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Abstract:

The (ir)regularity of neural time series patterns as assessed via Multiscale Sample Entropy (MSE; e.g.,
Costa et al., 2002) has been proposed as a complementary measure to signal variance, but the con- and
divergence between these measures often remains unclear in applications. Importantly, the estimation
of sample entropy is referenced to the magnitude of fluctuations, leading to a trade-off between variance
and entropy that questions unique entropy modulations. This problem deepens in multi-scale
implementations that aim to characterize signal irregularity at distinct timescales. Here, the
normalization parameter is traditionally estimated in a scale-invariant manner that is dominated by slow
fluctuations. These issues question the validity of the assumption that entropy estimated at finer/coarser
time scales reflects signal irregularity at those same scales. While accurate scale-wise mapping is critical
for valid inference regarding signal entropy, systematic analyses have been largely absent to date. Here,
we first simulate the relations between spectral power (i.e., frequency-specific signal variance) and
MSE, highlighting a diffuse reflection of rhythms in entropy time scales. Second, we replicate known
cross-sectional age differences in EEG data, while highlighting how timescale-specific results depend
on the spectral content of the analyzed signal. In particular, we note that the presence of both low- and
high-frequency dynamics leads to the reflection of power spectral density slopes in finer time scales.
This association co-occurs with previously reported age differences in both measures, suggesting a
common, power-based origin. Furthermore, we highlight that age differences in high frequency power
can account for observed entropy differences at coarser scales via the traditional normalization
procedure. By systematically assessing the impact of spectral signal content and normalization choice,
our findings highlight fundamental biases in traditional MSE implementations. We make multiple
recommendations for future work to validly interpret estimates of signal irregularity at time scales of
interest.

Highlights
e Multiscale sample entropy (MSE) links to spectral power via an internal similarity criterion.
e Counterintuitively, traditional MSE implementations lead to slow-frequency reflections in fine-
scale entropy, and high-frequency biases on coarse-scale entropy.
¢ Fine-scale entropy reflects power spectral density slopes, a multi-scale property.
e Narrowband sample entropy indexes (non-stationary) rhythm (ir)regularity at matching time scales.

Keywords: multiscale sample entropy; time scale bias; resting state EEG; age differences; rhythms
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1 Introduction

1.1 Entropy as a measure of signal (ir)regularity

Neural times series exhibit a wealth of dynamic patterns that may be tightly linked to neural
computations. While some of these patterns consist of stereotypical deflections (e.g., periodic
neural thythms; Buzsaki & Draguhn, 2004; X. J. Wang, 2010), others have a more complex
appearance that may still be equally relevant for characterizing neural function (S. R. Cole &
Voytek, 2017; Diaz, Bassi, Coolen, Vivaldi, & Letelier, 2018). Multiscale entropy (MSE)
(Costa, Goldberger, & Peng, 2002, 2005) has been proposed as an information-theoretic metric
that estimates the temporal irregularity in a signal (in theory providing information above and
beyond traditional spectral metrics), while accommodating that neural dynamics occur across
multiple spatiotemporal scales. In tandem, dynamic perspectives on brain function in the
framework of nonlinear dynamics and complex systems have gained traction (Breakspear,
2017; Stam, 2005; Vakorin & MclIntosh, 2012), suggesting that optimal computations in the
brain may be characterized by metastable states that afford flexible movement between distinct
attractor states. Following this conceptual framework, MSE has been increasingly applied to
characterize the apparent “irregularity” (or non-linearity) of neural dynamics of different brain
states, across the lifespan and in relation to health and disease (Bruce, Bruce, & Vennelaganti,
2009; Jaworska et al., 2018; Mclntosh et al., 2014; Miskovic, MacDonald, Rhodes, & Cote,
2019; Sleimen-Malkoun et al., 2015; Takahashi et al., 2010; H. Wang, Mclntosh, Kovacevic,
Karachalios, & Protzner, 2016; Werkle-Bergner et al., 2014; Yang et al., 2013). With its novel
focus on non-linear dynamics, MSE has thus become an attractive measure to gain new
perspectives into brain function. However, its relation to extant, linear signal characteristics
(e.g. spectral power) is considered complex in its own right (Courtiol et al., 2016; Nikulin &
Brismar, 2004; Vakorin & Mclntosh, 2012). Many applications highlight a joint modulation of
both entropy and spectral power, although the specifics of their potential association (e.g.,
regarding their time scales) are not always clear. Given the apparent sensitivity of MSE in many
applications, we argue that a better understanding of the relation of MSE to established linear
signal characteristics such as spectral power (Buzsaki & Draguhn, 2004; Buzsaki & Mizuseki,
2014; Lopes da Silva, 2013) is critical. In particular, work on the interpretation of entropy time
scales remains sparse. At best, this limits any temporally-specific interpretation of observed
effects. Here, we probe two potential challenges to traditional interpretations of MSE estimates:
(a) the validity of unique inferences regarding pattern irregularity of a neural signal vs. its
variance, and; (b) the validity of the time-scale at which effects are observed.
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1.2 The influence of variance on entropy challenges measurement validity
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Figure 1: Scale-dependent entropy estimates are linked to spectral power via the similarity criterion (» parameter)
and the regularity introduced by spectral events (e.g. thythmicity). During the entropy calculation, template
patterns of length m (here m = 2) are compared to the rest of the time series. Matches are detected when m
consecutive samples fall within the templates’ similarity bounds as indicated by the grey shading. Entropy is
based on the ratio of m+1 vs. m target matches and increases with a disproportional number of patterns of length
m that do not remain similar at length m+1 (non-matches). This procedure is iteratively repeated across samples,
deriving the entropy for each template in time. (A) Sample entropy varies as a function of the variance-dependent
similarity criterion 7 that in turn relies on the signal’s spectral variance. Empirical example of fine-scale entropy
estimation in identical high-frequency (A1) and broadband (A2) signals. The superimposed formula exemplifies
the sample entropy calculation for the current template. When the same signal is constrained to high frequency
content (Al), its variance and the associated similarity criterion reflect a conservative criterion for pattern
similarity. This results in high sample entropy estimates that accurately reflect high frequency pattern
irregularity. (A2), In contrast, broadband signals are typically characterized by strong low-frequency fluctuations
that lead to large similarity criteria at fine scales (A2), which are more appropriate for characterizing the large-
amplitude fluctuations of slow dynamics (B; note different x-axis scaling). (C) Scale-wise estimates may not
reflect the irregularity of spectral events at matching time scales depending on filter choices. In addition to
influencing the similarity criterion, added spectral systematicity also modulates entropy estimates at varying time
scales as a function of filter choice. The schematic shows an exemplary power spectrum with a characteristic 1/f
shape, i.e., dominance of power/variance at low frequencies and a prominent alpha frequency peak. Low-pass

filtering leads to slow dynamics dominating fine time scales, whereas high-pass filtering leads to reflections of
rhythmicity at coarse time scales.

Sample entropy is an information theoretic metric that indexes the pattern irregularity (or
“complexity”) of time series as the conditional probability that two sequences remain similar
when another sample is included in the sequence (for a visual example see Figure 1A). Hence,
sample entropy compares the relative rate of similar to dissimilar time domain patterns.
Whereas signals with a similar/repetitive structure (like rhythmic fluctuations) are assigned low
entropy, less predictable/dissimilar (or random) signals are characterized as having higher
entropy. We presume that a necessary condition for valid non-linear interpretations of sample
entropy is that “the degree of irregularity of a complex signal [...] cannot be entirely captured
by the SD [i.e., standard deviation]” (Costa, Goldberger, & Peng, 2004, p. 1; i.e., square root
of variance), a linear characteristic (Al-Nashash et al., 2009). For this reason, sample entropy
is traditionally assessed relative to the standard deviation of the broadband signal to intuitively
normalize the estimation of irregularity for overall distributional width (Richman & Moorman,
2000). In particular, the similarity parameter r directly reflects the tolerance against which
temporal patterns are labelled as being similar or different (for an example, see Figure 1A; for
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96  details see methods). In particular, for each point in the time series, a repeating pattern is
97  identified by falling within a range that is defined by the standard deviation of the signal (see
98  Figure Al). However, contrary to the assumption that “[d]efining 7 as a fraction of the standard
99  deviation eliminates the dependence of [sample entropy] on signal amplitude” (Bruce et al.,
100 2009, p. 259; see also Costa et al., 2004), it is rather plausible that this procedure in itself
101  introduces dependencies between signal variance and entropy. Specifically, as the magnitude
102  of signal fluctuations increases, the threshold for pattern similarity becomes more liberal as
103  more pattern are identified as similar (see Figure A2), thereby reducing estimated entropy and
104  leading to a general anti-correlation between signal variance and entropy (Nikulin & Brismar,
105 2004; Richman & Moorman, 2000; Shafiei et al., 2019). Hence, contrary to common belief, the
106  use of a variance-based normalization criterion may invoke rather than remove dependencies
107  between entropy estimates and signal variance (see Hypothesis A in section 1.5).
108 This problem is compounded in the case of multiscale sample entropy (MSE), which aims
109 to describe entropy at different time scales — from fast dynamics at fine (also referred to as
110  ‘short) time scales to slow fluctuations at coarse (or ‘long) time scales. To characterize coarser
111  time scales during the MSE calculation, signals are traditionally low-pass filtered, whereas the
112 similarity criterion typically remains scale-invariant, and set relative to the original broadband
113 signal (‘Original’ implementation). In turn, progressive time scale coarsening successively
114  removes high frequency content from the signal, yet a fixed broadband criterion still retains the
115  excluded frequencies; as a result, the increasingly mismatched criterion becomes a liberally
116  biased threshold for pattern similarity, effectively reducing entropy estimates. This is most
117  clearly illustrated by the observation that white noise signals, which should be characterized as
118  equally random at each time scale, exhibit decreasing entropy values towards coarser scales
119  when scale-invariant » parameters are used (Courtiol et al., 2016; Miskovic, Owens,
120  Kuntzelman, & Gibb, 2016; Nikulin & Brismar, 2004). Hence, the use of scale-invariant
121  similarity criteria renders links between signal variance and signal entropy ambiguous in
122 standard applications (Nikulin & Brismar, 2004). This prior observation provided a rationale
123 for scale-dependent computations of the » parameter (Valencia et al., 2009). This procedure
124  adheres to the initial idea of normalizing the scale-dependent signal via its variance, without
125  making estimates at coarser scales dependent on the variance of frequencies that have already
126  been removed from the signal. However, the use of scale-invariant thresholds remains dominant
127  in neuroscientific applications and in previous validation work (Courtiol et al., 2016), thus
128 requiring an emphasis of the divergence between results from fixed and scale-varying
129  thresholds.
130 While fixed similarity criteria present a general challenge to the validity of entropy
131  estimation, a scale-specific re-estimation of normalization parameters does not by itself
132 guarantee unique, variance-independent entropy estimates. In contrast, sample entropy remains
133 conditional on signal variance due to the (scale-dependent) broadband variance normalization.
134 It is well appreciated that the broadband signal represents the mixture of a scale-free
135  background with canonical rhythmic frequencies (Haller et al., 2018; Kosciessa, Grandy,
136  Garrett, & Werkle-Bergner, 2019) that are spatially specific and dynamically modulated during
137  spontaneous cognition and evoked task states (e.g., Keitel & Gross, 2016; Vidaurre et al., 2018).
138 In the face of such spectral complexity, signal variance may impact entropy estimates in
139  complex ways depending on the frequency composition of the target signal. Note that if the
140  signal is constrained to narrowband frequencies, its variance corresponds directly to spectral
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141  power. This problem persists at coarser scales, where entropy results remain partially dependent
142  on the similarity criterion, and thus the variance of the remaining frequencies. Hence, even
143  when adapted thresholds are used, the variance used to normalize entropy estimates may
144  introduce inter-individual, condition, and/or group differences that could invalidly be attributed
145  as unique to entropy rather than simply being shared with (or determined by) spectral variance.
146

147 1.3 Are “fast” and “slow” entropy estimates valid estimates of fast and slow processes?

