

1 **Standard multiscale entropy reflects spectral power at mismatched temporal scales:**
2 **What's signal irregularity got to do with it?**
3

4 Julian Q. Kosciessa^{123*}, Niels A. Kloosterman¹², and Douglas D. Garrett^{12*}

5 ¹Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin/London;

6 ²Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94,
7 14195 Berlin, Germany; ³Department of Psychology, Humboldt-Universität zu Berlin, Rudower
8 Chaussee 18, 12489 Berlin, Germany

9 * Corresponding authors: kosciessa@mpib-berlin.mpg.de; garrett@mpib-berlin.mpg.de

10 Abstract:

11
12 The (ir)regularity of neural time series patterns as assessed via Multiscale Sample Entropy (MSE; e.g.,
13 Costa et al., 2002) has been proposed as a complementary measure to signal variance, but the con- and
14 divergence between these measures often remains unclear in applications. Importantly, the estimation
15 of sample entropy is referenced to the magnitude of fluctuations, leading to a trade-off between variance
16 and entropy that questions unique entropy modulations. This problem deepens in multi-scale
17 implementations that aim to characterize signal irregularity at distinct timescales. Here, the
18 normalization parameter is traditionally estimated in a scale-invariant manner that is dominated by slow
19 fluctuations. These issues question the validity of the assumption that entropy estimated at finer/coarser
20 time scales reflects signal irregularity at those same scales. While accurate scale-wise mapping is critical
21 for valid inference regarding signal entropy, systematic analyses have been largely absent to date. Here,
22 we first simulate the relations between spectral power (i.e., frequency-specific signal variance) and
23 MSE, highlighting a diffuse reflection of rhythms in entropy time scales. Second, we replicate known
24 cross-sectional age differences in EEG data, while highlighting how timescale-specific results depend
25 on the spectral content of the analyzed signal. In particular, we note that the presence of both low- and
26 high-frequency dynamics leads to the reflection of power spectral density slopes in finer time scales.
27 This association co-occurs with previously reported age differences in both measures, suggesting a
28 common, power-based origin. Furthermore, we highlight that age differences in high frequency power
29 can account for observed entropy differences at coarser scales via the traditional normalization
30 procedure. By systematically assessing the impact of spectral signal content and normalization choice,
31 our findings highlight fundamental biases in traditional MSE implementations. We make multiple
32 recommendations for future work to validly interpret estimates of signal irregularity at time scales of
33 interest.

34
35 Highlights

- 36 • Multiscale sample entropy (MSE) links to spectral power via an internal similarity criterion.
- 37 • Counterintuitively, traditional MSE implementations lead to slow-frequency reflections in fine-
38 scale entropy, and high-frequency biases on coarse-scale entropy.
- 39 • Fine-scale entropy reflects power spectral density slopes, a multi-scale property.
- 40 • Narrowband sample entropy indexes (non-stationary) rhythm (ir)regularity at matching time scales.

41
42 Keywords: multiscale sample entropy; time scale bias; resting state EEG; age differences; rhythms

43 **1 Introduction**

44

45 **1.1 Entropy as a measure of signal (ir)regularity**

46

47 Neural times series exhibit a wealth of dynamic patterns that may be tightly linked to neural
48 computations. While some of these patterns consist of stereotypical deflections (e.g., periodic
49 neural rhythms; Buzsaki & Draguhn, 2004; X. J. Wang, 2010), others have a more complex
50 appearance that may still be equally relevant for characterizing neural function (S. R. Cole &
51 Voytek, 2017; Diaz, Bassi, Coolen, Vivaldi, & Letelier, 2018). Multiscale entropy (MSE)
52 (Costa, Goldberger, & Peng, 2002, 2005) has been proposed as an information-theoretic metric
53 that estimates the temporal irregularity in a signal (in theory providing information above and
54 beyond traditional spectral metrics), while accommodating that neural dynamics occur across
55 multiple spatiotemporal scales. In tandem, dynamic perspectives on brain function in the
56 framework of nonlinear dynamics and complex systems have gained traction (Breakspear,
57 2017; Stam, 2005; Vakorin & McIntosh, 2012), suggesting that optimal computations in the
58 brain may be characterized by metastable states that afford flexible movement between distinct
59 attractor states. Following this conceptual framework, MSE has been increasingly applied to
60 characterize the apparent “irregularity” (or non-linearity) of neural dynamics of different brain
61 states, across the lifespan and in relation to health and disease (Bruce, Bruce, & Vennelaganti,
62 2009; Jaworska et al., 2018; McIntosh et al., 2014; Miskovic, MacDonald, Rhodes, & Cote,
63 2019; Sleimen-Malkoun et al., 2015; Takahashi et al., 2010; H. Wang, McIntosh, Kovacevic,
64 Karachalios, & Protzner, 2016; Werkle-Bergner et al., 2014; Yang et al., 2013). With its novel
65 focus on non-linear dynamics, MSE has thus become an attractive measure to gain new
66 perspectives into brain function. However, its relation to extant, linear signal characteristics
67 (e.g. spectral power) is considered complex in its own right (Courtial et al., 2016; Nikulin &
68 Brismar, 2004; Vakorin & McIntosh, 2012). Many applications highlight a joint modulation of
69 both entropy and spectral power, although the specifics of their potential association (e.g.,
70 regarding their time scales) are not always clear. Given the apparent sensitivity of MSE in many
71 applications, we argue that a better understanding of the relation of MSE to established linear
72 signal characteristics such as spectral power (Buzsaki & Draguhn, 2004; Buzsaki & Mizuseki,
73 2014; Lopes da Silva, 2013) is critical. In particular, work on the interpretation of entropy time
74 scales remains sparse. At best, this limits any temporally-specific interpretation of observed
75 effects. Here, we probe two potential challenges to traditional interpretations of MSE estimates:
76 (a) the validity of unique inferences regarding pattern irregularity of a neural signal vs. its
77 variance, and; (b) the validity of the time-scale at which effects are observed.

78

79 1.2 The influence of variance on entropy challenges measurement validity

80

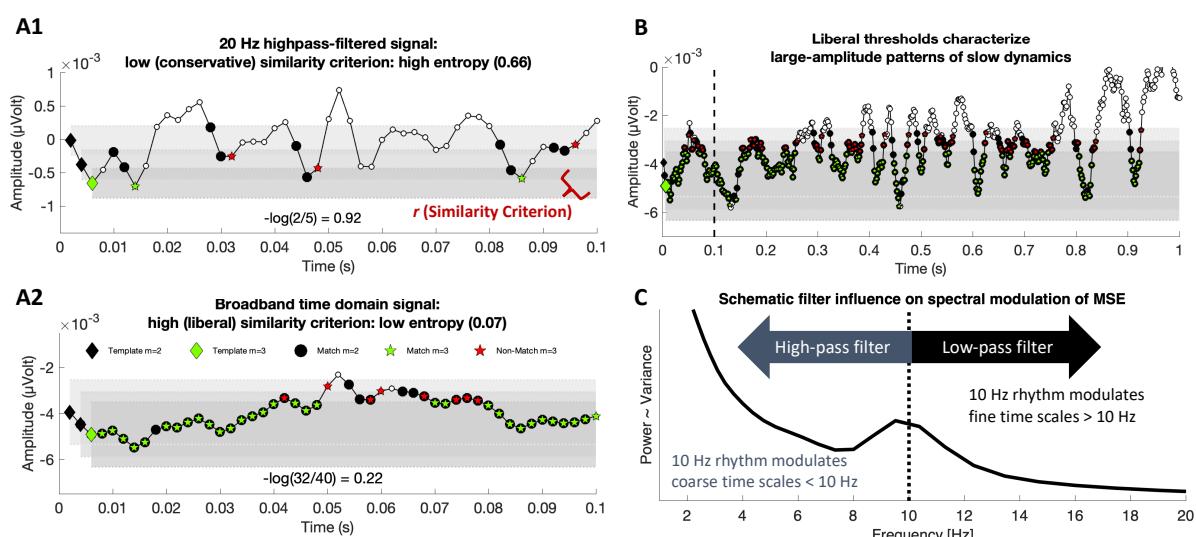


Figure 1: Scale-dependent entropy estimates are linked to spectral power via the similarity criterion (r parameter) and the regularity introduced by spectral events (e.g. rhythmicity). During the entropy calculation, template patterns of length m (here $m = 2$) are compared to the rest of the time series. Matches are detected when m consecutive samples fall within the templates' similarity bounds as indicated by the grey shading. Entropy is based on the ratio of $m+1$ vs. m target matches and increases with a disproportional number of patterns of length m that do not remain similar at length $m+1$ (non-matches). This procedure is iteratively repeated across samples, deriving the entropy for each template in time. (A) Sample entropy varies as a function of the variance-dependent similarity criterion r that in turn relies on the signal's spectral variance. Empirical example of fine-scale entropy estimation in identical high-frequency (A1) and broadband (A2) signals. The superimposed formula exemplifies the sample entropy calculation for the current template. When the same signal is constrained to high frequency content (A1), its variance and the associated similarity criterion reflect a conservative criterion for pattern similarity. This results in high sample entropy estimates that accurately reflect high frequency pattern irregularity. (A2), In contrast, broadband signals are typically characterized by strong low-frequency fluctuations that lead to large similarity criteria at fine scales (A2), which are more appropriate for characterizing the large-amplitude fluctuations of slow dynamics (B; note different x-axis scaling). (C) Scale-wise estimates may not reflect the irregularity of spectral events at matching time scales depending on filter choices. In addition to influencing the similarity criterion, added spectral systematicity also modulates entropy estimates at varying time scales as a function of filter choice. The schematic shows an exemplary power spectrum with a characteristic 1/f shape, i.e., dominance of power/variance at low frequencies and a prominent alpha frequency peak. Low-pass filtering leads to slow dynamics dominating fine time scales, whereas high-pass filtering leads to reflections of rhythmicity at coarse time scales.

81

82 Sample entropy is an information theoretic metric that indexes the pattern irregularity (or
 83 “complexity”) of time series as the conditional probability that two sequences remain similar
 84 when another sample is included in the sequence (for a visual example see Figure 1A). Hence,
 85 sample entropy compares the relative rate of similar to dissimilar time domain patterns.
 86 Whereas signals with a similar/repetitive structure (like rhythmic fluctuations) are assigned low
 87 entropy, less predictable/dissimilar (or random) signals are characterized as having higher
 88 entropy. We presume that a necessary condition for valid non-linear interpretations of sample
 89 entropy is that “the degree of irregularity of a complex signal [...] cannot be entirely captured
 90 by the SD [i.e., standard deviation]” (Costa, Goldberger, & Peng, 2004, p. 1; i.e., square root
 91 of variance), a linear characteristic (Al-Nashash et al., 2009). For this reason, sample entropy
 92 is traditionally assessed relative to the standard deviation of the broadband signal to intuitively
 93 normalize the estimation of irregularity for overall distributional width (Richman & Moorman,
 94 2000). In particular, the *similarity parameter r* directly reflects the tolerance against which
 95 temporal patterns are labelled as being similar or different (for an example, see Figure 1A; for

96 details see methods). In particular, for each point in the time series, a repeating pattern is
97 identified by falling within a range that is defined by the standard deviation of the signal (see
98 Figure A1). However, contrary to the assumption that “[d]efining r as a fraction of the standard
99 deviation eliminates the dependence of [sample entropy] on signal amplitude” (Bruce et al.,
100 2009, p. 259; see also Costa et al., 2004), it is rather plausible that this procedure in itself
101 introduces dependencies between signal variance and entropy. Specifically, as the magnitude
102 of signal fluctuations increases, the threshold for pattern similarity becomes more liberal as
103 more pattern are identified as similar (see Figure A2), thereby reducing estimated entropy and
104 leading to a general anti-correlation between signal variance and entropy (Nikulin & Brismar,
105 2004; Richman & Moorman, 2000; Shafiei et al., 2019). Hence, contrary to common belief, the
106 use of a variance-based normalization criterion may invoke rather than remove dependencies
107 between entropy estimates and signal variance (see Hypothesis A in section 1.5).

108 This problem is compounded in the case of multiscale sample entropy (MSE), which aims
109 to describe entropy at different time scales – from fast dynamics at fine (also referred to as
110 ‘short) time scales to slow fluctuations at coarse (or ‘long) time scales. To characterize coarser
111 time scales during the MSE calculation, signals are traditionally low-pass filtered, whereas the
112 similarity criterion typically remains scale-invariant, and set relative to the original broadband
113 signal (‘Original’ implementation). In turn, progressive time scale coarsening successively
114 removes high frequency content from the signal, yet a fixed broadband criterion still retains the
115 excluded frequencies; as a result, the increasingly mismatched criterion becomes a liberally
116 biased threshold for pattern similarity, effectively reducing entropy estimates. This is most
117 clearly illustrated by the observation that white noise signals, which should be characterized as
118 equally random at each time scale, exhibit decreasing entropy values towards coarser scales
119 when scale-invariant r parameters are used (Courtial et al., 2016; Miskovic, Owens,
120 Kuntzman, & Gibb, 2016; Nikulin & Brismar, 2004). Hence, the use of scale-invariant
121 similarity criteria renders links between signal variance and signal entropy ambiguous in
122 standard applications (Nikulin & Brismar, 2004). This prior observation provided a rationale
123 for scale-dependent computations of the r parameter (Valencia et al., 2009). This procedure
124 adheres to the initial idea of normalizing the scale-dependent signal via its variance, without
125 making estimates at coarser scales dependent on the variance of frequencies that have already
126 been removed from the signal. However, the use of scale-invariant thresholds remains dominant
127 in neuroscientific applications and in previous validation work (Courtial et al., 2016), thus
128 requiring an emphasis of the divergence between results from fixed and scale-varying
129 thresholds.

130 While fixed similarity criteria present a general challenge to the validity of entropy
131 estimation, a scale-specific re-estimation of normalization parameters does not by itself
132 guarantee unique, variance-independent entropy estimates. In contrast, sample entropy remains
133 conditional on signal variance due to the (scale-dependent) broadband variance normalization.
134 It is well appreciated that the broadband signal represents the mixture of a scale-free
135 background with canonical rhythmic frequencies (Haller et al., 2018; Kosciessa, Grandy,
136 Garrett, & Werkle-Bergner, 2019) that are spatially specific and dynamically modulated during
137 spontaneous cognition and evoked task states (e.g., Keitel & Gross, 2016; Vidaurre et al., 2018).
138 In the face of such spectral complexity, signal variance may impact entropy estimates in
139 complex ways depending on the frequency composition of the target signal. Note that if the
140 signal is constrained to narrowband frequencies, its variance corresponds directly to spectral

141 power. This problem persists at coarser scales, where entropy results remain partially dependent
142 on the similarity criterion, and thus the variance of the remaining frequencies. Hence, even
143 when adapted thresholds are used, the variance used to normalize entropy estimates may
144 introduce inter-individual, condition, and/or group differences that could invalidly be attributed
145 as unique to entropy rather than simply being shared with (or determined by) spectral variance.
146

147 1.3 Are “fast” and “slow” entropy estimates valid estimates of fast and slow processes?

148
149 A multiscale entropy approach is primarily motivated by the goal to derive additional
150 insight into the time scales at which complex neural dynamics occur. Hence, the aim is to
151 characterize signal irregularity along a continuum of time scales varying from fast dynamics to
152 slow fluctuations. In turn, observed scale-dependent effects are commonly interpreted with
153 reference to dynamical systems theory (Breakspear, 2017) and structural connectomics (Sporns,
154 2010). Specifically, it is often assumed that events at fine time scales closely relate to fast
155 dynamics and vice versa (McIntosh et al., 2014), with theoretical and empirical work indicating
156 that the time scale of neural dynamics is related to intrinsic activity time constants that depend
157 at least in part on structural properties of the underlying neural circuits (Buzsaki, Logothetis, &
158 Singer, 2013; Fries, 2009; Mejias, Murray, Kennedy, & Wang, 2016; von Stein & Sarnthein,
159 2000; X. J. Wang, 2010). To align with such interpretations, entropy effects at fine scales should
160 ideally reflect the pattern irregularity of fast dynamics, whereas those at coarse scales ought to
161 mainly characterize slower dynamics. This expectation is sometimes made explicit in claims
162 that “the structure of variability at short time scales, *or high frequencies*, has been linked to
163 local neural population processing, whereas variability at longer time scales, *or lower*
164 *frequencies*, has been linked to large-scale network processing” (Courtial et al., 2016, p. 176;
165 emphases added). Such expectations may however be violated by standard MSE estimation
166 procedures. Notably, the dependence of coarse-scale estimates on high-frequency power when
167 invariant similarity criteria are used (see section 1.2) challenges the fundamental assumption
168 that estimates at coarser time scales exclusively reflect slow neural dynamics. This motivates
169 Hypothesis B (see section 1.5). In addition, a time scale mismatch may also be present at finer
170 time scales. Specifically, while entropy estimates at original sampling rates are often interpreted
171 as indicating ‘fast’ events, they characterize and are (scale-dependently) normalized by
172 broadband variance. Importantly, broadband variance represents the sum of power across
173 individual frequency bands, with most neural signals exhibiting a scale-free (or 1/f) power
174 distribution, for which variance is maximal at low frequencies (Buzsaki & Mizuseki, 2014; He,
175 2014). Hence, when broadband signals are analyzed, pattern similarity is traditionally
176 referenced to signal variance dominated by slow fluctuations (see Figure 1B). In principle, this
177 may reliably manifest as an association between spectral slopes and fine-scale entropy that has
178 been observed both across subjects and wakefulness states (Bruce et al., 2009; Miskovic et al.,
179 2019; Waschke, Wostmann, & Obleser, 2017). As sample entropy has been shown to be
180 sensitive also to the autocorrelative properties of the signal (Courtial et al., 2016; Kaffashi,
181 Foglyano, Wilson, & Loparo, 2008), it is hence unlikely that fine-scale entropy is specific to
182 the irregularity of high frequency activity. Taken together, this prior evidence motivates
183 Hypothesis C (see section 1.5). In worst-case scenarios, a conjunction of the mechanisms
184 described above may thus lead to a reflection of fast dynamics at coarse scales and a reflection

185 of slow dynamics at fine time scales, potentially *inverting* the interpretation of MSE time scales
186 in general.

187 We argue that narrowband rhythms provide an optimal test case to assess a proper mapping
188 of neural irregularity to specific time scales (see Figure 1C), given that they are a well-
189 researched characteristic of brain function, and given their specific definition of the time scale
190 of events (i.e., period = inverse of frequency). While previous work has assessed the relation
191 between multiscale entropy estimates and autocorrelative features (Courtial et al., 2016), little
192 work has focused on the mapping of spectral frequencies and entropy time scales. Rather,
193 existing simulations have produced puzzling results that have received little attention in the
194 literature so far; while a linear mapping between simulated rhythmicity and its reflection in
195 entropy timescales has been observed, added rhythmic regularity appeared to *increase* entropy
196 above baseline (Park, Kim, Kim, Cichocki, & Kim, 2007; Takahashi et al., 2010; Vakorin &
197 McIntosh, 2012). This notably contrasts with the intuition that added signal regularity should
198 rather reduce observed entropy. Targeted simulations are thus necessary to assess the intuitive
199 notion that rhythmicity should be anticorrelated with entropy, and to assess whether this
200 phenomenon occurs at appropriate time scales.

