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Abstract

DNA methylation plays an important role in the development and progression of dis-
ease. Beta-values are the standard methylation measures. Different statistical methods
have been proposed to assess differences in methylation between conditions. However,
most of them do not completely account for the distribution of beta-values. The simplex
distribution can accommodate beta-values data. We hypothesize that simplex is a quite
flexible distribution which is able to model methylation data.

To test our hypothesis, we conducted several analyses using four real data sets
obtained from microarrays and sequencing technologies. Standard data distributions
were studied and modelled in comparison to the simplex. Besides, some simulations
were conducted in different scenarios encompassing several distribution assumptions,
regression models and sample sizes. Finally, we compared DNA methylation between
females and males in order to benchmark the assessed methodologies under different
scenarios.

According to the results obtained by the simulations and real data analyses, DNA
methylation data are concordant with the simplex distribution in many situations. Sim-
plex regression models work well in small sample size data sets. However, when sample
size increases, other models such as the beta regression or even the linear regression can
be employed to assess group comparisons and obtain unbiased results. Based on these
results, we can provide some practical recommendations when analyzing methylation
data: 1) use data sets of at least 10 samples per studied condition for microarray data
sets or 30 in NGS data sets, 2) apply a simplex or beta regression model for microarray
data, 3) apply a linear model in any other case.

Background

Epigenetic events are those that, without changing the original DNA structure, alter gene

expression levels. DNA methylation, the most studied epigenetic modification, involves the
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addition of a methyl group to the fifth carbon of cytosine [1]. DNA methylation predomi-

nantly occurs in CpG sites, which are DNA dinucleotides composed of a cytosine nucleotide

followed by a guanine nucleotide. CpG islands are regions highly enriched in CpG sites.

Changes in methylation patterns and levels are diverse across tissues and have been associ-

ated with various diseases or traits such cancer, genetic disorders [2], smoking [3] aging [4]

and sex [5].

There are at present two main technologies to assess methylation levels, microarrays

and next generation sequencing (NGS) [1]. In the field of microarrays, Illumina Infinium

is the market leader with the EPIC array, the popular 450K and the previous 27K arrays.

Methylation levels obtained from microarrays are represented in terms of beta-values, which

measure the proportion of methylated probes (i.e. values between 0 and 1). To assess methy-

lation levels in NGS, methods that apply the bisulfite modification, such as whole-genome

bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing (RRBS), are

the most demanded. Methylated and unmethylated read counts are obtained from NGS and

their ratios are equivalent to the beta-values derived from microarray. Therefore the same

statistical methods can be used, although coverage depth should be taken into account [6].

Methylation differences between conditions are typically reported at differentially methy-

lated sites (DMSs), although differentially methylated regions (DMRs), which include mul-

tiple adjacent CpG sites, can also be provided. Several methods have been described to

assess DMSs. In small sample size experiments, where distribution assumptions may be

inaccurate, a Fisher’s exact test is often applied. Other classical hypothesis testing meth-

ods, such as the chi-square test, regression approaches, t-test and analysis of variance; are

used to identify DMSs [7, 8]. Limma [9] is also an extended method to assess DMSs us-

ing standard linear regression models. Some methods assume beta-values to follow a beta

distribution [10, 11].

In the specific context of NGS, coverage depth differences in samples can generate

overdispersion. This has been addressed mainly by fitting a logistic regression that ac-

counts for coverage depth (Methylkit [12]) or, more commonly, through the beta-binomial

distribution. Beta-binomial was proposed by Molaro et al. [13] as the natural count-based

statistical distribution [14, 7]. Posteriorly, several methods such as DSS [15], DSS-general

[16], MOABS [17], and RADmeth [14] that assume a beta-binomial were designed.

