015), but relatively little research has 130 

focused on the function of chest spotting in song sparrows.  Male song sparrows occur in both 131 

urban and rural habitats and males in urban habitats display more extensive spotting and 132 
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greater territorial aggression than males in rural habitat (Beck, Davies, & Sewall, 2018; Davies & 133 

Sewall, 2016; Foltz et al., 2015).  In rural (but not urban) habitats, territorial males with less 134 

extensive spotting area are more aggressive during a simulated territorial intrusion than males 135 

with more extensive spotting (Beck et al., 2018).  This finding is interesting given that in other 136 

species, birds with larger melanin-based ornaments are generally found to display greater 137 

territorial aggression (reviewed in Santos et al., 2011; Senar, 2006).   138 

In this study, our goal was to determine how chest spotting influences aggressive 139 

interactions between male song sparrows.  To do this, we presented territorial males with 3-D 140 

printed model song sparrows painted with large or small spotting area on their chests, while 141 

standardizing for spotting reflectance.  A second aim of our study was to verify that 3-D printed 142 

models can be used to assess territorial aggression. To this end, we also presented a subset of 143 

males with a taxidermic mount of a song sparrow in addition to the 3-D models to compare 144 

responses to models and mounts.  145 

Methods 146 

Subjects and study sites 147 

We studied song sparrows in rural and urban habitats located in Montgomery County, 148 

VA from 15-18 May 2017. For the present study the subjects were 14 male song sparrows living 149 

on the Virginia Tech campus (urban habitat) and 14 males living in Heritage Park and Stroubles 150 

Creek Stream Restoration Site (rural habitats). The details of the sites, including levels of 151 

urbanization can be found in Davies et al. (2018). Seven of the urban birds and 1 of the rural 152 

birds were banded, the rest of them were non-banded. The trials were conducted on 153 

consecutive days approximately 24 hours apart to ensure the same male was sampled each 154 
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time. Each rural subject was tested twice in a counterbalanced order: once with a small spotting 155 

area model and once with a model with large spotting area. Eleven of the urban subjects were 156 

tested three times, once with a taxidermic mount, once with a small spotting area model and 157 

once with a large spotting area model. The remaining three were tested two times because 158 

they did not appear for the third trial: two of them were tested with the large and small-159 

spotting area model and one with the mount and the small spotting area model. One more 160 

male in the urban habitat was tested only once, disappearing before the second trial. We 161 

included all males that had at least two trials in our comparisons. We only tested urban males 162 

with a mount, because we expected that if there is a difference in response to the 3-D models 163 

relative to the taxidermic mount it would be in the direction of a lower response and using the 164 

more aggressive urban males gave us a better chance to detect that difference.    165 

3-D printing models 166 

The original file for the model was made in Autodesk 123D app from a series of pictures 167 

of a plastic bird model, and then edited using Autodesk Meshmixer and saved as a .stl file. The 168 

model was designed such that there were no legs but it could be placed on the belly to stand 169 

upright (see Fig. 1 and the supplementary .stl file). We printed 6 models and then painted the 170 

models using acrylic paint to imitate the song sparrow plumage. Three of the models were 171 

painted with small spotting area (mean ± SE, 119.28 ± 0.880 mm2, range 117.5-120.3 mm2) and 172 

the other three were painted with a large spotting area 283.9 ± 45.61 mm2, range 238.3-329.5 173 

mm2). We also used a taxidermic mount of a song sparrow to compare responses to the model 174 

(badge area 259.62 mm2).  175 

 176 
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 177 

Figure 1.  The six 3-D printed model song sparrows used in the behavioral trials.  The three 178 

models on the left have large spotting area and the three on the right small spotting area. 179 

 180 

Stimuli and trial procedure 181 

The stimulus songs were recorded from song sparrows in Blacksburg, VA or Radford, VA 182 

using a Sennheiser directional microphone (ME66/K6) and Marantz PMD 660 or 661 solid state 183 

recorder. We selected stimulus songs based on the quality of recording. We added a silent 184 

period at the end of the song to create a 10 second playback clip using Syrinx (John Burt, 185 

