

1 **Dynamic actin-mediated nano-scale clustering of CD44 regulates its meso-scale**
2 **organization at the plasma membrane**

3

4 Parijat Sil^{1*}, Nicolas Mateos^{2*}, Sangeeta Nath^{3,9}, Sonja Buschow¹⁰, Carlo Manzo⁴, Kenichi G. N.
5 Suzuki^{5,6}, Takahiro Fujiwara⁶, Akihiro Kusumi^{6,8}, Maria F. Garcia-Parajo^{3,7,#} and Satyajit
6 Mayor^{1,3,#}

7 ¹National Centre for Biological Sciences, Bangalore, India

8 ² ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology,
9 Barcelona, Spain

10 ³ Institute of Stem cell and Regenerative medicine, Bangalore, India

11 ⁴ Facultat de Ciències i Tecnologia, Universitat de Vic - Universitat Central de Catalunya, 08500
12 Vic, Spain

13 ⁵Centre for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu
14 University, Japan

15 ⁶Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Japan

16 ⁷ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain

17 ⁸Okinawa Institute of Science and technology, Graduate University, Japan

18 ⁹ Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education,
19 Bangalore, India

20 ¹⁰University of Utrecht, Netherlands

21 *These authors contributed equally to the study.

22 [#] Author for correspondence

23

24

25

26

27

28

29

30 Keywords: actomyosin, cartography, CD44, fluorescence emission anisotropy, formin, homo-
31 FRET, meshwork, meso-scale organization, nanoclustering, nano-scale organization, plasma
32 membrane, single particle tracking

33 Abbreviations: ECD- extra-cellular domain; ICD- intra-cellular domain; ECM- extra-cellular
34 matrix; FRET -Forster's resonance energy transfer; HA- hyaluronic acid; SPT- single particle
35 tracking; DC-SPT- dual color single particle tracking

36

37

38 **Abstract:**

39 Transmembrane adhesion receptors at the cell surface, such as CD44, are often equipped with
40 modules to interact with the extracellular-matrix(ECM) and the intra-cellular cytoskeletal
41 machinery. CD44 has been recently shown to compartmentalize the membrane into domains by
42 acting as membrane pickets, facilitating the function of signaling receptors. While spatial
43 organization and diffusion studies of membrane proteins are usually conducted separately, here
44 we combine observations of organization and diffusion by using high spatio-temporal resolution
45 imaging on living cells to reveal a hierarchical organization of CD44. CD44 is present in a meso-
46 scale meshwork pattern where it exhibits enhanced confinement and is enriched in nano-clusters
47 of CD44 along its boundaries. This nanoclustering is orchestrated by the underlying cortical actin
48 dynamics. Interaction with actin is mediated by specific segments of the intracellular-
49 domain(ICD). This influences the organization of the protein at the nano-scale, generating a
50 selective requirement for formin over Arp2/3-based actin-nucleation machinery. The
51 extracellular-domain(ECD) and its interaction with elements of ECM do not influence the meso-
52 scale organization, but may serve to reposition the meshwork with respect to the ECM. Taken
53 together, our results capture the hierarchical nature of CD44 organization at the cell surface, with
54 active cytoskeleton-templated nano-clusters localized to a meso-scale meshwork pattern.

55

56

57

58

59

60

61

62 Introduction

63 Heterogeneity in the distribution of membrane proteins and lipids is becoming an increasingly
64 appreciated paradigm in the context of the organization of molecules at the plasma membrane
65 (Sezgin et al., 2017). This regulated, non-random distribution of membrane proteins such as
66 signaling receptors, is implicated in their molecular function and signaling output (Garcia-parajo
67 et al., 2014). The advent of super-resolution microscopy and breakthroughs in single molecule
68 techniques has revolutionized our understanding of cellular organization at the molecular level
69 (Klotzsch et al., 2013; Kusumi et al., 2005; van Zanten & Mayor, 2016). The major goal from
70 such techniques has traditionally been to obtain detailed descriptions of protein clustering,
71 cluster sizes or inter-molecular distances. However, these super-resolution techniques are often
72 technically demanding and associated invasive sample preparation methods are fraught with
73 criticism for being non-physiological. Additionally, although such studies of membrane
74 constituents inform us on the organizational details at the molecular level, there have been fewer
75 efforts to understand the organization and dynamics of proteins at larger spatial scales, to
76 ascertain whether there exists any spatial hierarchy in membrane protein organization.

77 Studies of the membrane organization of many transmembrane receptors such as TCRs, EGFR,
78 E-Cadherin, GPCRs or chemokine receptors such as CXCR-4, have advanced our understanding
79 of changes at the nano-scale due to receptor dimerization or oligomerization (~2-40 nanometers)
80 in the presence or absence of the cognate ligand (Beck-garcía et al., 2015; Cohnen et al., 2016;
81 Hofman et al., 2010; Martinez-Munoz et al., 2018; Overton & Blumer, 2000; Strale et al., 2015;
82 Terrillon & Bouvier, 2004). At the same time, studies elucidating the inhomogeneous diffusion
83 behavior of membrane proteins such as transferrin receptors (Kusumi and Sako, 1996) or CD44
84 (Freeman et al., 2018) have revealed the presence of compartments in the cell membrane at a
85 larger length scale (~ few hundred nanometers), templated by the underlying cytoskeletal
86 meshwork. The potential hierarchy in the nature of organization of membrane proteins has been
87 speculated in the past based on evidences from clustering and diffusion studies of different
88 proteins (Kusumi et al., 2011). It is likely that a unified study of diffusion and organization
89 interrogating the distribution of a particular membrane protein at different spatial scales will
90 provide information of any underlying hierarchy in spatial scales of organization.

91 Type-1 trans-membrane proteins are a major and abundant class of integral membrane proteins
92 that span three distinct environments, the extracellular space, transmembrane and cytoplasmic
93 milieu. The lymphocyte homing receptor CD44, is a type I trans-membrane protein involved in
94 cell-matrix adhesion (Ponta et al., 2003). It has a heavily glycosylated extracellular domain
95 (ECD) that ensures binding to extra-cellular lectins such as galectins, besides being able to bind
96 to its ligand hyaluronic acid (HA) as well as other components of the extra cellular matrix such
97 as fibronectin and osteopontin (Ponta et al., 2003; Senbanjo and Chellaiah, 2017). Previous
98 studies have shown that the ECD of CD44 is clustered by Galectin-3 which in turn also binds
99 glycosphingolipids and is important for the endocytosis of the protein by a clathrin-independent
100 pathway (Howes et al., 2010; Lakshminarayan et al., 2014). Additionally, HA binding has been

101 shown to influence the dynamics of the protein at the plasma membrane (Lakshminarayan *et al.*,
102 2014; Freeman *et al.*, 2018). The juxta-membrane O-glycosylation site and the trans-membrane
103 region with two putative palmitoylation sites confer the ability on the protein to partition into
104 detergent resistant membrane fractions or cholesterol enriched domains on the plasma membrane
105 (Thankamony and Knudson, 2006; Shao *et al.*, 2015).

106 At the intracellular side, the relatively short 70 amino acids long cytoplasmic tail of CD44
107 interacts with multiple cytoskeletal adaptor proteins. The association of the protein with ezrin has
108 been shown to be important for T cell migration in interstitial spaces of endothelial cells (Mrass
109 *et al.*, 2008). The interaction with ezrin also influences the protein's ability to act as membrane
110 picket in macrophages providing a functional partitioning of the Fc γ RIIA at the plasma
111 membrane and facilitating its phagocytic function in macrophages (Freeman *et al.*, 2018).
112 Ankyrin binding has been shown to be important for HA binding by CD44 (Bourguignon, 2008).
113 A proteomic analysis of the interacting partners of the CD44 cytoplasmic tail has also revealed
114 an interaction with other cytoskeletal adaptors such as vinnexin, IQGAP1 and talin1 (Skandalis
115 *et al.*, 2010). The modularity of these potential cytoskeletal interactions in the tail of CD44 via its
116 multiple cytoskeletal adaptor binding sites opens up possibilities to study how they may
117 independently regulate organization and turn-over of the protein at the cell surface.

118 Thus, the diverse structural attributes of CD44 impart this receptor with the ability to be
119 influenced by extracellular interactions, membrane composition and the actin cytoskeleton.
120 Hence, it also provides an ideal platform to uncover general principles of how such molecules
121 are organized at varying length scales, determined by distinct modes of interaction in the
122 different milieu and also the interplay between these length scales. Nevertheless, studies so far
123 have not systematically investigated the role of the different structural domains of the protein in
124 the organization and dynamics of the liganded as well as the native un-liganded receptor on the
125 membrane, at multiple spatial scales.

126 In this study we have exploited various imaging methods in living cells to characterize the
127 organization of CD44 at the single molecule level over multiple spatiotemporal scales. Single
128 molecule tracking at different labeling densities allowed us to capture the dynamics of CD44,
129 both at the nano- and meso-scale levels. We define nano-scale organization as being built of
130 individual molecules brought together within \sim 10nm scale and meso-scale as domains \sim 100 nm
131 - $<1\mu\text{m}$ in scale. By means of interleaved homo-FRET-based anisotropy and high-density single
132 molecule imaging, we show that the meso-scale organization of CD44 is significantly associated
133 with its nanoclusters. Moreover, homo-FRET anisotropy measurements revealed a role for the
134 actomyosin machinery and formin, which is also reflected in the mesoscale organization.
135 Overall, our data provide evidence for a hierarchical organization of CD44, wherein each layer
136 of organization is determined by distinct interactions of the receptor.