148

149 A multiscale entropy approach is primarily motivated by the goal to derive additional
150 insight into the time scales at which complex neural dynamics occur. Hence, the aim is to
151  characterize signal irregularity along a continuum of time scales varying from fast dynamics to
152  slow fluctuations. In turn, observed scale-dependent effects are commonly interpreted with
153  reference to dynamical systems theory (Breakspear, 2017) and structural connectomics (Sporns,
154  2010). Specifically, it is often assumed that events at fine time scales closely relate to fast
155  dynamics and vice versa (Mclntosh et al., 2014), with theoretical and empirical work indicating
156  that the time scale of neural dynamics is related to intrinsic activity time constants that depend
157  atleast in part on structural properties of the underlying neural circuits (Buzsaki, Logothetis, &
158  Singer, 2013; Fries, 2009; Mejias, Murray, Kennedy, & Wang, 2016; von Stein & Sarnthein,
159  2000; X. J. Wang, 2010). To align with such interpretations, entropy effects at fine scales should
160 ideally reflect the pattern irregularity of fast dynamics, whereas those at coarse scales ought to
161  mainly characterize slower dynamics. This expectation is sometimes made explicit in claims
162  that “the structure of variability at short time scales, or high frequencies, has been linked to
163  local neural population processing, whereas variability at longer time scales, or lower
164  frequencies, has been linked to large-scale network processing” (Courtiol et al., 2016, p. 176;
165 emphases added). Such expectations may however be violated by standard MSE estimation
166  procedures. Notably, the dependence of coarse-scale estimates on high-frequency power when
167 invariant similarity criteria are used (see section 1.2) challenges the fundamental assumption
168 that estimates at coarser time scales exclusively reflect slow neural dynamics. This motivates
169  Hypothesis B (see section 1.5). In addition, a time scale mismatch may also be present at finer
170  time scales. Specifically, while entropy estimates at original sampling rates are often interpreted
171  as indicating ‘fast’ events, they characterize and are (scale-dependently) normalized by
172 broadband variance. Importantly, broadband variance represents the sum of power across
173 individual frequency bands, with most neural signals exhibiting a scale-free (or 1/f) power
174  distribution, for which variance is maximal at low frequencies (Buzsaki & Mizuseki, 2014; He,
175  2014). Hence, when broadband signals are analyzed, pattern similarity is traditionally
176  referenced to signal variance dominated by slow fluctuations (see Figure 1B). In principle, this
177  may reliably manifest as an association between spectral slopes and fine-scale entropy that has
178  been observed both across subjects and wakefulness states (Bruce et al., 2009; Miskovic et al.,
179  2019; Waschke, Wostmann, & Obleser, 2017). As sample entropy has been shown to be
180  sensitive also to the autocorrelative properties of the signal (Courtiol et al., 2016; Kaffashi,
181  Foglyano, Wilson, & Loparo, 2008), it is hence unlikely that fine-scale entropy is specific to
182  the irregularity of high frequency activity. Taken together, this prior evidence motivates
183  Hypothesis C (see section 1.5). In worst-case scenarios, a conjunction of the mechanisms
184  described above may thus lead to a reflection of fast dynamics at coarse scales and a reflection
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185  of slow dynamics at fine time scales, potentially inverting the interpretation of MSE time scales
186  in general.

187 We argue that narrowband rhythms provide an optimal test case to assess a proper mapping
188  of neural irregularity to specific time scales (see Figure 1C), given that they are a well-
189  researched characteristic of brain function, and given their specific definition of the time scale
190 of events (i.e., period = inverse of frequency). While previous work has assessed the relation
191  between multiscale entropy estimates and autocorrelative features (Courtiol et al., 2016), little
192  work has focused on the mapping of spectral frequencies and entropy time scales. Rather,
193  existing simulations have produced puzzling results that have received little attention in the
194  literature so far; while a linear mapping between simulated rhythmicity and its reflection in
195  entropy timescales has been observed, added rhythmic regularity appeared to increase entropy
196  above baseline (Park, Kim, Kim, Cichocki, & Kim, 2007; Takahashi et al., 2010; Vakorin &
197  Mclntosh, 2012). This notably contrasts with the intuition that added signal regularity should
198  rather reduce observed entropy. Targeted simulations are thus necessary to assess the intuitive
199 notion that rhythmicity should be anticorrelated with entropy, and to assess whether this
200 phenomenon occurs at appropriate time scales.

201

202 1.4 Age differences in neural irregularity at fast and slow time scales

203

204 An unambiguous mapping between the spectral frequency of neural events and their

205 reflection in entropy time scales is arguably crucial to accurately infer the potential mechanisms
206  behind entropy modulations. One principal application of multiscale entropy is research into
207  lifespan covariations between functional neural dynamics and structural network ontogeny (for
208 areview see Mclntosh, 2019). Within this line of inquiry, it has been proposed that structural
209  brain alterations across the lifespan manifest as entropy differences at distinct time scales
210  (Mclntosh, Kovacevic, & Itier, 2008; Mclntosh et al., 2014; H. Wang et al., 2016; Waschke et
211 al., 2017). In particular, it has been suggested that coarse-scale entropy decreases and fine-scale
212 entropy rises with increasing adult age as a reflection of senescent shifts from global to
213  increasingly local information processing (McIntosh et al., 2014; H. Wang et al., 2016).
214 Crucially, this suggestion mirrors observations based on spectral power, where age-related
215  decreases in the magnitude of low-frequencies (Leirer et al., 2011; Vlahou, Thurm, Kolassa, &
216  Schlee, 2014) are accompanied by increases in high-frequency activity, conceptualized also as
217  aflattening of power spectral density (PSD) slopes (Mclntosh et al., 2014; Voytek et al., 2015;
218 H. Wanget al., 2016; Waschke et al., 2017). While these results seemingly converge towards a
219  joint decrease of low-frequency power and slow scale entropy in older adults (and an increase
220  for both regarding fast dynamics), this correspondence is surprising upon closer inspection
221  given the presumed anticorrelation between the magnitude of stereotypic rhythm dynamics and
222 their estimated entropy. Given uncertainty regarding the unique information offered by entropy
223 modulations, as well as concerns regarding the valid interpretation of time scales of entropy
224  effects, we attempted to reconcile these various issues by investigating the relation between
225  cross-sectional age effects on both MSE and spectral power.

226
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227 1.5 Hypotheses and current study

228

229 We used simulations and empirical EEG data to probe the relationship between spectral
230 power and multiscale sample entropy (MSE), with a specific focus on the relation between
231  rhythmic frequencies and entropy time scales. We formulated the following general hypotheses
232 regarding the link between spectral variance and MSE:

233

234  A. The magnitude of the variance-based similarity criterion is negatively correlated with
235 entropy estimates.

236 B. ‘Original’ scale-invariant similarity criteria produce increasingly biased thresholds for the

237 detection of time series pattern similarity towards coarser time scales. The magnitude of
238 this bias scales with the amount of excluded high frequency variance. This produces scale-
239 to-frequency mismatches, wherein power differences at high frequencies manifest as
240 differences in coarse-scale entropy.

241  C. When fine time scales characterize signals that include both fast and slow fluctuations, fine-
242 scale entropy estimates (and age differences therein) will relate to PSD slopes. Such an
243 association will be absent when slow fluctuations are removed.

244

245 Extending these hypotheses to the domain of age-related differences in EEG-based MSE
246  and spectral power, we assessed the following hypotheses:

247

248 D. Using ‘Original” MSE, older adults will exhibit higher entropy at finer time scales and
249 artificially lower entropy at coarser time scales compared to younger adults (e.g., McIntosh
250 etal., 2014). Concurrently, older adults will have shallower PSD slopes than younger adults,
251 as represented by higher power at high frequencies and lower power at low frequencies
252 (Voytek et al., 2015; Waschke et al., 2017). Based on Hypotheses B & C, a relation of these
253 effects is hypothesized as follows:

254 D1. Scale-invariant similarity criteria introduce coarse-scale entropy differences as a
255 function of high frequency power (cf. Hypothesis B). Hence, coarse-scale age differences
256 relate to group differences in high frequency power and disappear when scale-invariant
257 threshold biases are removed.

258 D2. Age differences at fine time scales relate to age differences in PSD slopes, with
259 higher entropy in older adults relating to steeper PSD slopes. This association is dependent
260 on the presence of slow fluctuations during the entropy calculation (cf. Hypothesis C). No
261 fine-scale age differences will be indicated when slow fluctuations are removed from the
262 signal.

263

264 In line with our expectations, we observed that ‘Original” MSE leads to a strong dependence

265  of fine time scales on low-frequency power and coarse time scales on high-frequency power.
266  To highlight the neuroscientific relevance of these associations, we used novel resting state data
267  to replicate two previous findings in the literature: (1) an age-related shift in entropy from
268 dominantly coarse to fine-scale entropy and (2) a strong association of fine-scale entropy with
269 the slope of power spectral density. By varying filter settings, we show how these entropy
270  effects may be explained in the context of spectral variance differences, but at opposing time
271  scales to those observed for entropy. Finally, we highlight that narrowband implementations of
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272  entropy approximate frequency-specific signal irregularity as the inverse of the rate of
273  stereotypic spectral events.

274

275 2 Methods

276

277 2.1 Simulations of relations between rhythmic frequency, amplitude, and MSE

278

279 To assess the influence of rhythmicity on entropy estimates, we simulated varying
280 amplitudes (0 to 7 arbitrary units in steps of 0.5) of 10 Hz (alpha) rhythms on a fixed 1/f
281  background. This range varies from the absence to the clear presence of rhythmicity (see

282  Supplementary Figure 1 for an example). The background consisted of fix—ﬁltered Gaussian

283  white noise (mean = 0; std = 1) with x = 1 that was generated using the function
284  f alpha gaussian (Stoyanov, Gunzburger, & Burkardt, 2011). The background was
285  additionally band-pass filtered between .5 and 70 Hz using 4™ order Butterworth filters. Eight
286  second segments (250 Hz sampling rate) were simulated for 100 artificial, background-varying
287  trials, and phase-locked 10 Hz sinusoids were superimposed. The alpha rhythm was chosen as
288 it constitutes the largest and most prevalent human rhythm in scalp EEG data (Kosciessa et al.,
289  2019) and therefore is commonly present and modulated in data that is used for entropy
290 analyses. To analyze the reflection of rhythmic frequency on time scales and to replicate a
291  previously observed linear frequency-to-timescale mapping between the spectral and entropy
292  domains (Park et al., 2007; Takahashi et al., 2010; Vakorin & Mclntosh, 2012), we repeated
293  our simulations with sinusoids of different frequencies (5 Hz, 10 Hz, 20 Hz, 40 Hz, 80 Hz), that
294  covered the entire eight second-long segments.

295

296 2.2 Resting state data and preprocessing

297

298 To investigate the influence of similarity criteria and filter ranges in empirical data, we used

299  resting-state EEG data collected in the context of a larger assessment prior to task performance
300 and immediately following electrode preparation. Following exclusion of three subjects due to
301 recording errors, the final sample contained 47 younger (mean age =25.8 years, SD = 4.6, range
302 18 to 35 years; 25 women) and 52 older adults (mean age = 68.7 years, SD = 4.2, range 59 to
303 78 years; 28 women) recruited from the participant database of the Max Planck Institute for
304 Human Development, Berlin, Germany (MPIB). Participants were right-handed, as assessed
305 with a modified version of the Edinburgh Handedness Inventory (Oldfield, 1971), and had
306 normal or corrected-to-normal vision. Participants reported to be in good health with no known
307 history of neurological or psychiatric incidences, and were paid for their participation (10 € per
308  hour). All older adults had Mini Mental State Examination (MMSE) (Folstein, Robins, &
309 Helzer, 1983; Kessler, Markowitsch, & Denzler, 2000) scores above 25. All participants gave
310  written informed consent according to the institutional guidelines of the Deutsche Gesellschaft
311  fiir Psychologie (DGPS) ethics board, which approved the study.