201
202 1.4 Age differences in neural irregularity at fast and slow time scales
203

204 An unambiguous mapping between the spectral frequency of neural events and their
205 reflection in entropy time scales is arguably crucial to accurately infer the potential mechanisms
206 behind entropy modulations. One principal application of multiscale entropy is research into
207 lifespan covariations between functional neural dynamics and structural network ontogeny (for
208 a review see McIntosh, 2019). Within this line of inquiry, it has been proposed that structural
209 brain alterations across the lifespan manifest as entropy differences at distinct time scales
210 (McIntosh, Kovacevic, & Itier, 2008; McIntosh et al., 2014; H. Wang et al., 2016; Waschke et
211 al., 2017). In particular, it has been suggested that coarse-scale entropy decreases and fine-scale
212 entropy rises with increasing adult age as a reflection of senescent shifts from global to
213 increasingly local information processing (McIntosh et al., 2014; H. Wang et al., 2016).
214 Crucially, this suggestion mirrors observations based on spectral power, where age-related
215 decreases in the magnitude of low-frequencies (Leirer et al., 2011; Vlahou, Thurm, Kolassa, &
216 Schlee, 2014) are accompanied by increases in high-frequency activity, conceptualized also as
217 a flattening of power spectral density (PSD) slopes (McIntosh et al., 2014; Voytek et al., 2015;
218 H. Wang et al., 2016; Waschke et al., 2017). While these results seemingly converge towards a
219 joint decrease of low-frequency power and slow scale entropy in older adults (and an increase
220 for both regarding fast dynamics), this correspondence is surprising upon closer inspection
221 given the presumed anticorrelation between the magnitude of stereotypic rhythm dynamics and
222 their estimated entropy. Given uncertainty regarding the unique information offered by entropy
223 modulations, as well as concerns regarding the valid interpretation of time scales of entropy
224 effects, we attempted to reconcile these various issues by investigating the relation between
225 cross-sectional age effects on both MSE and spectral power.

226

227 1.5 Hypotheses and current study

228
229 We used simulations and empirical EEG data to probe the relationship between spectral
230 power and multiscale sample entropy (MSE), with a specific focus on the relation between
231 rhythmic frequencies and entropy time scales. We formulated the following general hypotheses
232 regarding the link between spectral variance and MSE:

233
234 A. The magnitude of the variance-based similarity criterion is negatively correlated with
235 entropy estimates.
236 B. ‘Original’ scale-invariant similarity criteria produce increasingly biased thresholds for the
237 detection of time series pattern similarity towards coarser time scales. The magnitude of
238 this bias scales with the amount of excluded high frequency variance. This produces scale-
239 to-frequency mismatches, wherein power differences at high frequencies manifest as
240 differences in coarse-scale entropy.
241 C. When fine time scales characterize signals that include both fast and slow fluctuations, fine-
242 scale entropy estimates (and age differences therein) will relate to PSD slopes. Such an
243 association will be absent when slow fluctuations are removed.

244
245 Extending these hypotheses to the domain of age-related differences in EEG-based MSE
246 and spectral power, we assessed the following hypotheses:

247
248 D. Using ‘Original’ MSE, older adults will exhibit higher entropy at finer time scales and
249 artificially lower entropy at coarser time scales compared to younger adults (e.g., McIntosh
250 et al., 2014). Concurrently, older adults will have shallower PSD slopes than younger adults,
251 as represented by higher power at high frequencies and lower power at low frequencies
252 (Voytek et al., 2015; Waschke et al., 2017). Based on Hypotheses B & C, a relation of these
253 effects is hypothesized as follows:

254 D1. Scale-invariant similarity criteria introduce coarse-scale entropy differences as a
255 function of high frequency power (cf. Hypothesis B). Hence, coarse-scale age differences
256 relate to group differences in high frequency power and disappear when scale-invariant
257 threshold biases are removed.

258 D2. Age differences at fine time scales relate to age differences in PSD slopes, with
259 higher entropy in older adults relating to steeper PSD slopes. This association is dependent
260 on the presence of slow fluctuations during the entropy calculation (cf. Hypothesis C). No
261 fine-scale age differences will be indicated when slow fluctuations are removed from the
262 signal.

263
264 In line with our expectations, we observed that ‘Original’ MSE leads to a strong dependence
265 of fine time scales on low-frequency power and coarse time scales on high-frequency power.
266 To highlight the neuroscientific relevance of these associations, we used novel resting state data
267 to replicate two previous findings in the literature: (1) an age-related shift in entropy from
268 dominantly coarse to fine-scale entropy and (2) a strong association of fine-scale entropy with
269 the slope of power spectral density. By varying filter settings, we show how these entropy
270 effects may be explained in the context of spectral variance differences, but at opposing time
271 scales to those observed for entropy. Finally, we highlight that narrowband implementations of

272 entropy approximate frequency-specific signal irregularity as the inverse of the rate of
273 stereotypic spectral events.

274

275 2 Methods

276

277 2.1 Simulations of relations between rhythmic frequency, amplitude, and MSE

278

279 To assess the influence of rhythmicity on entropy estimates, we simulated varying
280 amplitudes (0 to 7 arbitrary units in steps of 0.5) of 10 Hz (alpha) rhythms on a fixed 1/f
281 background. This range varies from the absence to the clear presence of rhythmicity (see
282 Supplementary Figure 1 for an example). The background consisted of $\frac{1}{f^x}$ -filtered Gaussian
283 white noise (mean = 0; std = 1) with $x = 1$ that was generated using the function
284 `f_alpha_gaussian` (Stoyanov, Gunzburger, & Burkardt, 2011). The background was
285 additionally band-pass filtered between .5 and 70 Hz using 4th order Butterworth filters. Eight
286 second segments (250 Hz sampling rate) were simulated for 100 artificial, background-varying
287 trials, and phase-locked 10 Hz sinusoids were superimposed. The alpha rhythm was chosen as
288 it constitutes the largest and most prevalent human rhythm in scalp EEG data (Kosciessa et al.,
289 2019) and therefore is commonly present and modulated in data that is used for entropy
290 analyses. To analyze the reflection of rhythmic frequency on time scales and to replicate a
291 previously observed linear frequency-to-timescale mapping between the spectral and entropy
292 domains (Park et al., 2007; Takahashi et al., 2010; Vakorin & McIntosh, 2012), we repeated
293 our simulations with sinusoids of different frequencies (5 Hz, 10 Hz, 20 Hz, 40 Hz, 80 Hz), that
294 covered the entire eight second-long segments.

295

296 2.2 Resting state data and preprocessing

297

298 To investigate the influence of similarity criteria and filter ranges in empirical data, we used
299 resting-state EEG data collected in the context of a larger assessment prior to task performance
300 and immediately following electrode preparation. Following exclusion of three subjects due to
301 recording errors, the final sample contained 47 younger (mean age = 25.8 years, SD = 4.6, range
302 18 to 35 years; 25 women) and 52 older adults (mean age = 68.7 years, SD = 4.2, range 59 to
303 78 years; 28 women) recruited from the participant database of the Max Planck Institute for
304 Human Development, Berlin, Germany (MPIB). Participants were right-handed, as assessed
305 with a modified version of the Edinburgh Handedness Inventory (Oldfield, 1971), and had
306 normal or corrected-to-normal vision. Participants reported to be in good health with no known
307 history of neurological or psychiatric incidences, and were paid for their participation (10 € per
308 hour). All older adults had Mini Mental State Examination (MMSE) (Folstein, Robins, &
309 Helzer, 1983; Kessler, Markowitsch, & Denzler, 2000) scores above 25. All participants gave
310 written informed consent according to the institutional guidelines of the Deutsche Gesellschaft
311 für Psychologie (DGPS) ethics board, which approved the study.

312 Participants were seated at a distance of 80 cm in front of a 60 Hz LCD monitor in an
313 acoustically and electrically shielded chamber. Following electrode placement, participants
314 were instructed to rest for 3 minutes with their eyes open and closed, respectively. During the
315 eyes open interval, subjects were instructed to fixate on a centrally presented fixation cross. An

316 auditory beep indicated to the subjects when to close their eyes. Only data from the eyes open
317 resting state were analyzed here. EEG was continuously recorded from 64 active (Ag/AgCl)
318 electrodes using BrainAmp amplifiers (Brain Products GmbH, Gilching, Germany). Sixty scalp
319 electrodes were arranged within an elastic cap (EASYCAP GmbH, Herrsching, Germany)
320 according to the 10% system (Oostenveld & Praamstra, 2001), with the ground placed at AFz.
321 To monitor eye movements, two electrodes were placed on the outer canthi (horizontal EOG)
322 and one electrode below the left eye (vertical EOG). During recording, all electrodes were
323 referenced to the right mastoid electrode, while the left mastoid electrode was recorded as an
324 additional channel. Online, signals were digitized at a sampling rate of 1 kHz.

325 Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox
326 (Oostenveld, Fries, Maris, & Schoffelen, 2011) and using custom-written MATLAB (The
327 MathWorks Inc., Natick, MA, USA) code. Offline, EEG data were filtered using a 4th order
328 Butterworth filter with a pass-band of 0.2 to 125 Hz. Subsequently, data were downsampled to
329 500 Hz and all channels were re-referenced to mathematically averaged mastoids. Blink,
330 movement and heart-beat artifacts were identified using Independent Component Analysis
331 (ICA; Bell & Sejnowski, 1995) and removed from the signal. Artifact-contaminated channels
332 (determined across epochs) were automatically detected using (a) the FASTER algorithm
333 (Nolan, Whelan, & Reilly, 2010), and by (b) detecting outliers exceeding three standard
334 deviations of the kurtosis of the distribution of power values in each epoch within low (0.2-2
335 Hz) or high (30-100 Hz) frequency bands, respectively. Rejected channels were interpolated
336 using spherical splines (Perrin, Pernier, Bertrand, & Echallier, 1989). Subsequently, noisy
337 epochs were likewise excluded based on FASTER and on recursive outlier detection. Finally,
338 recordings were segmented to participant cues to open their eyes, and were epoched into non-
339 overlapping 3 second pseudo-trials. To enhance spatial specificity, scalp current density
340 estimates were derived via 4th order spherical splines (Perrin et al., 1989) using a standard 10-
341 05 channel layout (conductivity: 0.33 S/m; regularization: 1⁻⁰⁵; 14th degree polynomials).

342
343 2.3 Calculation of standard and “modified” multiscale entropy
344

345 The calculation of standard MSE and the point averaging procedure followed (Costa et al.,
346 2002, 2005). In short, sample entropy quantifies the irregularity of a time series of length N by
347 assessing the conditional probability that two sequences of m consecutive data points will
348 remain similar when another sample ($m+1$) is included in the sequence (for a visual example
349 see Figure 1A). The embedding dimension m was set to 2 in our applications. Sample entropy
350 is defined as the inverse natural logarithm of this conditional similarity: $\text{SampEn}(m, r, N) =$
351 $-\log\left(\frac{p^{m+1}(r)}{p^m(r)}\right)$. Crucially, the similarity criterion (r) defines the tolerance within which time
352 points are considered similar and is traditionally defined relative to the standard deviation (i.e.,
353 square root of signal variance; here set to $r = .5$). Note that a larger, more liberal, similarity
354 criterion increases the likelihood of finding matching patterns, hence reducing entropy
355 estimates (see Figure 1A). Furthermore, in traditional applications (e.g., Costa et al., 2005;
356 Courtiol et al., 2016), the r parameter is calculated once from the entire broadband signal (i.e.,
357 in a scale-invariant manner) based on original recommendations by Richman and Moorman
358 (2000). With progressive reduction of signal variance during the coarse-graining procedure,
359 this leads to disproportionately high, increasingly liberal, similarity thresholds; and thus

360 decreasing entropy estimates (see section 1.2). Hence, fixed thresholds introduce dependencies
361 between the 1/f shape of the frequency spectrum and entropy estimates (Nikulin & Brismar,
362 2004). To remedy this problem, a scale-wise recalculation of the similarity criterion has been
363 proposed (Nikulin & Brismar, 2004; Sleimen-Malkoun et al., 2015; Valencia et al., 2009). We
364 compared the implementation of MSE with a fixed and a scale-dependent r parameter (.5*STD
365 of scale-wise signal variance) and assessed the differences in resulting entropy estimates.

366 To assess entropy at coarser time scales, while the original MSE method coarse-grains the
367 data by averaging time points within discrete time bins (i.e., ‘point averaging’; equivalent to
368 applying a finite-impulse response (FIR) filter to the original time series followed by down-
369 sampling (Courtial et al., 2016; Valencia et al., 2009), we employed dedicated filtering prior to
370 point skipping to down-sample the data (Semmlow, 2008; Valencia et al., 2009). Specifically,
371 a 6th order Butterworth filter was used for either high- or low-pass filtering the signal at the
372 approximate time scales. At each scale (also referred to as the embedding dimension; here: 1 to
373 42), the low-pass frequency was defined as $LP_{freq} = \frac{1}{scale} * nyquist$. Similarly, high-pass cut-
374 offs were defined as $HP_{freq} = \frac{1}{scale+1} * nyquist$ and band-pass frequencies represented
375 narrowband estimates bounded by LP_{freq} and LH_{freq} . This definition ensures that each scale
376 captures information that is unique to that frequency band. The down-sampling procedure
377 consisted of skipping points according to the time scale and was identical across filter settings,
378 except in the ‘Original’ case. To avoid biases arising from different starting points of the
379 skipping procedure, pattern sequences were assessed for all possible starting points and entropy
380 estimates were computed based on their summed counts. As down-sampling represents a form
381 of low-pass filter, it is not employed in the ‘high-pass’ case. Thus, estimates are based on the
382 original sampling rate (i.e., embedding dimension of 1) with an exclusive modulation of the
383 spectral content according to the high-pass filter. Hence, we dissociated the embedding
384 dimension from the frequency content of the signal. As entropy (re-)calculation at the original
385 sampling rate introduces higher computational demands, scales were sampled in step sizes of 3
386 for empirical data and later spline-interpolated. As the interpretation of time scales is bound to
387 the sampling rate of the data (to assess scale-wise sampling rates) as well as the remaining
388 spectral content, our figures indicate the Nyquist frequency at each scale, except for the high-
389 pass case (see above). Note that the sampling rate of the simulated data was 250 Hz, whereas
390 the empirical data had a sampling rate of 500 Hz, which renders consideration of the Nyquist
391 frequency particularly important. We refer to a traditional implementation with scale-invariant
392 similarity criterion and time point averaging as ‘Original’ in both the main text and Figures.

393 Further, an adapted version of MSE calculations was used for all settings (Grandy, Garrett,
394 Schmiedek, & Werkle-Bergner, 2016), in which scale-wise entropy is estimated across
395 discontinuous data segments. The estimation of scale-wise entropy across trials allows for
396 reliable estimation of coarse-scale entropy without requiring long, continuous signals (Grandy
397 et al., 2016).

398 For the code of the MSE algorithm and a tutorial see <https://github.com/LNDG/mMSE>.

399

400 2.4 Calculation of power spectral density (PSD)

401

402 Power spectral density estimates were computed by means of a Fast Fourier Transform
403 (FFT) over 3 second pseudo-trials for 41 logarithmically spaced frequencies between 2 and 64

404 Hz (employing a Hanning-taper; segments zero-padded to 10 seconds) and subsequently
405 averaged. Spectral power was \log_{10} -transformed to render power values more normally
406 distributed across subjects. Power spectral density (PSD) slopes were derived by linearly
407 regressing power values on log-transformed frequencies. The spectral range from 7-13 Hz was
408 excluded from the background fit to exclude a bias by the narrowband alpha peak (Voytek et
409 al., 2015; Waschke et al., 2017).

410

411 2.5 Detection of single-trial spectral events

412

413 Spectral power, even in the narrowband case, is unspecific to the occurrence of systematic
414 rhythmic events as it also characterizes periods of absent rhythmicity (e.g., Jones, 2016).
415 Dedicated rhythm detection alleviates this problem by specifically detecting rhythmic episodes
416 in the ongoing signal. To investigate the potential relation between the occurrence of stereotypic
417 spectral events and narrowband entropy, we detected single-trial spectral events using the
418 extended BOSC method (Caplan, Madsen, Raghavachari, & Kahana, 2001; Kosciessa et al.,
419 2019; Whitten, Hughes, Dickson, & Caplan, 2011) and probed their relation to individual
420 entropy estimates. In short, this method identifies stereotypic ‘rhythmic’ events at the single-
421 trial level, with the assumption that such events have significantly higher power than the 1/f
422 background and occur for a minimum number of cycles at a particular frequency. This
423 effectively dissociates narrowband spectral peaks from the arrhythmic background spectrum.
424 Here, we used a one cycle threshold during detection, while defining the power threshold as the
425 95th percentile above the individual background power. A 5-cycle wavelet was used to provide
426 the time-frequency transformations for 49 logarithmically-spaced center frequencies between
427 1 and 64 Hz. Rhythmic episodes were detected as described in Kosciessa et al. (2019).
428 Following the detection of spectral events, the rate of spectral episodes longer than 3 cycles
429 was computed by counting the number of episodes with a mean frequency that fell in a moving
430 window of 3 adjacent center frequencies. This produced a channel-by-frequency representation
431 of spectral event rates, which were the basis for subsequent significance testing. Event rates
432 and statistical results were averaged within frequency bins from 8-12 Hz (alpha) and 14-20 Hz
433 (beta) to assess relations to narrowband entropy and for the visualization of topographies. To
434 visualize the stereotypic depiction of single-trial alpha and beta events, the original time series
435 were time-locked to the trough of individual spectral episodes and averaged across events (c.f.,
436 Sherman et al., 2016). More specifically, the trough was chosen to be the local minimum during
437 the spectral episode that was closest to the maximum power of the wavelet-transformed signal.
438 To better estimate the local minimum, the signal was low-pass filtered at 25 Hz for alpha and
439 bandpass-filtered between 10 and 25 Hz for beta using a 6th order Butterworth filter. A post-
440 hoc duration threshold of one cycle was used for the visualization of beta events, whereas a
441 three-cycle criterion was used to visualize alpha events. Alpha and beta events were visualized
442 at channels POz and Cz, respectively.

443

444 2.6 Statistical analyses

445 Spectral power and entropy were compared across age groups within condition by means
446 of independent samples t-tests; cluster-based permutation tests (Maris & Oostenveld, 2007)
447 were performed to control for multiple comparisons. Initially, a clustering algorithm formed

448 clusters based on significant t-tests of individual data points ($p < .05$, two-sided; cluster entry
449 threshold) with the spatial constraint of a cluster covering a minimum of three neighboring
450 channels. Then, the significance of the observed cluster-level statistic, based on the summed t-
451 values within the cluster, was assessed by comparison to the distribution of all permutation-
452 based cluster-level statistics. The final cluster p-value that we report in all figures was assessed
453 as the proportion of 1000 Monte Carlo iterations in which the cluster-level statistic was
454 exceeded. Cluster significance was indicated by p-values below .025 (two-sided cluster
455 significance threshold). Effect sizes for MSE age differences with different filter settings were
456 computed on the basis of the cluster results in the ‘Original’ version. This was also the case for
457 analyses of partial correlations. Raw MSE values were extracted from channels with indicated
458 age differences at the initial three scales 1-3 (>65 Hz) for fine MSE and scales 39-41 (<6.5 Hz)
459 for coarse MSE. R^2 was calculated based on the t-values of an unpaired t-test: $R^2 = \frac{t^2}{t^2 + df}$
460 (Lakens, 2013). The measure describes the variance in the age difference explained by the
461 measure of interest, with the square root being identical to Pearson’s correlation coefficient
462 between continuous individual values and binary age group. Effect sizes were compared using
463 the r-to-z-transform and a successive comparison of the z-value difference against zero:
464 $Z_{Diff} = \frac{z_1 - z_2}{\sqrt{\frac{1}{N_{1-3}} + \frac{1}{N_{2-3}}}}$ (Brandner, 1933). Unmasked t-values are presented in support of the
465 assessment of raw statistics in our data (Allen, Erhardt, & Calhoun, 2012).