137

138 **Results**

139

140 **Spatio-temporal mapping of CD44 reveals a mesh like distribution of the protein at the**
141 **mesoscale**

142 To explore the dynamics of CD44 with high spatiotemporal resolution we utilized the standard
143 isoform of mouse CD44 (Ponta *et al.*, 2003) tagged with a SNAP domain at the N-terminus and
144 GFP at the C-terminus (SNAP-CD44-GFP) (Fig1a, b, Table2). This chimeric protein can be
145 labeled at the extra-cellular side using cell-impermeable benzylguanine (BG)-conjugated
146 fluorophores that covalently link to the extracellular SNAP domain. SNAP-CD44-GFP was
147 expressed in wild type mouse embryonic fibroblast (MEFs) cells that endogenously express
148 CD44 as well as produces the ligand HA (Gerecht *et al.*, 2007; Siiskonen *et al.*, 2015) and
149 labeled with SNAP-Alexa 546 (or BG-Alexa 546). Sub-saturation labeling conditions (≤ 30 nM)
150 were required for performing single particle tracking (SPT) in order to unambiguously
151 reconstruct all the individual receptor trajectories of diffusion. However, this approach under-
152 samples the cell membrane and thus provides little information on membrane regions
153 dynamically explored by the receptor (Fig. 1c). We thus increased the labeling density (~ 50 - 100
154 nM), to ensure higher sampling frequencies of the membrane protein and yet maintaining the
155 ability of detecting individual molecules in each single frame to determine their coordinates with
156 sub-pixel accuracy (Fig. 1c').

157 Time-lapse images were acquired at 10 frames per second (fps) for 1000 seconds and the spatial
158 coordinates of identified individual molecules over multiple frames were collapsed into a single
159 frame to obtain a time-dependent cartography of the regions dynamically explored by the
160 receptor as described in an earlier study (Torreno-pina *et al.*, 2014). This density regime offers
161 the possibility of building up a large number of localizations to construct dynamic meso-scale
162 cartography of CD44 distribution over the entire cell membrane (Fig 1c'). Remarkably, we found
163 that CD44 diffusion and distribution is largely inhomogeneous, describing a clear mesh-like
164 spatiotemporal distribution at the meso-scale (1c', zoomed-in). This mesh is defined by regions
165 frequently re-visited by the receptor and/or induced by its temporal arrest on the cell membrane.
166 This is in stark contrast with the distribution of simulated randomized localizations on the plasma
167 membrane (Fig. 1d, 1d') which appears homogeneous at the same length scale. Indeed, enlarged
168 regions of the cartography, from the same patch of the cell membrane, generated at two different
169 time windows, show the dynamic character of the mesh (Fig. 1e, 1e'), and importantly, reveal
170 sites of confinement/trapping of the receptor, evidenced by the large number of localizations
171 ($>10^6$ for Fig. 1c') occurring within regions between ~ 90 - 200 nm in size (Fig. S1b). Moreover,
172 some of these regions have a long persistence time (~ 50 - 60 seconds, Fig. 1e, 1e' and merged
173 image in 1e''), indicating that the receptors could be stably confined in these regions and/or
174 transiently tether repeatedly to the same regions. Similar experiments conducted in cells which
175 exhibit very low surface levels of endogenous CD44 (COS-7 cells (Fig. S1a, a')) and the

176 extracellular ligand, HA (Knudson *et al.*, 1993; Shyjan *et al.*, 1996) (CHO cells (Fig S1c), also
177 yielded similar results. Together, these results indicate that CD44 is organized in a mesh-work
178 pattern on the plasma membrane and this distribution is independent of binding to its ligand HA
179 on the extra-cellular side or surface levels of endogenous proteins.

180 Since the experiments were conducted on the surface of the cell close to the coverslip, it is
181 conceivable that the observed meso-scale pattern visualized for CD44 is an artifact of the
182 patterning of the membrane due to its adhesion to the cell substrate. To rule this out, we imaged
183 mouse embryonic fibroblasts (MEFs) expressing SNAP-CD59-GPI, a GPI anchored protein,
184 unrelated to CD44. Analysis of the meso-scale map of SNAP-CD59-GPI also reveals a meso-
185 scale meshwork pattern on the cell surface, indicating a compartmentalized state of the plasma
186 membrane (Fig S1f). To additionally rule out the possibility that over-expression of the chimeric
187 SNAP-tagged CD44 protein induces such a distribution, we investigated how endogenous CD44
188 is organized at the plasma membrane by labeling the protein using anti-CD44 antibody and
189 performing Stochastic Optical Reconstruction Microscopy (STORM) in fixed cells (Fig S1d).
190 Endogenous CD44 at non-adherent membrane of the lamella, away from the adhesion surface,
191 also revealed a meshwork-like pattern of the protein at the meso-scale. STORM revealed a nano-
192 scale clustered distribution of CD44 laid out in a non-random mesoscale mesh-like pattern at the
193 cell membrane. Nearest neighbor distance analysis on CD44 clusters of multiple STORM images
194 further confirmed that the nano-clusters of CD44 are distributed in a manner distinct from
195 simulated randomized distribution of nano-clusters (Fig S1e). Therefore the meshwork like
196 pattern of CD44 reflects a hitherto unappreciated intrinsic organization of this protein in the
197 membrane of living cells.

198 In order to discriminate between single and/or multiple receptors being confined, as obtained in
199 the cartography, we then turned to dual color single particle tracking (DC-SPT), by using sub-
200 saturation labeling conditions (Kusumi *et al.*, 2005). For this, we labeled the SNAP-CD44-GFP
201 expressed in MEFs, using two different dyes (JF549-cpSNAP and JF646-SNAP ligands) and
202 tracked the motion of the receptor at 60 fps for 400 frames (6.7 sec) (Supp. Video1 and 2).
203 Localization maps created from superposing 400 frames of the DC-SPT images revealed typical
204 trajectories of Brownian diffusion interspersed with transiently confined trajectories of the single
205 color tracks (Fig. S2a). Analysis of >2500 trajectories reveal the existence of a large percentage
206 of transiently confined receptor ($68.4 \pm 2.3\%$) on the cell membrane with majority of confinement
207 time restricted to ≤ 3 seconds (Table 1 and Fig S2b). When we examined the DC-SPT data, we
208 observed a noticeable overlap of CD44 molecules (co-localized) that reside in confined regions
209 (Fig. 1f: purple arrowheads indicate black dots in the map, and corresponding trajectories). To
210 quantify specific co-localization, we determined the occurrence of co-localized events as a
211 function of inter-particle distances within defined areas (depicted as radius on the X axis in Fig
212 S2c), and compared the results to those of diffusion from randomized trajectories (obtained from
213 180 degrees flipped images of the same regions). A random distribution is expected to have an
214 inter-particle distance distribution index equal to 1, with values greater and smaller indicating

215 clustering and dispersion respectively (Clark and Evans, 1954). From the inter-particle distance
216 quantification, we defined co-localized particles, as those which exhibited inter-particle distances
217 (between two differently labeled SNAP-CD44-GFP molecules) less than 200 nm for 3
218 consecutive frames. We also observe a subset of these events to correspond to inter-particle
219 distance <100nm (a length scale more precisely matched with combined localization precision of
220 the fluorophores) (Fig 1f'). Interestingly, the length scale over which CD44 exhibits co-
221 localization corresponds to the length scale over which it exhibits transient confinement as is
222 evident from analyzing the step size distribution (Fig. 1g). We also quantified the co-localization
223 lifetime and find that individual co-localization event lasts for <100ms (Fig 1h). Temporal
224 analysis of localization events revealed recurrence of co-localization events at the same spatial
225 co-ordinates over a period of 400 frames (0-6.7 seconds) (Fig. 1i, color indicating time at which
226 co-localization occurred), indicating hotspots of trapping of same/different pairs of receptors.
227 These data thus indicate the existence of hotspots on the plasma-membrane that can both restrict
228 the diffusion of CD44 and recruit multiple CD44 molecules. Moreover, the cartography analysis,
229 STORM and DC-SPT data (Fig. S1d and S1e, 1f) suggest the formation of CD44 clusters that
230 might be organized in a meso-scale meshwork on the plasma membrane.

231 **The dynamic meso-scale meshwork of CD44 is composed of nanoclusters**

232 STORM imaging of endogenous CD44 in CHO cells as described above, as well as an earlier
233 study (Lakshminarayan *et al.*, 2014), provide evidence for the existence of nanoscale clusters of
234 CD44 at the plasma membrane. Moreover, CD44 exhibits a high incidence of co-localizations
235 (<200nm) in DC-SPT as well as spatially confined localizations that emerge as a mesh-like
236 pattern in the cartography analysis. Together, these observations motivated us to investigate the
237 clustering interactions of CD44 at the nano-scale using homo FRET microscopy (Ghosh *et al.*,
238 2012).

239 Fluorescence emission anisotropy based homo-FRET measurements probes the proximity of
240 fluorescently-tagged proteins at a molecular length scale ~ Forster's radius, (~5 nm for the GFP
241 fluorophore (Ghosh *et al.*, 2012)) on the living cell membrane, reporting molecular interactions
242 at a length scale ~10 times smaller than achievable resolution in STORM. Using this method we
243 identified regions of low and high anisotropy in the membrane of un-perturbed living cells in
244 four different cell types: COS-7 cells (Fig. 2a, S3d, S3d'), CHO cells (Fig. 3b, 3d), MEFs (Fig.
245 S3f, f') and MCF-7 (Fig S3e, e'), each of which has different properties. While CHO and MEFs
246 express endogenous CD44, COS-7 and MCF-7 cells have very low surface levels of endogenous
247 protein (Fig S3g), and both COS-7 and CHO cells do not synthesize a major ECM component,
248 HA, that can bind CD44 from the extracellular side (Shyjan *et al.*, 1996; Yang *et al.*, 2012). The
249 regions of low anisotropy correspond to an enrichment of CD44-GFP molecules at \leq 5 nm inter-
250 molecular distances, thus indicating the occurrence of nanometer scale encounters of CD44
251 molecules on the cell membrane at a steady state. These results corroborate the co-localization
252 observed by DC-SPT as well as spatially confined localizations observed in the cartography.