312 Participants were seated at a distance of 80 ¢m in front of a 60 Hz LCD monitor in an
313  acoustically and electrically shielded chamber. Following electrode placement, participants
314  were instructed to rest for 3 minutes with their eyes open and closed, respectively. During the
315 eyes open interval, subjects were instructed to fixate on a centrally presented fixation cross. An
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316 auditory beep indicated to the subjects when to close their eyes. Only data from the eyes open
317  resting state were analyzed here. EEG was continuously recorded from 64 active (Ag/AgCl)
318 electrodes using BrainAmp amplifiers (Brain Products GmbH, Gilching, Germany). Sixty scalp
319  electrodes were arranged within an elastic cap (EASYCAP GmbH, Herrsching, Germany)
320  according to the 10% system (Oostenveld & Praamstra, 2001), with the ground placed at AFz.
321  To monitor eye movements, two electrodes were placed on the outer canthi (horizontal EOG)
322 and one electrode below the left eye (vertical EOG). During recording, all electrodes were
323 referenced to the right mastoid electrode, while the left mastoid electrode was recorded as an
324  additional channel. Online, signals were digitized at a sampling rate of 1 kHz.

325 Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox
326  (Oostenveld, Fries, Maris, & Schoffelen, 2011) and using custom-written MATLAB (The
327 MathWorks Inc., Natick, MA, USA) code. Offline, EEG data were filtered using a 4" order
328  Butterworth filter with a pass-band of 0.2 to 125 Hz. Subsequently, data were downsampled to
329 500 Hz and all channels were re-referenced to mathematically averaged mastoids. Blink,
330 movement and heart-beat artifacts were identified using Independent Component Analysis
331 (ICA; Bell & Sejnowski, 1995) and removed from the signal. Artifact-contaminated channels
332  (determined across epochs) were automatically detected using (a) the FASTER algorithm
333  (Nolan, Whelan, & Reilly, 2010), and by (b) detecting outliers exceeding three standard
334  deviations of the kurtosis of the distribution of power values in each epoch within low (0.2-2
335 Hz) or high (30-100 Hz) frequency bands, respectively. Rejected channels were interpolated
336  using spherical splines (Perrin, Pernier, Bertrand, & Echallier, 1989). Subsequently, noisy
337  epochs were likewise excluded based on FASTER and on recursive outlier detection. Finally,
338 recordings were segmented to participant cues to open their eyes, and were epoched into non-
339 overlapping 3 second pseudo-trials. To enhance spatial specificity, scalp current density
340 estimates were derived via 4™ order spherical splines (Perrin et al., 1989) using a standard 10-
341 05 channel layout (conductivity: 0.33 S/m; regularization: 1°-05; 14% degree polynomials).
342

343 2.3 Calculation of standard and “modified” multiscale entropy

344

345 The calculation of standard MSE and the point averaging procedure followed (Costa et al.,
346 2002, 2005). In short, sample entropy quantifies the irregularity of a time series of length N by
347  assessing the conditional probability that two sequences of m consecutive data points will
348 remain similar when another sample (m+1) is included in the sequence (for a visual example
349  see Figure 1A). The embedding dimension m was set to 2 in our applications. Sample entropy
350 is defined as the inverse natural logarithm of this conditional similarity: SampEn(m,r, N) =

m+1
351 —log (2

p™(r)

352  points are considered similar and is traditionally defined relative to the standard deviation (i.e.,

). Crucially, the similarity criterion (») defines the tolerance within which time

353  square root of signal variance; here set to » = .5). Note that a larger, more liberal, similarity
354  criterion increases the likelihood of finding matching patterns, hence reducing entropy
355 estimates (see Figure 1A). Furthermore, in traditional applications (e.g., Costa et al., 2005;
356  Courtiol et al., 2016), the » parameter is calculated once from the entire broadband signal (i.e.,
357 in a scale-invariant manner) based on original recommendations by Richman and Moorman
358 (2000). With progressive reduction of signal variance during the coarse-graining procedure,
359 this leads to disproportionally high, increasingly liberal, similarity thresholds; and thus
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360 decreasing entropy estimates (see section 1.2). Hence, fixed thresholds introduce dependencies
361  between the 1/f shape of the frequency spectrum and entropy estimates (Nikulin & Brismar,
362 2004). To remedy this problem, a scale-wise recalculation of the similarity criterion has been
363  proposed (Nikulin & Brismar, 2004; Sleimen-Malkoun et al., 2015; Valencia et al., 2009). We
364 compared the implementation of MSE with a fixed and a scale-dependent r parameter (.5*STD
365  of scale-wise signal variance) and assessed the differences in resulting entropy estimates.

366 To assess entropy at coarser time scales, while the original MSE method coarse-grains the
367 data by averaging time points within discrete time bins (i.e., ‘point averaging’; equivalent to
368 applying a finite-impulse response (FIR) filter to the original time series followed by down-
369 sampling (Courtiol et al., 2016; Valencia et al., 2009), we employed dedicated filtering prior to
370  point skipping to down-sample the data (Semmlow, 2008; Valencia et al., 2009). Specifically,
371  a 6™ order Butterworth filter was used for either high- or low-pass filtering the signal at the
372  approximate time scales. At each scale (also referred to as the embedding dimension; here: 1 to

373 42), the low-pass frequency was defined as LPg.oq = — nyquist. Similarly, high-pass cut-

scale

374  offs were defined as HPq.q = * nyquist and band-pass frequencies represented

scale+1
375  narrowband estimates bounded by LPg..q and LHg.q This definition ensures that each scale
376  captures information that is unique to that frequency band. The down-sampling procedure
377  consisted of skipping points according to the time scale and was identical across filter settings,
378  except in the ‘Original’ case. To avoid biases arising from different starting points of the
379  skipping procedure, pattern sequences were assessed for all possible starting points and entropy
380 estimates were computed based on their summed counts. As down-sampling represents a form
381  of low-pass filter, it is not employed in the ‘high-pass’ case. Thus, estimates are based on the
382  original sampling rate (i.e., embedding dimension of 1) with an exclusive modulation of the
383  spectral content according to the high-pass filter. Hence, we dissociated the embedding
384  dimension from the frequency content of the signal. As entropy (re-)calculation at the original
385  sampling rate introduces higher computational demands, scales were sampled in step sizes of 3
386 for empirical data and later spline-interpolated. As the interpretation of time scales is bound to
387  the sampling rate of the data (to assess scale-wise sampling rates) as well as the remaining
388  spectral content, our figures indicate the Nyquist frequency at each scale, except for the high-
389  pass case (see above). Note that the sampling rate of the simulated data was 250 Hz, whereas
390 the empirical data had a sampling rate of 500 Hz, which renders consideration of the Nyquist
391 frequency particularly important. We refer to a traditional implementation with scale-invariant
392  similarity criterion and time point averaging as ‘Original’ in both the main text and Figures.
393 Further, an adapted version of MSE calculations was used for all settings (Grandy, Garrett,
394  Schmiedek, & Werkle-Bergner, 2016), in which scale-wise entropy is estimated across
395 discontinuous data segments. The estimation of scale-wise entropy across trials allows for
396 reliable estimation of coarse-scale entropy without requiring long, continuous signals (Grandy
397 etal., 2016).

398 For the code of the MSE algorithm and a tutorial see https://github.com/LNDG/mMSE.
399

400 2.4 Calculation of power spectral density (PSD)

401

402 Power spectral density estimates were computed by means of a Fast Fourier Transform

403  (FFT) over 3 second pseudo-trials for 41 logarithmically spaced frequencies between 2 and 64
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404 Hz (employing a Hanning-taper; segments zero-padded to 10 seconds) and subsequently
405 averaged. Spectral power was logio-transformed to render power values more normally
406  distributed across subjects. Power spectral density (PSD) slopes were derived by linearly
407  regressing power values on log-transformed frequencies. The spectral range from 7-13 Hz was
408  excluded from the background fit to exclude a bias by the narrowband alpha peak (Voytek et
409 al., 2015; Waschke et al., 2017).

410

411 2.5 Detection of single-trial spectral events

412

413 Spectral power, even in the narrowband case, is unspecific to the occurrence of systematic

414  rhythmic events as it also characterizes periods of absent rhythmicity (e.g., Jones, 2016).
415  Dedicated rhythm detection alleviates this problem by specifically detecting rhythmic episodes
416 inthe ongoing signal. To investigate the potential relation between the occurrence of stereotypic
417  spectral events and narrowband entropy, we detected single-trial spectral events using the
418  extended BOSC method (Caplan, Madsen, Raghavachari, & Kahana, 2001; Kosciessa et al.,
419  2019; Whitten, Hughes, Dickson, & Caplan, 2011) and probed their relation to individual
420 entropy estimates. In short, this method identifies stereotypic ‘rhythmic’ events at the single-
421  trial level, with the assumption that such events have significantly higher power than the 1/f
422  background and occur for a minimum number of cycles at a particular frequency. This
423  effectively dissociates narrowband spectral peaks from the arrhythmic background spectrum.
424  Here, we used a one cycle threshold during detection, while defining the power threshold as the
425 95" percentile above the individual background power. A 5-cycle wavelet was used to provide
426  the time-frequency transformations for 49 logarithmically-spaced center frequencies between
427 1 and 64 Hz. Rhythmic episodes were detected as described in Kosciessa et al. (2019).
428  Following the detection of spectral events, the rate of spectral episodes longer than 3 cycles
429  was computed by counting the number of episodes with a mean frequency that fell in a moving
430 window of 3 adjacent center frequencies. This produced a channel-by-frequency representation
431  of spectral event rates, which were the basis for subsequent significance testing. Event rates
432  and statistical results were averaged within frequency bins from 8-12 Hz (alpha) and 14-20 Hz
433  (beta) to assess relations to narrowband entropy and for the visualization of topographies. To
434  visualize the stereotypic depiction of single-trial alpha and beta events, the original time series
435  were time-locked to the trough of individual spectral episodes and averaged across events (c.f.,
436  Sherman et al., 2016). More specifically, the trough was chosen to be the local minimum during
437  the spectral episode that was closest to the maximum power of the wavelet-transformed signal.
438  To better estimate the local minimum, the signal was low-pass filtered at 25 Hz for alpha and
439  bandpass-filtered between 10 and 25 Hz for beta using a 6™ order Butterworth filter. A post-
440  hoc duration threshold of one cycle was used for the visualization of beta events, whereas a
441  three-cycle criterion was used to visualize alpha events. Alpha and beta events were visualized
442  at channels POz and Cz, respectively.

443

444 2.6 Statistical analyses

445 Spectral power and entropy were compared across age groups within condition by means
446  of independent samples t-tests; cluster-based permutation tests (Maris & Oostenveld, 2007)
447  were performed to control for multiple comparisons. Initially, a clustering algorithm formed
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448  clusters based on significant t-tests of individual data points (p <.05, two-sided; cluster entry
449  threshold) with the spatial constraint of a cluster covering a minimum of three neighboring
450 channels. Then, the significance of the observed cluster-level statistic, based on the summed t-
451  values within the cluster, was assessed by comparison to the distribution of all permutation-
452  based cluster-level statistics. The final cluster p-value that we report in all figures was assessed
453  as the proportion of 1000 Monte Carlo iterations in which the cluster-level statistic was
454  exceeded. Cluster significance was indicated by p-values below .025 (two-sided cluster
455  significance threshold). Effect sizes for MSE age differences with different filter settings were
456  computed on the basis of the cluster results in the ‘Original’ version. This was also the case for
457  analyses of partial correlations. Raw MSE values were extracted from channels with indicated
458  age differences at the initial three scales 1-3 (>65 Hz) for fine MSE and scales 39-41 (<6.5 Hz)
t2
t2+df
460 (Lakens, 2013). The measure describes the variance in the age difference explained by the
461 measure of interest, with the square root being identical to Pearson’s correlation coefficient
462  between continuous individual values and binary age group. Effect sizes were compared using

463  the r-to-z-transform and a successive comparison of the z-value difference against zero:

464 Zpisr = % (Brandner, 1933). Unmasked t-values are presented in support of the

Sart(y 3t Nz =3

465  assessment of raw statistics in our data (Allen, Erhardt, & Calhoun, 2012).