466 3 Results

467

468 3.1 Simulations indicate nonlinear relations between rhythmic power and entropy

469

470 Traditional MSE algorithms assess signal entropy relative to the standard deviation of the
471 broadband signal. Crucially, most neural time series are characterized by a scale-free 1/f
472 frequency distribution, indicating that lower frequency fluctuations have the highest amplitudes
473 and contribute most to the overall variance. Hence, the similarity criterion relevant for fine-
474 scale patterns is predominantly based on the amplitude of low frequencies, leading to large
475 similarity criteria (r values). Such a large threshold could bias most of the actual fine-scale
476 patterns by the dominant fluctuations of slow signals, with fast time series patterns treated as
477 highly similar regardless of actual pattern fluctuations (see Figure 1AB). Low entropy values
478 could result at fast entropy scales simply for this reason. In principle, this problem could be
479 alleviated by using spectral filters to constrain signals to the frequency range of interest. In
480 particular, we expected that scale-dependent low-pass filters would lead to a low-frequency
481 representation also at finer time scales, whereas slow fluctuations would exclusively modulate
482 entropy at coarser time scales if high-pass filters were applied (Figure 1C).

483

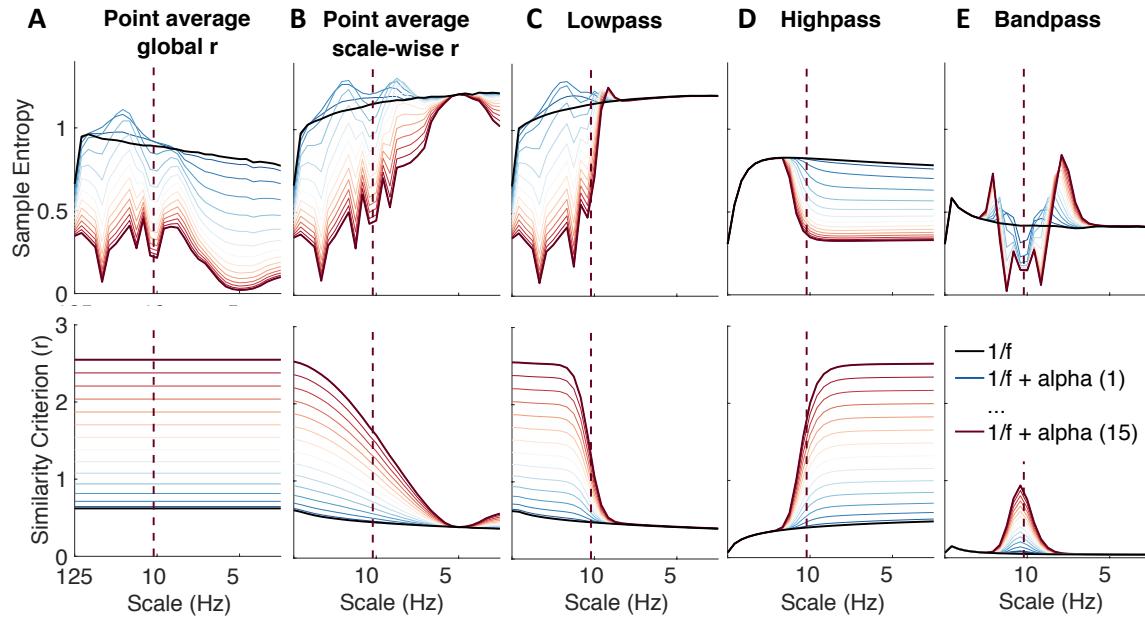


Figure 2: Rhythmic power manifests at different time scales depending on filter choice and similarity criterion. Simulations indicate at which time scales the addition of varying magnitudes of stereotypic narrowband 10 Hz rhythms (blue-to-red line gradient) modulate entropy compared to the baseline 1/f signal (black line). Simulations indicate that increases in rhythmicity strongly reduce entropy estimates alongside increases in the similarity criterion. The affected scales vary as a function of global vs. scale-dependent similarity criteria and the spectral filtering used to derive coarser time scales. Crucially, in ‘Original’ implementations, added narrowband rhythmicity decreased entropy with low scale-specificity, in line with global increases in the r parameter (A). In contrast, the use of scale-varying thresholds (B) and dedicated filtering (C-E) increased specificity regarding the time scales at which rhythmicity was reflected. Note that timescales are presented in Hz to facilitate the visual assessment of rhythmic modulation. For all versions except high pass, the scale represents the upper Nyquist bound of the embedding dimension. For the high pass variant, the scale represents the high pass frequency (see methods). Time scales are log-scaled.

484
 485 To probe the relationship between low-frequency rhythmic power and estimated multiscale
 486 sample entropy, we systematically varied the magnitude of simulated alpha power and assessed
 487 its influence on estimated MSE using different filter settings. Our first aim was to establish an
 488 inversion between similarity criterion and MSE estimates. In line with Hypothesis A, variations
 489 in the similarity criterion as a function of rhythmic power tightly covaried with entropy
 490 estimates; increased rhythmic power rendered the higher similarity criterion easier to surpass,
 491 in turn decreasing entropy estimates by increasing pattern matches (see Figure 1A, Figure 2).
 492 Importantly for scale-dependent inferences, with ‘Original’ settings, the effect of alpha power
 493 on r and MSE estimates was not specific to the time scale corresponding to the simulated
 494 frequency (Figure 2A). This can be attributed to the broadband similarity criterion, which by
 495 definition prohibits scale-specific allocations of the added signal variance. In contrast, when
 496 scale-dependent similarity criteria were used (Figure 2BC), strong alpha rhythmicity
 497 systematically decreased entropy at finer time scales than the simulated frequency (decreases
 498 from baseline to the left of the vertical line in Figure 2C). Hence, the presence of the low
 499 frequency rhythm diffusely affected fine-scale MSE estimates. This results from the low-pass
 500 filter (LPF) characteristics of the scale-wise estimation procedure for which the low-frequency
 501 rhythm is removed by LPFs < 10 Hz (see schematic in Figure 1C). As in previous work
 502 (Valencia et al., 2009), dedicated low-pass filtering provided a better spectral suppression
 503 compared with ‘Original’ point-averaging (Figure 2B), but with otherwise comparable results.

504 In contrast to low-pass filter results, when high-pass filters were used, rhythmicity reduced
 505 entropy at time scales below 10 Hz, hence leading to estimates of high frequency entropy that
 506 were independent of low frequency power (Figure 2D). Finally, when band-pass filters were
 507 used (Figure 2E), rhythmicity modulated entropy at the target frequency (although they also
 508 produced edge artifacts surrounding the time scale of rhythmicity). In sum, these analyses
 509 highlight that power increases of narrowband rhythms can diffusely modulate diverging
 510 temporal scales as a function of the MSE implementation. In addition, these analyses highlight
 511 that decreases in estimated entropy are often accompanied by comparable increases in the
 512 liberality of similarity criteria.

513

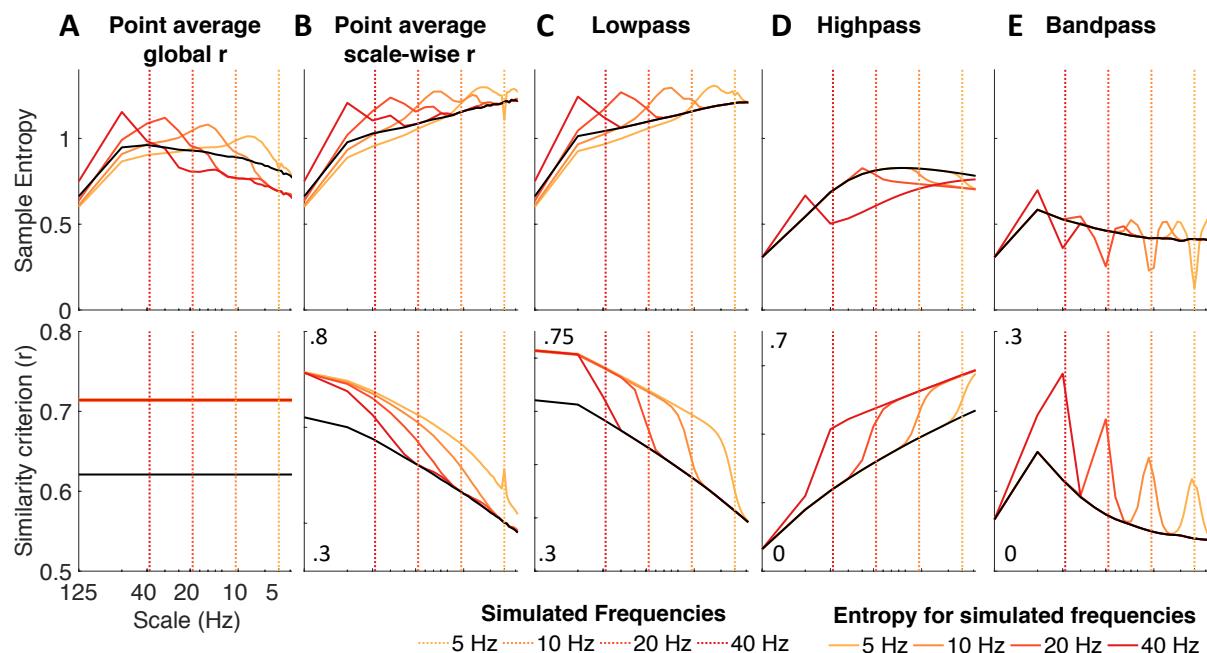


Figure 3: Influence of rhythmic frequency on MSE estimates and r parameters across different MSE variants. Simulations of different frequencies indicate a linear frequency-to-scale mapping of simulated sinusoids. Broken vertical lines indicate the simulated frequency. Low-pass MSE variants show increased entropy at time scales finer than the simulated frequency in combination with a global entropy decrease. Low-, high- and band-pass variants exhibit the properties observed in the alpha case, with a reduction above/below or at the simulated frequency. Time scales are log-scaled.

514

515

516 Whereas we observed a diffuse broadband decrease in ‘Original’ entropy under conditions
 517 of strong rhythmicity, previous simulations have presumed a rather constrained linear mapping
 518 between the frequency of simulated rhythms and their reflection in entropy time scales (Park et
 519 al., 2007; Takahashi et al., 2010; Vakorin & McIntosh, 2012). Furthermore, those studies
 520 indicated entropy *increases* with added rhythmicity, in contrast with the marked decreases in
 521 entropy observed here. How can these seemingly divergent results be reconciled? To answer
 522 this question, we simulated different frequencies superimposed on 1/f backgrounds and
 523 investigated their modulation of entropy timescales. Importantly, Figure 2A-C suggested that
 524 the amplitude of rhythmicity may be of crucial importance here, as transient entropy increases
 525 were indeed observed at low levels of rhythmicity. Hence, we focused on a comparatively low
 526 level of rhythmicity (amplitude level = 2; cf. exemplary alpha-band time series shown in
 527 Supplementary Figure 1). Similar to previous reports, we observed a linear association between
 528 simulated frequencies and peak entropy time scales (Figure 3) across implementations. Hence,

529 rhythms of higher frequency increased entropy at slightly finer time scales than the simulated
530 frequency (see increases in entropy above baseline to the left of the dotted vertical lines in
531 Figure 3A-C). Importantly, such sharp entropy increases were only observed with low-pass
532 implementations (Figure 3A-C). Moreover, with scale-invariant r parameters (Figure 3A), these
533 increases were paralleled by decreasing entropy at coarser time scales (i.e., to the right of the
534 dotted lines in Figure 3A). This is in line with our observation of relatively broadband,
535 amplitude-dependent, entropy decreases (cf., Figure 2A). Crucially, increased entropy relative
536 to baseline is counterintuitive to the idea that the addition of a stereotypic pattern should
537 decrease rather than increase pattern irregularity. Moreover, the results suggest that
538 combinations of amplitude-varying contributions of spectral content can induce ambiguous
539 scale-dependent results. In sum, our simulations highlight that the choice of similarity criterion
540 and the signal's spectral content grossly affect the interpretation of entropy time scales.
541 Furthermore, our frequency-resolved simulations suggest that a previously observed linear
542 frequency-to-scale mapping does not provide sufficient evidence that entropy towards finer
543 time scales dominantly represents the pattern irregularity of faster neural dynamics. Rather,
544 such assumptions rely on puzzling entropy increases with the addition of faint rhythmic
545 regularity that are counteracted by more dominant, and expected, decreases in entropy when
546 the signal contains strong rhythmic predictability.

547

548 3.2 Probing the impact of spectral power on entropy in a cross-sectional age comparison

549

550 Our simulations suggest profound influences of the choice of similarity criterion and a
551 signal's spectral content on scale-dependent MSE estimates. However, it remains uncertain if
552 and how these factors alter inferences in traditional applications. Age-related entropy changes
553 are an important area of application (Garrett et al., 2013), with previous applications suggesting
554 scale-dependent differences across the lifespan (for a review see McIntosh, 2019). However,
555 our theoretical considerations question whether such observations reflect veridical differences
556 in the entropy of neural activity patterns or whether such effects can alternatively be accounted
557 for by differences in spectral power (see Hypothesis D). To assess the relations between age
558 differences in spectral power and multiscale entropy during eyes open rest, we used the
559 following strategies: (1) we statistically compared spectral power and MSE between two age
560 groups of younger and older adults; (2) we assessed the impact of scale-wise similarity criteria
561 and different filtering procedures on age differences in MSE and (3) we probed the relationship
562 between the r parameter and MSE.

563

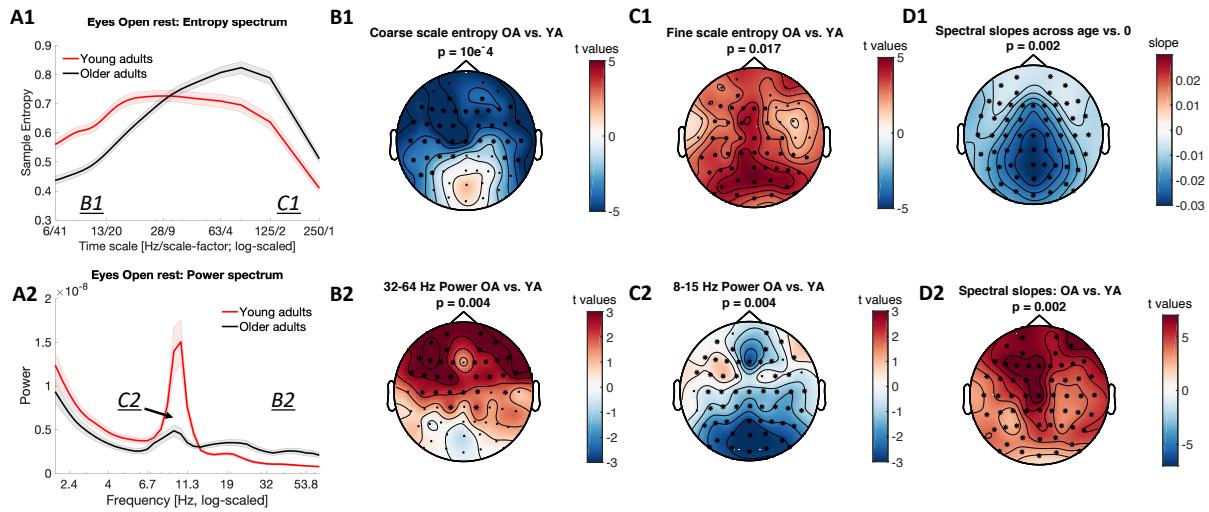


Figure 4: Timescale-dependent age differences in spectral power and entropy during eyes open rest. (A) MSE (A1) and power (A2) spectra for the two age groups. Error bars show standard errors of the mean. Note that in contrast to standard presentations of entropy, the log-scaled x-axis is sorted by decreasing scale/increasing frequency to enable a better visual comparison with the power spectra. T-values of power age contrast are shown in Supplementary Figure 2. (B, C) Topographies of age differences indicate mirrored age differences in fast entropy and low frequency power, as well as coarse entropy and high frequency power. Significant differences are indicated by asterisks. (D1) Spectral slopes across age groups. (D2) Age differences in spectral slopes.

564

565

566 Using traditional ('Original') settings, we replicated previous observations of scale-
 567 dependent entropy differences between younger and older adults (Figure 4A1, Figure 5A).
 568 Specifically, compared with younger adults, older adults exhibited lower entropy at coarse
 569 scales, while they showed higher entropy at fine scales (Hypothesis D; Figure 4A1). Mirroring
 570 these results in spectral power, older adults had lower parieto-occipital alpha power and
 571 increased frontal high frequency power (Figure 4A2) compared to younger adults. This was
 572 globally associated with a shift from steeper to shallower PSD slopes with increasing age
 573 (Figure 4D). At face value, this suggests joint shifts of both power and entropy, in the same
 574 direction and at matching time scales. Crucially, however, the spatial topography of differences
 575 in entropy inversely mirrored differences in power between fast and slow dynamics (Figure 4B
 576 & C; cf., upper and lower topographies), such that frontal high frequency power differences
 577 appeared inversely represented in coarse entropy scales (Figure 4B), while parieto-occipital age
 578 differences in slow frequency power more closely resembled fine-scale entropy differences
 579 (Figure 4D). This rather suggests scale-mismatched associations between entropy and power in
 580 line with our simulations and theoretical expectations (Hypothesis D1 & D2). We investigated
 581 their potential relationships more closely in the following sections regarding the potential
 582 mechanistic associations proposed in Hypotheses B and C.