Beta-values represent proportions restricted to the [0,1] interval. They can be skewed or

even bimodal, with peaks close to 0 or 1. Distributions for proportional data include the beta

distribution, part of the exponential family distribution; and the simplex, which belongs

to the family of dispersion models [18]. Both beta and simplex are defined in the open
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interval (0,1) but real data contain sometimes bounds 0 and/or 1, so the corresponding 0/1

inflated distributions might be required. Since there is currently no agreement on which

distribution to apply for proportional data, although recommendations to use the beta

have been described in other fields [19], we want to assess the convenience of the simplex

distribution to accommodate beta-values.

Association of beta-values with phenotype can be performed through regression mod-

els. The generalized linear model (GLM), which was developed for exponential families

of distributions but extended to the dispersion models [20], is the standard approach to

compare the means of different groups. However, as beta-values distribution may present

asymmetries, quantile regression models could be an alternative in these situations.

In this paper, we aimed to study whether simplex could be a good representation for

methylation beta-values, which could be in turn fitted by a simplex regression model with

the use of GLMs. In addition, we wanted to assess whether quantile regression could also

be a good model to analyse beta-values by capturing differences in the extreme values of

the data. For that, we conducted three different analysis strategies on four real data sets,

obtained from microarrays and NGS. First, the data sets were analyzed and modelled.

Second, some simulations were performed to test different scenarios encompassing several

distribution assumptions, regression models and sample sizes. Finally, we performed DNA

methylation comparisons between females and males in order to benchmark the assessed

methodologies.

Methods

Data sets

Data analyses were performed using four different public data sets. These include both

microarrays and NGS data. Details on selected data sets are specified below and summarized

in Table 1.

Cigarette Smoking effects on methylation from 464 samples by Illumina 450k

array

Epigenome-wide microarray association study in peripheral-blood DNA of 464 individ-

uals who were current (n = 22), former (n = 263) and never smokers (n = 179). This

research was performed on the Infinium HumanMethylation450 BeadChip array (Illumina

Inc, USA). Data were downloaded from GEO (GSE50660) [21] and preprocessed using the

minfi R package [22] by quantile normalizing and SNP purging. This led to 381,306 CpGs
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Data set Origin Project Platform CpGs Filtered Samples

a450k-smoking GSE50660 Smoking effect Illumina Infinium Hu-
manMethylation450
BeadChip

485,577 probes 125,950 464

aEPIC-PBB GSE116339 Polybrominated
biphenyl (PBB)
exposure

Illumina Infinium
MethylationEPIC
BeadChip

868,564 probes 198,711 679

RRBS-ES Rnbeads.org Ewing sarcoma RRBS 5,658,698 270,569 188

WGBS-BLUE Rnbeads.org BLUEPRINT WGBS 28,571,135 204,073 81

Table 1: Data sets used in the analyses.

distributed in the open (0,1) interval. Then, data was filtered selecting those CpGs with

standard deviation (sd) > 0.03 obtaining 125,950 CpGs for further analyses. This data set

will be hereafter referred to as the array 450k smoking data set (a450k-smoking).

Exposure to polybrominated biphenyl of 679 samples by Illumina EPIC array

In this study, the blood DNA of 679 individuals who were exposed to polybrominated

biphenyl (PBB) in the 1970’s in Michigan (USA), was interrogated with the Infinium Methy-

lationEPIC BeadChip array (Illumina Inc, USA). The processed matrix was downloaded

from GEO (GSE116339), SNPs removed (using minfi package) and filtered by selecting those

CpGs with sd > 0.03 obtaining 198,711 CpGs for further analyses. In order to determine

the effect of data normalization on the results, we performed the six available normalization

methods in minfi package and found that shape of global distribution did not change much

(Supplementary figures 1 and 2) data set as beta-values were highly correlated (range of

significant correlations 0.95-0.99). This data set will be hereafter referred to as the array

EPIC PBB data set (aEPIC-PBB).