459  for coarse MSE. R? was calculated based on the t-values of an unpaired t-test: R? =

466 3 Results

467

468 3.1 Simulations indicate nonlinear relations between rhythmic power and entropy

469

470 Traditional MSE algorithms assess signal entropy relative to the standard deviation of the
471  broadband signal. Crucially, most neural time series are characterized by a scale-free 1/f
472  frequency distribution, indicating that lower frequency fluctuations have the highest amplitudes
473  and contribute most to the overall variance. Hence, the similarity criterion relevant for fine-
474  scale patterns is predominantly based on the amplitude of low frequencies, leading to large
475  similarity criteria (» values). Such a large threshold could bias most of the actual fine-scale
476  patterns by the dominant fluctuations of slow signals, with fast time series patterns treated as
477  highly similar regardless of actual pattern fluctuations (see Figure 1AB). Low entropy values
478  could result at fast entropy scales simply for this reason. In principle, this problem could be
479 alleviated by using spectral filters to constrain signals to the frequency range of interest. In
480 particular, we expected that scale-dependent low-pass filters would lead to a low-frequency
481  representation also at finer time scales, whereas slow fluctuations would exclusively modulate
482  entropy at coarser time scales if high-pass filters were applied (Figure 1C).

483
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Figure 2: Rhythmic power manifests at different time scales depending on filter choice and similarity criterion.
Simulations indicate at which time scales the addition of varying magnitudes of stereotypic narrowband 10 Hz
rhythms (blue-to-red line gradient) modulate entropy compared to the baseline 1/f signal (black line). Simulations
indicate that increases in rhythmicity strongly reduce entropy estimates alongside increases in the similarity
criterion. The affected scales vary as a function of global vs. scale-dependent similarity criteria and the spectral
filtering used to derive coarser time scales. Crucially, in ‘Original’ implementations, added narrowband
rhythmicity decreased entropy with low scale-specificity, in line with global increases in the r parameter (A). In
contrast, the use of scale-varying thresholds (B) and dedicated filtering (C-E) increased specify regarding the time
scales at which rhythmicity was reflected. Note that timescales are presented in Hz to facilitate the visual
assessment of rhythmic modulation. For all versions except high pass, the scale represents the upper Nyquist
bound of the embedding dimension. For the high pass variant, the scale represents the high pass frequency (see
methods). Time scales are log-scaled.

484
485 To probe the relationship between low-frequency rhythmic power and estimated multiscale

486  sample entropy, we systematically varied the magnitude of simulated alpha power and assessed
487  its influence on estimated MSE using different filter settings. Our first aim was to establish an
488 inversion between similarity criteria and MSE estimates. In line with Hypothesis A, variations
489 in the similarity criterion as a function of rhythmic power tightly covaried with entropy
490 estimates; increased rhythmic power rendered the higher similarity criterion easier to surpass,
491  in turn decreasing entropy estimates by increasing pattern matches (see Figure 1A, Figure 2).
492  Importantly for scale-dependent inferences, with ‘Original’ settings, the effect of alpha power
493  on r and MSE estimates was not specific to the time scale corresponding to the simulated
494  frequency (Figure 2A). This can be attributed to the broadband similarity criterion, which by
495  definition prohibits scale-specific allocations of the added signal variance. In contrast, when
496  scale-dependent similarity criteria were used (Figure 2BC), strong alpha rhythmicity
497  systematically decreased entropy at finer time scales than the simulated frequency (decreases
498  from baseline to the left of the vertical line in Figure 2C). Hence, the presence of the low
499  frequency rhythm diffusely affected fine-scale MSE estimates. This results from the low-pass
500 filter (LPF) characteristics of the scale-wise estimation procedure for which the low-frequency
501 rhythm is removed by LPFs < 10 Hz (see schematic in Figure 1C). As in previous work
502 (Valencia et al., 2009), dedicated low-pass filtering provided a better spectral suppression
503 compared with ‘Original’ point-averaging (Figure 2B), but with otherwise comparable results.
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504  In contrast to low-pass filter results, when high-pass filters were used, rhythmicity reduced
505 entropy at time scales below 10 Hz, hence leading to estimates of high frequency entropy that
506 were independent of low frequency power (Figure 2D). Finally, when band-pass filters were
507  used (Figure 2E), rhythmicity modulated entropy at the target frequency (although they also
508 produced edge artifacts surrounding the time scale of rhythmicity). In sum, these analyses
509  highlight that power increases of narrowband rhythms can diffusely modulate diverging
510 temporal scales as a function of the MSE implementation. In addition, these analyses highlight
511 that decreases in estimated entropy are often accompanied by comparable increases in the
512  liberality of similarity criteria.

513
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Figure 3: Influence of rhythmic frequency on MSE estimates and r parameters across different MSE variants.
Simulations of different frequencies indicate a linear frequency-to-scale mapping of simulated sinusoids. Broken
vertical lines indicate the simulated frequency. Low-pass MSE variants show increased entropy at time scales finer
than the simulated frequency in combination with a global entropy decrease. Low-, high- and band-pass variants
exhibit the properties observed in the alpha case, with a reduction above/below or at the simulated frequency. Time
scales are log-scaled.

514
515

516 Whereas we observed a diffuse broadband decrease in ‘Original’ entropy under conditions
517  of strong rhythmicity, previous simulations have presumed a rather constrained linear mapping
518  Dbetween the frequency of simulated rhythms and their reflection in entropy time scales (Park et
519 al.,, 2007; Takahashi et al., 2010; Vakorin & McIntosh, 2012). Furthermore, those studies
520 indicated entropy increases with added rhythmicity, in contrast with the marked decreases in
521  entropy observed here. How can these seemingly divergent results be reconciled? To answer
522  this question, we simulated different frequencies superimposed on 1/f backgrounds and
523  investigated their modulation of entropy timescales. Importantly, Figure 2A-C suggested that
524  the amplitude of rhythmicity may be of crucial importance here, as transient entropy increases
525  were indeed observed at low levels of rhythmicity. Hence, we focused on a comparatively low
526 level of rhythmicity (amplitude level = 2; cf. exemplary alpha-band time series shown in
527  Supplementary Figure 1). Similar to previous reports, we observed a linear association between
528 simulated frequencies and peak entropy time scales (Figure 3) across implementations. Hence,
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529  rhythms of higher frequency increased entropy at slightly finer time scales than the simulated
530 frequency (see increases in entropy above baseline to the left of the dotted vertical lines in
531  Figure 3A-C). Importantly, such sharp entropy increases were only observed with low-pass
532  implementations (Figure 3A-C). Moreover, with scale-invariant » parameters (Figure 3A), these
533 increases were paralleled by decreasing entropy at coarser time scales (i.e., to the right of the
534  dotted lines in Figure 3A). This is in line with our observation of relatively broadband,
535 amplitude-dependent, entropy decreases (cf., Figure 2A). Crucially, increased entropy relative
536 to baseline is counterintuitive to the idea that the addition of a stereotypic pattern should
537  decrease rather than increase pattern irregularity. Moreover, the results suggest that
538 combinations of amplitude-varying contributions of spectral content can induce ambiguous
539  scale-dependent results. In sum, our simulations highlight that the choice of similarity criterion
540 and the signal’s spectral content grossly affect the interpretation of entropy time scales.
541  Furthermore, our frequency-resolved simulations suggest that a previously observed linear
542  frequency-to-scale mapping does not provide sufficient evidence that entropy towards finer
543  time scales dominantly represents the pattern irregularity of faster neural dynamics. Rather,
544  such assumptions rely on puzzling entropy increases with the addition of faint rhythmic
545  regularity that are counteracted by more dominant, and expected, decreases in entropy when
546 the signal contains strong rhythmic predictability.

547

548 3.2 Probing the impact of spectral power on entropy in a cross-sectional age comparison

549

550 Our simulations suggest profound influences of the choice of similarity criterion and a
551  signal’s spectral content on scale-dependent MSE estimates. However, it remains uncertain if
552  and how these factors alter inferences in traditional applications. Age-related entropy changes
553  are an important area of application (Garrett et al., 2013), with previous applications suggesting
554  scale-dependent differences across the lifespan (for a review see Mclntosh, 2019). However,
555  our theoretical considerations question whether such observations reflect veridical differences
556 in the entropy of neural activity patterns or whether such effects can alternatively be accounted
557  for by differences in spectral power (see Hypothesis D). To assess the relations between age
558 differences in spectral power and multiscale entropy during eyes open rest, we used the
559 following strategies: (1) we statistically compared spectral power and MSE between two age
560  groups of younger and older adults; (2) we assessed the impact of scale-wise similarity criteria
561 and different filtering procedures on age differences in MSE and (3) we probed the relationship
562  between the r parameter and MSE.

563
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Figure 4: Timescale-dependent age differences in spectral power and entropy during eyes open rest. (A) MSE (A1)

and power (A2) spectra for the two age groups. Error bars show standard errors of the mean. Note that in contrast

to standard presentations of entropy, the log-scaled x-axis is sorted by decreasing scale/increasing frequency to

enable a better visual comparison with the power spectra. T-values of power age contrast are shown in

Supplementary Figure 2. (B, C) Topographies of age differences indicate mirrored age differences in fast entropy

and low frequency power, as well as coarse entropy and high frequency power. Significant differences are
564 indicated by asterisks. (D1) Spectral slopes across age groups. (D2) Age differences in spectral slopes.

565

566 Using traditional (‘Original’) settings, we replicated previous observations of scale-
567  dependent entropy differences between younger and older adults (Figure 4A1, Figure 5A).
568  Specifically, compared with younger adults, older adults exhibited lower entropy at coarse
569  scales, while they showed higher entropy at fine scales (Hypothesis D; Figure 4A1). Mirroring
570 these results in spectral power, older adults had lower parieto-occipital alpha power and
571 increased frontal high frequency power (Figure 4A2) compared to younger adults. This was
572  globally associated with a shift from steeper to shallower PSD slopes with increasing age
573  (Figure 4D). At face value, this suggests joint shifts of both power and entropy, in the same
574  direction and at matching time scales. Crucially, however, the spatial topography of differences
575  in entropy inversely mirrored differences in power between fast and slow dynamics (Figure 4B
576 & C; cf., upper and lower topographies), such that frontal high frequency power differences
577  appeared inversely represented in coarse entropy scales (Figure 4B), while parieto-occipital age
578  differences in slow frequency power more closely resembled fine-scale entropy differences
579  (Figure 4D). This rather suggests scale-mismatched associations between entropy and power in
580 line with our simulations and theoretical expectations (Hypothesis D1 & D2). We investigated
581 their potential relationships more closely in the following sections regarding the potential
582  mechanistic associations proposed in Hypotheses B and C.

583
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Figure 5: Average multiscale entropy and similarity criterion by age depend on the specifics of the estimation
method. Grand average traces of entropy (1% row) and similarity criteria (3™ row) alongside t-maps from statistical
contrasts of age differences (2" + 4" row). Age differences were assessed by means of cluster-based permutation
tests and are indicated via opacity. Original MSE (A) replicated reported scale-dependent age differences, with
older adults exhibiting higher entropy at fine scales and lower entropy at coarse scales, compared with younger
adults. The coarse-scale difference was exclusively observed when using invariant similarity criteria, whereas the
fine-scale age difference was indicated with all low-pass versions (A, B, C), but not when signals were constrained
to high-frequency or narrow-band ranges (D, E). In contrast, narrowband MSE indicated inverted age differences

534 within the alpha and beta band (E).