583

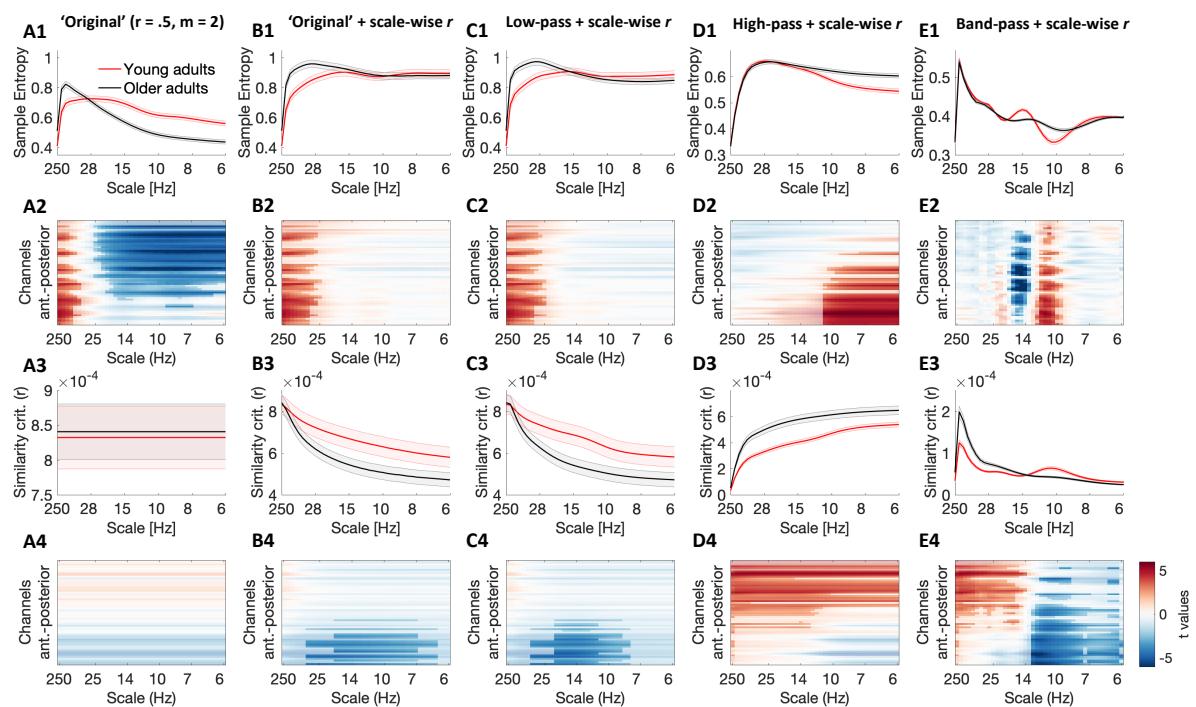


Figure 5: Average multiscale entropy and similarity criterion by age depend on the specifics of the estimation method. Grand average traces of entropy (1st row) and similarity criteria (3rd row) alongside t-maps from statistical contrasts of age differences (2nd + 4th row). Age differences were assessed by means of cluster-based permutation tests and are indicated via opacity. Original MSE (A) replicated reported scale-dependent age differences, with older adults exhibiting higher entropy at fine scales and lower entropy at coarse scales, compared with younger adults. The coarse-scale difference was exclusively observed when using invariant similarity criteria, whereas the fine-scale age difference was indicated with all low-pass versions (A, B, C), but not when signals were constrained to high-frequency or narrow-band ranges (D, E). In contrast, narrowband MSE indicated inverted age differences within the alpha and beta band (E).

584

585 Importantly, as suggested by our simulations, filter choice affected the estimation of age
 586 differences in entropy alongside differences in similarity thresholds (Figure 5). As described
 587 above, 'Original' settings indicated increased fine-scale and decreased coarse-scale entropy for
 588 older compared to younger adults, whereas no group differences in the global r parameter were
 589 indicated (Figure 5A). In contrast, scale-wise similarity criteria (Figure 5B) abolished age
 590 differences in coarse-scale entropy (effect size was significantly reduced from $r = .58$ to $r = .07$;
 591 $p=6.8*10^{-5}$), while fine-scale entropy differences remained unchanged when low-pass filters
 592 were used (Figure 5B/C) (from $r = .44$ to $r = .45$; $p=.934$). However, when constraining the
 593 signal at fine scales to high frequency content (via high-pass filters; Figure 5D), no fine-scale
 594 age differences were observed and the age effect was significantly reduced ($r = .09$; $p = .008$).
 595 An age effect was only indicated once low-frequency dynamics contributed to the entropy
 596 estimation again at coarse scales. Both of these effects were in line with our Hypotheses D1
 597 and D2 regarding the influence of spectral filtering on entropy estimates. Interestingly, we
 598 observed inverted age differences in the bandpass version (Figure 5E), with larger 'narrowband'
 599 entropy indicated in the alpha range and lower entropy in the beta range for older adults
 600 compared with younger adults. In the following sections, we investigate these results more
 601 closely with regard to the putative mechanisms linking spectral power and entropy.

602

603

604

605 3.3 Scale-invariant similarity criteria increasingly bias entropy towards coarser scales
 606

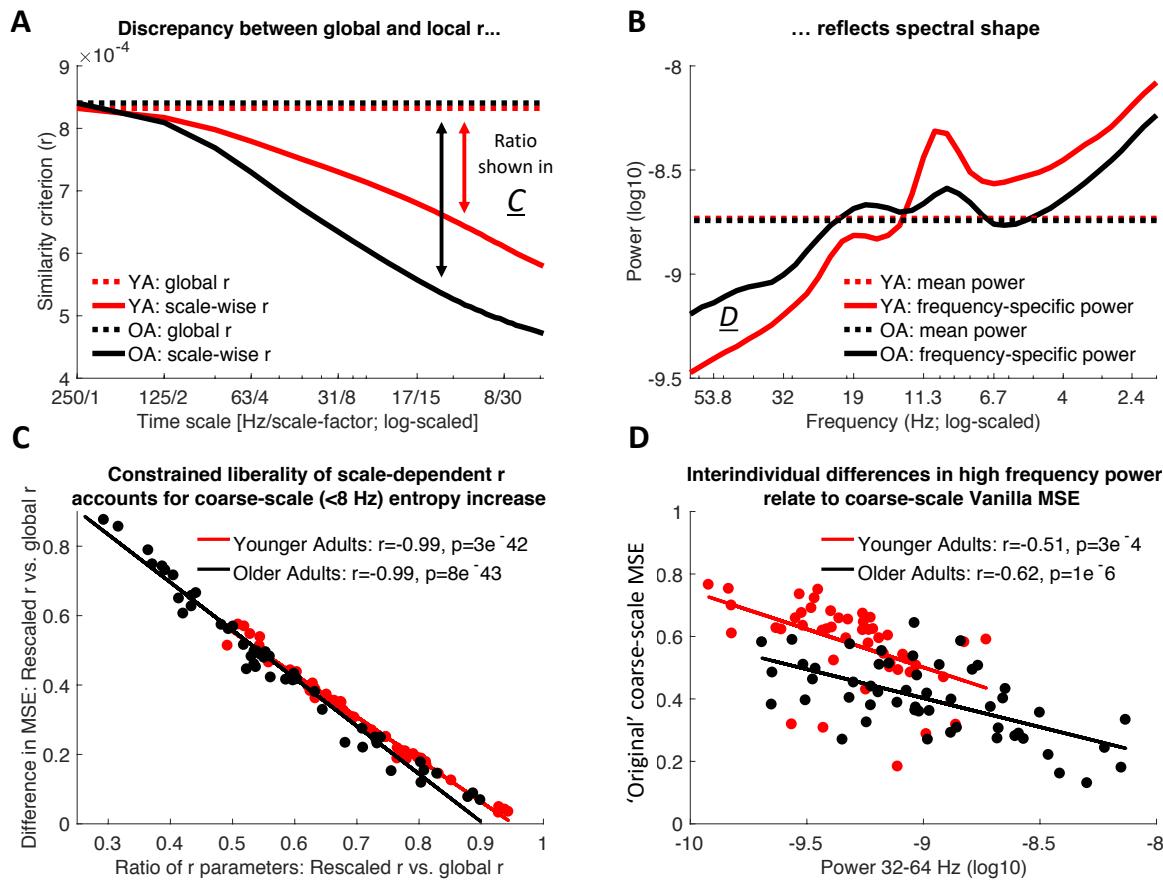


Figure 6: Mismatches between scale-specific signal variance and global similarity criteria (r parameters) can account for age differences in coarse-scale entropy. (A, B) A global similarity criterion does not reflect the spectral shape, thus leading to disproportionately liberal criteria at coarse scales following the successive removal of high-frequency variance. Scale-dependent variance (as reflected in r) is more quickly reduced in older compared to younger adults (A) due to their removal of more high-frequency variance (B). This leads to a differential bias, as reflected in the increasingly mismatched distance between the two invariant and scale-dependent similarity criteria towards coarser scales. This mismatch, in turn, should scale with the amount of variance removed up to a particular scale. Letter insets refer to the relevant subplots. (C) The r adjustment in the rescaled version is associated with a comparable increase in coarse-scale entropy. This shift is more pronounced in older adults. (D) With global similarity criteria, coarse-scale entropy strongly reflects high frequency power due to the proportionally more liberal similarity threshold associated. Data in A and B are global averages, data in C and D are averages from frontal Original effect cluster (see Figure 4B) at time scales below 6 Hz.

607
 608
 609 Scale-dependent entropy effects in the face of scale-invariant similarity criteria (as observed
 610 in the 'Original' implementation; Figure 5A) may intuitively suggest scale-wise variations in
 611 pattern irregularity in the absence of variance differences. However, a fixed similarity criterion
 612 is an artificial constraint that does not reflect the spectral shape of the broadband signal, leading
 613 to potentially profound mismatches between the scale-dependent signal variance and the
 614 invariant similarity criterion. That is, the total broadband variance may be similar while spectral
 615 slopes and/or narrow-band frequency content differ. This is true for the case of aging as can be
 616 appreciated by comparing the global r parameter with the age-specific frequency spectra
 617 (Figure 6A & B). As this scale-invariant criterion thresholds a successively low-pass filtered
 618 signal, this induces a relative mismatch between the scale-specific variance and the global

619 similarity criterion that successively increases towards coarser scales (Figure 6A). Importantly,
620 the same broadband variance will pose a relatively higher (i.e. liberal) similarity threshold if
621 low-pass filtering removes more high-frequency variance. In turn, the coarse-scale MSE
622 estimate would be modulated as a function of high frequency power (i.e., Hypothesis B). To
623 assess this hypothesis, we probed the link between the change in r and MSE between the use
624 of a global and a scale-varying similarity criterion. As expected, we observed a strong anti-
625 correlation between inter-individual differences in r and MSE (Figure 6C). That is, the more
626 individual thresholds were re-adjusted to the lower scale-wise variance, the more entropy
627 estimates increased. Crucially, this difference was more pronounced for the older adults (paired
628 t-test; $r: p = 5e-6$; $MSE: p = 3e-4$). That is, due to their increased high frequency power, low-
629 pass filtering decreased older adults' variance proportionally more than younger adults' variance.
630 Thus, in 'Original' settings, older adults' global criterion presented a more liberal
631 threshold at coarser scales than the threshold of younger adults, which can account for the
632 'lower' MSE estimates observed for older adults with 'Original' settings. In line with this
633 assumption, individual high frequency power at frontal channels was inversely related to
634 coarse-scale entropy estimates when a scale-invariant similarity criterion was applied (Figure
635 6C), but not when the similarity criterion was recomputed for each scale (YA: $r = -0.15$; $p =$
636 $.302$; OA: $r = .2$, $p = .146$). This is further in line with the observation that coarse-scale age
637 differences (Figure 5A) disappeared when a scale-wise similarity criterion was used (Figure
638 5B). Taken together, this indicates that the observed age difference at coarse entropy scales can
639 be largely accounted for by high frequency power differences between young and old adults
640 and provides an explanation for the inverse group differences between high frequency power
641 and coarse-scale entropy (Hypothesis D1).

642

643 3.4 Low-frequency contributions render fine-scale entropy a proxy measure of PSD slope

644

645 A common observation in the MSE literature is a high sensitivity to task and behavioral
646 differences even at the original sampling rates (i.e., fine scales), which are commonly assumed
647 to reflect fast dynamics. This sensitivity is surprising given that little power generally exists in
648 high-frequency ranges in humans or animals (Hipp & Siegel, 2013). Interestingly, multiple
649 previous studies suggest that fine-scale entropy reflects the slope of power spectral density (e.g.,
650 Bruce et al., 2009; Waschke et al., 2017). Given that this slope can be approximated by the ratio
651 of high to low-frequency power, and that 'Original' MSE implementations contain both
652 components due to the assessment of a broadband signal, we probed to what extent fine-scale
653 associations with PSD slopes depended on the presence of slow fluctuations (Hypothesis C)
654 and whether such association may account for fine-scale entropy age differences (Hypothesis
655 D2).

656

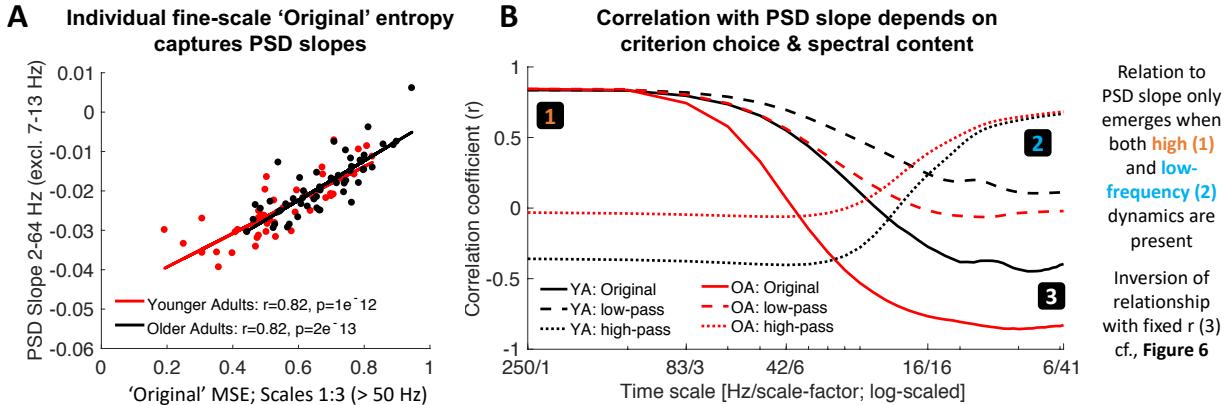


Figure 7: A) Sample entropy at fine time scales represents the slope of power spectral density. (B) The presence of both slow and fast dynamics is required for positive associations with PSD slopes to emerge. The direction and magnitude of correlations of scale-wise entropy with PSD slopes depends on the choice of fixed vs. rescaled r parameters as well as the choice of filtering. Original entropy inverts from a positive correlation with PSD slope at fine scales to a negative association at coarse scales. Rescaling of the r parameter abolishes the negative correlation of coarse-scale entropy with PSD slopes. Supplementary Figure 3 presents scatter plots of these relationships.

657

658 As expected (Hypothesis C), individual fine-scale entropy was strongly and positively
 659 related to the slope of power spectral density (Figure 7A) in both younger and older adults. This
 660 suggests that in low-pass scenarios, in which the target signal is dominated by low frequency
 661 fluctuations, fine-scale entropy is sensitive to the ratio of high-to-low frequency variance, as
 662 captured by PSD slopes. To highlight that fine-scale entropy does not exclusively relate to the
 663 signal irregularity of high-frequency activity, we observed that following a high-pass filter to
 664 the signal, the positive relation of fine-scale entropy to PSD slopes disappeared in both age
 665 groups (Figure 7B, dotted lines), and turned negative in older adults (see Supplementary Figure
 666 3), alongside age differences in fine-scale entropy (Figure 5D). In turn, relations between PSD
 667 slopes and age differences re-emerged once low-frequency content was included in the entropy
 668 estimation (Figure 7C, dotted lines). Hence, the positive relation of fine-scale entropy to PSD
 669 slopes was conditional on the presence of both low- and high-frequency dynamics.

670

671 In line with the hypothesis that fine-scale age differences are dependent on the presence of
 672 slow fluctuations, we observed no age differences in fine-scale entropy when signals
 673 exclusively contained high-frequency content (see section 3.2). To assess whether age
 674 differences in PSD slope could account for fine-scale age differences in 'Original' entropy, we
 675 computed partial correlations between the measures. In line with fine-scale entropy primarily
 676 reflecting PSD slope variations, no significant prediction of age group status by fine-scale
 677 entropy was observed when controlling for the high collinearity with PSD slopes ($r = -.06, p =$
 678 $.59$). In contrast, PSD slopes significantly predicted age group status when controlling for MSE
 679 ($r = .38, p < .001$), suggesting that differences in PSD slopes primarily account for observed age
 680 differences in MSE, but not vice-versa (in line with Hypothesis D2).

681

682 On a side note, spectral slopes were anticorrelated with coarse-scale entropy when global
 683 similarity criteria were used (Figure 7C, continuous lines), but not when criteria were scale-
 684 wise re-estimated (Figure 7C, broken lines). This likely reflects the bias described in section
 685 3.2. That is, subjects with shallower slopes (more high frequency power) had increasingly
 liberal-biased thresholds towards coarse scales, thereby resulting in decreased entropy
 estimates.

686 Jointly, these empirical examples indicate that the use of global similarity criteria, as well
 687 as the presence of large amplitude low frequency dynamics can severely bias scale-wise MSE.
 688 Hence, differences in the spectral power and the r parameter (typically neglected as measures
 689 of interest when estimating MSE) may actually account for a large proportion of reported MSE
 690 effects; in this scenario, the pattern irregularity of fast dynamics *per se* may do little to drive
 691 MSE estimates.

692

693 3.5 Narrowband MSE indicates age differences in signal irregularity in alpha and beta band

694

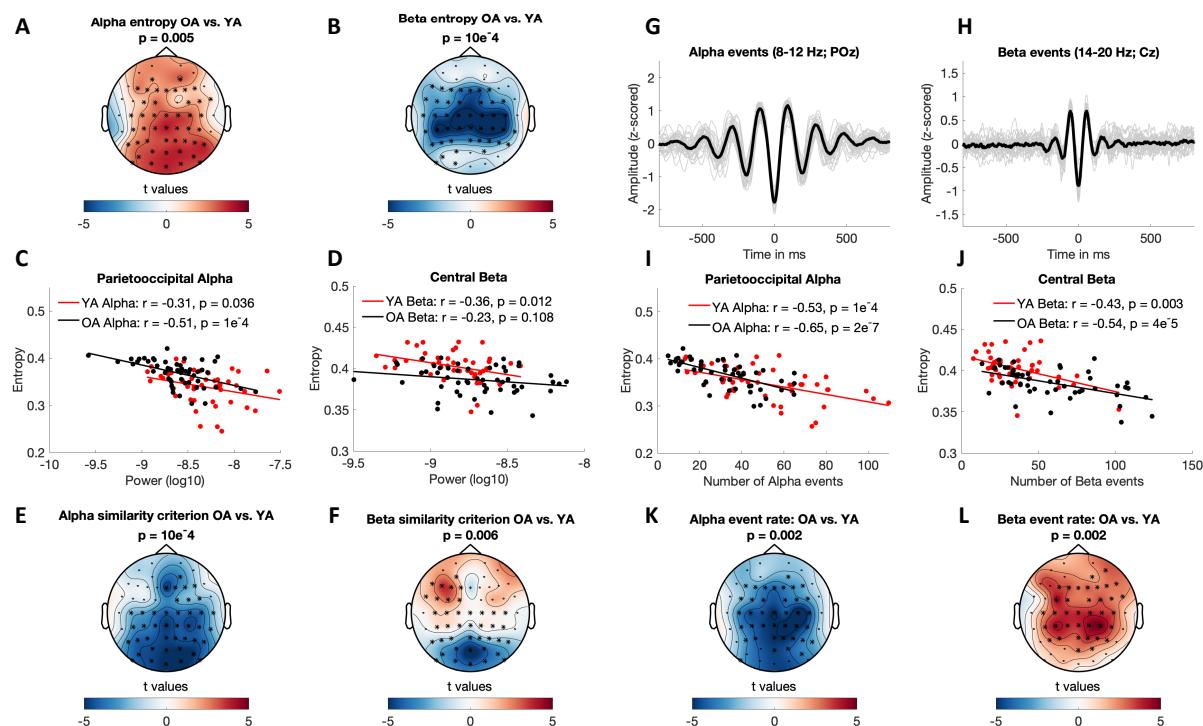


Figure 8: Narrowband MSE reflects age differences in alpha- and beta-specific event (ir)regularity. (A, B) Narrowband MSE indicates age differences in the pattern complexity at alpha (A) and beta (B) frequencies. (C, D) Alpha, but not beta power consistently correlates negatively with individual narrowband entropy within clusters of age differences. (E, F) Similarly, alpha but not beta similarity criteria show an inverted age effect with similar topography. (G, H) Single-trial rhythm detection highlights a more transient appearance of beta compared with alpha events. (I, J) The rate of stereotypical single-trial alpha and beta events is anticorrelated with individual narrowband entropy. (K, L) The rate of spectral events exhibits age differences that mirror those observed for entropy.