Genome-scale RRBS data for 188 cases suffering Ewing Sarcoma

This study assesses DNA methylation associated with Ewing sarcoma, a bone can-

cer primarily affecting children and young adults. In addition to tissue samples, healthy

mesenchymal stem cells (MSCs), MSCs affected with Ewing sarcoma and Ewing cell lines

were also included in the study [23]. Data of 188 RRBS samples were downloaded from

https://rnbeads.org/methylomes.html and preprocessed using the RnBeads R package ([24]).

From an initial number of 5,658,698 CpGs; sites with sd > 0.2 annotated to be in an island,

shelf or shore; with at least 30 non-missing values and a mean coverage of 3 were retained;

resulting in a total of 270,569 assessed sites. This data set will be hereafter referred to as
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the RRBS Ewing sarcoma data set (RRBS-ES ).

WGBS data of 81 blood sample methylomes from the BLUEPRINT project

Whole genome bisulfite sequencing profiles were generated for 81 different cell types

obtained from blood samples of healthy donors in the BLUEPRINT project framework.

Raw data were downloaded from https://rnbeads.org/methylomes.html and preprocessed

using the RnBeads package. From an initial number of 28,571,135 CpGs; sites with sd >

0.2 annotated to be in an island, shelf or shore with at least 30 non-missing values and a

mean coverage of 3 were conserved. Finally, a total of 204,073 sites were analysed. This

data set will be hereafter referred to as the WGBS BLUEPRINT data set (WGBS-BLUE ).

Distributions and regression models

The main objectives of this paper are to decipher whether the real distribution of beta-values

is the simplex and to identify the regression model that best fits in the association with

phenotype. Table 2 summarizes the assessed distributions for methylation beta-values, their

oddities and the natural regression models to assess DMSs in each particular distribution.

Below we describe the beta and simplex distributions, defined on the interval (0,1), and also

the regression models. The functions and R packages used in the analyses are also given.

Data Oddity Model

Beta None Beta regression
0,1 inflation Beta inflated regression

Normal None Linear regression
Bimodal data Quantile regression

Simplex None Simplex regression
0,1 inflation Simplex regression

Table 2: List of distributions with their oddities and their natural regression model to assess
DMSs.

Beta distribution The beta distribution belongs to the exponential family. The density

function of the beta distribution with parameters µ and φ is:

p(x, µ, φ) = Γ(φ)
Γ(µφ)(Γ(1−µ)ψ)y

µψ−1(1− y)(1−µ)ψ−1, (1)

where Γ denotes the gamma function [25]. dbeta (package stats) function was used to

estimate beta parameters.
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Simplex distribution The simplex distribution belongs to the family of dispersion mod-

els. Considering the normal distribution with mean µ and variance σ2 with the following

density function:

p(x, µ, σ2) = 1
σ
√

2π
e−(x−µ)2/2σ2

, (2)

then, the simplex distribution with location parameter µ and dispersion parameter σ2 is

defined as follows:

p(x, µ, σ2) = 1

σ
√

2πx3(1−x)3
e−d(x;µ)/2σ2

, (3)

where d(x;µ) = (x−µ)2

x(1−x)µ2(1−µ)2
and x ∈ (0, 1), µ ∈ (0, 1).

Parameter estimation through the maximum likelihood method were published by Peter

X.-K. Song [26]. ZOIP package [27] was used to estimate simplex parameters.

Regression model The linear regression model has the following formulation:

yij = µ+ αxij +
K∑
k=1

βkzijk + εij , (4)

where y is the methylation level, µ is the mean of y, x is the phenotype or condition variable,

α is the condition coefficient, z are the covariates, β are the estimated coefficients in the K

groups and ε is the error term. i represents the methylation site, j the subject and k the

covariates.

GLMs allow the response variable Y in equation (4) to adopt distributions belonging

to the exponential or dispersion families distributions and can therefore be used to fit beta

regression or simplex models. Beta regression was performed with betareg package [28]

whereas 0/1 inflated beta regression was carried out with the gamlss package [29]. Simplex

regression was fitted with simplexreg package [30] while inflated simplex regression was

fitted with the ZOIP R package.