585 Importantly, as suggested by our simulations, filter choice affected the estimation of age
586 differences in entropy alongside differences in similarity thresholds (Figure 5). As described
587  above, ‘Original’ settings indicated increased fine-scale and decreased coarse-scale entropy for
588  older compared to younger adults, whereas no group differences in the global » parameter were
589 indicated (Figure 5A). In contrast, scale-wise similarity criteria Figure 5B) abolished age
590 differences in coarse-scale entropy (effect size was significantly reduced fromr=.58 tor=.07;
591 p=6.8*10"-5), while fine-scale entropy differences remained unchanged when low-pass filters
592  were used (Figure 5B/C) (from r = .44 to r = .45; p=.934). However, when constraining the
593  signal at fine scales to high frequency content (via high-pass filters; Figure 5D), no fine-scale
594  age differences were observed and the age effect was significantly reduced (r = .09; p = .008.
595 An age effect was only indicated once low-frequency dynamics contributed to the entropy
596  estimation again at coarse scales. Both of these effects were in line with our Hypotheses D1
597 and D2 regarding the influence of spectral filtering on entropy estimates. Interestingly, we
598  observed inverted age differences in the bandpass version (Figure SE), with larger "narrowband’
599 entropy indicated in the alpha range and lower entropy in the beta range for older adults
600 compared with younger adults. In the following sections, we investigate these results more
601 closely with regard to the putative mechanisms linking spectral power and entropy.

602

603

604
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605 3.3 Scale-invariant similarity criteria increasingly bias entropy towards coarser scales
606
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Figure 6: Mismatches between scale-specific signal variance and global similarity criteria (r parameters) can
account for age differences in coarse-scale entropy. (A, B) A global similarity criterion does not reflect the spectral
shape, thus leading to disproportionally liberal criteria at coarse scales following the successive removal of high-
frequency variance. Scale-dependent variance (as reflected in 7) is more quickly reduced in older compared to
younger adults (A) due to their removal of more high-frequency variance (B). This leads to a differential bias, as
reflected in the increasingly mismatched distance between the two invariant and scale-dependent similarity criteria
towards coarser scales. This mismatch, in turn, should scale with the amount of variance removed up to a particular
scale. Letter insets refer to the relevant subplots. (C) The r adjustment in the rescaled version is associated with a
comparable increase in coarse-scale entropy. This shift is more pronounced in older adults. (D) With global
similarity criteria, coarse-scale entropy strongly reflects high frequency power due to the proportionally more
liberal similarity threshold associated. Data in A and B are global averages, data in C and D are averages from
607  frontal Original effect cluster (see Figure 4B) at time scales below 6 Hz.

608

609 Scale-dependent entropy effects in the face of scale-invariant similarity criteria (as observed
610 in the ‘Original’ implementation; Figure 5A) may intuitively suggest scale-wise variations in
611  pattern irregularity in the absence of variance differences. However, a fixed similarity criterion
612 s an artificial constraint that does not reflect the spectral shape of the broadband signal, leading
613  to potentially profound mismatches between the scale-dependent signal variance and the
614  invariant similarity criterion. That is, the total broadband variance may be similar while spectral
615  slopes and/or narrow-band frequency content differ. This is true for the case of aging as can be
616  appreciated by comparing the global » parameter with the age-specific frequency spectra
617  (Figure 6A & B). As this scale-invariant criterion thresholds a successively low-pass filtered
618  signal, this induces a relative mismatch between the scale-specific variance and the global
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619  similarity criterion that successively increases towards coarser scales (Figure 6A). Importantly,
620 the same broadband variance will pose a relatively higher (i.e. liberal) similarity threshold if
621 low-pass filtering removes more high-frequency variance. In turn, the coarse-scale MSE
622  estimate would be modulated as a function of high frequency power (i.e., Hypothesis B). To
623  assess this hypothesis, we probed the link between the change in » and MSE between the use
624  of a global and a scale-varying similarity criterion. As expected, we observed a strong anti-
625  correlation between inter-individual differences in » and MSE (Figure 6C). That is, the more
626  individual thresholds were re-adjusted to the lower scale-wise variance, the more entropy
627  estimates increased. Crucially, this difference was more pronounced for the older adults (paired
628  t-test; r: p = Se-6; MSE: p = 3e-4). That is, due to their increased high frequency power, low-
629 pass filtering decreased older adults’ variance proportionally more than younger adults’
630  variance. Thus, in ‘Original’ settings, older adults’ global criterion presented a more liberal
631  threshold at coarser scales than the threshold of younger adults, which can account for the
632  ‘lower’ MSE estimates observed for older adults with ‘Original’ settings. In line with this
633  assumption, individual high frequency power at frontal channels was inversely related to
634  coarse-scale entropy estimates when a scale-invariant similarity criterion was applied (Figure
635 6C), but not when the similarity criterion was recomputed for each scale (YA: r=-0.15; p =
636 .302; OA: r = .2, p = .146). This is further in line with the observation that coarse-scale age
637  differences (Figure 5A) disappeared when a scale-wise similarity criterion was used (Figure
638  5B). Taken together, this indicates that the observed age difference at coarse entropy scales can
639  be largely accounted for by high frequency power differences between young and old adults
640 and provides an explanation for the inverse group differences between high frequency power
641 and coarse-scale entropy (Hypothesis D1).

642

643 3.4 Low-frequency contributions render fine-scale entropy a proxy measure of PSD slope

644

645 A common observation in the MSE literature is a high sensitivity to task and behavioral
646  differences even at the original sampling rates (i.e., fine scales), which are commonly assumed
647  to reflect fast dynamics. This sensitivity is surprising given that little power generally exists in
648  high-frequency ranges in humans or animals (Hipp & Siegel, 2013). Interestingly, multiple
649  previous studies suggest that fine-scale entropy reflects the slope of power spectral density (e.g.,
650 Bruce etal., 2009; Waschke et al., 2017). Given that this slope can be approximated by the ratio
651  of high to low-frequency power, and that ‘Original’ MSE implementations contain both
652  components due to the assessment of a broadband signal, we probed to what extent fine-scale
653  associations with PSD slopes depended on the presence of slow fluctuations (Hypothesis C)
654  and whether such association may account for fine-scale entropy age differences (Hypothesis
655 D2).

656
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Figure 7: A) Sample entropy at fine time scales represents the slope of power spectral density. (B) The presence
of both slow and fast dynamics is required for positive associations with PSD slopes to emerge. The direction and
magnitude of correlations of scale-wise entropy with PSD slopes depends on the choice of fixed vs. rescaled r
parameters as well as the choice of filtering. Original entropy inverts from a positive correlation with PSD slope
at fine scales to a negative association at coarse scales. Rescaling of the r parameter abolishes the negative
correlation of coarse-scale entropy with PSD slopes. Supplementary Figure 3 presents scatter plots of these
relationships.

657
658 As expected (Hypothesis C), individual fine-scale entropy was strongly and positively

659 related to the slope of power spectral density (Figure 7A) in both younger and older adults. This
660  suggests that in low-pass scenarios, in which the target signal is dominated by low frequency
661 fluctuations, fine-scale entropy is sensitive to the ratio of high-to-low frequency variance, as
662  captured by PSD slopes. To highlight that fine-scale entropy does not exclusively relate to the
663  signal irregularity of high-frequency activity, we observed that following a high-pass filter to
664  the signal, the positive relation of fine-scale entropy to PSD slopes disappeared in both age
665  groups (Figure 7B, dotted lines), and turned negative in older adults (see Supplementary Figure
666  3), alongside age differences in fine-scale entropy (Figure 5D). In turn, relations between PSD
667  slopes and age differences re-emerged once low-frequency content was included in the entropy
668  estimation (Figure 7C, dotted lines). Hence, the positive relation of fine-scale entropy to PSD
669  slopes was conditional on the presence of both low- and high-frequency dynamics.

670 In line with the hypothesis that fine-scale age differences are dependent on the presence of
671 slow fluctuations, we observed no age differences in fine-scale entropy when signals
672  exclusively contained high-frequency content (see section 3.2). To assess whether age
673  differences in PSD slope could account for fine-scale age differences in ‘Original’ entropy, we
674  computed partial correlations between the measures. In line with fine-scale entropy primarily
675 reflecting PSD slope variations, no significant prediction of age group status by fine-scale
676  entropy was observed when controlling for the high collinearity with PSD slopes (r =-.06, p =
677  .59).In contrast, PSD slopes significantly predicted age group status when controlling for MSE
678 (r=.38,p<.001), suggesting that differences in PSD slopes primarily account for observed age
679  differences in MSE, but not vice-versa (in line with Hypothesis D2).

680 On a side note, spectral slopes were anticorrelated with coarse-scale entropy when global
681  similarity criteria were used (Figure 7C, continuous lines), but not when criteria were scale-
682  wise re-estimated (Figure 7C, broken lines). This likely reflects the bias described in section
683  3.2. That is, subjects with shallower slopes (more high frequency power) had increasingly
684  liberal-biased thresholds towards coarse scales, thereby resulting in decreased entropy
685  estimates.
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686 Jointly, these empirical examples indicate that the use of global similarity criteria, as well
687  as the presence of large amplitude low frequency dynamics can severely bias scale-wise MSE.
688  Hence, differences in the spectral power and the » parameter (typically neglected as measures
689  of interest when estimating MSE) may actually account for a large proportion of reported MSE
690 effects; in this scenario, the pattern irregularity of fast dynamics per se may do little to drive
691  MSE estimates.

692

693 3.5 Narrowband MSE indicates age differences in signal irregularity in alpha and beta band
694
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Figure 8: Narrowband MSE reflects age differences in alpha- and beta-specific event (ir)regularity. (A, B)
Narrowband MSE indicates age differences in the pattern complexity at alpha (A) and beta (B) frequencies. (C,
D) Alpha, but not beta power consistently correlates negatively with individual narrowband entropy within clusters
of age differences. (E, F) Similarly, alpha but not beta similarity criteria show an inverted age effect with similar
topography. (G, H) Single-trial rhythm detection highlights a more transient appearance of beta compared with
alpha events. (I, J) The rate of stereotypical single-trial alpha and beta events is anticorrelated with individual
narrowband entropy. (K, L) The rate of spectral events exhibits age differences that mirror those observed for

entro .
695 Py

696 The previous analyses highlighted how the interpretation of scale-dependent results
697 critically depends on the spectral content of the signal, in some cases giving rise to mismatching
698  time scales. However, our simulations also suggest an accurate mapping between entropy and
699  power when scale-wise bandpass filters are used (Figure 3A). Concurrently, the empirical band-
700 pass results indicate a partial decoupling between entropy and variance age differences as
701  reflected in the r parameter (Figure SE). Specifically, older adults exhibited higher parieto-
702  occipital entropy at alpha time scales (*8-12 Hz) and lower central entropy at beta time scales
703  ("12-20 Hz) than in younger adults (Figure 5; Figure 8AB). Whereas alpha-band entropy was
704  moderately and inversely correlated with alpha power (Figure 8C) and the age difference was
705 inversely reflected in the similarity criterion in a topographically similar fashion (Figure 8E),
706  the same was not observed for entropy in the beta range for both age groups (Figure 8DF).
707  Promisingly, this indicates evidence for what many who employ MSE measures in cognitive
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708 neuroscience presume; that power and entropy can be decoupled, providing complementary
709  signatures of neural dynamics. This divergence of entropy and power in the beta band is
710 particularly interesting as beta events have been observed to exhibit a more transient waveform
711  shape (Sherman et al., 2016; Shin, Law, Tsutsui, Moore, & Jones, 2017), while occupying a
712 lower total duration during rest than alpha rhythms (Kosciessa et al., 2019). This may explain
713  a divergence of entropy estimates from spectral power as it should be the rate of stereotypic
714 spectral events that reduces pattern irregularity rather than the overall power within a frequency
715  band. To test this hypothesis, we applied single-trial rhythm detection to extract the individual
716  rate of alpha (8-12 Hz) and beta (14-20 Hz) events. As predicted, individual alpha events had a
717  more sustained appearance compared with beta events as shown in Figure 8G & H (events were
718  time-locked to the trough of individual events; see section 2.6). Importantly, both individual
719  alpha and beta event rate were inversely and moderately correlated with individual beta entropy
720 estimates (Figure 81J) at matching time scales in the band-pass version. The relationships
721  remained stable after controlling for individual event rate and entropy in the age cluster of the
722  other frequency band (Alpha YA: r =-.63, p = 3e-6; Alpha OA: r=-.70, p = 1e-8; Beta YA: r
723 =-54,p=1le-4; Beta OA: r=-.61, p = 2e-6), suggesting separable associations between event
724  rate and entropy within the two frequencies bands. This is important, as our simulations suggest
725 increased entropy estimates around narrow-band filtered rhythmicity (see Figure 2A).
726  Furthermore, a permutation test indicated age differences in beta rate that were opposite in sign
727  to the entropy age difference (see Figure 8L). In particular, older adults had a higher number of
728  central beta events during the resting state compared with younger adults, thus rendering their
729  beta-band dynamics more stereotypic. In sum, these results suggest that narrowband MSE
730  estimates approximate the irregularity of spectral events at matching time scales.