Seattle, WA). We made 25 different stimuli tapes from 13 different males. Each subject 186 

received a single stimulus song type for all experimental conditions. The stimuli used for each 187 

subject came from birds that lived at least 2 km away from the subject.    188 

The trials started when a singing male was located and a brief period of playback was 189 

used to identify the center of the male’s territory.  The experimenter placed a tripod in the 190 

center of a territory near natural perches and placed a wireless speaker (VictSing model C6) on 191 

the tripod at a height of about 1 m. The taxidermic mount or the 3-D printed model was placed 192 

on top of the tripod above the speaker and covered with a cloth. The speaker was connected to 193 
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a smartphone via Bluetooth, and the experimenter controlled the playback at a distance of 194 

about 15-20m.  195 

With the model or mount covered, the behavior of the male was recorded for three 196 

minutes after the first response to the playback to obtain a baseline aggressive response.  197 

Following the pre-model period, we paused the playback and removed the cloth by walking 198 

over to the tripod and then restarted the playback. This model period of the trial lasted from 199 

the first time the subject entered within a 5m radius of the model/mount (as we wanted to 200 

ensure that the subjects saw the model or the mount) until either an attack (physically touching 201 

the model or mount) or 5 minutes has elapsed. 202 

Response measures 203 

We recorded the trial using the same recording equipment as above, narrating the 204 

behavior of the subject. We noted two aggressive behaviors, attacks and distance to the 205 

speaker, and three aggressive signaling behaviors, loud songs, soft songs (low amplitude songs), 206 

and wing waves. Loud song and soft songs were classified in the field by either CA or MLB; this 207 

method has been shown to be reliable in this species (Anderson, Searcy, Peters, & Nowicki, 208 

2008). Soft songs and wing waves have been shown to be reliable signals of aggression (i.e. 209 

predicting a subsequent attack on a taxidermic mount) in multiple populations of this species, 210 

including the present one (Açkay, Beck, & Sewall, in review Akçay, Tom, Campbell, & Beecher, 211 

2013; Searcy, Akçay, Nowicki, & Beecher, 2014; Searcy, Anderson, & Nowicki, 2006).  212 

We scanned and annotated the trial recordings using Syrinx to extract the following 213 

information: Proportion of the trial spent within 1m of the speaker and counts of loud songs, 214 
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soft songs and wing waves for each period. We converted the counts into rates by dividing the 215 

counts by the duration of the period to account for unequal observation durations.  216 

Data analysis  217 

The response variables were not normally distributed and we used non-parametric tests 218 

throughout. We first asked whether the models elicited different responses than a taxidermic 219 

mount in urban birds. For this, we compared the proportion of the trial within 1 m, loud song 220 

rates, soft song rates and wing waves in the urban subjects that received the mount treatment 221 

as well as at least one 3-D printed model (n=12). Eleven of the 12 subjects received both large 222 

and small spotting area 3-D models. For these subjects we averaged their responses to these 223 

models and compared the responses to mount with the responses to the 3-D printed models 224 

with a Wilcoxon signed-rank test. For individuals that received 3 trials, we used a Friedman’s 225 

test to determine if responses differed due to trial order. 226 

Then we compared the responses to the small and large spotting area models using all 227 

the subjects that received both stimuli (n=27). We used a permutation test to test the main 228 

effect of condition (a within subject variable) and habitat (a between subject variable) and their 229 

interaction using the ezPerm function in the R package ez (Lawrence, 2016). Because 230 

behavioural studies frequently have issues with low statistical power, we did not perform a 231 

Bonferroni correction (Nakagawa, 2004).   232 

Ethical note 233 

This research adheres to the ABAS/ABS Guidelines for the Use of Animals in Research.  234 