Quantile regression Quantile regression was introduced by Koenker and Bassett in 1978

[31] to expand the potential of linear models. The regression coefficients are computed by

minimizing the sum of weighted absolute residuals [32]. Quantile regression fits specified

percentiles of the response, to accommodate the different distribution shapes and can poten-
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tially describe the entire conditional distribution of the response. 75% quantile regression

was assessed for the data distribution with package quantreg [33].

Other regression models Beta-values from microarray data were also modelled using

linear models, with function lm from package stats and also limma package [9]. NGS data

sets were analyzed using beta-binomial regression using the function betabin from package

aod [34] by modelling the total methylated reads and coverage at each CpG site.

Figure 1: Scheme of analyses performed. AIC: Akaike’s information criterion, DMS: dif-
ferentially methylated site, KS: Kolmogorov-Smirnov test, MLE: maximum likelihood esti-
mation, a450k-smoking: array 450k smoking data set, aEPIC-PBB: array EPIC PBB data
set, RRBS-ES: reduced representation bisulfite sequencing Ewing sarcoma data set, WGBS-
BLUE: whole genome bisulfite sequencing BLUEPRINT data set, TN: true negatives, FP:
true positives, FN: false negatives, FP: false positives.

Data analyses

We used three different approaches to compare the different data modelling strategies.

Figure 1 summarizes data analyses. First, we assessed whether beta-values follow three

different data distributions: simplex, beta or normal. Second, we run a comprehensive

simulation study to assess and evaluate the different models under different scenarios (sam-

ple size, effect size, etc.). Finally, we tested regression models on real circumstances by

comparing DNA methylation between females and males. All analyses were conducted
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in the R environment (v. 3.5.1). R functions used to perform all tests are available at

https://github.com/lnonell/MetDist.

Data distribution For each CpG, the best distribution of its beta-values across samples

was assessed in terms of the Akaike’s information criterion (AIC) as well as by performing

a Kolmogorov-Smirnov (KS) test. This was done with R packages fitdistrplus [35] and sim-

plexreg [30]. Besides, for each CpG; the simplex, beta and normal distribution parameters

were estimated using maximum likelihood estimation (MLE) using fitdistrplus [35], ZOIP

[27] and VGAM [36] R packages.

Simulations The purpose of this second modelling analysis was to fit regressions under

a realistic scenario. To that end, we used the parameters estimated in the previous section

to generate three data sets, one for each distribution: simplex, beta and normal. These

synthetic data sets were constructed using parameters randomly selected from real data

estimations containing two balanced groups of samples. In practice, this was generated in

two steps for each produced data set: 1) 5% of the simulated DMSs were originated from the

same distribution by randomly choosing parameters for each group. 2) The remaining 95%

of the data were generated from the specific distribution but fixing the same parameters for

all simulated samples. In these settings, only the 5% of synthetic CpGs should be selected as

DMSs. Six different scenarios were generated according to the simulated number of samples

per group: 3, 5, 10, 30, 100 and 500. Each synthetic data set had 2,000 simulated CpGs

each.

After synthetic data were generated, regression models (simplex, inflated simplex, beta,

inflated beta, normal and quantile) were fitted for each of the simplex, beta and normal

simulated data sets to test the best fit for each distribution. Another popular linear model,

limma, computed on the logit transformed beta-values (the M-values), was also included in

the simulation for comparison purposes. Normal data was restricted to the (0,1) interval for

the data to be realistic. R packages simplexreg, ZOIP, betareg, gamlss and quantreg were

used to fit regression models. All model results were adjusted for multiple comparisons with

the false discovery rate (FDR, [37]).

Simulations were evaluated in terms of true positives (TP), false positives (FP), true

negatives (TN), and false negatives (FN). Three measures were computed out of them:

sensitivity, specificity and the Jaccard index. The Jaccard index is defined as the TP/total

of real tests, i.e. TP/(TP+FP+FN) [14].
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Model testing for sex comparison Finally all assessed regression models were fitted

in each data set to test for sex differences. The limma approach, applied to the transformed

M-values was also included in these analyses since this it is a broadly used method in

methylation data analyses. Results were appraised by means of the AIC but also studying

the number of DMSs obtained and their genomic position.