731

732 4 Discussion

733

734 For entropy to be a practical and non-redundant measure in cognitive neuroscience, both its
735  convergent and discriminant validity to known signal characteristics has to be established.
736  Spectral features have a long history in cognitive electrophysiology and many procedures and
737  theoretical work are available for their interpretation. In the face of this existing literature, it
738  has been proposed that entropy is sensitive to non-linear time series characteristics that can
739  complement linear spectral information. If and to what extent these measures are independent
740 is however often not assessed, but tacitly inferred from applying a variance-based
741  ‘normalization’ during the entropy calculation. Contrary to orthogonality assumptions, our
742  analyses suggest that differences in the similarity criterion may account for a significant
743  proportion of entropy effects in the literature, and thereby fundamentally affect the
744  interpretation of observed effects. In traditional applications, these effects can be differentiated
745  into separable effects of (a) biases arising from scale-invariant similarity criteria and (b)
746  challenges in the presence of broadband, low-frequency dominated, signals (see Figure 9A for
747  a schematic summary). In the following, we discuss these effects and how they can affect
748  traditional inferences regarding signal irregularity.
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C Recommendations for ‘complexity’- and timescale-specific inferences of sample entropy:

Use of scale-dependent normalization parameters

Dedicated filtering into time scales of interest to probe the scale-dependence of effects
Statistical control for spectral signal variance (scale-wise narrow- and broadband power)
Future use of phase-shuffled surrogate data to confirm non-linear contributions

o O O O

Figure 9: Summary of the identified time-scale mismatches and recommendations for future studies. (A) We
highlight two scale-dependent mismatches that run counter to the intuition that entropy at fine scales primarily
refers to fast dynamics, and vice-versa: (1) Fine-scale entropy characterizes scale-free 1/f slopes whenever
broadband signals include slow frequency content. (2) Coarse-scale entropy is biased towards reflecting high-
frequency content when increasingly signals of decreasing variance are compared to a fixed, and successively
mismatched similarity criterion. (B) Beyond time-scale mismatches, entropy and variance are often strongly
anticorrelated, in part due to their shared description of signal features, such as rhythmicity. To identify
complementary and unique relations of pattern complexity compared to more established measures of variance,
explicit statistical control is required for the latter. (C) We propose multiple strategies to safeguard against the
highlighted issues problems in traditional applications.

749

750 4.1 Narrowband rhythmicity diffusely affects entropy scales

751

752 The use of MSE is often motivated by its sensitivity to non-linear properties of brain

753  dynamics, that are assumed to reflect phenomena such as spontaneous network reconfigurations
754  and brain state transitions (e.g., Deco, Jirsa, & Mclntosh, 2011, 2013; Misic, Vakorin, Paus, &
755  MclIntosh, 2011). However, the variance-dependence of internal normalization parameters and
756  the general dominance of slow fluctuations in broadband signals (from which sample entropy
757  is typically calculated) suggest that traditional linear variance properties strongly contribute to
758  entropy estimates (Hypothesis A). Hence, we argue that a consideration of spectral signal
759  content is crucial to properly characterize entropy at distinct time scales of interest. Total signal
760  variance can be dissociated into two components: broadband ‘noise’ and narrowband rhythmic
761  peaks (Haller et al., 2018; Kosciessa et al., 2019) with the latter themselves being temporal
762  averages of potentially non-stationary spectral events (Kosciessa et al., 2019). Notably,
763  associations between pattern irregularity and the prevalence of these components are
764  theoretically anticipated (Vakorin & MclIntosh, 2012). In particular, as rhythmic events are
765  defined by their periodic repetition, their occurrence should be associated with a decrease in
766  signal irregularity. Due to this straightforward prediction, and their clear time scale definition,
767  we simulated narrowband rhythms of different magnitude and frequency to assess their
768 mapping onto MSE scales. As predicted, entropy decreased in the presence of strong
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769  rhythmicity, however not exclusively at corresponding time scales. This was most apparent for
770  ‘Original’ implementations, in which the scale-invariance of thresholds decreased estimates in
771  a global fashion, in line with the constraints posed by the global similarity criterion that was
772 increased in parallel. When scale-varying thresholds were used in conjunction with traditional
773  low-pass filters, rhythms exclusively modulated entropy estimates across finer time scales. This
774  highlights that low-pass filters render multiscale entropy especially sensitive to variance at low
775  frequencies, while further suggesting that slow events (e.g. event-related potentials) will be
776  reflected in a broad-scale manner. In contrast, we verified that the manipulation of spectral
777  content via high- or band-pass filters controlled the reflection of rhythms in MSE time scales.
778  The diffuse reflection of rhythms across many entropy time scales may initially seem at odds
779  with previous simulations that suggested a linear mapping of increasing frequencies onto
780  coarse-to-fine ‘Original” MSE scales (Park et al., 2007; Takahashi et al., 2010; Vakorin &
781  MclIntosh, 2012). Curiously, such previous simulations indicated the frequency-to-scale
782  mapping by considering the reflection of rhythms in positive entropy peaks. While we replicate
783  such increases, we highlight their dependence on low rhythm strength. Specifically, whereas
784  strong rhythmicity led to a sizeable reduction in entropy, fainter rhythmicity increased entropy
785  at slightly finer time scales above baseline. However, increases in entropy contrast with our
786  expectations that the addition of a more stereotypic pattern would decrease sample entropy and
787  were quickly counteracted by more diffuse entropy decreases once rhythm magnitude
788 increased. While the mechanistic origin of entropy increases with faint regularity remains
789  unclear, previous conclusions may thus have overemphasized the scale-specificity of rhythmic
790 influences. Hence, while rhythms of different frequencies modulate entropy at appropriate time
791  scales, they also induce broadband effects, thereby leading to potential scale-to-frequency
792  mismatches.

793 In addition to diffuse scale effects, we observed that rhythm-induced changes in sample
794  entropy were strongly anti-correlated to changes in the » parameter, confirming Hypothesis A.
795  However, we note that in the case of simulated rhythmicity, increases in variance (and r) are
796  collinear with increases in signal regularity. Hence, entropy is not exclusively determined by
797  the similarity criterion, but also by the reduction in pattern irregularity due to the addition of a
798  predictable sinusoidal signal. This presents a challenge for dissociating valid differences in
799  pattern irregularity that covary with spectral power from erroneous entropy decreases due to
800 increased similarity criteria. To probe the main contributor to observed sample entropy effects,
801  we replicated our analyses using permutation entropy, a measure that does not use an intrinsic
802  similarity criterion (see Supplementary Materials). Crucially, we observed similar filter
803 influences on the scale-wise representation of rhythmicity, suggesting that an explicit similarity
804  criterion is not necessary to produce diffuse reflections of narrowband rhythms across multiple
805 temporal scales. Rather, when entropy is applied to broadband signals, low-frequencies with
806  high variance contribute in large part to fine-scale estimates (see also section 4.3).

807

808 4.2 Global similarity criteria bias coarse-scale entropy estimates

809 The global impact of frequency-specific events in ‘Original’ implementations is directly
810 coupled to the use of global similarity criteria and challenges the notion of an accurate
811 frequency-timescale mapping. The theoretical necessity of introducing scale-wise adaptations
812  of similarity criteria has previously been noted (Nikulin & Brismar, 2004; Valencia et al.,
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813  2009), and is highlighted here with a practical example. In particular, Nikulin and Brismar
814  (2004) discussed the ambiguity between variance and pattern irregularity that arises from using
815  scale-invariant criteria: “However, in the MSE approach the same 7 value is used for different
816  scales. Therefore, the changes in MSE on each scale will depend on both the regularity and
817  variation of the coarse-grained sequences. [...] Therefore, the outcome of the MSE algorithm
818  does not allow one to make a clear conclusion as to what extent this separation is based on the
819  affected regularity or variation” (Nikulin & Brismar, 2004). In short, when the similarity
820 criterion is fixed in the presence of scale-dependent spectral content, the liberality of thresholds
821  systematically varies across scales. This introduces fundamental mismatches between the origin
822  of group differences (pattern irregularity vs. variance), and the time scales at which differences
823  manifest. These mismatches are independent of the values of the global similarity criterion —
824  which did not differ across groups here — and rather depend on the slope of the power spectrum.
825  The critical insight is thus that the bias relates to the relative amount of removed variance at the
826  scale of interest. This leads to puzzling results, in that the entropy of white noise signals, which
827 by definition are equally irregular at each time scale, decreases towards coarser scales, whereas
828 pink noise signals, which have comparatively small contributions from high frequencies,
829 receive relatively constant entropy estimates over the time scales typically examined (Nikulin
830 & Brismar, 2004). While such reflection of PSD slopes across scales has been replicated, it has
831  surprisingly been used to validate the method (Courtiol et al., 2016; Miskovic et al., 2016)
832  rather than to indicate the presence of a systematic bias in estimation'. Importantly, the
833  dependence of such biases on the spectral shape of the signal also indicates that they cannot be
834  accounted for by choosing different constants of the similarity criterion. Importantly, this has
835 practical implications for functional inferences. In the current resting state EEG data, we
836  observed that an age-related increase in high frequency power manifested as a decrease in
837  coarse-scale entropy due to group differences in the scale-wise mismatch between the (low-
838  passed) signal variance and the global » parameter. Specifically, older adults’ increased high
839 frequency power strongly reduced variance with successive low-pass filtering towards coarser
840  scales. As the similarity criterion was fixed across time scales relative to the total variance, this
841  quickly invoked an increasingly liberal threshold. In comparison, less high-frequency variance
842  was removed for younger adults at coarse scales. Given comparable global similarity criteria
843  between groups, younger adults’ criterion was thus more conservative, affording higher entropy
844  estimates at coarser time scales (see Figure 9A). Crucially, coarse-scale group differences were
845  not observed when scale-wise similarity criteria were applied, or when permutation entropy —
846  a measure without a dedicated similarity threshold — was used (see Supplementary Materials),

! This appears to be mainly motivated by the questionable assumption that “changes of the
variance due to the coarse-graining procedure are related to the temporal structure of the
original time series, and should be accounted for by the entropy measure” (Costa et al., 2005,
p. 5). However, as we show, such time-scale dependence can be explained by mismatched
thresholds and hence, scale-dependent biases. Note that in previous simulations (see Figure 1
in Courtiol et al., 2016), MSE slopes varied from positive to negative as a function of spectral
slopes, i.e., the ratio of high-to-low variance. In the most extreme case of blue noise signals
with positive slopes, dominant high-frequency variance is quickly removed, leading to the
highest rate of entropy decrease. With shallowing of slopes (and reduced high-frequency
contributions), the rate of entropy reduction decreased, until eventually turning into entropy
gains for signals with strong negative PSD slopes, for which biases were presumably minimal.
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847  therefore highlighting the dependence of the group difference on mismatched thresholds. Note
848  that we presume that this age difference arises from a relative bias. Pink noise signals, such as
849  those observed here, have a relatively low contribution from high compared to low frequencies,
850 rendering the absolute bias lower than for white noise signals with equal variance of these two
851 components (and therefore a quicker ‘bias rate’ towards coarser scales as more high frequency
852  variance is removed). However, variations in high-frequency variance (and thus the resulting
853  Dbias) suffice, even at low levels, to systematically impact coarse-scale estimates. This may be
854  independent from the main source of variance in course-scale entropy. Hence, the latter may be
855  dominated by slower fluctuations, while even a relatively low contribution of high-frequency
856  ‘bias’ could specifically explain variance in a third variable of interest (e.g., age; see Figure
857  9B). Thus, beyond bias controls noted above, we argue for rigorous statistical controls when
858  evaluating the shared and unique predictive utility of power and multiscale entropy in neural
859  time series data.