All of our methods were approved by the Virginia Tech IACUC committee (BIOL 15-185). VA-235 

DGIF (permit 48639), USGS bird banding lab (permit 23818) and the US Fish and Wildlife Service 236 
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(MB08005B-0).  We sampled 28, after-hatch year, wild, male song sparrows (Melospiza 237 

melodia).  Many of these birds are found in urban areas where they commonly experience 238 

human disturbance.  During observations, we remained 15-20 m away from the focal male 239 

which should have limited our effect on his behaviour and the trials were brief, only 8 minutes 240 

or until the male attacked the model.  We did not capture males for this study (some were 241 

previously banded for studies in past years) and thus this was a minimally invasive project.  242 

Males that were previously captured were banded with one USGS metal band (size 1B) and 3 243 

coloured leg bands (diameter 2.8 mm).  These bands were not removed so that birds could be 244 

identified in future years.  Leg bands are small, lightweight, and commonly used by 245 

ornithologists around the globe and should have minimal effect on a bird.   246 

 247 

Results 248 

Spotting area and male territorial aggression 249 

The proportion of the trial spent within 1m of the 3-D models did not differ between the 250 

small- and large-spotting area models. However, habitat had a strong effect with urban birds 251 

spending more time within 1m of the models than rural birds as has been found in previous 252 

studies in this population (Davies & Sewall, 2016; Foltz et al., 2015). The interaction between 253 

habitat and condition was not significant (Table1, Fig 2a).  254 

  255 
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Table 1. P-values from the permutation test on territorial aggression of male song sparrows 256 

during the presentation of 3-D printed models with large or small chest spotting in urban and 257 

rural habitats (1000 permutations).  258 

 259 
 

Proportion of 
time spent 
within 1m 

Loud song rate Soft song rate Wing wave rate 

Habitat 0.001 0.394 0.065 0.010 

Condition 0.27 0.058 0.010 0.511 

Habitat*Condition 0.52 0.216 0.56 0.411 

 260 

 261 

Figure 2: The responses of territorial male song sparrows to 3-D printed models with small or 262 

large spotting area in a) proportion of time spent within 1m, b) soft song rates, c) loud song 263 

rates, and d) wing wave rates. Rates are per minute. The lines are individual subjects.   264 

 265 
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In the signaling variables, there was a significant difference in rates of soft songs given in 266 

response to small and large spotting area models: subjects tended to give more soft songs in 267 

response to the models with small spotting area. The effect of habitat approached significance 268 

with urban birds tending to sing more soft songs, and the interaction effect was not significant 269 

(Table 1, Fig. 2b). Loud song rates showed a tendency to differ between conditions as well with 270 

subjects singing fewer loud songs to models with small spotting area (Fig. 2c). Finally, subjects 271 

did not differ in their wing wave rates between conditions, but urban birds gave significantly 272 

more wing waves (Fig. 2d, only one rural bird gave any wing waves).   273 

Four subjects out of 27 (14.8%) attacked the model with small spotting area, whereas 274 

one subject (3.7%) attacked the large spotting area models. The difference was not significant 275 

by a chi-square test; χ2=1.98, p= 0.16. Two out of 11 subjects attacked the taxidermic mount 276 

(18.2%).  277 

Response to 3-D printed models and the taxidermic mount 278 

During the pre-model period, there were significant differences between the model and 279 

mount in proportion of time spent within 1 m (V=57,n=12,p=0.037): subjects spent significantly 280 

less time near the speaker in the mount trials than in the model trials before the model or 281 

mount was revealed. No other significant differences were detected for the pre-model period 282 

(all p > 0.38). During the model presentation, there were significant differences between the 283 

responses to the taxidermic mount and the 3-D models. Subjects spent more time within 1m of 284 

the mount than the model (V=1, n=12, p = 0.01, Fig. 3a); sang more soft songs (V=13, n=12, p = 285 