Results

Data distribution exploration

To see how beta-values distribute in the real data, we first inspected the global profile for

all sites of each data set. This presented a high variability in the shape among data sets

(Figure 2).

Figure 2: Beta-values histogram of all CpGs in the assessed data sets. Assessed conditions
are added as density lines in different colors, female in brown and male in violet. A. array
450k smoking data set. B. array EPIC PBB data set. C. RRBS ES data set. D. WGBS
BLUEPRINT data set.

Microarray beta-values were less disperse than sequencing data but they all presented a
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rough bimodal profile. NGS data showed a different behaviour in RRBS and WGBS, depict-

ing a clear bimodal distribution but with lower intermediate 0-1 values than microarrays.

RRBS data showed a preponderant concentration on the tails of the distribution.

In terms of the AIC, simplex was the selected distribution for microarray data sets

and RRBS (Figures 3 A-C) whilst beta was selected for WGBS data set (Figure 3 D,

Supplementary table 1).
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Figure 3: Akaike’s information criterion (AIC) after fitting a simplex, beta or normal dis-
tribution for all CpGs in each data set. CpGs are represented in the horizontal axis sorted
by chromosomal position. A. array 450k smoking data set. B. array EPIC PBB data set.
C. RRBS Ewing sarcoma data set. D. WGBS BLUEPRINT data set.

Simplex, beta and normal distribution parameters were estimated to be used in the

simulations. Their distribution was rather disperse in the four data sets (Supplementary

figure 3). Of note, similar parameter distributions were found for the two microarray data

sets and also for NGS data sets.
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Simulations

Regression models fitted on simulated data (simplex, beta and normal distributed) showed

clearly a different behaviour and a better adjustment in the microarray data compared to

NGS for the different non inflated models (Figure 4, Table 3, Supplementary figure 4 and

Supplementary tables 2-7). For microarray data and according to the Jaccard index, the

simplex and beta models were clearly the two best models when data sets were of limited

size (n = 3, 5, 10 or 30). Unsurprisingly, as data sets increased in samples, regression

models were getting more accurate and the linear model and limma showed to be a good

alternative. NGS synthetic data modelling was clearly worse in general, with very poor

Jaccard indices in general due mainly to an increased FN rate. For larger data sets (n =

100 or 500), in a simplex distribution framework, the limma or alternatively, the simplex

model, showed the best results being also the normal an alternative for beta or normally

distributed NGS data. Inflated beta and simplex models presented overall similar o slightly

worse results compared to their corresponding non-inflated models. Of note, the simplex

inflated model depicted a higher rate of FP and a lower rate of FN. In addition, quantile

regression models underperformed all other models in all situations.

a450k-smoking aEPIC-PBB RRBS-ES WGBS-BLUE

TP TN FP FN Jacc TP TN FP FN Jacc TP TN FP FN Jacc TP TN FP FN Jacc

Simplex sim. 95 1900 0 5 0.95 90 1900 0 10 0.9 23 1900 0 77 0.23 54 1900 0 46 0.54