695

696 The previous analyses highlighted how the interpretation of scale-dependent results
 697 critically depends on the spectral content of the signal, in some cases giving rise to mismatching
 698 time scales. However, our simulations also suggest an accurate mapping between entropy and
 699 power when scale-wise bandpass filters are used (Figure 3A). Concurrently, the empirical band-
 700 pass results indicate a partial decoupling between entropy and variance age differences as
 701 reflected in the r parameter (Figure 5E). Specifically, older adults exhibited higher parieto-
 702 occipital entropy at alpha time scales ($\sim 8-12$ Hz) and lower central entropy at beta time scales
 703 ($\sim 12-20$ Hz) than in younger adults (Figure 5; Figure 8AB). Whereas alpha-band entropy was
 704 moderately and inversely correlated with alpha power (Figure 8C) and the age difference was
 705 inversely reflected in the similarity criterion in a topographically similar fashion (Figure 8E),
 706 the same was not observed for entropy in the beta range for both age groups (Figure 8DF).
 707 Promisingly, this indicates evidence for what many who employ MSE measures in cognitive

708 neuroscience presume; that power and entropy *can* be decoupled, providing complementary
709 signatures of neural dynamics. This divergence of entropy and power in the beta band is
710 particularly interesting as beta events have been observed to exhibit a more transient waveform
711 shape (Sherman et al., 2016; Shin, Law, Tsutsui, Moore, & Jones, 2017), while occupying a
712 lower total duration during rest than alpha rhythms (Kosciessa et al., 2019). This may explain
713 a divergence of entropy estimates from spectral power as it should be the rate of stereotypic
714 spectral events that reduces pattern irregularity rather than the overall power within a frequency
715 band. To test this hypothesis, we applied single-trial rhythm detection to extract the individual
716 rate of alpha (8-12 Hz) and beta (14-20 Hz) events. As predicted, individual alpha events had a
717 more sustained appearance compared with beta events as shown in Figure 8G & H (events were
718 time-locked to the trough of individual events; see section 2.6). Importantly, both individual
719 alpha and beta event rate were inversely and moderately correlated with individual beta entropy
720 estimates (Figure 8IJ) at matching time scales in the band-pass version. The relationships
721 remained stable after controlling for individual event rate and entropy in the age cluster of the
722 other frequency band (Alpha YA: $r = -.63$, $p = 3e-6$; Alpha OA: $r = -.70$, $p = 1e-8$; Beta YA: r
723 $= -.54$, $p = 1e-4$; Beta OA: $r = -.61$, $p = 2e-6$), suggesting separable associations between event
724 rate and entropy within the two frequencies bands. This is important, as our simulations suggest
725 increased entropy estimates around narrow-band filtered rhythmicity (see Figure 2A).
726 Furthermore, a permutation test indicated age differences in beta rate that were opposite in sign
727 to the entropy age difference (see Figure 8L). In particular, older adults had a higher number of
728 central beta events during the resting state compared with younger adults, thus rendering their
729 beta-band dynamics more stereotypic. In sum, these results suggest that narrowband MSE
730 estimates approximate the irregularity of spectral events at matching time scales.

731

732 4 Discussion

733

734 For entropy to be a practical and non-redundant measure in cognitive neuroscience, both its
735 convergent and discriminant validity to known signal characteristics has to be established.
736 Spectral features have a long history in cognitive electrophysiology and many procedures and
737 theoretical work are available for their interpretation. In the face of this existing literature, it
738 has been proposed that entropy is sensitive to non-linear time series characteristics that can
739 complement linear spectral information. If and to what extent these measures are independent
740 is however often not assessed, but tacitly inferred from applying a variance-based
741 ‘normalization’ during the entropy calculation. Contrary to orthogonality assumptions, our
742 analyses suggest that differences in the similarity criterion may account for a significant
743 proportion of entropy effects in the literature, and thereby fundamentally affect the
744 interpretation of observed effects. In traditional applications, these effects can be differentiated
745 into separable effects of (a) biases arising from scale-invariant similarity criteria and (b)
746 challenges in the presence of broadband, low-frequency dominated, signals (see Figure 9A for
747 a schematic summary). In the following, we discuss these effects and how they can affect
748 traditional inferences regarding signal irregularity.

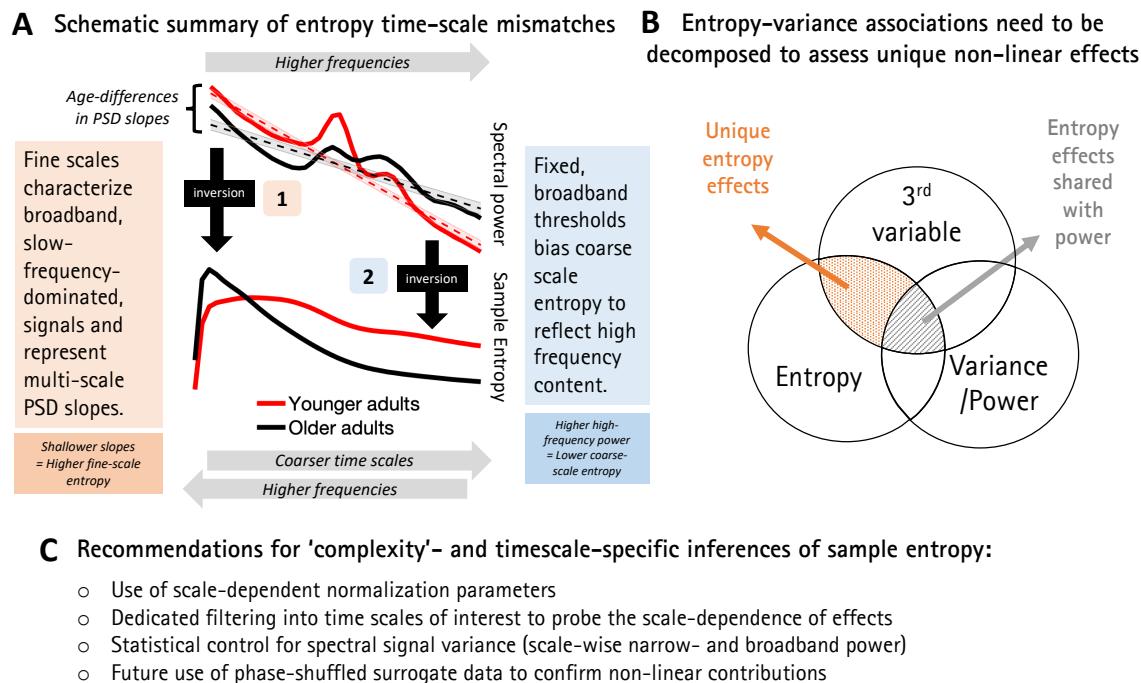


Figure 9: Summary of the identified time-scale mismatches and recommendations for future studies. (A) We highlight two scale-dependent mismatches that run counter to the intuition that entropy at fine scales primarily refers to fast dynamics, and vice-versa: (1) Fine-scale entropy characterizes scale-free 1/f slopes whenever broadband signals include slow frequency content. (2) Coarse-scale entropy is biased towards reflecting high-frequency content when increasingly signals of decreasing variance are compared to a fixed, and successively mismatched similarity criterion. (B) Beyond time-scale mismatches, entropy and variance are often strongly anticorrelated, in part due to their shared description of signal features, such as rhythmicity. To identify complementary and unique relations of pattern complexity compared to more established measures of variance, explicit statistical control is required for the latter. (C) We propose multiple strategies to safeguard against the highlighted issues problems in traditional applications.

749

750 4.1 Narrowband rhythmicity diffusely affects entropy scales

751

752 The use of MSE is often motivated by its sensitivity to non-linear properties of brain
 753 dynamics, that are assumed to reflect phenomena such as spontaneous network reconfigurations
 754 and brain state transitions (e.g., Deco, Jirsa, & McIntosh, 2011, 2013; Misic, Vakorin, Paus, &
 755 McIntosh, 2011). However, the variance-dependence of internal normalization parameters and
 756 the general dominance of slow fluctuations in broadband signals (from which sample entropy
 757 is typically calculated) suggest that traditional linear variance properties strongly contribute to
 758 entropy estimates (Hypothesis A). Hence, we argue that a consideration of spectral signal
 759 content is crucial to properly characterize entropy at distinct time scales of interest. Total signal
 760 variance can be dissociated into two components: broadband ‘noise’ and narrowband rhythmic
 761 peaks (Haller et al., 2018; Kosciessa et al., 2019) with the latter themselves being temporal
 762 averages of potentially non-stationary spectral events (Kosciessa et al., 2019). Notably,
 763 associations between pattern irregularity and the prevalence of these components are
 764 theoretically anticipated (Vakorin & McIntosh, 2012). In particular, as rhythmic events are
 765 defined by their periodic repetition, their occurrence should be associated with a decrease in
 766 signal irregularity. Due to this straightforward prediction, and their clear time scale definition,
 767 we simulated narrowband rhythms of different magnitude and frequency to assess their
 768 mapping onto MSE scales. As predicted, entropy decreased in the presence of strong

769 rhythmicity, however not exclusively at corresponding time scales. This was most apparent for
770 ‘Original’ implementations, in which the scale-invariance of thresholds decreased estimates in
771 a global fashion, in line with the constraints posed by the global similarity criterion that was
772 increased in parallel. When scale-varying thresholds were used in conjunction with traditional
773 low-pass filters, rhythms exclusively modulated entropy estimates across finer time scales. This
774 highlights that low-pass filters render multiscale entropy especially sensitive to variance at low
775 frequencies, while further suggesting that slow events (e.g. event-related potentials) will be
776 reflected in a broad-scale manner. In contrast, we verified that the manipulation of spectral
777 content via high- or band-pass filters controlled the reflection of rhythms in MSE time scales.
778 The diffuse reflection of rhythms across many entropy time scales may initially seem at odds
779 with previous simulations that suggested a linear mapping of increasing frequencies onto
780 coarse-to-fine ‘Original’ MSE scales (Park et al., 2007; Takahashi et al., 2010; Vakorin &
781 McIntosh, 2012). Curiously, such previous simulations indicated the frequency-to-scale
782 mapping by considering the reflection of rhythms in positive entropy peaks. While we replicate
783 such increases, we highlight their dependence on low rhythm strength. Specifically, whereas
784 strong rhythmicity led to a sizeable reduction in entropy, fainter rhythmicity increased entropy
785 at slightly finer time scales above baseline. However, increases in entropy contrast with our
786 expectations that the addition of a more stereotypic pattern would decrease sample entropy and
787 were quickly counteracted by more diffuse entropy decreases once rhythm magnitude
788 increased. While the mechanistic origin of entropy increases with faint regularity remains
789 unclear, previous conclusions may thus have overemphasized the scale-specificity of rhythmic
790 influences. Hence, while rhythms of different frequencies modulate entropy at appropriate time
791 scales, they also induce broadband effects, thereby leading to potential scale-to-frequency
792 mismatches.

793 In addition to diffuse scale effects, we observed that rhythm-induced changes in sample
794 entropy were strongly anti-correlated to changes in the r parameter, confirming Hypothesis A.
795 However, we note that in the case of simulated rhythmicity, increases in variance (and r) are
796 collinear with increases in signal regularity. Hence, entropy is not exclusively determined by
797 the similarity criterion, but also by the reduction in pattern irregularity due to the addition of a
798 predictable sinusoidal signal. This presents a challenge for dissociating valid differences in
799 pattern irregularity that covary with spectral power from erroneous entropy decreases due to
800 increased similarity criteria. To probe the main contributor to observed sample entropy effects,
801 we replicated our analyses using permutation entropy, a measure that does not use an intrinsic
802 similarity criterion (see Supplementary Materials). Crucially, we observed similar filter
803 influences on the scale-wise representation of rhythmicity, suggesting that an explicit similarity
804 criterion is not necessary to produce diffuse reflections of narrowband rhythms across multiple
805 temporal scales. Rather, when entropy is applied to broadband signals, low-frequencies with
806 high variance contribute in large part to fine-scale estimates (see also section 4.3).

807

808 4.2 Global similarity criteria bias coarse-scale entropy estimates

809 The global impact of frequency-specific events in ‘Original’ implementations is directly
810 coupled to the use of global similarity criteria and challenges the notion of an accurate
811 frequency-timescale mapping. The theoretical necessity of introducing scale-wise adaptations
812 of similarity criteria has previously been noted (Nikulin & Brismar, 2004; Valencia et al.,

813 2009), and is highlighted here with a practical example. In particular, Nikulin and Brismar
814 (2004) discussed the ambiguity between variance and pattern irregularity that arises from using
815 scale-invariant criteria: “However, in the MSE approach the same r value is used for different
816 scales. Therefore, the changes in MSE on each scale will depend on both the regularity and
817 variation of the coarse-grained sequences. [...] Therefore, the outcome of the MSE algorithm
818 does not allow one to make a clear conclusion as to what extent this separation is based on the
819 affected regularity or variation” (Nikulin & Brismar, 2004). In short, when the similarity
820 criterion is fixed in the presence of scale-dependent spectral content, the liberality of thresholds
821 systematically varies across scales. This introduces fundamental mismatches between the origin
822 of group differences (pattern irregularity vs. variance), and the time scales at which differences
823 manifest. These mismatches are independent of the values of the global similarity criterion –
824 which did not differ across groups here – and rather depend on the slope of the power spectrum.
825 The critical insight is thus that the bias relates to the relative amount of *removed* variance at the
826 scale of interest. This leads to puzzling results, in that the entropy of white noise signals, which
827 by definition are equally irregular at each time scale, decreases towards coarser scales, whereas
828 pink noise signals, which have comparatively small contributions from high frequencies,
829 receive relatively constant entropy estimates over the time scales typically examined (Nikulin
830 & Brismar, 2004). While such reflection of PSD slopes across scales has been replicated, it has
831 surprisingly been used to *validate* the method (Courtial et al., 2016; Miskovic et al., 2016)
832 rather than to indicate the presence of a systematic bias in estimation¹. Importantly, the
833 dependence of such biases on the spectral shape of the signal also indicates that they cannot be
834 accounted for by choosing different constants of the similarity criterion. Importantly, this has
835 practical implications for functional inferences. In the current resting state EEG data, we
836 observed that an age-related increase in high frequency power manifested as a decrease in
837 coarse-scale entropy due to group differences in the scale-wise mismatch between the (low-
838 passed) signal variance and the global r parameter. Specifically, older adults’ increased high
839 frequency power strongly reduced variance with successive low-pass filtering towards coarser
840 scales. As the similarity criterion was fixed across time scales relative to the total variance, this
841 quickly invoked an increasingly liberal threshold. In comparison, less high-frequency variance
842 was removed for younger adults at coarse scales. Given comparable global similarity criteria
843 between groups, younger adults’ criterion was thus more conservative, affording higher entropy
844 estimates at coarser time scales (see Figure 9A). Crucially, coarse-scale group differences were
845 not observed when scale-wise similarity criteria were applied, or when permutation entropy –
846 a measure without a dedicated similarity threshold – was used (see Supplementary Materials),

¹ This appears to be mainly motivated by the questionable assumption that “changes of the variance due to the coarse-graining procedure are related to the temporal structure of the original time series, and should be accounted for by the entropy measure” (Costa et al., 2005, p. 5). However, as we show, such time-scale dependence can be explained by mismatched thresholds and hence, scale-dependent biases. Note that in previous simulations (see Figure 1 in Courtial et al., 2016), MSE slopes varied from positive to negative as a function of spectral slopes, i.e., the ratio of high-to-low variance. In the most extreme case of blue noise signals with positive slopes, dominant high-frequency variance is quickly removed, leading to the highest rate of entropy decrease. With shallowing of slopes (and reduced high-frequency contributions), the rate of entropy reduction decreased, until eventually turning into entropy gains for signals with strong negative PSD slopes, for which biases were presumably minimal.

847 therefore highlighting the dependence of the group difference on mismatched thresholds. Note
848 that we presume that this age difference arises from a relative bias. Pink noise signals, such as
849 those observed here, have a relatively low contribution from high compared to low frequencies,
850 rendering the absolute bias lower than for white noise signals with equal variance of these two
851 components (and therefore a quicker ‘bias rate’ towards coarser scales as more high frequency
852 variance is removed). However, variations in high-frequency variance (and thus the resulting
853 bias) suffice, even at low levels, to systematically impact coarse-scale estimates. This may be
854 independent from the main source of variance in coarse-scale entropy. Hence, the latter may be
855 dominated by slower fluctuations, while even a relatively low contribution of high-frequency
856 ‘bias’ could specifically explain variance in a third variable of interest (e.g., age; see Figure
857 9B). Thus, beyond bias controls noted above, we argue for rigorous statistical controls when
858 evaluating the shared and unique predictive utility of power and multiscale entropy in neural
859 time series data.

860 While difficulties with scale-invariant thresholds have been noted early on, scale-invariant
861 similarity criteria remain prevalent in recent work (e.g., Carpentier et al., 2019; Grandy et al.,
862 2016; Hadoush, Alafeef, & Abdulhay, 2019; Heisz, Shedden, & McIntosh, 2012; Jaworska et
863 al., 2018; Kaur et al., 2019; Miskovic et al., 2016; Mizuno et al., 2010). We hope that our
864 practical example of coarse-scale biases thus highlights the dangers of resulting mismatches
865 and motivate the adoption of scale-varying parameters. We perceive little justification for
866 invariant parameters unless one specifically aims to render the MSE spectrum sensitive to PSD
867 slopes as a function of normalization bias. While this has been a desired property in previous
868 validations, we highlight next that such slopes are already captured within fine scales when
869 broadband signals are characterized.

870 4.3 Fine-scale entropy as an index of desynchronized cortical states

871

872 Fine-scale entropy has been proposed as a signature of desynchronized cortical states
873 (Waschke, Tune, & Obleser, 2019; Waschke et al., 2017) that describe a suppression of low-
874 frequency power with a concurrent increase in high frequency dynamics (Contreras & Steriade,
875 1997; Harris & Thiele, 2011; Marguet & Harris, 2011). This synergy is thought to benefit local
876 information processing by regulating cortical gain and is under control of the local E/I balance.
877 Spectral slopes, characterizing the scale-free ‘background’ or ‘noise’ component of the total
878 variance, have been proposed as an index of such E/I balance (Gao, Peterson, & Voytek, 2017;
879 Peterson, Rosen, Campbell, Belger, & Voytek, 2018; Voytek et al., 2015). By linking fine-scale
880 entropy to measures of scale-free background slope (Hypothesis C), we replicate previous
881 observations of increasing fine-scale entropy with shallower slopes (Bruce et al., 2009;
882 Miskovic et al., 2019; Sheehan, Sreekumar, Inati, & Zaghloul, 2018; Waschke et al., 2017).
883 This is further in line with the observation that linear autocorrelative properties of the global
884 signal (as indicated by spectral slopes) are directly related to the entropy at fine time scales
885 (Courtial et al., 2016; Kaffashi et al., 2008; Vakorin & McIntosh, 2012). Similar effects have
886 been observed for permutation entropy² (see Supplementary Materials; Waschke et al., 2017),

² The observation of this link in permutation entropy further suggests that the association between PSD slopes and fine entropy is not primarily dependent on the similarity criterion, but naturally arises from the characterization of a broadband signal.