860 While difficulties with scale-invariant thresholds have been noted early on, scale-invariant
861  similarity criteria remain prevalent in recent work (e.g., Carpentier et al., 2019; Grandy et al.,
862  2016; Hadoush, Alafeef, & Abdulhay, 2019; Heisz, Shedden, & Mclntosh, 2012; Jaworska et
863 al., 2018; Kaur et al., 2019; Miskovic et al., 2016; Mizuno et al., 2010). We hope that our
864  practical example of coarse-scale biases thus highlights the dangers of resulting mismatches
865 and motivate the adoption of scale-varying parameters. We perceive little justification for
866 invariant parameters unless one specifically aims to render the MSE spectrum sensitive to PSD
867  slopes as a function of normalization bias. While this has been a desired property in previous
868  validations, we highlight next that such slopes are already captured within fine scales when
869  broadband signals are characterized.

870 4.3 Fine-scale entropy as an index of desynchronized cortical states

871

872 Fine-scale entropy has been proposed as a signature of desynchronized cortical states
873  (Waschke, Tune, & Obleser, 2019; Waschke et al., 2017) that describe a suppression of low-
874  frequency power with a concurrent increase in high frequency dynamics (Contreras & Steriade,
875  1997; Harris & Thiele, 2011; Marguet & Harris, 2011). This synergy is thought to benefit local
876  information processing by regulating cortical gain and is under control of the local E/I balance.
877  Spectral slopes, characterizing the scale-free ‘background’ or ‘noise’ component of the total
878  variance, have been proposed as an index of such E/I balance (Gao, Peterson, & Voytek, 2017;
879  Peterson, Rosen, Campbell, Belger, & Voytek, 2018; Voytek et al., 2015). By linking fine-scale
880 entropy to measures of scale-free background slope (Hypothesis C), we replicate previous
881  observations of increasing fine-scale entropy with shallower slopes (Bruce et al., 2009;
882  Miskovic et al., 2019; Sheehan, Sreekumar, Inati, & Zaghloul, 2018; Waschke et al., 2017).
883  This is further in line with the observation that linear autocorrelative properties of the global
884  signal (as indicated by spectral slopes) are directly related to the entropy at fine time scales
885  (Courtiol et al., 2016; Kaffashi et al., 2008; Vakorin & McIntosh, 2012). Similar effects have
886  been observed for permutation entropy” (see Supplementary Materials; Waschke et al., 2017),

2 The observation of this link in permutation entropy further suggests that the association
between PSD slopes and fine entropy is not primarily dependent on the similarity criterion, but
naturally arises from the characterization of a broadband signal.
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887 in line with generally high correspondence between entropy variants (Gudmundsson,
888  Runarsson, Sigurdsson, Eiriksdottir, & Johnsen, 2007; Kuntzelman, Jack Rhodes, Harrington,
889 & Miskovic, 2018). The association between broadband signal entropy and spectral slopes
890  coheres with the notion that shallower slopes (i.e., more high frequency content) have a more
891  ‘noisy’ or irregular appearance in the time domain. Thus, the shallowness of spectral slopes of
892  the broadband signal and its pattern irregularity can be conceptualized as different perspectives
893  on the same signal characteristic. In line with this argument, a previous study has found a strong
894  overlap in the predictive power of spectral slopes and fine entropy on memory performance
895  (Sheehan et al., 2018).

896 Crucially, our analyses suggest that fine-scale entropy does not specifically reflect the
897  pattern similarity of high frequency dynamics, but that the presence of both high- and low-
898 frequency dynamics at fine time scales is necessary for a link between power spectral density
899  slopes and fine signal entropy to emerge. If low frequency information is removed and entropy
900 becomes specific to high-frequency content, the association with power spectral density fails to
901 persist. In this case, entropy may however provide a sensitive index of high frequency activity
902 (Werkle-Bergner et al., 2014). While there is a general relationship between the 1/f slope and
903 fine-scale entropy for broadband signals, it is also worth noting that our simulations suggest an
904 influence of band-limited power on fine entropy scales. This introduces ambiguities in the
905 interpretation of fine scales, as they appear sensitive to both arrhythmic and rhythmic content.
906  While similar problems are encountered in the frequency domain, overt rhythmic peaks are
907  generally excluded prior to fitting spectral slopes to increase the specificity to arrhythmic
908 variance (Haller et al., 2018; Kosciessa et al., 2019; Peterson et al., 2018; Voytek et al., 2015;
909 Waschke et al., 2017). Without similar procedures, this is difficult to achieve in the case of
910 sample entropy.

911 In sum, our analyses provide insights into the sensitivity of fine-scale entropy to fluctuations
912 in the synchrony of cortical states and highlight the role of slow fluctuations for such
913  associations. Crucially, our results suggest that fine-scale entropy modulations do not
914  specifically relate to “patterns” of neural activity at high frequencies, but that it rather arises
915 from the presence of broadband frequency signals in traditional entropy computations. Notably,
916 this highlights that fine-scale entropy provides a multi-scale characterization, i.e., PSD slope,
917  even without a scale-wise recalculation due to the broadband nature of the analyzed signals.
918

919 4.4 Relevance of identified time scale mismatches to previous work

920

921 Our results of time scale mismatches have high relevance for the interpretation of neural
922  signal entropy by highlighting associations with spectral characteristics that have not been
923  appreciated. While some studies have shown parallel group differences between MSE and
924  spectral power (Carpentier et al., 2019; Heisz et al., 2012; Jaworska et al., 2018; Lippe,
925 Kovacevic, & Mclntosh, 2009; Mclntosh et al., 2014; Mizuno et al., 2010; Raja Beharelle,
926  Kovacevic, Mclntosh, & Levine, 2012; Sleimen-Malkoun et al., 2015; Szostakiwskyj, Willatt,
927  Cortese, & Protzner, 2017; Takahashi et al., 2009; H. Wang et al., 2016), others identified
928 unique entropy effects (Catarino, Churches, Baron-Cohen, Andrade, & Ring, 2011; Misic et
929 al., 2015; Takahashi et al., 2010; Ueno et al., 2015) within which the (mis)match between time-
930 scales and frequencies is not always readily apparent. Some of these discrepancies likely stem
931 from a combination of the reported effects: the global similarity criterion renders MSE sensitive
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932  to the shape of the frequency spectrum across scales, whereas the low-pass procedure leads to
933  astrong sensitivity to low-frequency content. While many papers perform control analyses with
934  band-limited spectral power, such mechanisms may obscure key links between the two
935  measures.

936 Our results are particularly relevant for understanding multiscale entropy differences across
937 the lifespan, although our findings and suggestions presumably apply to any scenario in which
938 MSE is a measure of interest, such as for the assessment of clinical outcomes (e.g., Takahashi
939 etal., 2010) or prediction of cognitive performance (e.g., Mclntosh et al., 2008), independent
940 of modality (e.g., Shafiei et al., 2019). Previous applications in the domain of aging (Courtiol
941 et al, 2016; Mclntosh et al., 2014; H. Wang et al., 2016) have shown inversions of age
942  differences in the entropy spectrum, with older adults exhibiting lower coarse-scale entropy and
943  higher entropy at fine time scales compared with younger adults. In the power spectrum, these
944  effects were inverted, with older subjects showing enhanced high-, and reduced low-frequency
945  power. This was previously taken as evidence that older adults’ high-frequency dynamics were
946  not only enhanced in magnitude, but also more unpredictable compared with younger adults’
947  dynamics. While we replicate those results with relatively minimal resting-state data here, our
948 analyses question the validity of these intuitive previous interpretations. In particular, our
949  results suggest that an apparent age-related increase of coarse-scale entropy is not due to valid
950 group differences in pattern irregularity, but results from inadequate similarity criteria that
951 render coarse-scale entropy sensitive to high frequency power (Hypothesis D1). No coarse-
952  scale age differences were observed with scale-varying thresholds or permutation entropy (see
953  Supplementary Materials), in line with previous work (Sleimen-Malkoun et al., 2015).
954  Similarly, our analyses indicate that differences in fine-scale ‘pattern irregularity’ rely on
955  variations in the magnitude of slow fluctuations, and describe age-related changes in PSD
956  slopes (Hypothesis D2). Taken together, our results thus fundamentally challenge mechanistic
957 inferences by suggesting that previously described age differences in entropy may be minimal
958 beyond a misattribution of traditional age differences in the magnitude of fluctuations (i.e.,
959  signal variance). This is further in line with a previous application using surrogate data that
960 highlighted that age group differences were mainly captured by linear auto-correlative
961 properties (see appendix in Courtiol et al., 2016).

962 In contrast to existing ‘broad-band’ applications, our narrowband analyses suggested age-
963 related entropy increases in the posterior-occipital alpha band and decreases in central beta
964  entropy. Whereas alpha power and MSE were inversely related and the similarity criterion
965 showed an inverted age effect, the situation was less clear for the beta band. One explanation
966 for such divergence is that many Fourier-based methods assume stationary sinusoidal rhythms,
967 whereas stereotypical spectral features, particularly in the beta band (Lundqvist, Herman,
968  Warden, Brincat, & Miller, 2018; Lundqvist et al., 2016; Sherman et al., 2016; Shin et al.,
969  2017), are transient in time, such that time-averaged spectral power is an imperfect index of the
970 presence of stereotypical spectral events (Jones, 2016; Kosciessa et al., 2019). In contrast,
971  entropy should closely relate to the extent of stereotypy that is indexed by the occurrence of
972  such non-stationary events. In line with this prediction, entropy consistently decreased with
973  more stereotypic spectral events, suggesting that narrowband entropy can indeed reflect the (ir-
974  )regularity of rhythmic episodes. Posterior-occipital decreases in alpha power and frequency
975  with age are considered fundamental features of age-comparative studies (Ishii et al., 2017) that
976 may in part reflect structural shifts in the generating networks (Knyazeva, Barzegaran,
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977  Vildayski, & Demonet, 2018). While age-related increases in beta power are not observed as
978  consistently (see e.g., Ishii et al., 2017 for a review), age-related increases in the relative
979  duration of their engagement has been observed during eyes open rest (Caplan, Bottomley,
980 Kang, & Dixon, 2015). In addition, beta-band power increases over contralateral motor cortex
981  during rest have been hypothesized to reflect greater GABAergic inhibition in healthy aging
982  (Rossiter, Davis, Clark, Boudrias, & Ward, 2014). While our results are not hemisphere-
983  specific, they may similarly reflect increased inhibition in older adults, potentially reflected in
984  the number of stereotypical beta events (Shin et al., 2017). As our aims were methods-focused
985 here, the functional interpretation of the observed changes still necessitates caution pending
986 further research. Our results however highlight that modulation of the spectral signal content
987  can reveal novel, scale-specific effects regarding frequency-specific event irregularity.
988
989 4.5 Recommendations for future applications
990
991 The problems raised in the present work suggest that additional steps need to be taken to
992  wvalidate the accurate interpretation of scale-dependent effects and to infer a unique contribution
993  of non-linear signal characteristics to obtained entropy estimates. We advocate the following
994  steps (see Figure 9C): (a) use of scale-wise similarity criteria to avoid mismatches between the
995  scale-wise signal variance and its normalization, (b) dedicated filtering into time scales of
996 interest to probe the time-scale specificity of effects and its dependence on the spectral signal
997 content, (c) statistical control for signal variance and (d) the future use of phase-shuffled
998  surrogate data to confirm non-linear contributions. In combination, such controls may go a long
999  way towards establishing non-linear effects that can be validly attributed to signal entropy at

1000 matching time scales. We discuss these steps in more detail below.