bet. 95 1900 0 5 0.95 91 1900 0 9 0.91 16 1900 0 84 0.16 47 1900 0 53 0.47

norm. 95 1900 0 5 0.95 90 1900 0 10 0.9 18 1900 0 82 0.18 49 1900 0 51 0.49

quan. 93 1900 0 7 0.93 86 1900 0 14 0.86 6 1899 1 94 0.06 20 1900 0 80 0.2

lim. 95 1900 0 5 0.95 90 1900 0 10 0.9 42 1900 0 58 0.42 57 1900 0 43 0.57

Beta sim. 92 1900 0 8 0.92 93 1900 0 7 0.93 53 1899 1 47 0.52 64 1899 1 36 0.63

bet. 92 1900 0 8 0.92 94 1900 0 6 0.94 45 1900 0 55 0.45 61 1900 0 39 0.61

norm. 92 1900 0 8 0.92 93 1900 0 7 0.93 48 1900 0 52 0.48 59 1900 0 41 0.59

quan. 88 1900 0 12 0.88 89 1900 0 11 0.89 27 1900 0 73 0.27 43 1900 0 57 0.43

lim. 92 1900 0 8 0.92 94 1900 0 6 0.94 57 1900 0 43 0.57 65 1900 0 35 0.65

Normal sim. 95 1899 1 5 0.94 95 1900 0 5 0.95 69 1898 2 31 0.68 57 1893 7 43 0.53

bet. 95 1900 0 5 0.95 95 1900 0 5 0.95 61 1900 0 39 0.61 55 1900 0 45 0.55

norm. 95 1900 0 5 0.95 95 1900 0 5 0.95 63 1900 0 37 0.63 55 1900 0 45 0.55

quan. 93 1900 0 7 0.93 86 1900 0 14 0.86 55 1900 0 45 0.55 45 1900 0 55 0.45

lim. 95 1900 0 5 0.95 95 1900 0 5 0.95 63 1900 0 37 0.63 55 1900 0 45 0.55

Table 3: Simulation results. Evaluation measures for synthetic simplex, beta and normal
distribution data fitted in to compare two groups of 100 samples through several regression
models: simplex (sim.), beta (bet.), normal (norm.), quantile (quan.) and limma (lim.). TP:
True positives, TN: True negatives, FP: False positives, FN: False negatives, Jacc: Jaccard
index. A complete table with all performance measures is to be found in Supplementary
table 6.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2019. ; https://doi.org/10.1101/753459doi: bioRxiv preprint 

https://doi.org/10.1101/753459
http://creativecommons.org/licenses/by-nc-nd/4.0/


●
●

●

●

●

●●

●

●

●

●●●

●

●

●●●

●

●

●●●
●
● ●●●●●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●●
●

●

●

●●●
●
●

●●●
●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●
●
●

●

●
●●●●
●

●●●
●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●●●
●
●

●
●
●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●
●

●

●

●●●
●

● ●●●●●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●●
●

●

●

●●●

●

●
●●●

●
●

●●
●●●●●●●●
●●●●●

●
●●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●●●

●
●
●●●

●
●
●
●
●

●

●●

●

●

●

●
●

●

●

●●
●

●

●

●●

●●●

●●

●●●

●●

●
●
●

●

●●

●

●

●

●
●

●

●

●
●
●

●
●

●
●

●
●●

●●

●●●

●●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●●●

●●

●●●

●
●
●
●
●

●

●●

●

●

●
●
●

●

●

●●
●

●

●

●●

●●●

●
●

●●●

●●

●
●
●

●
●
●

●

●

●●●

●

●

●
●●

●
●

a450k−smoking aEPIC−PBB RRBS−ES WGBS−BLUE

sim
plex

beta
norm

al

351030 10
0

50
0 351030 10

0
50

0 351030 10
0

50
0 351030 10

0
50

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

ja
cc

ar
d

● ● ● ● ●beta simplex normal quantile limma

Figure 4: Line plots depicting the Jaccard index for the regression models in the simulations
of a two balanced groups comparison with 3, 5, 10, 30, 100 and 500 samples each. Each
simulation contains 2000 CpGs with a theoretical 5% of differentially methylated sites. In
rows simplex, beta or normal simulated distributions, respectively. In columns the analysis
results of each assessed data set: array 450k smoking , array EPIC PBB, RRBS Ewing sar-
coma and WGBS BLUEPRINT according to the different regression models, beta, simplex,
normal, quantile and limma.