253 To ascertain the relationship between nano and meso-scale dynamic organization of CD44, we
254 expressed the SNAP-CD44-GFP construct in COS-7 cells to obtain fluorescence emission
255 anisotropy maps from the GFP tag on the SNAP-CD44-GFP, interleaved with single molecule
256 imaging data from the sub-saturation labeled SNAP tag, amenable for generating cartography.
257 We chose COS-7 cells since they exhibit low levels of CD44 at the cell surface and also upon
258 ensuring that these cells exhibit nano-clustering of ectopically expressed CD44-GFP (Fig S3d,
259 S3d' and S3g) (Jiang *et al.*, 2002; Yang *et al.*, 2012). We selected different anisotropy ROIs and
260 super-imposed the corresponding spatial coordinates of individual molecules integrated over 40
261 frames (20 frames preceding and 20 frames following the anisotropy image) (Fig. 2b, 2c). We
262 restricted our analysis to windows of 40 frames around an anisotropy image to reduce temporal
263 variations that might occur between the anisotropy and cartography (see Methods). We then
264 identified spatially restricted enriched localizations, termed ‘localization hotspots’ on the
265 cartography maps and classified these ‘localization hotspots’ according to the corresponding
266 anisotropy value (see experimental Methods and Fig. 2c, c'. c'', 2d). A significantly higher
267 fraction of localization hotspots were localized to regions of low anisotropy and correspondingly
268 such localization hotspots were consistently depleted from the high anisotropy regions when
269 compared to randomly dispersed localizations (Fig. 2e). These data indicate that the meso-scale
270 regions observed on the cartography overlaps with the regions of increased nanoscale clustering
271 of the receptor. As a whole, our results reveal a multi scale organization of CD44 on the cell
272 membrane with the distribution of nanoscale clusters correlated to the meso-scale meshwork.
273 This motivated an exploration of the mechanism behind the formation of the nano-clusters of
274 CD44.

275 **The extra- and intra-cellular domains of CD44 independently affect nanoclustering of**
276 **CD44 at the plasma membrane**

277 To probe the mechanism(s) responsible for the organization of CD44 molecules at nanoscale
278 proximity, we examined both intensity dependence and spatial anisotropy distribution of various
279 mutants of CD44-GFP (Fig. 3a, c, e; Table 2) for the description of the different constructs used
280 expressed in HA deficient CHO cells, by fluorescence emission anisotropy based homo-FRET
281 microscopy. Fluorescence emission anisotropy of CD44-GFP was intensity dependent indicating
282 a concentration dependent change potentially due to: (a) protein-protein interactions, (b)
283 potential dilution by endogenous CD44, (c) combination of both (Fig. 3b). The later possibility
284 was confirmed by using MCF-7 cells which have very low levels of cell surface CD44, where
285 fluorescence emission anisotropy of CD44GFP exhibited visibly lower intensity dependence
286 while at the high intensity range, it became concentration dependent (Fig S3e, e'). These
287 observations suggest that at the lower expression range of CD44-GFP in cells with significant
288 endogenous CD44, the intensity dependence of its anisotropy is a convolution of both, dilution
289 by endogenous unlabelled protein as well as concentration-dependent protein-protein
290 interactions. However, at higher levels of expression, protein-protein interactions and trivial
291 density dependent FRET may contribute to the intensity dependence of anisotropy. Consistent

292 with this, deletion of the ECD of CD44 (CD44TmICD-GFP) resulted in an increase in anisotropy
293 and reduced its intensity dependence (Fig. 3a, b), consistent with an attenuation of concentration
294 dependent interactions as compared to the full length receptor in CHO cells. While these cells do
295 not synthesize HA (Shyjan *et al.*, 1996), CD44 expressed on the surface of these cells can still
296 bind galectins (Lakshminarayan *et al.*, 2014) and may have other protein-protein interactions
297 mediated by the ECD of the receptor. These interactions could lead to a concentration-dependent
298 clustering, which is reduced by deletion of the ECD. Thus, the prominent intensity dependence
299 and lower fluorescence emission anisotropy exhibited by the full length receptor as compared to
300 the mutant likely results from ECD interactions of CD44, impacting its nano-scale organization.

301 To ascertain if the deletion of the ECD completely abolished CD44 nano-clustering, we
302 measured the change in anisotropy of the fluorescently labeled CD44TmICD protein upon
303 dilution of fluorophores by photo-bleaching. Since enhanced GFP is capable of reversible photo-
304 bleaching, giving rise to artifacts in bleaching-based homo-FRET measurement (Sinnecker *et al.*,
305 2005), we resorted to a different strategy for labeling the truncated CD44 with a fluorophore
306 exhibits reduction in energy transfer efficiency upon destruction of FRET competent
307 fluorophores by bleaching (Sharma *et al.*, 2004). We designed a chimeric Folate Receptor (FR)-
308 tagged version of the ECD truncated protein (Fig. S3a). This chimeric construct was expressed in
309 CHO cells and labeled with a fluorescently labeled folate analog (PLB^{TMR}: N^ω-pteroyl-N^ε-
310 Bodipy^{TMR}-L-lysine) (Goswami *et al.*, 2008), and then imaged while photo-bleaching the labeled
311 cells. If the labeled proteins are clustered, the emission anisotropy of FR-CD44TmICD should
312 increase since photo-bleaching reduces the concentration of fluorescent proteins engaged in
313 energy transfer (Sharma *et al.*, 2004). PLB^{TMR}-labelled FR-CD44TmICD exhibited an increase
314 in emission anisotropy upon photo-bleaching (Fig. S3b, c), indicating that the ECD truncated
315 protein retains the ability to engage in nanometer scale homomeric interactions at the plasma
316 membrane. The slope in the anisotropy plot is an indication of the extent of nanoclustering, i.e.,
317 higher the slope, the greater is the extent of nanoclustering (Sharma *et al.*, 2004). Overall these
318 results indicate an inherent ability of CD44TmICD to nanocluster on the cell membrane, and the
319 extent of clustering in CD44 is also modulated by interactions in the extracellular milieu.

320 The findings described above led us to investigate the role of the ICD in CD44 nanoclustering.
321 For this, we measured the fluorescence emission anisotropy of the full-length receptor (CD44-
322 GFP) and a CD44 mutant lacking only the ICD or cytoplasmic tail (CD44ECDTm-GFP) (Fig.
323 3c). The results indicated that the full-length wild type protein is clustered to a greater extent
324 compared to the ICD truncated protein, as indicated by the lower anisotropy values obtained with
325 the full-length protein (Fig. 3d). The truncated protein still retains a concentration-dependent
326 anisotropy, consistent with the possibility of passive interactions affecting its nano-clustering.
327 Similar increase in anisotropy values were obtained in COS-7 and MCF-7 cells transfected with
328 the same constructs (Fig. S3e, e'), indicating that the results obtained in the CHO cells (S3d, d'),
329 were minimally affected by the endogenous, unlabeled CD44 population at the cell surface.
330 Consistent results were also obtained in MEF cells that secrete HA and express significant levels

331 of endogenous CD44, indicating that the disruption of nano-clustering due to loss of the ICD in
332 these cells is strong enough to manifest as significant increase in anisotropy, in-spite of the
333 presence of the polymeric ligand HA in the extra-cellular milieu as well as potential fluorophore
334 dilution due to co-clustering of labeled CD44 with endogenous unlabelled CD44 proteins (Fig
335 S3f, f').

336 To further validate the clustering potential of the cytoplasmic domain, we deleted the entire ICD
337 in the CD44TmICD-GFP construct to create a transmembrane domain only protein (CD44Tm-
338 GFP) (Fig. 3e). We found that the anisotropy of the resultant protein increased compared to the
339 CD44TmICD-GFP (Fig. 3f), consistent with the clustering potential of the ICD. Differences in
340 nanoclustering in the presence and absence of the ICD were further corroborated by comparative
341 photo-bleaching analysis of folate receptor (FR) tagged FR-CD44TmICD and the truncated FR-
342 CD44Tm in CHO cells. We found that FR-CD44TmICD is clustered to a greater extent than FR-
343 CD44Tm (Fig. S3a, b, c), as indicated by a reduction in the slope of the 'anisotropy vs.
344 normalized intensity' curve of the trans-membrane FR-CD44Tm as compared to the FR-
345 CD44TmICD protein.

346 The results show that ECD and ICD independently affect CD44 nanoclustering. The ECD has a
347 greater impact in establishing passive interactions with partners on the cell membrane giving rise
348 to a strong intensity/ expression level dependent clustering of CD44 at the cell surface. Even
349 though, the transmembrane region appears to have small but detectable ability to nanocluster the
350 receptor (due to a minor residual slope in the photo-bleaching analysis), it is the ICD that
351 strongly enhances the nano-clustering ability of CD44.