887 in line with generally high correspondence between entropy variants (Gudmundsson,
888 Runarsson, Sigurdsson, Eiriksdottir, & Johnsen, 2007; Kuntzelman, Jack Rhodes, Harrington,
889 & Miskovic, 2018). The association between broadband signal entropy and spectral slopes
890 coheres with the notion that shallower slopes (i.e., more high frequency content) have a more
891 ‘noisy’ or irregular appearance in the time domain. Thus, the shallowness of spectral slopes of
892 the broadband signal and its pattern irregularity can be conceptualized as different perspectives
893 on the same signal characteristic. In line with this argument, a previous study has found a strong
894 overlap in the predictive power of spectral slopes and fine entropy on memory performance
895 (Sheehan et al., 2018).

896 Crucially, our analyses suggest that fine-scale entropy does not specifically reflect the
897 pattern similarity of high frequency dynamics, but that the presence of both high- and low-
898 frequency dynamics at fine time scales is necessary for a link between power spectral density
899 slopes and fine signal entropy to emerge. If low frequency information is removed and entropy
900 becomes specific to high-frequency content, the association with power spectral density fails to
901 persist. In this case, entropy may however provide a sensitive index of high frequency activity
902 (Werkle-Bergner et al., 2014). While there is a general relationship between the 1/f slope and
903 fine-scale entropy for broadband signals, it is also worth noting that our simulations suggest an
904 influence of band-limited power on fine entropy scales. This introduces ambiguities in the
905 interpretation of fine scales, as they appear sensitive to both arrhythmic and rhythmic content.
906 While similar problems are encountered in the frequency domain, overt rhythmic peaks are
907 generally excluded prior to fitting spectral slopes to increase the specificity to arrhythmic
908 variance (Haller et al., 2018; Kosciessa et al., 2019; Peterson et al., 2018; Voytek et al., 2015;
909 Waschke et al., 2017). Without similar procedures, this is difficult to achieve in the case of
910 sample entropy.

911 In sum, our analyses provide insights into the sensitivity of fine-scale entropy to fluctuations
912 in the synchrony of cortical states and highlight the role of slow fluctuations for such
913 associations. Crucially, our results suggest that fine-scale entropy modulations do not
914 specifically relate to “patterns” of neural activity at high frequencies, but that it rather arises
915 from the presence of broadband frequency signals in traditional entropy computations. Notably,
916 this highlights that fine-scale entropy provides a multi-scale characterization, i.e., PSD slope,
917 even without a scale-wise recalculation due to the broadband nature of the analyzed signals.
918

919 4.4 Relevance of identified time scale mismatches to previous work

920 Our results of time scale mismatches have high relevance for the interpretation of neural
921 signal entropy by highlighting associations with spectral characteristics that have not been
922 appreciated. While some studies have shown parallel group differences between MSE and
923 spectral power (Carpentier et al., 2019; Heisz et al., 2012; Jaworska et al., 2018; Lippe,
924 Kovacevic, & McIntosh, 2009; McIntosh et al., 2014; Mizuno et al., 2010; Raja Beharelle,
925 Kovacevic, McIntosh, & Levine, 2012; Sleimen-Malkoun et al., 2015; Szostakiwskyj, Willatt,
926 Cortese, & Protzner, 2017; Takahashi et al., 2009; H. Wang et al., 2016), others identified
927 unique entropy effects (Catarino, Churches, Baron-Cohen, Andrade, & Ring, 2011; Misic et
928 al., 2015; Takahashi et al., 2010; Ueno et al., 2015) within which the (mis)match between time-
929 scales and frequencies is not always readily apparent. Some of these discrepancies likely stem
930 from a combination of the reported effects: the global similarity criterion renders MSE sensitive
931

932 to the shape of the frequency spectrum across scales, whereas the low-pass procedure leads to
933 a strong sensitivity to low-frequency content. While many papers perform control analyses with
934 band-limited spectral power, such mechanisms may obscure key links between the two
935 measures.

936 Our results are particularly relevant for understanding multiscale entropy differences across
937 the lifespan, although our findings and suggestions presumably apply to any scenario in which
938 MSE is a measure of interest, such as for the assessment of clinical outcomes (e.g., Takahashi
939 et al., 2010) or prediction of cognitive performance (e.g., McIntosh et al., 2008), independent
940 of modality (e.g., Shafiei et al., 2019). Previous applications in the domain of aging (Courtial
941 et al., 2016; McIntosh et al., 2014; H. Wang et al., 2016) have shown inversions of age
942 differences in the entropy spectrum, with older adults exhibiting lower coarse-scale entropy and
943 higher entropy at fine time scales compared with younger adults. In the power spectrum, these
944 effects were inverted, with older subjects showing enhanced high-, and reduced low-frequency
945 power. This was previously taken as evidence that older adults' high-frequency dynamics were
946 not only enhanced in magnitude, but also more unpredictable compared with younger adults'
947 dynamics. While we replicate those results with relatively minimal resting-state data here, our
948 analyses question the validity of these intuitive previous interpretations. In particular, our
949 results suggest that an apparent age-related increase of coarse-scale entropy is not due to valid
950 group differences in pattern irregularity, but results from inadequate similarity criteria that
951 render coarse-scale entropy sensitive to high frequency power (Hypothesis D1). No coarse-
952 scale age differences were observed with scale-varying thresholds or permutation entropy (see
953 Supplementary Materials), in line with previous work (Sleimen-Malkoun et al., 2015).
954 Similarly, our analyses indicate that differences in fine-scale 'pattern irregularity' rely on
955 variations in the magnitude of slow fluctuations, and describe age-related changes in PSD
956 slopes (Hypothesis D2). Taken together, our results thus fundamentally challenge mechanistic
957 inferences by suggesting that previously described age differences in entropy may be minimal
958 beyond a misattribution of traditional age differences in the magnitude of fluctuations (i.e.,
959 signal variance). This is further in line with a previous application using surrogate data that
960 highlighted that age group differences were mainly captured by linear auto-correlative
961 properties (see appendix in Courtial et al., 2016).

962 In contrast to existing 'broad-band' applications, our narrowband analyses suggested age-
963 related entropy increases in the posterior-occipital alpha band and decreases in central beta
964 entropy. Whereas alpha power and MSE were inversely related and the similarity criterion
965 showed an inverted age effect, the situation was less clear for the beta band. One explanation
966 for such divergence is that many Fourier-based methods assume stationary sinusoidal rhythms,
967 whereas stereotypical spectral features, particularly in the beta band (Lundqvist, Herman,
968 Warden, Brincat, & Miller, 2018; Lundqvist et al., 2016; Sherman et al., 2016; Shin et al.,
969 2017), are transient in time, such that time-averaged spectral power is an imperfect index of the
970 presence of stereotypical spectral events (Jones, 2016; Kosciessa et al., 2019). In contrast,
971 entropy should closely relate to the extent of stereotypy that is indexed by the occurrence of
972 such non-stationary events. In line with this prediction, entropy consistently decreased with
973 more stereotypic spectral events, suggesting that narrowband entropy can indeed reflect the (ir-
974)regularity of rhythmic episodes. Posterior-occipital decreases in alpha power and frequency
975 with age are considered fundamental features of age-comparative studies (Ishii et al., 2017) that
976 may in part reflect structural shifts in the generating networks (Knyazeva, Barzegaran,

977 Vildayski, & Demonet, 2018). While age-related increases in beta power are not observed as
978 consistently (see e.g., Ishii et al., 2017 for a review), age-related increases in the relative
979 duration of their engagement has been observed during eyes open rest (Caplan, Bottomley,
980 Kang, & Dixon, 2015). In addition, beta-band power increases over contralateral motor cortex
981 during rest have been hypothesized to reflect greater GABAergic inhibition in healthy aging
982 (Rossiter, Davis, Clark, Boudrias, & Ward, 2014). While our results are not hemisphere-
983 specific, they may similarly reflect increased inhibition in older adults, potentially reflected in
984 the number of stereotypical beta events (Shin et al., 2017). As our aims were methods-focused
985 here, the functional interpretation of the observed changes still necessitates caution pending
986 further research. Our results however highlight that modulation of the spectral signal content
987 can reveal novel, scale-specific effects regarding frequency-specific event irregularity.

988

989 4.5 Recommendations for future applications

990

991 The problems raised in the present work suggest that additional steps need to be taken to
992 validate the accurate interpretation of scale-dependent effects and to infer a unique contribution
993 of non-linear signal characteristics to obtained entropy estimates. We advocate the following
994 steps (see Figure 9C): (a) use of scale-wise similarity criteria to avoid mismatches between the
995 scale-wise signal variance and its normalization, (b) dedicated filtering into time scales of
996 interest to probe the time-scale specificity of effects and its dependence on the spectral signal
997 content, (c) statistical control for signal variance and (d) the future use of phase-shuffled
998 surrogate data to confirm non-linear contributions. In combination, such controls may go a long
999 way towards establishing non-linear effects that can be validly attributed to signal entropy at
1000 matching time scales. We discuss these steps in more detail below.

1001 a) As noted in section 4.2, we see little motivation for the use of scale-invariant similarity
1002 criteria (i.e., fixed r criteria) as they introduce additional challenges without providing
1003 apparent benefits. In particular, they bias coarse-scale entropy to the extent that variance
1004 has been removed, thereby rendering traditional spectral controls difficult. Furthermore,
1005 results obtained from multiscale permutation entropy more closely aligned with results from
1006 scale-varying criteria (see Supplement), highlighting higher reliability across entropy
1007 definitions. In sum, we therefore recommend to abandon scale-invariant r parameters.

1008 b) We further recommend spectral filters to validate the scale-specificity of effects. For
1009 example, if effects are observed at coarse-temporal scales with a low-pass filter, more
1010 specific high-pass filters may inform about the spectral extent of the effect. Similarly, if
1011 effects are observed at fine scales, band-pass filtering may indicate whether effects are
1012 spectrally specific (e.g., due to rhythmicity) or broad-band. For entropy estimates of slow
1013 dynamics, traditional low-pass filter settings already apply this principle. In this regard, a
1014 major advantage of estimating entropy across discontinuous segments (Grandy et al., 2016)
1015 is the ability to estimate entropy at coarse timescales with sparse neuroimaging data. This
1016 may also allow for improved comparisons with established slow fluctuations, and for
1017 characterizations of the complex dynamics of their engagement. In extreme cases, if the
1018 signal is filtered into dedicated frequency ranges, inferences regarding pattern irregularity
1019 become narrowband-specific. While this enforces a more rhythmic appearance than the raw
1020 signal may convey (S. Cole & Voytek, 2018), it makes scale-wise entropy estimates specific
1021 to the local spectral content. We note also that while we highlight the importance of

1022 appropriate filter ranges and spectral power for the interpretation of entropy results, we do
1023 not suggest that the chosen filter settings are optimal for any particular application, and
1024 should be used with caution given that any filter will alter the underlying signal
1025 characteristics (Widmann, Schroger, & Maess, 2015). Thus, we believe that parameters
1026 should be optimized based on the spectral features of interest.

1027 c) Furthermore, we regard statistical control as necessary to establish entropy-specific effects
1028 that are not captured by traditional linear indices (such as spectral power or signal variance).
1029 This requires an identification of the features to control for. As shown here, this should
1030 include both rhythmic frequencies and the arrhythmic signal background. Importantly, as
1031 the scale-wise r parameter is a crucial normalization tool, it should at the very least be
1032 controlled for. Importantly, the choice of features may further be aided by comparing effect
1033 topographies of spectral power and entropy, as done here. An important point to note is the
1034 relevance of statistical controls for relations to third variables (see Figure 9B). While some
1035 studies highlight scale-dependent associations of entropy with power, a large amount of
1036 shared variance (e.g., of coarse-scale entropy with slow frequency power) does not
1037 guarantee that a smaller portion of residual variance (e.g., shared with high frequency
1038 biases; see section 4.2) relates to effects of interest. This is equally relevant for identifying
1039 unique non-linear contributions. For example, while we observed moderate associations
1040 between band-specific rhythm events and entropy here, this non-redundant association
1041 nevertheless leaves room for the two measures to diverge in relation to third variables.
1042 Hence, they are related but may not always be redundant. This is in line with prior work
1043 (Courtial et al., 2016) showing that despite a dominant influence of linear characteristics on
1044 entropy estimates, non-linear contributions, uniquely explained a (smaller) portion of
1045 entropy variance. Hence, specific controls are necessary to indicate unique non-linear
1046 effects that may otherwise be obscured by potentially dominant linear signal characteristics.

1047 d) Finally, a principled way to dissociate non-linear signal characteristics from linear signal
1048 variance is the use of phase-shuffled surrogate data (Garrett, Grandy, & Werkle-Bergner,
1049 2014; Grandy, Garrett, Lindenberger, & Werkle-Bergner, 2013; Theiler, Eubank, Longtin,
1050 Galdrikian, & Farmer, 1992), as is common practice in connectivity analyses (Aru et al.,
1051 2015). Phase randomization effectively alters original time series patterns while preserving
1052 the original power spectrum of the data. While this has been done in select entropy
1053 applications (e.g., appendix of Courtial et al., 2016; Vakorin & McIntosh, 2012), and is
1054 frequently used to highlight entropy's non-linear sensitivity (e.g., Miskovic et al., 2016;
1055 Shafiei et al., 2019), it has not become common practice, likely due to high computational
1056 demands. A two-tier analysis strategy may overcome such limitations by first reducing data
1057 dimensionality. Specifically, in an initial stage, MSE may be used to explore potentially
1058 non-linear effects in the data. Then, a more focused (and therefore lower-dimensional)
1059 confirmatory analysis could be conducted with a selective focus on the relevant time scales
1060 or channels, using surrogate data to verify the contribution of non-linear signal
1061 characteristics.

1062 5 Conclusions

1063 Many inferences regarding neural multiscale entropy rely on the assumption that estimates
1064 uniquely relate to pattern irregularity at specific temporal scales. Here we show that both

1067 assumptions may be invalid depending on the consideration of signal normalization and spectral
1068 content. Using simulations and empirical examples, we highlight how power differences can
1069 introduce entropy effects that are inversely mapped in time scale (i.e., differences in the high
1070 frequency power may be reflected in coarse entropy and vice versa; see Figure 9A). As these
1071 results suggest fundamental challenges to traditional analysis procedures and inferences, we
1072 highlight the need to test for unique entropy effects (Figure 9B) and recommend best practices
1073 and sanity checks (Figure 9C) to increase confidence in the complementary value of pattern
1074 (ir)regularity for cognitive neuroscience. While the claim has been made that “it would be
1075 unreasonable simply to reduce sample entropy to autocorrelation, spectral power, non-
1076 stationarity or any of their combinations” (Vakorin & McIntosh, 2012), it is plausible that in
1077 any given application, one or more of these contributors could suffice to mechanistically
1078 explain entropy effects of interest. We thus propose that differences in sample entropy may be
1079 taken as a starting point to explore the linear and nonlinear features that may (alone or in
1080 conjunction) explain the entropy differences (e.g., Simpraga et al., 2017), thereby proceeding
1081 from sensitivity to mechanistic specificity. As neural signal entropy is often a behaviorally
1082 relevant marker, we believe that a convergence with extant measures and indication of unique
1083 non-linear predictive utility supports the quest for reliable mechanistic indicators of brain
1084 dynamics across the lifespan, and in relation to cognition, health, and disease.

1085

1086 **6 Funding**

1087

1088 This study was conducted within the ‘Lifespan Neural Dynamics Group’ within the Max
1089 Planck UCL Centre for Computational Psychiatry and Ageing Research in the Max Planck
1090 Institute for Human Development (MPIB) in Berlin, Germany. DDG and NAK were supported
1091 by an Emmy Noether Programme grant (to DDG) from the German Research Foundation, and
1092 by the Max Planck UCL Centre for Computational Psychiatry and Ageing Research. JQK is a
1093 pre-doctoral fellow supported by the International Max Planck Research School on
1094 Computational Methods in Psychiatry and Ageing Research (IMPRS COMP2PSYCH). The
1095 participating institutions are the Max Planck Institute for Human Development, Berlin,
1096 Germany, and University College London, London, UK. For more information, see
1097 <https://www.mps-ucl-centre.mpg.de/en/comp2psych>.

1098

1099 **7 Acknowledgements**

1100

1101 We thank our research assistants and participants for their contributions to the present work.
1102 The authors declare that there are no conflicts of interest.

1103

1104 **8 Data availability statement**

1105

1106 The raw data will be made available on osf.io, and code used to replicate the analyses in the
1107 paper will be published on github.com upon acceptance. The code implementing the MSE
1108 algorithm is available on <https://github.com/LNDG/mMSE>.

1109

1109 **References**

1110

1111 Al-Nashash, H., Sabesan, S., Krishnan, B., George, J., Tsakalis, K., Iasemidis, L., & Tong, S.
1112 (2009). Single-Channel EEG Analysis. In S. Tong & N. Thakor (Eds.), *Quantitative
1113 EEG Analysis Methods and Clinical Applications* (pp. 73-90): Artech House.

1114 Allen, E. A., Erhardt, E. B., & Calhoun, V. D. (2012). Data Visualization in the
1115 Neurosciences: Overcoming the Curse of Dimensionality. *Neuron*, 74(4), 603-608.
1116 doi:10.1016/j.neuron.2012.05.001

1117 Aru, J., Aru, J., Priesemann, V., Wibral, M., Lana, L., Pipa, G., . . . Vicente, R. (2015).
1118 Untangling cross-frequency coupling in neuroscience. *Current Opinion in
1119 Neurobiology*, 31, 51-61. doi:10.1016/j.conb.2014.08.002

1120 Bell, A. J., & Sejnowski, T. J. (1995). An Information Maximization Approach to Blind
1121 Separation and Blind Deconvolution. *Neural Computation*, 7(6), 1129-1159.
1122 doi:10.1162/neco.1995.7.6.1129

1123 Brandner, F. A. (1933). A test of the significance of the difference of the correlation
1124 coefficients in normal bivariate samples. *Biometrika*, 25, 102-109.
1125 doi:10.1093/biomet/25.1-2.102

1126 Breakspear, M. (2017). Dynamic models of large-scale brain activity. *Nature Neuroscience*,
1127 20(3), 340-352. doi:10.1038/nn.4497

1128 Bruce, E. N., Bruce, M. C., & Vennelaganti, S. (2009). Sample Entropy Tracks Changes in
1129 Electroencephalogram Power Spectrum With Sleep State and Aging. *Journal of
1130 Clinical Neurophysiology*, 26(4), 257-266. doi:10.1097/WNP.0b013e3181b2f1e3

1131 Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. *Science*,
1132 304(5679), 1926-1929. doi:10.1126/science.1099745

1133 Buzsaki, G., Logothetis, N., & Singer, W. (2013). Scaling Brain Size, Keeping Timing:
1134 Evolutionary Preservation of Brain Rhythms. *Neuron*, 80(3), 751-764.
1135 doi:10.1016/j.neuron.2013.10.002

1136 Buzsaki, G., & Mizuseki, K. (2014). The log-dynamic brain: how skewed distributions affect
1137 network operations. *Nature Reviews Neuroscience*, 15(4), 264-278.
1138 doi:10.1038/nrn3687

1139 Caplan, J. B., Bottomley, M., Kang, P., & Dixon, R. A. (2015). Distinguishing rhythmic from
1140 non-rhythmic brain activity during rest in healthy neurocognitive aging. *Neuroimage*,
1141 112, 341-352. doi:10.1016/j.neuroimage.2015.03.001

1142 Caplan, J. B., Madsen, J. R., Raghavachari, S., & Kahana, M. J. (2001). Distinct patterns of
1143 brain oscillations underlie two basic parameters of human maze learning. *Journal of
1144 Neurophysiology*, 86(1), 368-380.