Sex comparison

The different regression models fitted in the four data sets and evaluated with AIC showed

the simplex model to be the most suitable (Figure 5). Results comparing females and males

in each data set revealed most of the DMSs to be located in chromosome X although some

differentially methylated were also found in autosomal chromosomes (Figure 6, Supplemen-

tary table 8). Venn diagrams with the comparison of the results produced by the assessed

methods in the four data sets show that non-inflated regression models share in general

most of results although simplex leads to more results (Supplementary figure 5). Results

for each data set are presented in the following subsections.
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Figure 5: Akaike’s information criterion (AIC) after fitting a beta, simplex, normal or
quantile regression model for all CpGs in each data set. CpGs are represented in the
horizontal axis sorted by chromosomal position. A. array 450k smoking data set. B. array
EPIC PBB data set. C. RRBS Ewing sarcoma data set. D. WGBS BLUEPRINT data set.

array 450k smoking data set

In this smoking data set, 137 females were compared against 327 males. A total of 9,061

different DMSs were found at 5% FDR level for all the assessed models (Supplementary

figure 5A), being simplex inflated and non-inflated models the ones presenting the largest

number of significant results (12,376 and 11,297 respectively, Supplementary table 8). We

observed that between the 66% and 86% of the CpGs that were differentially methylated

were located in chromosome X. Beta and normal models detected 1,756 DMSs in autosomes,

while simplex only found 281.

array EPIC PBB data set

Many CpGs were found differentially methylated when comparing 399 females and 280
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Figure 6: Results of the beta, simplex, normal, quantile and limma regression models fitted
for all probes in the assessed data sets at an FDR of 1e-08%. A. Circos plot depicting
results by chromosome, data set and regression model. B. Density of DMSs obtained by the
different regression models located in chromosome X for each assessed data set. In green
array 450k smoking data set results, in blue the array EPIC PBB data set results, in red
the RRBS Ewing sarcoma data set results and in yellow the WGBS BLUEPRINT data set
results.

males at 5% FDR level in the EPIC microarray. The simplex inflated model was again the

one with the largest list of DMSs (59,909), while quantile regression detected the lowest

number of DMSs (22,523) (Supplementary table 8). We observed a total of 22,492 DMSs

shared among all models while 31,102 were found concurrently by the simplex, beta, linear

and limma models (Supplementary figure 5B). On the other hand, beta and simplex regres-

sion had 487 DMSs in common. 317 DMSs were found only by simplex model and 201 by

beta model. Chromosome X results represented between 17% and 53% of the total DMSs.

RRBS Ewing sarcoma data set

Only a few DMSs were obtained in the RRBS data set of Ewing sarcoma samples after

comparing 63 females and 96 males. 286 CpGs were selected as DMSs by all methods

(Supplementary figure 5C). Of note, 247 DMSs were shared among all models except the
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quantile model whereas 195 and 36 were found specific of simplex and beta, respectively.

Once again, simplex models yielded the largest results, 2,434 and 862 DMSs for inflated and

non-inflated respectively (Supplementary table 8). From those, a 59% and 91% belonged to

chromosome X, respectively. Notable was the proportion of DMSs found in chromosome X

by beta and beta inflated models (94% and 99%, respectively), limma (99%) and quantile

(100%). Beta-binomial depicted 7,952 DMSs in the chromosome X (99.62%).

WGBS BLUEPRINT data set

Seventy seven samples had sex information associated, 47 females and 30 males. We

found a total of 1,879 DMSs detected by all methods. 3,121 DMSs were found by the sim-

plex, beta, linear and limma models and 735 were unique to the beta model (Supplementary

figure 5D). Noteworthy, simplex regression model depicted in its non-inflated and inflated

versions again 53,637 and 17,923 DMSs (Supplementary table 8), being 11,381 model spe-

cific in the non-inflated form. Moreover, simplex models results were spread all over the

genome, having a 24% and 46% of the resulting CpGs located in chromosome X, respec-

tively. Beta-binomial results showed 17,129 differentially methylated CpGs, a 61% being

located in chromosome X. The remaining models presented a 99% of DMSs in chromosome

X.