352 **CD44 nanoclustering correlates with its tethering strength on the plasma membrane**

353 To further understand how CD44 nanoclustering affects the lateral diffusion of the receptor we
354 carried out SPT at sub-saturation labeling conditions (~30nM) on the full length SNAP-CD44-
355 GFP (Supp. Video 3 and 4), and the truncated SNAP-CD44TmICD-GFP (Supp. Video 5) and
356 SNAP-CD44Tm-GFP (Supp. Video 6) constructs in MEFs cells (Fig. 4a). These cells are also
357 ideally suited for testing the effect of the extracellular influence of HA which may affect CD44
358 dynamics at the membrane. Individual trajectories for the three different constructs were
359 obtained (Fig. 4b, Fig S4a) and the fraction of mobile trajectories were quantified (Fig. 4c;
360 calculated from escape probability of molecules in MEFs; Fig. S4c, Fig. S4d are in COS-7 cells;
361 Table 1); trajectories with diffusion coefficients $< 0.02\mu\text{m}^2/\text{s}$ were defined as immobile. Deletion
362 of the ECD increased the fraction of mobile receptors as compared to the full length protein (Fig.
363 4c), an effect that became even more pronounced with further removal of the ICD. Moreover,
364 analysis of the transient confinement areas showed tighter regions of confinement for the SNAP-
365 CD44-GFP and SNAP-CD44TmICD-GFP as compared to the SNAP-CD44Tm-GFP mutant
366 (Fig. 4d, Fig. S4e and Table 1) and the overall diffusion coefficients were significantly slower
367 for the full length receptor (Fig. 4e, Table1). The results indicate that interactions by the ECD
368 ensure slower diffusion and the cytoplasmic domain ensures both slower diffusion as well as

369 tighter confinement of CD44, at the plasma membrane. The difference between the wild type
370 protein and mutant lacking ECD is more pronounced in MEFs compared to COS-7 cells,
371 potentially owing to the presence of HA in the matrix of MEFs, consistent with the observations
372 made in the earlier study by Freeman et al (2018).

373 To further elucidate the consequences of the differences in tethering strength of the wild type and
374 the transmembrane mutant as observed in the single color SPT experiments, analysis of co-
375 localization events and quantification of inter-particle distance using DC-SPT, on both the full
376 length receptor and the transmembrane mutant lacking both the ECD and ICD, further
377 corroborated that interactions by these domains can affect the co-localization propensity of the
378 protein (Fig. S2e, S2e', S2f, S2f'). Together with the anisotropy data (Fig. 3, Fig. S3) these
379 results point to a strong correlation between the degree of CD44 nanoclustering and its tethering
380 at the cell membrane: the full length receptor exhibits the strongest nanoclustering (as derived
381 from the fluorescence anisotropy analysis) and tighter confinement and/or tethering at the cell
382 membrane. On the other hand, deletion of both the ECD and cytoplasmic tail reduces
383 nanoclustering and increases the mobility of the receptor, with reduced tethering at the
384 membrane (Table 1).

385 **Meso-scale organization of CD44 is influenced by its cytoplasmic interactions**

386 Since CD44 nanoclustering is spatially correlated to its meso-scale distribution, we then tested
387 whether alteration in the nanoclustering potential of the different mutants correlates with the
388 manifestation of any defects in their meso-scale organization. SNAP-CD44-GFP, SNAP-
389 CD44TmICD-GFP and SNAP-CD44Tm-GFP constructs were expressed in MEFs, exogenously
390 labeled and imaged at a temporal resolution of 10 fps as described earlier, in order to generate
391 cartography of the different constructs (Fig. 5a). Visual inspection of the cartography already
392 show more tightly bound localizations in the case of the full length receptor and a larger number
393 of dispersed localizations for the SNAP-CD44Tm-GFP mutant. Comparison of the confinement
394 areas revealed similar confinement strength for the full length receptor (0.028 ± 0.013 μm^2) and
395 the mutant lacking the ECD (0.027 ± 0.013 μm^2) (Fig. 5b, c), indicating that the ECD does not
396 play a major role on the meso-scale organization of the receptor. Consistent with these results,
397 we did not find significant differences on the fractional number of localizations found on the
398 meshwork between the full length receptor (SNAP-CD44-GFP) and the mutant lacking the
399 ECD (SNAP-CD44TmICD-GFP) (Fig. 5d). In contrast, the mutant lacking the cytoplasmic tail as
400 well as the ECD (SNAP-CD44Tm-GFP) exhibited larger confinement areas (0.032 ± 0.013 μm^2)
401 (Fig. 5b,c) and a significantly lower number of localizations associated to the meshwork as
402 compared to the full length receptor (SNAP-CD44-GFP) or the mutant lacking the ECD alone
403 (SNAP-CD44TmICD-GFP) (Fig. 5d). This result strengthens the observation from SPT, that, the
404 cytoplasmic domain mediates tight confinement of the receptor at the plasma membrane.

405 We also performed similar experiments in HA deficient COS-7 cells and obtained comparable
406 results (Fig. S5). Since the confinement areas and number of localizations associated to the

407 meshwork result from multiple re-visiting and/or arrest of the receptor to the underlying
408 meshwork, these results strongly suggest that the mutant lacking both the ECD and the
409 cytoplasmic tail (SNAP-CD44Tm-GFP) compared to the mutant lacking the ECD alone (SNAP-
410 CD44TmICD-GFP), is less tethered to the meshwork. Of note, we also performed simulations of
411 random localizations and overlaid them to an experimentally obtained meshwork to obtain a
412 “basal” fraction of localizations that are stochastically found over the meshwork (labeled as
413 random in Fig. 5d). Comparison with the *in-silico* generated data revealed that even in the
414 absence of the cytoplasmic tail, the SNAP-CD44Tm-GFP mobility is somewhat constrained by
415 this underlying mesh albeit to a lower extent than the cytoplasmic domain containing
416 counterparts. Therefore, our results strengthen the arguments for cytoplasmic interactions as a
417 major player in orchestrating the nano- and meso-scale organization of CD44. Since the
418 cytoplasmic tail of CD44 interacts with multiple cytoskeletal adaptor proteins such as ezrin and
419 ankyrin (Bourguignon, 2008; Mrass *et al.*, 2008), our results, suggest that CD44 nanoclustering
420 might be induced by its tethering to the actin cytoskeleton. This finding resonates with the
421 recently published results of CD44 in macrophages where diffusion characteristics of the protein
422 are affected by tethering to the cytoskeleton mediated by ezrin (Freeman *et al.*, 2018) and leads
423 us to investigate the role of the actin cytoskeleton in the nano-clustering as well as the meso-
424 scale organization of the protein.

425 **Nanoclustering of CD44 is regulated by actin dynamics**

426 Previous work has shown that actin binding confers the ability of proteins to associate with the
427 actomyosin-clustering machinery in living cells. Here, dynamic actin filaments driven by
428 myosin, propel the formation of actin asters, driving the generation of clusters of proteins that
429 associate with these structures (Gowrishankar *et al.*, 2012). Since CD44 has been shown to
430 engage with the cytoskeleton by binding to ezrin and ankyrin via its cytoplasmic tail
431 (Bourguignon, 2008; Mori *et al.*, 2008; Donatello *et al.*, 2012), we investigated whether
432 actomyosin perturbations would affect the clustering of the receptor. Here we investigated the
433 effects of actomyosin perturbations in CHO cells, since the ICD of CD44 was found to support
434 nano-clustering of CD44 in all the cell types tested. Firstly, we treated CHO cells with the actin
435 filament stabilizer Jasplakinolide (Jas) to create blebs which represent membranes devoid of the
436 dynamic actin cortex (Jaumouillé *et al.*, 2014). Fluorescence emission anisotropy of CD44-GFP
437 on blebs of Jas-treated cells was higher compared to the flat membranes of untreated cells (Fig.
438 6a). This also holds true for the CD44TmICD-GFP mutant, which is devoid of the extra-cellular
439 domain, (Fig. S6a). These observations strongly suggest that the interactions with a dynamic
440 actin cortex (absent in blebs), is a key determinant of nano-clustering of the protein at the cell
441 surface. Moreover, treatment of cells with a cocktail of inhibitors (ML-7 and Y27632/ H11152)
442 (Totsukawa *et al.*, 2000; Saha *et al.*, 2015) that inhibit myosin regulatory light chain
443 phosphorylation of class II non-muscle myosins, thereby inactivating them, resulted in a loss of
444 nano-clustering of the CD44-GFP, as indicated by the increase in emission anisotropy of CD44-
445 GFP compared to control cells (Fig. 6b and Fig. S6c: where similar results are also obtained for

446 the ECD deleted mutant CD44TmICD-GFP). This result indicates that a dynamic actomyosin-
447 driven mechanism facilitates nanoclustering of CD44 at the plasma membrane.

448 CD44 has been shown to associate with the actin cytoskeleton binding proteins, ezrin and
449 ankyrin (Bourguignon, 2008; Mrass *et al.*, 2008) while the last 15 amino acids of CD44 confers
450 it the ability to interact with talin1, vinnexin, LMO1 and IQGAP1, all of which are potential
451 interactors of the actin cytoskeleton as well as multiple other proteins (Skandalis *et al.*, 2010). To
452 understand whether CD44 is associated with any particular adaptor protein that confers it with a
453 cytoskeleton-sensitive clustering, we used two strategies. One where we perturbed the
454 cytoskeletal coupling of CD44 using a small molecule inhibitor of ezrin function, and the other
455 using site directed mutagenesis to specifically generate mutants that would be deficient in one or
456 more actin binding domain: CD44ΔERM (deletion of ezrin binding site), CD44ΔAnk (deletion
457 of ankyrin binding site), CD44ΔEA (both the ezrin and ankyrin binding sites are deleted) and
458 CD44Δ15 (deletion of the last 15 amino acids), tagged to GFP on the cytoplasmic side (see Table
459 2; Fig. 6d).

460 When we inhibit ezrin function using the small molecule inhibitor of ezrin (NSC668394), it
461 resulted in an increase of the fluorescence emission anisotropy of CD44 (Fig 6c), indicating the
462 importance of ezrin function in CD44 nanoclustering. Similar effects were also observed for the
463 CD44TmICD-GFP mutant (Fig. S6b). However, when we expressed the various truncation
464 mutants in cells, homo-FRET based anisotropy measurements revealed minimal difference in
465 steady state anisotropy distribution between the full length receptor and the mutant proteins in
466 MEFs, CHO cells (Fig. S7a, S7a', respectively), and validated in COS-7 and MCF-7 cells (Fig.
467 S7a'' and Fig. 6e) to ensure that smaller differences in the nano-clustering of the mutants
468 compared to the wild type protein were also detected. This suggests that there are redundant
469 ways of the mutant protein to associate with the actin-myosin machinery, and it is only when the
470 entire cytoplasmic tail is deleted that this engagement is lost and nanoclustering abrogated.