1145 Carpentier, S. M., McCulloch, A. R., Brown, T. M., Ritter, P., Wang, Z., Salimpoor, V., . . .
1146 McIntosh, A. R. (2019). Complexity matching: brain signals mirror environment
1147 information patterns during music listening and reward. *bioRxiv*.

1148 Catarino, A., Churches, O., Baron-Cohen, S., Andrade, A., & Ring, H. (2011). Atypical EEG
1149 complexity in autism spectrum conditions: A multiscale entropy analysis. *Clinical
1150 Neurophysiology*, 122(12), 2375-2383. doi:10.1016/j.clinph.2011.05.004

1151 Cole, S., & Voytek, B. (2018). Cycle-by-cycle analysis of neural oscillations. *bioRxiv*.

1152 Cole, S. R., & Voytek, B. (2017). Brain Oscillations and the Importance of Waveform Shape.
1153 *Trends in Cognitive Sciences*, 21(2), 137-149. doi:10.1016/j.tics.2016.12.008

1154 Contreras, D., & Steriade, M. (1997). Synchronization of low-frequency rhythms in
1155 corticothalamic networks. *Neuroscience*, 76(1), 11-24.

1156 Costa, M., Goldberger, A. L., & Peng, C. K. (2002). Multiscale entropy analysis of complex
1157 physiologic time series. *Physical Review Letters*, 89(6).
1158 doi:10.1103/PhysRevLett.89.068102

1159 Costa, M., Goldberger, A. L., & Peng, C. K. (2004). Comment on "Multiscale entropy
1160 analysis of complex physiologic time series" - Reply. *Physical Review Letters*, 92(8).
1161 doi:10.1103/PhysRevLett.92.089804

1162 Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological
1163 signals. *Physical Review E*, 71(2). doi:10.1103/PhysRevE.71.021906

1164 Courtiol, J., Perdikis, D., Petkoski, S., Muller, V., Huys, R., Sleimen-Malkoun, R., & Jirsa, V.
1165 K. (2016). The multiscale entropy: Guidelines for use and interpretation in brain signal
1166 analysis. *Journal of Neuroscience Methods*, 273, 175-190.
1167 doi:10.1016/j.jneumeth.2016.09.004

1168 Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical
1169 organization of resting-state activity in the brain. *Nature Reviews Neuroscience*, 12(1),
1170 43-56. doi:10.1038/nrn2961

1171 Deco, G., Jirsa, V. K., & McIntosh, A. R. (2013). Resting brains never rest: computational
1172 insights into potential cognitive architectures. *Trends Neurosci*, 36(5), 268-274.
1173 doi:10.1016/j.tins.2013.03.001

1174 Diaz, J., Bassi, A., Coolen, A., Vivaldi, E. A., & Letelier, J. C. (2018). Envelope analysis
1175 links oscillatory and arrhythmic EEG activities to two types of neuronal
1176 synchronization. *Neuroimage*, 172, 575-585. doi:10.1016/j.neuroimage.2018.01.063

1177 Folstein, M. F., Robins, L. N., & Helzer, J. E. (1983). The Mini-Mental State Examination.
1178 *Archives of General Psychiatry*, 40(7), 812-812.

1179 Fries, P. (2009). Neuronal Gamma-Band Synchronization as a Fundamental Process in
1180 Cortical Computation. *Annual Review of Neuroscience*, 32, 209-224.
1181 doi:10.1146/annurev.neuro.051508.135603

1182 Gao, R., Peterson, E. J., & Voytek, B. (2017). Inferring synaptic excitation/inhibition balance
1183 from field potentials. *Neuroimage*, 158, 70-78. doi:10.1016/j.neuroimage.2017.06.078

1184 Garrett, D. D., Grandy, T. H., & Werkle-Bergner, M. (2014). *The neural forest and the trees:
1185 On distinguishing the variance of a brain signal from its information content*. Paper
1186 presented at the Annual Alpine Brain Imaging Meeting, Champéry, Switzerland.

1187 Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W., Lindenberger, U., McIntosh, A.
1188 R., & Grady, C. L. (2013). Moment-to-moment brain signal variability: a next frontier
1189 in human brain mapping? *Neurosci Biobehav Rev*, 37(4), 610-624.
1190 doi:10.1016/j.neubiorev.2013.02.015

1191 Grandy, T. H., Garrett, D. D., Lindenberger, U., & Werkle-Bergner, M. (2013). *Exploring the
1192 limits of complexity measures for the analysis of age differences in neural signals*.
1193 Paper presented at the Dallas Aging and Cognition Conference, Dallas, TX, USA.

1194 Grandy, T. H., Garrett, D. D., Schmiedek, F., & Werkle-Bergner, M. (2016). On the
1195 estimation of brain signal entropy from sparse neuroimaging data. *Scientific Reports*,
1196 6. doi:10.1038/srep23073

1197 Gudmundsson, S., Runarsson, T. P., Sigurdsson, S., Eiriksdottir, G., & Johnsen, K. (2007).
1198 Reliability of quantitative EEG features. *Clinical Neurophysiology*, 118(10), 2162-
1199 2171. doi:10.1016/j.clinph.2007.06.018

1200 Hadoush, H., Alafeef, M., & Abdulhay, E. (2019). Brain Complexity in Children with Mild
1201 and Severe Autism Spectrum Disorders: Analysis of Multiscale Entropy in EEG.
1202 *Brain Topogr*. doi:10.1007/s10548-019-00711-1

1203 Haller, M., Donoghue, T., Peterson, E., Varma, P., Sebastian, P., Gao, R., . . . Voytek, B.
1204 (2018). Parameterizing neural power spectra. *bioRxiv*.

1205 Harris, K. D., & Thiele, A. (2011). Cortical state and attention. *Nature Reviews Neuroscience*,
1206 12(9), 509-523. doi:10.1038/nrn3084

1207 He, B. Y. J. (2014). Scale-free brain activity: past, present, and future. *Trends in Cognitive
1208 Sciences*, 18(9), 480-487. doi:10.1016/j.tics.2014.04.003

1209 Heisz, J. J., Shedden, J. M., & McIntosh, A. R. (2012). Relating brain signal variability to
1210 knowledge representation. *Neuroimage*, 63(3), 1384-1392.
1211 doi:10.1016/j.neuroimage.2012.08.018

1212 Hipp, J. F., & Siegel, M. (2013). Dissociating neuronal gamma-band activity from cranial and
1213 ocular muscle activity in EEG. *Frontiers in Human Neuroscience*, 7.
1214 doi:10.3389/fnhum.2013.00338

1215 Ishii, R., Canuet, L., Aoki, Y., Hata, M., Iwase, M., Ikeda, S., . . . Ikeda, M. (2017). Healthy
1216 and Pathological Brain Aging: From the Perspective of Oscillations, Functional
1217 Connectivity, and Signal Complexity. *Neuropsychobiology*, 75(4), 151-161.
1218 doi:10.1159/000486870

1219 Jaworska, N., Wang, H. Y., Smith, D. M., Blier, P., Knott, V., & Protzner, A. B. (2018). Pre-
1220 treatment EEG signal variability is associated with treatment success in depression.
1221 *Neuroimage-Clinical*, 17, 368-377. doi:10.1016/j.nicl.2017.10.035

1222 Jones, S. R. (2016). When brain rhythms aren't 'rhythmic': implication for their mechanisms
1223 and meaning. *Current Opinion in Neurobiology*, 40, 72-80.
1224 doi:10.1016/j.conb.2016.06.010

1225 Kaffashi, F., Foglyano, R., Wilson, C. G., & Loparo, K. A. (2008). The effect of time delay
1226 on Approximate & Sample Entropy calculations. *Physica D-Nonlinear Phenomena*,
1227 237(23), 3069-3074. doi:10.1016/j.physd.2008.06.005

1228 Kaur, Y., Ouyang, G., Junge, M., Sommer, W., Liu, M., Zhou, C., & Hildebrandt, A. (2019).
1229 The reliability and psychometric structure of Multi-Scale Entropy measured from EEG
1230 signals at rest and during face and object recognition tasks. *J Neurosci Methods*, 326,
1231 108343. doi:10.1016/j.jneumeth.2019.108343

1232 Keitel, A., & Gross, J. (2016). Individual Human Brain Areas Can Be Identified from Their
1233 Characteristic Spectral Activation Fingerprints. *Plos Biology*, 14(6).
1234 doi:10.1371/journal.pbio.1002498

1235 Kessler, J., Markowitsch, H., & Denzler, P. (2000). *Mini-mental-status-test (MMST)*.
1236 Göttingen: Beltz Test GMBH.

1237 Knyazeva, M. G., Barzegaran, E., Vildayski, V. Y., & Demonet, J. F. (2018). Aging of human
1238 alpha rhythm. *Neurobiology of Aging*, 69, 261-273.
1239 doi:10.1016/j.neurobiolaging.2018.05.018

1240 Kosciessa, J. Q., Grandy, T. H., Garrett, D. D., & Werkle-Bergner, M. (2019). Single-trial
1241 characterization of neural rhythms: potentials and challenges. *bioRxiv*.

1242 Kuntzman, K., Jack Rhodes, L., Harrington, L. N., & Miskovic, V. (2018). A practical
1243 comparison of algorithms for the measurement of multiscale entropy in neural time
1244 series data. *Brain Cogn*, 123, 126-135. doi:10.1016/j.bandc.2018.03.010

1245 Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a
1246 practical primer for t-tests and ANOVAs. *Frontiers in Psychology*, 4.
1247 doi:10.3389/fpsyg.2013.00863

1248 Leirer, V. M., Wienbruch, C., Kolassa, S., Schlee, W., Elbert, T., & Kolassa, I. T. (2011).
1249 Changes in cortical slow wave activity in healthy aging. *Brain Imaging and Behavior*,
1250 5(3), 222-228. doi:10.1007/s11682-011-9126-3

1251 Lippe, S., Kovacevic, N., & McIntosh, A. R. (2009). Differential maturation of brain signal
1252 complexity in the human auditory and visual system. *Frontiers in Human
1253 Neuroscience*, 3. doi:10.3389/neuro.09.048.2009

1254 Lopes da Silva, F. (2013). EEG and MEG: relevance to neuroscience. *Neuron*, 80(5), 1112-
1255 1128. doi:10.1016/j.neuron.2013.10.017

1256 Lundqvist, M., Herman, P., Warden, M. R., Brincat, S. L., & Miller, E. K. (2018). Gamma
1257 and beta bursts during working memory readout suggest roles in its volitional control.
1258 *Nature Communications*, 9. doi:10.1038/s41467-017-02791-8

1259 Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., & Miller, E. K. (2016).
1260 Gamma and Beta Bursts Underlie Working Memory. *Neuron*, 90(1), 152-164.
1261 doi:10.1016/j.neuron.2016.02.028

1262 Marguet, S. L., & Harris, K. D. (2011). State-Dependent Representation of Amplitude-
1263 Modulated Noise Stimuli in Rat Auditory Cortex. *Journal of Neuroscience*, 31(17),
1264 6414-6420. doi:10.1523/Jneurosci.5773-10.2011

1265 Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data.
1266 *Journal of Neuroscience Methods*, 164(1), 177-190.
1267 doi:10.1016/j.jneumeth.2007.03.024

1268 McIntosh, A. R. (2019). Neurocognitive Aging and Brain Signal Complexity: Oxford
1269 University Press.

1270 McIntosh, A. R., Kovacevic, N., & Itier, R. J. (2008). Increased Brain Signal Variability
1271 Accompanies Lower Behavioral Variability in Development. *Plos Computational
1272 Biology*, 4(7). doi:10.1371/journal.pcbi.1000106

1273 McIntosh, A. R., Vakorin, V., Kovacevic, N., Wang, H., Diaconescu, A., & Protzner, A. B.
1274 (2014). Spatiotemporal Dependency of Age-Related Changes in Brain Signal
1275 Variability. *Cerebral Cortex*, 24(7), 1806-1817. doi:10.1093/cercor/bht030

1276 Mejias, J. F., Murray, J. D., Kennedy, H., & Wang, X. J. (2016). Feedforward and feedback
1277 frequency-dependent interactions in a large-scale laminar network of the primate
1278 cortex. *Science Advances*, 2(11). doi:10.1126/sciadv.1601335

1279 Misic, B., Doesburg, S. M., Fatima, Z., Vidal, J., Vakorin, V. A., Taylor, M. J., & McIntosh,
1280 A. R. (2015). Coordinated Information Generation and Mental Flexibility: Large-Scale
1281 Network Disruption in Children with Autism. *Cerebral Cortex*, 25(9), 2815-2827.
1282 doi:10.1093/cercor/bhu082

1283 Misic, B., Vakorin, V. A., Paus, T., & McIntosh, A. R. (2011). Functional embedding predicts
1284 the variability of neural activity. *Frontiers in Systems Neuroscience*, 5, 90.
1285 doi:10.3389/fnsys.2011.00090

1286 Miskovic, V., MacDonald, K. J., Rhodes, L. J., & Cote, K. A. (2019). Changes in EEG
1287 multiscale entropy and power-law frequency scaling during the human sleep cycle.
1288 *Human Brain Mapping*, 40(2), 538-551. doi:10.1002/hbm.24393

1289 Miskovic, V., Owens, M., Kuntzelman, K., & Gibb, B. E. (2016). Charting moment-to-
1290 moment brain signal variability from early to late childhood. *Cortex*, 83, 51-61.
1291 doi:10.1016/j.cortex.2016.07.006

1292 Mizuno, T., Takahashi, T., Cho, R. Y., Kikuchi, M., Murata, T., Takahashi, K., & Wada, Y.
1293 (2010). Assessment of EEG dynamical complexity in Alzheimer's disease using
1294 multiscale entropy. *Clinical Neurophysiology*, 121(9), 1438-1446.
1295 doi:10.1016/j.clinph.2010.03.025

1296 Nikulin, V. V., & Brismar, T. (2004). Comment on "Multiscale entropy analysis of complex
1297 physiologic time series". *Physical Review Letters*, 92(8).
1298 doi:10.1103/PhysRevLett.92.089803

1299 Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: Fully Automated Statistical
1300 Thresholding for EEG artifact Rejection. *Journal of Neuroscience Methods*, 192(1),
1301 152-162. doi:10.1016/j.jneumeth.2010.07.015

1302 Oldfield, R. C. (1971). The Assessment and Analysis of Handedness: The Edinburgh
1303 Inventory. *Neuropsychologia*, 9(1), 97-113. doi:10.1016/0028-3932(71)90067-4

1304 Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open Source
1305 Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological
1306 Data. *Computational Intelligence and Neuroscience*. doi:10.1155/2011/156869

1307 Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution
1308 EEG and ERP measurements. *Clinical Neurophysiology*, 112(4), 713-719.
1309 doi:10.1016/S1388-2457(00)00527-7

1310 Park, J. H., Kim, S., Kim, C. H., Cichocki, A., & Kim, K. (2007). Multiscale entropy analysis
1311 of EEG from patients under different pathological conditions. *Fractals-Complex*
1312 *Geometry Patterns and Scaling in Nature and Society*, 15(4), 399-404.
1313 doi:10.1142/S0218348x07003691

1314 Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical Splines for Scalp
1315 Potential and Current-Density Mapping. *Electroencephalography and Clinical*
1316 *Neurophysiology*, 72(2), 184-187. doi:10.1016/0013-4694(89)90180-6

1317 Peterson, E. J., Rosen, B. Q., Campbell, A. M., Belger, A., & Voytek, B. (2018). 1/f neural
1318 noise is a better predictor of schizophrenia than neural oscillations. *bioRxiv*.

1319 Raja Beharelle, A., Kovacevic, N., McIntosh, A. R., & Levine, B. (2012). Brain signal
1320 variability relates to stability of behavior after recovery from diffuse brain injury.
1321 *Neuroimage*, 60(2), 1528-1537. doi:10.1016/j.neuroimage.2012.01.037

1322 Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using
1323 approximate entropy and sample entropy. *American Journal of Physiology-Heart and*
1324 *Circulatory Physiology*, 278(6), H2039-H2049.

1325 Rossiter, H. E., Davis, E. M., Clark, E. V., Boudrias, M. H., & Ward, N. S. (2014). Beta
1326 oscillations reflect changes in motor cortex inhibition in healthy ageing. *Neuroimage*,
1327 91, 360-365. doi:10.1016/j.neuroimage.2014.01.012

1328 Semmlow, J. L. (2008). *Biosignal and medical image processing*: CRC press.

1329 Shafiei, G., Zeighami, Y., Clark, C. A., Coull, J. T., Nagano-Saito, A., Leyton, M., . . . Misic,
1330 B. (2019). Dopamine Signaling Modulates the Stability and Integration of Intrinsic
1331 Brain Networks. *Cerebral Cortex*, 29(1), 397-409. doi:10.1093/cercor/bhy264

1332 Sheehan, T. C., Sreekumar, V., Inati, S. K., & Zaghloul, K. A. (2018). Signal Complexity of
1333 Human Intracranial EEG Tracks Successful Associative-Memory Formation across
1334 Individuals. *Journal of Neuroscience*, 38(7), 1744-1755. doi:10.1523/Jneurosci.2389-
1335 17.2017

1336 Sherman, M. A., Lee, S., Law, R., Haegens, S., Thorn, C. A., Hamalainen, M. S., . . . Jones,
1337 S. R. (2016). Neural mechanisms of transient neocortical beta rhythms: Converging
1338 evidence from humans, computational modeling, monkeys, and mice. *Proceedings of*
1339 *the National Academy of Sciences of the United States of America*, 113(33), E4885-
1340 E4894. doi:10.1073/pnas.1604135113

1341 Shin, H., Law, R., Tsutsui, S., Moore, C. I., & Jones, S. R. (2017). The rate of transient beta
1342 frequency events predicts behavior across tasks and species. *eLife*, 6.
1343 doi:10.7554/eLife.29086

1344 Simpraga, S., Alvarez-Jimenez, R., Mansvelder, H. D., van Gerven, J. M. A., Groeneveld, G.
1345 J., Poil, S. S., & Linkenkaer-Hansen, K. (2017). EEG machine learning for accurate
1346 detection of cholinergic intervention and Alzheimer's disease. *Scientific Reports*, 7.
1347 doi:10.1038/s41598-017-06165-4

1348 Sleimen-Malkoun, R., Perdikis, D., Muller, V., Blanc, J. L., Huys, R., Temprado, J. J., &
1349 Jirsa, V. K. (2015). Brain Dynamics of Aging: Multiscale Variability of EEG Signals
1350 at Rest and during an Auditory Oddball Task(1,2,3). *Eneuro*, 2(3).
1351 doi:10.1523/ENEURO.0067-14.2015

1352 Sporns, O. (2010). *Networks of the Brain*: MIT Press.

1353 Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: review of an emerging
1354 field. *Clinical Neurophysiology*, 116(10), 2266-2301.
1355 doi:10.1016/j.clinph.2005.06.011

1356 Stoyanov, M., Gunzburger, M., & Burkardt, J. (2011). Pink noise, 1/f (alpha) noise, and their
1357 effect on solutions of differential equations. *International Journal for Uncertainty*
1358 *Quantification*, 1(3), 257-278.
1359 doi:10.1615/Int.J.UncertaintyQuantification.2011003089

1360 Szostakiwskyj, J. M. H., Willatt, S. E., Cortese, F., & Protzner, A. B. (2017). The modulation
1361 of EEG variability between internally-and externally-driven cognitive states varies
1362 with maturation and task performance. *Plos One*, 12(7).
1363 doi:10.1371/journal.pone.0181894

1364 Takahashi, T., Cho, R. Y., Mizuno, T., Kikuchi, M., Murata, T., Takahashi, K., & Wada, Y.
1365 (2010). Antipsychotics reverse abnormal EEG complexity in drug-naive
1366 schizophrenia: A multiscale entropy analysis. *Neuroimage*, 51(1), 173-182.
1367 doi:10.1016/j.neuroimage.2010.02.009

1368 Takahashi, T., Cho, R. Y., Murata, T., Mizuno, T., Kikuchi, M., Mizukami, K., . . . Wada, Y.
1369 (2009). Age-related variation in EEG complexity to photic stimulation: A multiscale
1370 entropy analysis. *Clinical Neurophysiology*, 120(3), 476-483.
1371 doi:10.1016/j.clinph.2008.12.043

1372 Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Farmer, J. D. (1992). Testing for
1373 Nonlinearity in Time-Series - the Method of Surrogate Data. *Physica D-Nonlinear
1374 Phenomena*, 58(1-4), 77-94. doi:10.1016/0167-2789(92)90102-S

1375 Ueno, K., Takahashi, T., Takahashi, K., Mizukami, K., Tanaka, Y., & Wada, Y. (2015).
1376 Neurophysiological basis of creativity in healthy elderly people: A multiscale entropy
1377 approach. *Clinical Neurophysiology*, 126(3), 524-531.
1378 doi:10.1016/j.clinph.2014.06.032

1379 Vakorin, V. A., & McIntosh, A. R. (2012). Mapping the Multiscale Information Content of
1380 Complex Brain Signals. *Principles of Brain Dynamics: Global State Interactions*, 183-
1381 208.