0.04, Fig. 3b), and more loud songs (V=67, n=12, p = 0.03, Fig. 3c) to the mount than to the 3-D 286 

models.  Rates of wing waves did not differ significantly between the mount and the 3-D 287 
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models (V=5, n=12, p = 0.15, Fig. 3d). The birds showed no signs of habituation as none of the 288 

response variables differed by trial number (all p > 0.15). 289 

 290 

Figure 3.  The responses of territorial male song sparrows to 3-D printed models and a 291 

taxidermic mount in a) proportion of time spent within 1m, b) soft song rates, c) loud song 292 

rates, and d) wing wave rates. Rates are per minute. The lines are individual subjects. 293 

 294 

Discussion 295 

In this study we had two aims: 1) to determine whether male song sparrows respond 296 

differently to intruders based on the extent of chest spotting and 2) to determine whether a 3-297 

D printed model can be effectively used to replace taxidermic mounts to study plumage signals. 298 
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We found that when birds were presented with 3-D printed models with different sized 299 

spotting areas, they responded with more aggressive signaling towards the models with less 300 

chest spotting.  We found that responses to the mount and 3-D printed models did differ 301 

significantly with the taxidermic mount eliciting a stronger aggressive response though the 302 

mount and 3-D models were attacked at similar rates.  303 

Spotting area as a signal of aggression 304 

We expected to find a difference in aggressive and signaling behaviours in response to 305 

variation in spotting area. However, we only found a difference in soft songs and a trend for 306 

loud songs, but no differences in attack or proximity to the model. Because spotting area is a 307 

visual stimulus, relatively close approach may be necessary for assessment, leading to a lack of 308 

difference between treatments. Furthermore, the lack of behavioural response by the model 309 

may lead males to remain in close proximity to the model, irrespective of differences in spotting 310 

area.  More soft songs were produced in response to the models with less chest spotting and 311 

soft songs are the most reliable signal of aggression in this species (Akçay et al., 2013; Searcy et 312 

al., 2006). Similarly, models with small spotting area tended to elicit lower rates of loud songs 313 

than models with large spotting area, and low rates of loud singing are predictive of physical 314 

attack in our population (Akçay et al. in review). Thus, these two findings can be interpreted as 315 

a difference in aggressive signaling, even though there was no difference in approach or 316 

attacks.  317 

A difference in responses to chest spotting size is consistent with chest spotting serving 318 

as a signal reflecting status or resource holding potential in song sparrows. However, whether 319 

higher aggression towards males with small spotting area means that these are perceived to be 320 
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a greater threat or are viewed as easier to defeat requires further testing. Subjects may 321 

respond with greater intensity to small spotting models because these represents a greater 322 

threat. Alternatively, subjects may respond more strongly to small spotting area models 323 

because these represent a lower threat which makes investment in aggressive behaviours less 324 

costly (in terms of risk of retaliation and injury) than it would be in response to a higher threat 325 

opponent with a large spotting area (Pryke & Andersson, 2003a; Searcy & Beecher, 2009). We 326 

think this latter explanation is more likely because urban male song sparrows have more 327 

extensive chest spotting and display greater territorial aggression than rural males (Beck et al., 328 

2018; Davies & Sewall, 2016).  The negative association between spotting area and territorial 329 

aggression we previously found in rural males may be the result of rural males with less chest 330 

spotting being frequently challenged or experiencing higher rates of intrusion, leading them to 331 

resort to overt aggression more frequently to defend their territory. 332 

Plumage colouration does play a key role in mediating aggressive interactions between 333 

neighbors and floaters in a number of other territorial bird species, just as we have found in this 334 

study.  In other avian species, individuals are less likely to approach or challenge more 335 

ornamented individuals or models (Pryke et al., 2001) and are more likely to challenge 336 

individuals with reduced or missing ornaments (Chaine & Lyon, 2008; Cline et al., 2016; Pryke & 337 