471 **Meso-scale organization and turnover of CD44 is regulated by formin-nucleated actin
472 dynamics**

473 The diffusion of CD44 has been suggested to be sensitive to formin-generated actin filaments
474 (Freeman *et al.*, 2018) since upregulation of Rho activity (which in turn regulates formin
475 activity), influences the diffusion behavior of CD44. In order to test which actin nucleation
476 machinery is responsible for CD44 nanoclustering, we inhibited formin and Arp2/3 mediated
477 actin filament-nucleation activity in CHO cells using small molecule inhibitors, SMI-FH2 and
478 CK-666 respectively. CD44 nanoclustering was much more sensitive to inhibition of formin
479 nucleation (Fig 7a) compared to Arp2/3 perturbation (Fig S6d). These results indicate that
480 formin-nucleated F-actin filaments not only influence the mobility of the receptor as reported
481 previously (Freeman *et al* 2018), but importantly, also promotes its nanoclustering, and as a
482 consequence may also influence its meso-scale organization.

483 To ascertain the effect of formin perturbation on the meso-scale meshwork we conducted high
484 density single particle imaging of SNAP-CD44-GFP, as described before, in COS-7 cells where
485 we earlier elucidated the co-existence of nanoclusters with meso-scale domains. Our results
486 indicate that meso-scale meshwork of CD44 is perturbed in formin perturbed cells. Although the
487 confinement area distribution is not significantly altered in formin perturbed cells compared to
488 DMSO treated cells (Fig 7e), the fraction of localization events detected along the meshwork in
489 formin-treated cells (Fig 7b, 7c, 7d) is significantly reduced which is reminiscent of the
490 distribution of the SNAP-CD44Tm-GFP that lacks both the cytoplasmic and exoplasmic
491 domains, and is also defective in nanoclustering.

492 A striking difference in the formin-treated cells compared to the untreated was in the turnover
493 time of the meso-scale domains. Time evolution analysis of the meso-scale domains revealed
494 that while untreated (vehicle treated) cells exhibited a visible disassembly/reorganization of the
495 mesoscale domains, formin-treated cells exhibited a marked persistence of meso-scale domains
496 (Fig 7d) during the observed time window. These results indicated that dynamic remodeling of
497 the meso-scale meshwork is dependent on formin activity, consistent with the suggestion that
498 formin driven actin polymerization is a key contributor to dynamic remodeling of the actin
499 meshwork (Fritzsche *et al.*, 2013).

500

501 **Discussion**

502 CD44 has a multitude of extra-cellular and cytoplasmic interactions that makes it an ideal
503 candidate for studying regulation of the organization of a typical membrane protein. Here we
504 have used non-invasive methods to study nanoclustering and dynamics of CD44 using live-cell
505 compatible techniques such as homo-FRET imaging and SPT methods to generate spatial maps
506 of the protein at the plasma membrane at the nano and meso-scale. Previous studies have
507 attempted to understand CD44 organization by multiple approaches, from characterizing graded
508 distribution of GP-80 in motile fibroblasts (Ishihara *et al.*, 1988) to super-resolution imaging
509 wherein CD44 was found clustered at the cell membrane using STORM, and extracellular
510 galectins were found responsible for their nanoclustering (Lakshminarayan *et al.*, 2014). In
511 another study, the ICD was implicated in supporting mobile clusters at the membrane based on
512 hetero-FRET measurements, brightness number analysis, and biochemical cross-linking studies
513 in mammalian cells (Wang *et al.*, 2014). In a more recent study, SPT on CD44 revealed that
514 CD44 diffusion is confined to pickets and fences, and may indeed determine the corralling of
515 other membrane proteins such as the Fc γ RIIA (Freeman *et al.*, 2018).

516 The results reported here provide a comprehensive understanding of the organization of CD44 by
517 combining the determination of distribution and diffusion behavior of the protein across varying
518 spatial scales at the plasma membrane of living cells. Cartography analysis (to probe the meso-
519 scale organization of the protein) and its correlation with anisotropy measurements (reporting on

520 nanoclustering), for the first time, bridges the gap between SPT based diffusion studies and the
521 steady-state nanocluster detection method of homo-FRET. Complemented with the cartography
522 analysis of single particle localizations and nanocluster distribution in STORM images, the
523 combination of these approaches enabled us to build a hierarchical framework for the
524 organization of a type-1 transmembrane protein at the plasma membrane (Fig. 8). We find that
525 actomyosin templated nano-clusters of CD44 spatially enrich the receptors along a meso-scopic
526 meshwork pattern, laid down by frequent localizations of the protein at the plasma membrane.
527 These nanoclusters resemble actomyosin-based clusters observed for model transmembrane
528 proteins with actin-binding domains (Chaudhuri *et al.*, 2011; Gowrishankar *et al.*, 2012).

529 The correlation between nano-scale and meso-scale organization of the protein and DC-SPT,
530 reconciles the apparent heterogeneity in diffusion modes of molecules to confinement driven by
531 clustering at spatially separated domains on the plasma membrane. From our meso-scale
532 organization and SPT studies the regions on the membrane where the receptors are transiently
533 confined/ temporarily arrested, correspond to regions of receptor co-localization as well as
534 potentially, ‘localization hotspots’. These regions have an area ~100-300 nm, outlining a
535 fragmented meshwork-like pattern. Moreover, the timescale of turn-over of localization hotspots
536 (Figure 7d) corresponds to the time scale of transient confinement of single molecules of CD44
537 (~few (<3)sec; Figure 2). The receptor transiently associates with such regions and eventually
538 unbinds to diffuse again, often guided by the underlying actin cytoskeleton-laid fences, until it
539 encounters another suitable site at the membrane-cytoskeleton interface to be arrested again.
540 Thus, we propose that our localization hotspots could correspond to the picket fences described
541 earlier (Fujiwara *et al.*, 2016; Murase *et al.*, 2004).

542 To ascertain whether actin dynamics-driven mechanisms could template the nano and the meso-
543 scale organization of CD44, we investigated the role of formin-nucleation based actin
544 polymerization. As nanoclustering of CD44 is lost upon formin perturbation, we also observe
545 concomitant lowering of the CD44 localizations detected on the underlying meshwork. This is
546 reminiscent of the transmembrane domain of CD44 (CD44Tm-GFP) that cannot bind to actin.
547 Additionally the meso-scale domain turnover is remarkably slowed down. This is consistent with
548 previous studies that implicate the role of formin activity in the turnover of the underlying
549 cortical actin meshwork (Fritzsche *et al.*, 2013). These findings lead us to an important
550 conclusion that meso-scale meshwork of CD44 arises as a consequence of the association of
551 CD44 with the underlying actin cortex, and it is likely that the formin-mediated actin nucleation
552 and turnover of the cortical actin meshwork contributes to the pool of dynamic actin necessary to
553 template the nano-clustering of the protein as proposed previously (Chaudhuri *et al.*, 2011). This
554 also provides a natural explanation for the enrichment of CD44 nano-clusters along the meso-
555 scale mesh which appears to mirror the cortical actin cytoskeleton mesh. At this time it should be
556 noted that further experiments are necessary to prove the relationship between the cortical actin
557 meshwork and the mesoscale meshwork of CD44.

558 Nano- clustering of CD44 is also abrogated upon removal of the cytoplasmic domain of CD44
559 (in Fig. 3f). This finding is further supported by cytoskeletal sensitivity of nanoclustering of the
560 protein. The sensitivity of CD44 nanoclustering particularly to formin and ezrin perturbation is
561 well aligned with the changes in CD44 diffusion upon similar perturbations, observed in SPT
562 recently (Freeman *et al.*, 2018). In that study, formin and ezrin mediated picketing function of
563 CD44 had been implicated in regulating Fc γ RIIA dynamics and function in phagocytosis.
564 Involvement of similar molecular machinery in nanoclustering as reported here strongly suggest
565 that the picketed CD44 receptors are nanoclustered by the underlying dynamic actin filaments
566 generated as a consequence of formin-driven actin polymerization, and driven by myosin
567 activity.

568 In this study we have attempted to gain insights into specific interactions mediated by the ECD
569 and ICD of CD44 in determining its diffusion and organization at the cell membrane. We find a
570 strong correlation between nano-clustering potential and the tethering strength for the different
571 truncation mutants of CD44 at the cell surface. Although removal of the ECD has little effect on
572 the confinement radius of CD44, removal of the ICD from the mutant already lacking the ECD
573 (CD44Tm-GFP) has a stronger effect on its confinement as well as localization on the meshwork
574 at the mesoscale (Fig. 4d, Fig. 5b and Fig 5d). The ICD thus emerges as a stronger determinant
575 for tighter confinement of CD44 at the membrane and as the domain that augments the registry
576 of the mesoscale distribution with a meshwork pattern. Together with the result suggesting that
577 the ECD deleted mutant still exhibits acto-myosin sensitive nano-clustering (Fig. S6), we believe
578 that the meso-scale organization is templated on an underlying cortical actin mesh and serve to
579 orchestrate the emergence of transient nanoclusters in its proximity.