1001 a) As noted in section 4.2, we see little motivation for the use of scale-invariant similarity

1002 criteria (i.e., fixed r criteria) as they introduce additional challenges without providing
1003 apparent benefits. In particular, they bias coarse-scale entropy to the extent that variance
1004 has been removed, thereby rendering traditional spectral controls difficult. Furthermore,
1005 results obtained from multiscale permutation entropy more closely aligned with results from
1006 scale-varying criteria (see Supplement), highlighting higher reliability across entropy
1007 definitions. In sum, we therefore recommend to abandon scale-invariant » parameters.

1008 b) We further recommend spectral filters to validate the scale-specificity of effects. For
1009 example, if effects are observed at coarse-temporal scales with a low-pass filter, more
1010 specific high-pass filters may inform about the spectral extent of the effect. Similarly, if
1011 effects are observed at fine scales, band-pass filtering may indicate whether effects are
1012 spectrally specific (e.g., due to rhythmicity) or broad-band. For entropy estimates of slow
1013 dynamics, traditional low-pass filter settings already apply this principle. In this regard, a
1014 major advantage of estimating entropy across discontinuous segments (Grandy et al., 2016)
1015 is the ability to estimate entropy at coarse timescales with sparse neuroimaging data. This
1016 may also allow for improved comparisons with established slow fluctuations, and for
1017 characterizations of the complex dynamics of their engagement. In extreme cases, if the
1018 signal is filtered into dedicated frequency ranges, inferences regarding pattern irregularity
1019 become narrowband-specific. While this enforces a more rhythmic appearance than the raw
1020 signal may convey (S. Cole & Voytek, 2018), it makes scale-wise entropy estimates specific
1021 to the local spectral content. We note also that while we highlight the importance of
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1022 appropriate filter ranges and spectral power for the interpretation of entropy results, we do
1023 not suggest that the chosen filter settings are optimal for any particular application, and
1024 should be used with caution given that any filter will alter the underlying signal
1025 characteristics (Widmann, Schroger, & Maess, 2015). Thus, we believe that parameters
1026 should be optimized based on the spectral features of interest.

1027 c¢) Furthermore, we regard statistical control as necessary to establish entropy-specific effects
1028 that are not captured by traditional linear indices (such as spectral power or signal variance).
1029 This requires an identification of the features to control for. As shown here, this should
1030 include both rhythmic frequencies and the arrhythmic signal background. Importantly, as
1031 the scale-wise » parameter is a crucial normalization tool, it should at the very least be
1032 controlled for. Importantly, the choice of features may further be aided by comparing effect
1033 topographies of spectral power and entropy, as done here. An important point to note is the
1034 relevance of statistical controls for relations to third variables (see Figure 9B). While some
1035 studies highlight scale-dependent associations of entropy with power, a large amount of
1036 shared variance (e.g., of coarse-scale entropy with slow frequency power) does not
1037 guarantee that a smaller portion of residual variance (e.g., shared with high frequency
1038 biases; see section 4.2) relates to effects of interest. This is equally relevant for identifying
1039 unique non-linear contributions. For example, while we observed moderate associations
1040 between band-specific rthythm events and entropy here, this non-redundant association
1041 nevertheless leaves room for the two measures to diverge in relation to third variables.
1042 Hence, they are related but may not always be redundant. This is in line with prior work
1043 (Courtiol et al., 2016) showing that despite a dominant influence of linear characteristics on
1044 entropy estimates, non-linear contributions, uniquely explained a (smaller) portion of
1045 entropy variance. Hence, specific controls are necessary to indicate unique non-linear
1046 effects that may otherwise be obscured by potentially dominant linear signal characteristics.
1047 d) Finally, a principled way to dissociate non-linear signal characteristics from linear signal
1048 variance is the use of phase-shuffled surrogate data (Garrett, Grandy, & Werkle-Bergner,
1049 2014; Grandy, Garrett, Lindenberger, & Werkle-Bergner, 2013; Theiler, Eubank, Longtin,
1050 Galdrikian, & Farmer, 1992), as is common practice in connectivity analyses (Aru et al.,
1051 2015). Phase randomization effectively alters original time series patterns while preserving
1052 the original power spectrum of the data. While this has been done in select entropy
1053 applications (e.g., appendix of Courtiol et al., 2016; Vakorin & Mclntosh, 2012), and is
1054 frequently used to highlight entropy’s non-linear sensitivity (e.g., Miskovic et al., 2016;
1055 Shafiei et al., 2019), it has not become common practice, likely due to high computational
1056 demands. A two-tier analysis strategy may overcome such limitations by first reducing data
1057 dimensionality. Specifically, in an initial stage, MSE may be used to explore potentially
1058 non-linear effects in the data. Then, a more focused (and therefore lower-dimensional)
1059 confirmatory analysis could be conducted with a selective focus on the relevant time scales
1060 or channels, using surrogate data to verify the contribution of non-linear signal
1061 characteristics.

1062

1063 5 Conclusions

1064

1065 Many inferences regarding neural multiscale entropy rely on the assumption that estimates

1066  uniquely relate to pattern irregularity at specific temporal scales. Here we show that both
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1067  assumptions may be invalid depending on the consideration of signal normalization and spectral
1068  content. Using simulations and empirical examples, we highlight how power differences can
1069 introduce entropy effects that are inversely mapped in time scale (i.e., differences in the high
1070  frequency power may be reflected in coarse entropy and vice versa; see Figure 9A). As these
1071  results suggest fundamental challenges to traditional analysis procedures and inferences, we
1072  highlight the need to test for unique entropy effects (Figure 9B) and recommend best practices
1073  and sanity checks (Figure 9C) to increase confidence in the complementary value of pattern
1074  (ir)regularity for cognitive neuroscience. While the claim has been made that “it would be
1075 unreasonable simply to reduce sample entropy to autocorrelation, spectral power, non-
1076  stationarity or any of their combinations” (Vakorin & Mclntosh, 2012), it is plausible that in
1077 any given application, one or more of these contributors could suffice to mechanistically
1078  explain entropy effects of interest. We thus propose that differences in sample entropy may be
1079  taken as a starting point to explore the linear and nonlinear features that may (alone or in
1080 conjunction) explain the entropy differences (e.g., Simpraga et al., 2017), thereby proceeding
1081 from sensitivity to mechanistic specificity. As neural signal entropy is often a behaviorally
1082  relevant marker, we believe that a convergence with extant measures and indication of unique
1083 non-linear predictive utility supports the quest for reliable mechanistic indicators of brain
1084  dynamics across the lifespan, and in relation to cognition, health, and disease.
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S| Methods

Calculation of multiscale permutation entropy. Sample entropy’s similarity criterion makes it difficult
to differentiate between rhythmic modulations of MSE via added pattern regularity or the influence on
similarity criteria. For this purpose, we extended our analyses to multiscale permutation entropy, a
measure that assesses pattern irregularity independent of a similarity criterion. In particular, permutation
entropy describes the randomness in the occurrence of symbolic sequences (rank-order permutations)
(Bandt & Pompe, 2002; Riedl, Muller, & Wessel, 2013). To investigate the correspondence between
sample entropy and permutation entropy, we repeated our analyses with identical settings as described
for the MSE analyses. The calculation of permutation entropy followed previous implementations (e.g.,
Ouyang, Li, Liu, & Li, 2013). Specifically. for a given template length m (i.e., embedding dimension, here
m = 4), all m! rank-order permutations = were assessed with regard to their relative occurrence: p(w) =
C(m)/(N — (m — 1)1), where N is the number of samples and | is the time delay/lag (here | = 1). The
permutation entropy of a signal was defined as PE = —Y™., p(m) Inp(). We calculated a normalized
version of permutation entropy with bounds between zero and one. Specifically, complete randomness
of permutation occurrence would result in values of one, whereas increasing regularity results in lower
values. To assess the convergence between sample and permutation entropy, we repeated the
simulations noted in the main text, and probed age differences in the traditional (i.e., low-pass)
implementation.

S| Results

Dissociating between similarity criterion and spectral regularity using multiscale permutation
entropy (MPE). In our MSE analyses, the intrinsic, variance-bound, similarity criterion makes it difficult
to distinguish whether spectral events (e.g., narrowband rhythms) decrease entropy as a result of
increasing the r parameter or via their contribution of added (sinusoidal) signal regularity. To probe this
issue, we used multiscale permutation entropy (MPE) as a measure of signal complexity that does not
use a variance-based threshold. In particular, permutation entropy assesses pattern complexity as the
relative (im-)balance in the occurrence of symbolic patterns.

In simulations, rhythmicity modulated MPE in a similar fashion as MSE (Figure S4A, B). Notably,
MPE did not indicate rhythm-dependent increases in entropy, although it should be noted that
permutation entropy was at ceiling even at baseline. Crucially, we observed a similar decrease of
entropy at fine scales in the absence of variance normalization, suggesting that added rhythmicity
decreased broadband ‘fine-scale’ estimates due to the added rhythmic regularity. We further assessed
age effects in the traditional low-pass scenario. Most notably, permutation entropy in the low-pass
implementation did not exhibit an age difference at coarse (Figure S4C), in line with our suggestions
that this MSE difference is exclusively induced by fixed similarity criteria. However, a fine-scale age
difference was also observed in low-pass MPE (Figure S4C), suggesting that this effect is not exclusively
related to the similarity criterion. As in the MSE analysis, fine-scale estimates characterized individual
PSD slopes, underlining the broadband origin of the effect.
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Figure S1: Examples of simulated data. Time series from an exemplary simulated trial for a pure 1/f
signal pink noise signal and at different magnitudes of added alpha rhythmicity. The left presentation
provides a top-down view of time-series amplitudes.
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Figure S2: T-values for age group differences in spectral power (OA > YA). Statistical significance
(p < .05) was assessed by means of cluster-based permutation tests and is indicated via opacity.
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Figure S3: Methods- and scale-dependent associations between sample entropy and PSD
slopes. ‘Original’ settings indicate a strong positive association at fine scales (A1) that turns negative
at coarse scales (A2), likely due to coarse-scale biases by the scale-invariant similarity criterion. In line
with this notion, scale-wise adaptation of thresholds retains the fine-scale effect (B1), while abolishing
the coarse-scale inversion (B2). Crucially, the entropy of exclusively high-frequency signals does not
positively relate to PSD slopes (C1), whereas the association reemerges once slow fluctuations are

added into the signal (C2).
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Figure S4. Permutation entropy reproduces dominant effects from sample entropy analysis. (A)
The rhythmic representation on multiscale permutation entropy (MPE) is similar to that observed in MSE.
(A1) Frequency-wise rhythm simulations indicate frequency-dependent decreases in permutation
entropy. (A2) Low-pass filtering results in decreased entropy at frequencies above the simulated
frequency, whereas the opposite effect is observed when using high-pass filters (A3). A difference to
low-pass MSE is the absence of entropy increases above baseline. (B) Amplitude simulations of alpha
rhythms indicate similar parametric effects as for sample entropy. The narrow bandpass filter introduces
spurious entropy increases around filter boundaries (B4). (C) Lowpass MPE indicates higher fine-scale
entropy, but no decreased coarse-scale entropy, for older compared to younger adults, in line with MSE
results with scale-varying similarity criteria. (D) Fine-scale low-pass permutation entropy relates to

individual PSD slopes.
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