1382 Valencia, J. F., Porta, A., Vallverdu, M., Claria, F., Baranowski, R., Orlowska-Baranowska,
1383 E., & Caminal, P. (2009). Refined Multiscale Entropy: Application to 24-h Holter
1384 Recordings of Heart Period Variability in Healthy and Aortic Stenosis Subjects. *Ieee
1385 Transactions on Biomedical Engineering*, 56(9), 2202-2213.
1386 doi:10.1109/Tbme.2009.2021986

1387 Vidaurre, D., Hunt, L. T., Quinn, A. J., Hunt, B. A. E., Brookes, M. J., Nobre, A. C., &
1388 Woolrich, M. W. (2018). Spontaneous cortical activity transiently organises into
1389 frequency specific phase-coupling networks. *Nature Communications*, 9.
1390 doi:10.1038/s41467-018-05316-z

1391 Vlahou, E. L., Thurrm, F., Kolassa, I. T., & Schlee, W. (2014). Resting-state slow wave
1392 power, healthy aging and cognitive performance. *Scientific Reports*, 4.
1393 doi:10.1038/srep05101

1394 von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical
1395 integration: from local gamma to long range alpha/theta synchronization. *International
1396 Journal of Psychophysiology*, 38(3), 301-313. doi:10.1016/S0167-8760(00)00172-0

1397 Voytek, B., Kramer, M. A., Case, J., Lepage, K. Q., Tempesta, Z. R., Knight, R. T., &
1398 Gazzaley, A. (2015). Age-Related Changes in 1/f Neural Electrophysiological Noise.
1399 *Journal of Neuroscience*, 35(38), 13257-13265. doi:10.1523/Jneurosci.2332-14.2015

1400 Wang, H., McIntosh, A. R., Kovacevic, N., Karachalios, M., & Protzner, A. B. (2016). Age-
1401 related Multiscale Changes in Brain Signal Variability in Pre-task versus Post-task
1402 Resting-state EEG. *J Cogn Neurosci*, 28(7), 971-984. doi:10.1162/jocn_a_00947

1403 Wang, X. J. (2010). Neurophysiological and computational principles of cortical rhythms in
1404 cognition. *Physiol Rev*, 90(3), 1195-1268. doi:10.1152/physrev.00035.2008

1405 Waschke, L., Tune, S., & Obleser, J. (2019). Neural desynchronization and arousal
1406 differentially shape brain states for optimal sensory performance. *bioRxiv*.

1407 Waschke, L., Wostmann, M., & Obleser, J. (2017). States and traits of neural irregularity in
1408 the age-varying human brain. *Scientific Reports*, 7. doi:10.1038/s41598-017-17766-4

1409 Werkle-Bergner, M., Grandy, T. H., Chicherio, C., Schmiedek, F., Lovden, M., &
1410 Lindenberger, U. (2014). Coordinated within-Trial Dynamics of Low-Frequency

1411 Neural Rhythms Controls Evidence Accumulation. *Journal of Neuroscience*, 34(25),
1412 8519-8528. doi:10.1523/Jneurosci.3801-13.2014

1413 Whitten, T. A., Hughes, A. M., Dickson, C. T., & Caplan, J. B. (2011). A better oscillation
1414 detection method robustly extracts EEG rhythms across brain state changes: The
1415 human alpha rhythm as a test case. *Neuroimage*, 54(2), 860-874.
1416 doi:10.1016/j.neuroimage.2010.08.064

1417 Widmann, A., Schroger, E., & Maess, B. (2015). Digital filter design for electrophysiological
1418 data - a practical approach. *Journal of Neuroscience Methods*, 250, 34-46.
1419 doi:10.1016/j.jneumeth.2014.08.002

1420 Yang, A. C., Wang, S. J., Lai, K. L., Tsai, C. F., Yang, C. H., Hwang, J. P., . . . Fuh, J. L.
1421 (2013). Cognitive and neuropsychiatric correlates of EEG dynamic complexity in
1422 patients with Alzheimer's disease. *Progress in Neuro-Psychopharmacology &*
1423 *Biological Psychiatry*, 47, 52-61. doi:10.1016/j.pnpbp.2013.07.022

1424

Supplementary Information for

Standard multiscale entropy reflects spectral power at mismatched temporal scales

Julian Q. Kosciessa, Niels A. Kloosterman, and Douglas D. Garrett

Email: kosciessa@mpib-berlin.mpg.de; garrett@mpib-berlin.mpg.de

This PDF file includes:

Supplementary text

Figures S1 to S4

Supplementary references

SI Methods

Calculation of multiscale permutation entropy. Sample entropy's similarity criterion makes it difficult to differentiate between rhythmic modulations of MSE via added pattern regularity or the influence on similarity criteria. For this purpose, we extended our analyses to multiscale permutation entropy, a measure that assesses pattern irregularity independent of a similarity criterion. In particular, permutation entropy describes the randomness in the occurrence of symbolic sequences (rank-order permutations) (Bandt & Pompe, 2002; Riedl, Muller, & Wessel, 2013). To investigate the correspondence between sample entropy and permutation entropy, we repeated our analyses with identical settings as described for the MSE analyses. The calculation of permutation entropy followed previous implementations (e.g., Ouyang, Li, Liu, & Li, 2013). Specifically, for a given template length m (i.e., embedding dimension, here $m = 4$), all $m!$ rank-order permutations π were assessed with regard to their relative occurrence: $p(\pi) = C(\pi)/(N - (m - 1)l)$, where N is the number of samples and l is the time delay/lag (here $l = 1$). The permutation entropy of a signal was defined as $PE = -\sum_{m=1}^{m!} p(\pi) \ln p(\pi)$. We calculated a normalized version of permutation entropy with bounds between zero and one. Specifically, complete randomness of permutation occurrence would result in values of one, whereas increasing regularity results in lower values. To assess the convergence between sample and permutation entropy, we repeated the simulations noted in the main text, and probed age differences in the traditional (i.e., low-pass) implementation.

SI Results

Dissociating between similarity criterion and spectral regularity using multiscale permutation entropy (MPE). In our MSE analyses, the intrinsic, variance-bound, similarity criterion makes it difficult to distinguish whether spectral events (e.g., narrowband rhythms) decrease entropy as a result of increasing the r parameter or via their contribution of added (sinusoidal) signal regularity. To probe this issue, we used multiscale permutation entropy (MPE) as a measure of signal complexity that does not use a variance-based threshold. In particular, permutation entropy assesses pattern complexity as the relative (im-)balance in the occurrence of symbolic patterns.

In simulations, rhythmicity modulated MPE in a similar fashion as MSE (Figure S4A, B). Notably, MPE did not indicate rhythm-dependent increases in entropy, although it should be noted that permutation entropy was at ceiling even at baseline. Crucially, we observed a similar decrease of entropy at fine scales in the absence of variance normalization, suggesting that added rhythmicity decreased broadband 'fine-scale' estimates due to the added rhythmic regularity. We further assessed age effects in the traditional low-pass scenario. Most notably, permutation entropy in the low-pass implementation did not exhibit an age difference at coarse (Figure S4C), in line with our suggestions that this MSE difference is exclusively induced by fixed similarity criteria. However, a fine-scale age difference was also observed in low-pass MPE (Figure S4C), suggesting that this effect is not exclusively related to the similarity criterion. As in the MSE analysis, fine-scale estimates characterized individual PSD slopes, underlining the broadband origin of the effect.

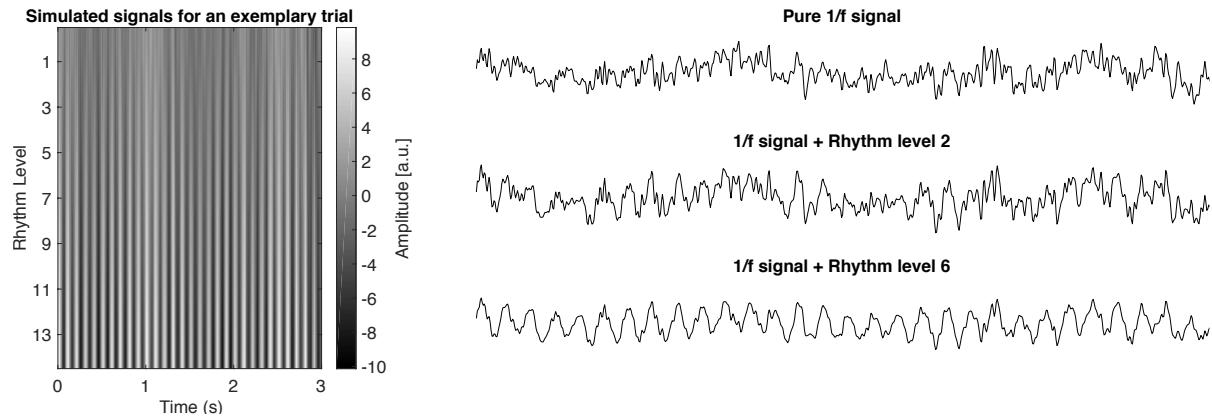


Figure S1: Examples of simulated data. Time series from an exemplary simulated trial for a pure 1/f signal pink noise signal and at different magnitudes of added alpha rhythmicity. The left presentation provides a top-down view of time-series amplitudes.

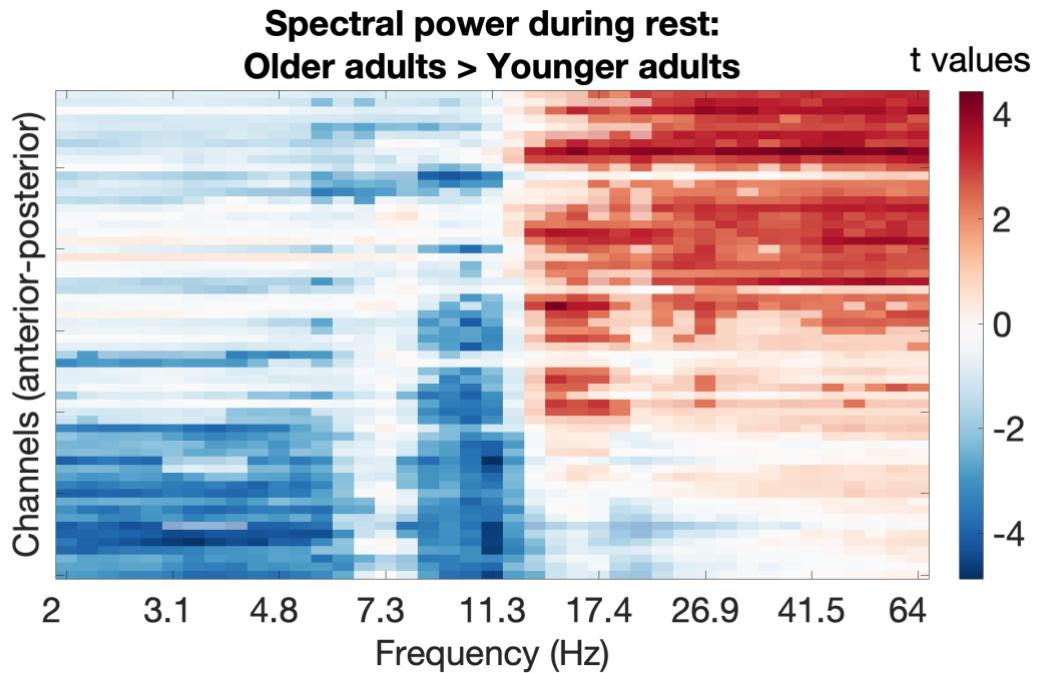


Figure S2: T-values for age group differences in spectral power (OA > YA). Statistical significance ($p < .05$) was assessed by means of cluster-based permutation tests and is indicated via opacity.

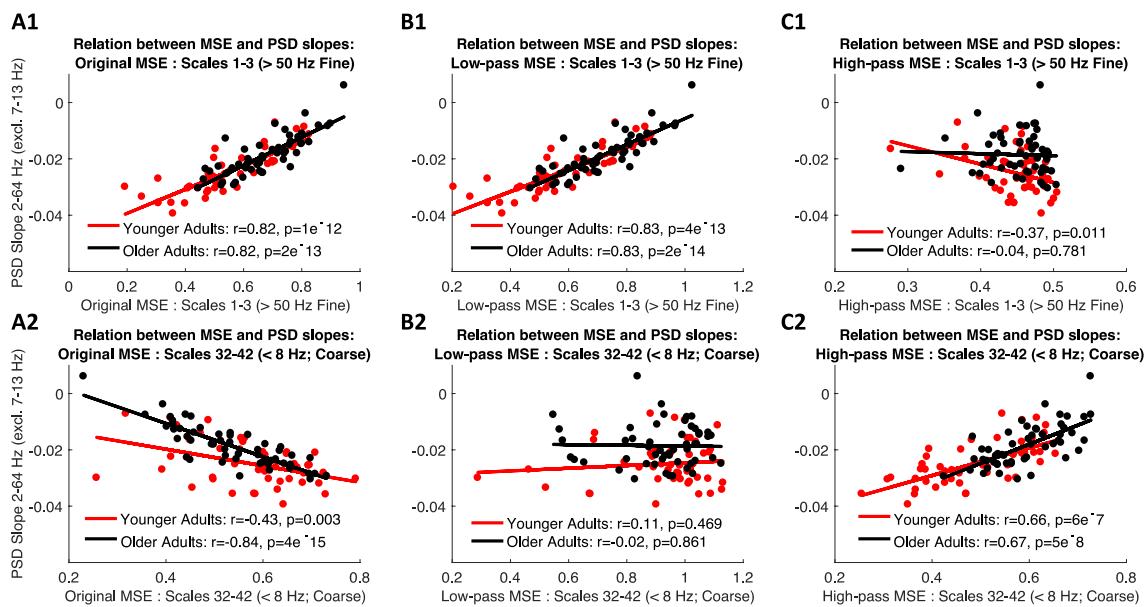


Figure S3: Methods- and scale-dependent associations between sample entropy and PSD slopes. 'Original' settings indicate a strong positive association at fine scales (A1) that turns negative at coarse scales (A2), likely due to coarse-scale biases by the scale-invariant similarity criterion. In line with this notion, scale-wise adaptation of thresholds retains the fine-scale effect (B1), while abolishing the coarse-scale inversion (B2). Crucially, the entropy of exclusively high-frequency signals does not positively relate to PSD slopes (C1), whereas the association reemerges once slow fluctuations are added into the signal (C2).

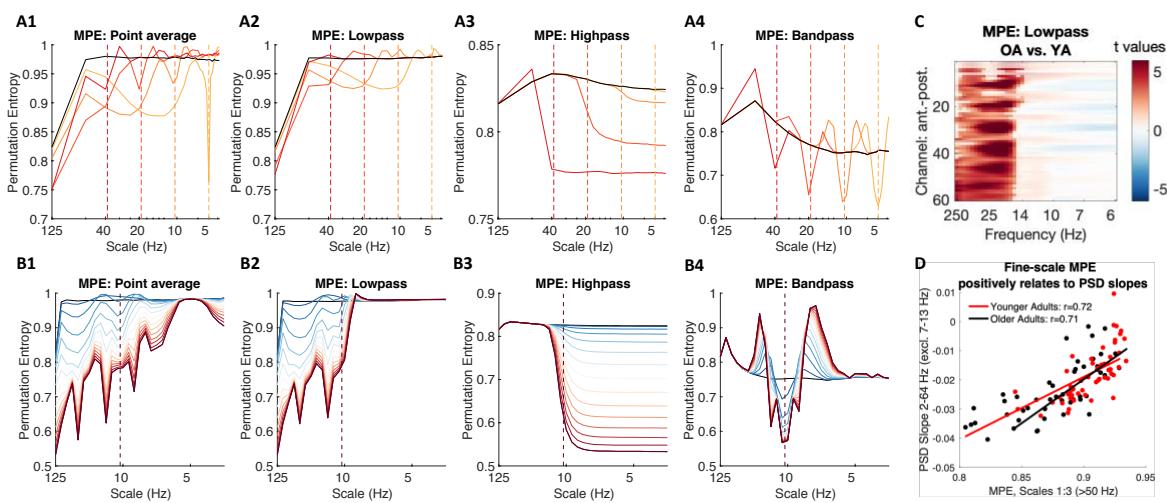


Figure S4. Permutation entropy reproduces dominant effects from sample entropy analysis. (A) The rhythmic representation on multiscale permutation entropy (MPE) is similar to that observed in MSE. (A1) Frequency-wise rhythm simulations indicate frequency-dependent decreases in permutation entropy. (A2) Low-pass filtering results in decreased entropy at frequencies above the simulated frequency, whereas the opposite effect is observed when using high-pass filters (A3). A difference to low-pass MSE is the absence of entropy increases above baseline. (B) Amplitude simulations of alpha rhythms indicate similar parametric effects as for sample entropy. The narrow bandpass filter introduces spurious entropy increases around filter boundaries (B4). (C) Lowpass MPE indicates higher fine-scale entropy, but no decreased coarse-scale entropy, for older compared to younger adults, in line with MSE results with scale-varying similarity criteria. (D) Fine-scale low-pass permutation entropy relates to individual PSD slopes.

Supplementary References

Bandt, C., & Pompe, B. (2002). Permutation entropy: A natural complexity measure for time series. *Physical Review Letters*, 88(17). doi:10.1103/PhysRevLett.88.174102

Ouyang, G. X., Li, J., Liu, X. Z., & Li, X. L. (2013). Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis. *Epilepsy Research*, 104(3), 246-252. doi:10.1016/j.eplepsyres.2012.11.003

Riedl, M., Muller, A., & Wessel, N. (2013). Practical considerations of permutation entropy. *European Physical Journal-Special Topics*, 222(2), 249-262. doi:10.1140/epjst/e2013-01862-7