580 The meshwork pattern that we observe may have a larger significance, since SNAP-CD44Tm-
581 GFP and SNAP-CD59-GPI, proteins that are not directly coupled to actin, also exhibit
582 meshwork-like appearance at the meso-scale. Spatially restricted diffusion patterns of the
583 Fc γ RIIA which cannot interact with actin but associates with a CD44 defined mesh (Freeman *et*
584 *al.*, 2018), also exhibit non-random distribution at the meso-scale. This is likely to be mediated
585 via lateral association of their membrane anchoring domains with actin-binding membrane
586 pickets, or confinement within membrane compartments demarcated by picketing proteins.
587 These data supports the picture of a tightly coupled actin-membrane composite where even
588 proteins that do not couple to actin are impacted by the patterning of the underlying meshwork.

589 With further sophistication of imaging and analysis methods, the correlation of cartography and
590 anisotropy can be studied with higher temporal resolution. While our study is currently restricted
591 to cytoskeletal interactions of CD44, there remains scope for detailed analysis of the influence of
592 the exo-plasmic interactions with molecules such as galectins and HA. Simultaneous imaging of
593 signaling and cytoskeletal adaptors along with CD44 can open up possibilities for exploring
594 potential outside-in (ligand binding can lead to signaling adaptor recruitment) as well as inside-
595 out signaling (ankyrin binding can influence hyaluronic acid binding (Zhu & Bourguignon,
596 2000)) at the nano and meso-scale domains. Since CD44 is implicated in processes such as

597 metastasis, phagocytosis or lymphocyte rolling (Donatello et al., 2012; Hanke-roos et al., 2017;
598 Hill et al., 2006; Vachon et al., 2018), they provide physiologically relevant scenarios where
599 local and global organization of CD44 may have an impact on relevant physiological scenarios.

600 We believe that the spatial organization of CD44 determined by the dynamic remodeling of the
601 actin cytoskeleton, define dynamic fences that partition the receptor in different regions of the
602 cell membrane. These fences have been implicated in the phagocytic function of Fc γ RIIA, and
603 the endocytosis of DC-Sign receptor, which are receptors that do not exhibit direct interaction
604 with the actin cytoskeleton (Freeman et al. 2018; Torreno-pina et al. 2014). In conclusion, our
605 approach and findings provide a multi-scale view of organization of a trans-membrane protein at
606 the cell membrane, revealing a hierarchical framework where actomyosin-driven nano-clusters
607 emerge in close association with an underlying dynamically remodeling meso-scale meshwork,
608 enabling the cells to spatio-temporally regulate receptor organization.

609 **Materials and Methods**

610 **Plasmids, cell lines and antibodies**

611 CD44-GFP, CD44ECDTm-GFP, CD44TmICD-GFP cloned in p-EGFP N1 vector were gifts
612 from Rob Parton in University of Queensland Australia. CD44 Δ ERM-GFP, CD44 Δ Ank-GFP,
613 CD44 Δ EA-GFP and CD44 Δ 15-GFP constructs were generated by site directed mutagenesis
614 using CD44-GFP as the template in the same backbone. SNAP and FR tagged CD44 constructs
615 were designed and cloned into a lentiviral pHR transfer backbone and cloned between MluI and
616 BamHI/ NotI sites using Gibson Assembly method. All constructs were sequenced and verified
617 using appropriate primers (Table 2). SNAP CD59 GPI was obtained from Addgene (Addgene
618 #50374). Sequences and primer sequences will be made available upon request. Cell line
619 expressing FR-CD44TmICD and FR-CD44Tm were generated by transfecting and selecting
620 transfected cells by staining for FR expressing cells with anti folate receptor MOV19 antibody
621 using fluorescence assisted cell sorting (FACS). CHO (Chinese Hamster Ovary) cells were
622 cultured in Ham's F12 media (HiMedia, Mumbai, India); MCF-7, COS-7 (African green monkey
623 kidney cells) and MEFs (Mouse embryonic fibroblasts) were cultured in DMEM High-Glucose
624 (GibcoTM, 21720-024). The media was supplemented with fetal bovine serum (FBS) (GibcoTM,
625 16000044) and a cocktail of Penicillin, Streptomycin, L-Glutamine (PSG) (Sigma, G1146-
626 100ml). MEFS, MCF-7, COS-7 or CHO cells were seeded sparsely and grown for 2 days on
627 35mm cell culture dishes fitted with a glass bottom coverslip for imaging. Cells were transfected
628 with the different CD44 plasmids, 12-16 hrs before imaging, using Fugene[®] 6 Transfection
629 reagent (E2692, Promega).

630 **Antibody labeling and expression level estimation**

631 Endogenous and over-expressed CD44 on the cell surface in the different cell lines, plated on
632 cover-slip bottom 35mm dishes, after 2 days of plating, were labeled using IM7 antibody (14-
633 0441-82, eBioscienceTM) on ice for 1hour followed by incubation with anti-Rat secondary

634 antibody tagged to Alexa 633 (A21094, Life technologies) on ice for 1hour. The antibodies were
635 diluted in 10% FBS containing culture media (DMEM). The cells were washed and imaged in
636 HEPES buffer and imaged using a 20X objective on a spinning disc microscope. Mean intensity
637 from ROIs drawn around cells was quantified using ImageJ.

638 **Actomyosin perturbation**

639 Blebs were generated using 14 μ M Jasplakinolide (Thermo Fischer, Invitrogen, catalog no.:
640 J7473) for 15min. Formin perturbation was carried out using 10-25 μ M SMI-FH2 (Calbiochem,
641 catalog no.: S4826-5MG) for 15min-1 hour based on experimental requirement. Arp2/3
642 inhibition was carried out using 200uM CK-666 (Sigma Aldrich, Catalog no: SML0006 5MG)
643 treatment for 3 hours. Ezrin perturbation was carried out using the inhibitor NSC668394
644 purchased from EMD Millipore, (Cat. No: 341216-10MG). Cells were treated with 25 μ M of the
645 drug, for 1 hour. Myosin II perturbation was carried out using a cocktail of ML-7 (Sigma
646 Aldrich, Catalog no.: I2764) and Y27632 (Sigma Aldrich, Catalog no: Y0503-1MG) or H1152,
647 purchased from Tocris (Ctalog no.: 2414). Cells were treated with a cocktail of the ML-7 and
648 Y27632/ H1152 at a final concentration of 20 μ M of each, for 1hour. Due to the reversible nature
649 of the drugs acting on the target, imaging was carried out in the presence of the drug except in
650 the case of Jasplakinolide treatment. All drug treatments were carried out in HEPES buffer saline
651 containing 2mg/ml glucose at 37 degrees for the indicated time periods.

652 **STORM sample preparation and imaging**

653 CHO cells were plated on a 8-well Lab-Tek #1 chamber slide system (Nunc) at a density of
654 30000 cells/well. Cells were incubated at 37°C for 24 hours. After incubation, the samples were
655 fixed with 4% paraformaldehyde in PBS at room temperature for 20 min. After fixation,
656 blocking solution (3% w/v BSA in PBS) was applied for 30 min. Cells were labeled with rat-
657 anti-mouse-anti-CD44 primary antibody (Clone KM114, BD Pharmingen #558739) at a
658 concentration of 5ug/ml for 1 hour at room temperature. The corresponding secondary antibody
659 (anti-rat) was tagged with Alexa Fluor 647 (Invitrogen) as a reporter and with Alexa Fluor 405 as
660 an activator. The secondary antibody was incubated for 1 hour at room temperature. Cells were
661 stored in 1% PFA in PBS. The STORM buffer used was the same of Gómez-Garcia et al
662 (Gómez-García *et al.*, 2018): Glox solution (40 mg/ml Catalase [Sigma], 0.5 mg/ml glucose
663 oxidase, 10% Glucose in PBS) and MEA 10mM (Cysteamine MEA [Sigma Aldrich, #30070-
664 50G] in 360mM Tris-HCl). The imaging for STORM on endogenous CD44 from top surface in
665 CHO cells is from one experiment.

666 In order to study the nearest-neighbour distribution of clusters, we identified the clusters of
667 localizations based on intensity (i.e. high density of localizations) and determined the position of
668 the center of mass. With this information we calculate the NND for the experimental set. For the
669 simulations, we take the same identified clusters (keeping their size) and reshuffle them in space.

670 We repeat this process many times (100 times) to get more robust information on the simulated
671 NND.

672 **Live cell imaging for fluorescence emission anisotropy and cartography experiments**

673 All live imaging were interchangeably carried out, based on requirement, in one of the following
674 set-ups: (1) confocal Spinning disk microscope (for imaging blebs in 3-D) equipped with a
675 Yokogawa CSU-22 unit and 100x, 1.4NA Nikon oil objective, Andor technologies laser
676 combiner emitting 488nm and 561nm wavelength amongst others and Andor ixit+897 EMCCD
677 cameras. Images were acquired using Andor iQ2 software (2) TIRF microscope set-up equipped
678 with Nikon Eclipse Ti body, a 100X, 1.45NA Nikon oil objective, photometrics Evolve EMCCD
679 cameras, an Agilent laser combiner MCL400 (Agilent technologies) whose 488, 561nm and
680 640nm excitation wavelengths were used as necessary and μ Manager for image acquisition (3)
681 TIRF microscope setup equipped with Nikon TE2000 body, a 100X, 1.49NA Nikon oil
682 objective, EMCCD Cascade 512 cameras (photometrics Inc., Tuscon, USA), home-built laser
683 combiner equipped with 488 and 561nm lasers, and MetamorphTM / μ Manager for image
684 acquisition). Wherever necessary, live imaging was performed in a temperature controlled stage-
685 top incubator chamber with immersion thermostat, ECO Silver, from Lauda Brinkmann.