Discussion

In this study we have performed comprehensive analyses to gain insights in methylation

beta-values distribution, but also to provide practical recommendations in their association

to phenotype using accurate regression models. We covered both microarrays and NGS

technologies.

Our results showed that real data beta-values matched with a simplex distribution when

measured with microarrays or RRBS. In contrast, WGBS beta-values were closer to a beta

distribution.

Regression models fitted on simulated yet realistic data presented some interesting re-

sults in both microarrays and NGS. Clearly, small data sets with less than 10 samples did

not achieve good performance for microarrays nor with less than 30 in NGS. As expected,

results were better as the simulated size of groups increased. Microarray simulation results

were consistent and for large data sets, simplex, beta but also the linear regression models

obtained good evaluation measures. In NGS results were, however, different between RRBS

and WGBS. In synthetic data sets of at least 100 samples per group, simplex and limma
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models were the best for WGBS. In RRBS, limma was outperforming the other models.

Comparisons between females and males using regression models in the four data sets

confirmed on one side, that the simplex regression model could be a good choice and, on

the other side, that most of the DMSs were shared among all models except the quantile

and located primarily in chromosome X. Some differences were also found in autosomal

chromosomes. This is coherent and concordant with previous results [38, 5]. The beta-

binomial model seemed to capture this overdispersion by presenting more DMSs.

Putting together our results, we have seen that when methylation is assessed with mi-

croarrays, beta-values are concordant with a simplex distribution and these can be fitted

using a simplex model but also a beta or a linear model, when groups to compare are large.

WGBS data set showed to be predominantly beta distributed, but simulations and other

analyses performed on this data set showed that a simplex regression model could be used

in general whereas limma improved the results in some scenarios. RRBS, despite being

simplex distributed, presented poor results when adjusted by regression models, with low

Jaccard indices influenced by many FN DMSs. However, they could be analyzed using

limma. Remarkably, quantile regression model is not a good alternative to the other GLMs

in the analysis of association with phenotype.

Although we tried to cover many scenarios in our analyses, some limitations need to be

mentioned. First of all, the results we provide might be data set dependant but also depend

on the R functions and packages used in this study. Besides, there are a few issues that can

have a high impact in the data which can condition posterior analyses such as normalization

and preprocessing. Pidsley et al. demonstrated for microarrays that with a simple quan-

tile normalization, data performed better than applying other more sophisticated methods

[39]. Furthermore, some normalization methods such as quantile normalization lead to non-

inflated distributions, with no need to use inflated models. Zero and one inflation can easily

overcome by lowering the extremes by a small offset. Sequencing data have also some tech-

nical issues such as the over-represented methylation due to higher cycles of PCR [40] or the

‘Spatial correlation’ between the methylation levels of the neighboring [8]. There are other

general concerns that need also to be taken into account in the analysis of methylation data

such as batch effects [6], tissue heterogeneity, filtering [41], missing values, SNP overlapping

and copy number affectation. A careful examination of the data to control these limitations

is needed.
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Conclusion

As a final conclusion, we have demonstrated that simplex regression model is a good al-

ternative for the analysis of methylation data whereas the quantile model is not. Results

are consistent in microarray data and more heterogeneous in NGS. In summary, this study

gives insights into methylation data and analysis, from which our list of recommendations

follows: 1) use data sets of at least 10 samples per studied condition for microarrays or 30

in NGS, 2) apply a simplex or beta model in microarray data, 3) apply a linear model in

any other case.

List of abbreviations

AIC Akaike’s information criterion
DMS differentially methylated site
FDR false discovery rate
FN false negatives
FP false positives

GLM generalized linear model
KS Kolmogorov-Smirnov test

MLE maximum likelihood estimation
NGS next generation sequencing

RRBS reduced representation bisulfite sequencing
sd standard deviation

SNP single nucleotide polymorphism
TN true negatives
TP true positives

WGBS whole genome bisulfite sequencing
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