Andersson, 2003a, 2003b).  Indeed, more ornamented territory holders experience lower rates 338 

of intrusion by conspecific males (Pryke & Andersson, 2003b; Pryke et al., 2001) while males 339 

with reduced ornaments experience much greater rates (Chaine & Lyon, 2008; Cline et al., 340 

2016).  Territorial males could receive intrusions from more distant neighbors who are 341 

prospecting for extra-pair mating opportunities or a higher quality territory.  These individuals 342 
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will be less familiar with each other and a signal of fighting ability could be beneficial in this 343 

context.  While non-territorial “floaters” occur in island populations of song sparrows (Arcese, 344 

1987), the number of floaters in our population is currently unknown and assessing the 345 

occurrence of floaters as well as the size and reflectance of their chest spotting would be 346 

helpful, since frequent interactions with floaters would make a signal associated with resource 347 

holding potential or aggression more likely to persist in a territorial species.   348 

The findings in the current study support the hypothesis that spotting area is a signal 349 

used in male competitive interactions and influences receiver territorial aggression in song 350 

sparrows, although the mechanism of the association between the signal and aggression is 351 

unknown. To address this question, we are currently completing an experimental manipulation 352 

of the spotting area in male song sparrows and assessing the behavioural and hormonal 353 

consequences of these manipulations.  354 

3-D printed models as a tool for behavioural assays 355 

A second aim of our study was to assess the use of 3-D printed models as a replacement 356 

for taxidermic mounts in behavioural assays of aggression. While the use of 3-D printed models 357 

is becoming more common, relatively few studies have compared traditional taxidermic models 358 

and 3-D printed ones to ensure the 3-D model provides a biologically meaningful stimulus, 359 

particularly for behavioural studies (but see Bentz et al., 2019; Igic et al., 2015; Watson & 360 

Francis, 2015). We found our subjects in the urban areas responded to the taxidermic mount 361 

with greater territorial aggression than the 3-D printed models although they still responded to, 362 

and in some cases attacked, the 3-D printed models. The attack rates of birds which were 363 

tested with both 3-D models and the taxidermic mount were comparable (2 out of 11 birds 364 
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attacked the mount, 3 out of 11 attacked the small-spotting 3-D model, and 1 out of 11 365 

attacked the large-spotting 3-D model). Because we only had a single taxidermic mount, we 366 

cannot draw strong conclusions about the equivalence or lack thereof, of 3-D models and 367 

taxidermic mounts. Our results suggest researchers should validate their use of 3-D printed 368 

models by comparison to more realistic taxidermic mounts.  369 

Though their validity across study systems still requires testing, 3-D printed models 370 

provide a very promising avenue for ecological research, including behavioural ecology. For 371 

intrusion experiments, the presence of a model presents a more realistic stimulus than song 372 

playback alone and can lead to stronger, and likely more realistic, behavioural and hormonal 373 

responses in some species (Chantrey & Workman, 1984; Wingfield & Wada, 1989). One major 374 

advantage of using 3-D printed models is the ability to manipulate shape, colour, posture, etc. 375 

of the visual stimuli and therefore gain more experimental control over treatments. Another 376 

advantage is that it is easy to 3-D print many models to reduce or completely avoid 377 

pseudoreplication without impacting wild populations by collecting specimens for taxidermic 378 

mounts (pseudoreplication was an issue in our study given we only had access to a single 379 

taxidermic mount). Indeed, 3-D printing has been used with great efficacy in several recent 380 

studies in birds (Fan et al., 2018; Igic et al., 2015; O'Connor, Brigham, & McKechnie, 2018) and 381 

other taxa (Watson & Francis, 2015), which suggests this technique can enhance a variety of 382 

ecological studies (Behm, Waite, Hsieh, & Helmus, 2018). We therefore believe that going 383 

forward 3-D printing will be a major benefit for behavioural ecology.   384 

 385 
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