686 **Fluorescence Emission Anisotropy measurements**

687 We measure emission anisotropy of our protein of interest by labeling them with GFP or PLB,
688 both of which are suitable for fluorescence anisotropy measurement to report on Homo-
689 FRET(Sinnecker *et al.*, 2005; Ghosh *et al.*, 2012). Cells were imaged in HEPES buffer
690 containing 2mg/ml glucose on an inverted TIRF microscope using polarized excitation light
691 source. Emission was split into orthogonal polarization components using a polarization beam
692 splitter and collected simultaneously by two EM CCD cameras to detect polarization of emitted
693 fluorescence. Fluorescence emission anisotropy measurements were interchangeably carried-out,
694 based on requirement, in one of the dual camera equipped imaging systems described before.
695 Steady state fluorescence emission anisotropy was calculated as elaborated in Ghosh *et al*,
696 2012. The absolute value of anisotropy is a function of the effective numerical aperture of the
697 imaging system (Ghosh *et al.*, 2012). Since the effective numerical aperture is determined by
698 combinatorial effect of individual lenses in the light path of the microscope system, the absolute
699 anisotropy value of the same protein varied from one system to another. Also, since the different
700 experiments reported here have been conducted over several years, absolute values of anisotropy
701 for the same constructs would have varied based on the status of the optics in a given microscope
702 system. Hence, the measurements typically contained an internal control for sensitivity of
703 anisotropy change, which was generally measurement of the extent of anisotropy change
704 between the wild type CD44-GFP and CD44ECDTm-GFP (or CD44-TmICD-GFP and CD44-
705 Tm-GFP).

706 **Fluorescence anisotropy image analysis**

707 Fluorescence emission anisotropy of GFP and PLB tagged proteins was calculated using images
708 from the two cameras which were individually background corrected and the perpendicular
709 image G-Factor corrected (Ghosh *et al.*, 2012) to rectify effects of inherent polarization bias of
710 the imaging system using imaging software: ImageJ or Metamorph™. 20X20 or 30X30 pixel
711 ROIs were drawn to sample the cell membrane and anisotropy values from the specified regions
712 were obtained. Anisotropy maps were generated after aligning the images from the two cameras
713 and calculating pixel-wise anisotropy value as described in (Ghosh *et al.*, 2012), using a custom
714 code written in MATLAB (The Mathworks, Natick, MA). Code will be available upon request.
715 For data plotting, intensity was binned for appropriate intensity range and each data point
716 represents mean and error bar represents standard deviation of anisotropy corresponding to the
717 intensity bin. We ensured that data comparisons were done between conditions across similar
718 intensity range. Intensity range chosen was decided based on different microscope properties,
719 especially the bit depth and noise levels of the cameras. For representation calculated anisotropy
720 values from the intensity images of the parallel and perpendicular cameras have been plotted on
721 the Y axis as a function of the expression level, which is described as 'Total intensity in arbitrary
722 units' on the X axis. Here the total intensity is computed as a summation of the intensity
723 recorded in the parallel image and two times the intensity recorded in the perpendicular image as
724 described in Ghosh *et al.*, 2012.

725 **Labeling of SNAP tagged-CD44 membrane receptors**

726 MEFS, COS-7 or CHO cells were seeded sparsely and grown for 2 days on 35mm cell culture
727 dishes fitted with a glass coverslip at the bottom. Cells were transfected with the different SNAP
728 tagged CD44 plasmids 16-18hrs prior to the experiment using Fugene® 6 Transfection reagent.
729 Labeling were done with SNAP tag specific photo-stable fluorescent probes SNAP alexa 546,
730 SNAP-surface® 549 ($\lambda_{\text{ex}}/\lambda_{\text{em}}$: 560/575 nm, purchased from NEB, USA) or JF646-SNAP ligand
731 ($\lambda_{\text{ex}}/\lambda_{\text{em}}$: 646/664 nm) by incubating for 10 min at 37° C using dilution of 30 nM (for single
732 particle experiments) and 50-100nM (for cartography experiments) with 10% serum containing
733 F12 medium and then washed extensively with glucose-M1 buffer (150 mM NaCl, 5 mM KCl, 1
734 mM CaCl₂, 1 mM MgCl₂, 20 mM HEPES, pH 7.3; supplemented with D-glucose at 2 mg/ml) to
735 get rid of free dyes. The dyes were chosen to ensure they are spectrally different from GFP with
736 minimum bleed-through. Dual color labeling was done with JF549-cpSNAP ligand ($\lambda_{\text{ex}}/\lambda_{\text{em}}$:
737 549/571 nm) and JF646-SNAP ligand ($\lambda_{\text{ex}}/\lambda_{\text{em}}$: 646/664 nm) fluorophores by incubating for 10
738 min at 37° C with F12 serum medium at a mixed concentrations of 50 nM and 150 nM for the
739 respective dyes. Singly or dually labeled cells were subsequently washed and imaged at 37° C in
740 presence of HEPES buffer containing 2mg/ml glucose.

741 **Single particle tracking**

742 Video imaging of single fluorescent receptors on cell membrane were performed using a home
743 built, total internal reflection fluorescence (TIRF) microscope equipped with a Nikon Eclipse Ti
744 body and a Nikon 100X Apochromat 1.49 NA objective, with a C-MOS sensor based high-speed

745 camera (FASTCAM-SA1, Photron, Tokyo, Japan; (Shibata *et al.*, 2012; Hiramoto-Yamaki *et al.*,
746 2014; Komura *et al.*, 2016)) coupled to a two-stage micro-channel plate intensifier (C8600-03,
747 Hamamatsu Photonics, Hamamatsu, Japan) by way of an optical-fiber bundle. Single molecules
748 were observed at 16.7 ms (60 fps) temporal resolution with excitation laser of 561 nm of power
749 density $\sim 2.43 \text{ kW/cm}^2$, with a FWHM (full-width-half-maximum) of $333 \pm 13 \text{ nm}$ and pixel size
750 of 54 nm, in presence of an additional 1.5x lens in front of the camera. The localization precision
751 was estimated to be $\pm 28 \text{ nm}$. The precision was measured after immobilizing CD44 labeled with
752 SNAP-surface® 549 fluorescent probe, on MEFS cells, by fixing the cell membranes with 4%
753 paraformaldehyde and 0.1 % glutaraldehyde for 60 min at room temperature (Tanaka *et al.*,
754 2010). The precision was determined by fitting the centroid position from single molecules
755 using a 2D Gaussian function and calculated from radial standard deviation $\delta_r = (\delta_x * \delta_y)^{1/2} \approx \delta_x \approx$
756 δ_y of x, y-coordinates over time. Tracking of membrane molecules (x- and y- coordinates) were
757 determined using C++ based computer program as described previously (Fujiwara *et al.*, 2002;
758 Koyama-honda *et al.*, 2005). The mean-squared displacement (MSD) for every time frame for
759 each trajectory was calculated as per following equation:

760
$$MSD(n. \Delta t) = \frac{1}{N-n-1} \sum_{j=1}^{N-n-1} [x(j\Delta t + n\Delta t) - x(j\Delta t)]^2 + [y(j\Delta t + n\Delta t) - y(j\Delta t)]^2 \quad (1)$$

761 Where, Δt is the time increment, N is the number of frames of the trajectory, n is the number of
762 time increments, and x and y represent the particle coordinates. Then, the microscopic diffusion
763 coefficients (D_{2-5}) of individual trajectories were calculated through a linear fit performed at
764 short time lags (n = 2-5) using the equation

765
$$MSD(n. \Delta t) = 4D_{2-5}t + \Delta_0 \quad (2)$$

766 Where, the MSD intercept at zero time lag, Δ_0 is associated to the localization precision.

767 Mobile fractions and temporal confinement detection

768 Temporal confinement or Temporary Arrest of Lateral diffusion (TALL) were analyzed defining
769 parameters of detection circular radius and threshold residence time by using the algorithm
770 developed by Sahl *et al.* (Sahl *et al.*, 2010). Theoretically, simulated randomly diffusive
771 trajectories show false TALL of $\sim 5\%$ of total trajectory lengths. Therefore, the detection of
772 circular radius was set, based on calculating average diffusion coefficient ($0.3 \text{ } \mu\text{m}^2/\text{sec}$) of
773 mobile fractions of CD44 and probability of temporal confinement $< 5\%$ during Brownian
774 motion within, 10 frames of 16.7 ms exposure. In escape probability method, the probability
775 $P(r,t)$ that a particle diffusing with the diffusion coefficient D, remains confined within the circle
776 of radius r and the time interval t can be expressed as:

777
778
$$P(r,t) = 1 - \exp\left(\frac{-r^2}{4Dt}\right) \quad (3)$$

779
780

781 Data represented is pooled from two different replicates, which individually exhibited similar
782 trend. Choice of cells from which data has been represented was made based on optimal labeling
783 density and flatness of membrane morphology since imaging has been done in the TIRF mode.

784 Analysis was extended to determine the discrete probability density $P(\Delta r^2, \Delta t)$ by cumulative
785 square displacements, which will represent a sequence of spatial positions $\vec{r}(t)$ separated by
786 variable time lags Δt . The cumulative probability $P(\Delta r^2, \Delta t)$ is defined by equation (3), where α is
787 the time fraction of characteristic free diffusion with coefficient D , $r_{trap} = (\tilde{r}_{trap}^2 -$
788 $\sigma_r^2)^{1/2}$ corresponds to the trapping radius of the particle and σ_r is the experimental localization
789 error (Sahl *et al.*, 2010).

790

791
$$P(\Delta r^2, \Delta t) = \alpha [1 - \exp(\frac{-\Delta r^2}{4\sigma_r^2 + 4D\Delta t})] + (1 - \alpha) [1 - \exp(\frac{-\Delta r^2}{4\tilde{r}_{trap}^2})] \quad (4)$$

792 Probability density $P(\Delta r^2, \Delta t)$ observing for long steps were corrected with overlap integral of two
793 circles with radius R by $P_{track}(\Delta r, R)$ as described in (Sahl *et al.* 2010). Here we computed
794 $P(\Delta r^2, \Delta t)$ with increments $\Delta(\Delta t) = 16.7$ ms and $\Delta(\Delta r^2) = 50$ nm 2 .

795

796 Dual color trajectory analysis

797 Inter-molecular separation distance between CD44 molecules labeled with JF549 (green) and
798 JF646 (red) dyes was determined from the centroid locations of their dual color pair trajectories
799 within boundaries ranging from 25nm to 500nm radius using C++ based computer program
800 WinCol (Koyama-Honda *et al.*, 2005). Measurements were done with excitation lasers of 561
801 nm and 642 nm of power density ~ 2.43 kW/cm 2 and ~ 4.06 kW/cm 2 respectively, and detecting
802 signals simultaneously by two cameras after splitting emission signals using a 561/647 dichroic
803 mirror (Chroma Technology, 625DCXR) with corresponding emission band pass filters 593 ± 43
804 nm and 685 ± 40 nm. Localization accuracy of JF549 and JF646 dyes are ± 29 nm and ± 33 nm,
805 respectively while pixel size at image plane is 54 nm. Videos of the flipped green channel were
806 used to generate randomly encountered co-localizations. Co-localization was defined when
807 intermolecular distances were ≤ 200 nm for a minimum of 3 consecutive frames. The
808 displacement between co-localized frames was then calculated. The displacement and step size
809 distribution were thereafter compared with transiently confined frames, trajectories of mobile
810 fractions and all frames. Photo-bleaching analysis from individual spots of fluorophores did not
811 reveal any significant bleaching in the timescale reported for the lifetime of co-localization of the
812 protein (Fig. S2d). Data represented is pooled from two different replicates, which individually
813 exhibited similar trend. Choice of cells from which data has been represented was made based on
814 optimal labeling density and flatness of membrane morphology since imaging has been done in

815 TIRF mode. Total number of trajectories analyzed: SNAP-CD44-GFP = 27856, SNAP-
816 CD44Tm-GFP= 7516.

817 **Generation of cartography**

818 Cartography maps were generated from movies (1000 frames, 10 fps) recorded in TIRF mode as
819 explained in the previous section, using sub-saturation labeling conditions (50nM-100nM).
820 Identification of single molecules essentially corresponds to the identification of individual
821 fluorescent spots at each given time frame. For this, we apply two criteria: First, the spots should
822 have a size that is limited by diffraction, i.e. this corresponds to the PFS of the microscope.
823 Second: the intensity of each spot should be higher than the surrounding background. The
824 localization precision of each individual spot is given by the number of counts on that spot,
825 which in the case of our videos corresponds to ~ 20nm. The spatial (x,y) coordinates of the
826 labeled membrane receptors (for each of the constructs investigated) were thus retrieved from
827 each frame using a MATLAB routine based on Crocker (1996)(Crocker and Grier, 1996), with
828 sub-pixel accuracy. Finally, all the receptor coordinates of all frames were collapsed into a single
829 image, the so-called the cartography map. With this approach, not only one can access the
830 nanoscale organization of the labeled receptor, but also the mesoscale organization without the
831 need of reconnecting trajectories (Torreno-pina et al., 2014). Cartography maps were also
832 generated in different time windows, typically by integrating the localizations over 40 (Fig. 2) or
833 20 frames (Fig. 1e, Fig. 5). Experiment to obtain cartography maps of the receptor and the
834 mutants have been conducted at least twice in MEFs and once in COS-7 cells. Formin
835 perturbation and mesoscale organization imaging has been done at least twice and the
836 represented experiment here is done in COS-7 cells. SNAP-CD44-GFP cartography in CHO
837 cells and GPI mesoscale organization experiment has been conducted once.

838 **Analysis of the cartography maps**

839 Since the cartography maps are generated from localizations obtained as a function of time, their
840 evolution is dynamic. Therefore, we restricted our analysis to time windows of 2s by collapsing
841 all the localizations from sequential 20 frames, into a single, less crowded, cartography image.
842 Confinement areas were identified using the MATLAB routine DBSCAN (Density-Based
843 Spatial Clustering of Applications with Noise) with settings (epsilon = 1.0 and MinPts = 10).
844 Finally, we defined the confinement area as the area occupied by a cluster of localizations.

845 For the time-evolution analysis of the meso-scale domains, the time windows correspond to 2
846 seconds, i.e. 20 frames. Initially clusters are defined at the time window 0, (frames within f0 and
847 f0+19). Then, since we slide the window through the cartography map, at each time window we
848 move 100 ms in the cartography.

849 **Analysis of the interleaved anisotropy and cartography maps**

850 In order to compare the cartography maps with the anisotropy images, we performed interleaved
851 anisotropy imaging together with high density SPT, generating one anisotropy image before
852 starting SPT, a second anisotropy at frame 500 of the SPT recording and a final one once the
853 SPT recording was finished (after frame 1000). To reduce temporal variations on both the
854 anisotropy and cartography maps, we focused on anisotropy images at the corresponding frame
855 500 of the SPT movie. The anisotropy image was divided into small ROIs (22-by-22 pixels, with
856 a pixel size of 106nm). This was done in order to select only those regions where the plasma
857 membrane is completely flat and therefore the anisotropy arises exclusively from the lateral
858 distribution of the labeled receptors. In addition to this, for each ROI, we classified each pixel of
859 the anisotropy map into 3 three groups: low anisotropy (Low A), median anisotropy (Medium A)
860 and high anisotropy (High A).

861 We then took the localizations between frames 480 and 520 of the SPT movie and generated a
862 cartography map for each of the ROIs. We identified the clusters of localizations using the
863 MATLAB routine DBSCAN with settings (epsilon = 1.0 and MinPts = 10). With the
864 localizations belonging to clusters, we assigned to each of them an anisotropy value
865 corresponding to their location in the anisotropy ROI and classified them within the three groups.
866 Simultaneously, we randomly distributed the same number of localizations on the anisotropy
867 ROIs and also assigned their corresponding anisotropy value and posterior
868 classification. Comparative anisotropy-cartography analysis has been done from an experiment
869 with COS-7 cells where localization and GFP based FRET information was obtained using dual
870 cameras at specific intervals during acquisition of single molecule localization time series of the
871 SNAP tag fluorophore.

872 **Statistical Analysis**

873 Differences between anisotropy distributions between control and treatment were tested using
874 non-parametric Mann-Whitney test or KS test. Number of fields/ cells imaged is mentioned
875 against each experiment. The anisotropy and cartography data shown here is from one
876 representative experiment. Each experiment has been conducted at least twice unless otherwise
877 mentioned. Quantification from cartography and SPT experiments has been tested for
878 significance using Kruskal Wallis test along with post hoc Tukey-Kramer test and Wilcoxon sum
879 rank test of Matlab unless otherwise mentioned.

880 **Acknowledgements**

881 We would like to thank Rob Parton for sharing with us the CD44-GFP, CD44ECDTm-GFP and
882 CD44TmICD-GFP constructs, which were originally used in Mrass et al., 2012. The JF dyes
883 used in SPT studies were a generous gift from Luke Lavis, HHMI Janelia Research Campus. We
884 would like to thank Suvrajit Saha for contributions to the initiation of the project. We thank
885 Central Imaging and Flow facility of NCBS for enabling us to use their equipment and Divya
886 Gowda and H. Krishnamurthy for their help. We thank Marcus J. Taylor for helping in reagent

887 development pertaining to the SNAP tagged constructs. We would like to thank Chaitra
888 Prabhakara and Sanjeev Sharma for help with data representation, revision and editing the
889 manuscript. M.F.G.-P acknowledges funding from the Fundació Privada Cellex, Generalitat de
890 Catalunya through the CERCA program, Spanish Ministry of Economy and Competitiveness (“
891 Severo Ochoa” Programme for Centres of Excellence in R&D (SEV – 2015 –0522) and
892 FIS2017-89560-R) and from European Union H2020-ERC grant 788546-NANO-MEMEC. N.M.
893 acknowledges funding from the European Union H2020 under the Marie Skłodowska-Curie
894 grant 754558-PREBIST. C.M. acknowledges funding from the Spanish Ministry of Economy
895 and Competitiveness and the European Social Fund through the “Ramón y Cajal” program 2015
896 (grant no.RYC-2015-17896) and the “Programa Estatal de I+D+i Orientada a los Retos de la
897 Sociedad” (grant no. BFU2017-85693-R), and from the Generalitat de Catalunya (AGAUR
898 Grant No. 2017SGR940). A. K. acknowledges support in part by Grants-in-Aid for scientific
899 research Kiban S (16H06386) from the Japan Society for the Promotion of Science. TK.F.
900 acknowledges ‘Grants-in-Aid for Scientific Research from the Japan Society for the Promotion
901 of Science (Kiban B (16H04775))’. KS acknowledges ‘Grants-in-Aid for Scientific Research
902 from the Japan Society for the Promotion of Science (Kiban B (18H02401))’.S.M. acknowledges
903 JC Bose Fellowship from DST (Government of India), a collaborative grant from HFSP
904 (RGP0027/2012 with M.F.G.-P) and Wellcome Trust-DBT Alliance Margadarshi fellowship
905 (IA/M/15/1/502018).

906

907 **References:**

- 908 Beck-García, K, Beck-García, E, Bohler, S, Zorzin, C, Sezgin, E, Levental, I, Alarcón, B, and
909 Schamel, WWA (2015). Nanoclusters of the resting T cell antigen receptor (TCR) localize to
910 non-raft domains. *Biochim Biophys Acta* 1853, 802–809.
- 911 Bourguignon, LYW (2008). Hyaluronan-mediated CD44 activation of RhoGTPase signaling and
912 cytoskeleton function promotes tumor progression. *Semin Cancer Biol* 18, 251–259.
- 913 Chaudhuri, A, Bhattacharya, B, Gowrishankar, K, Mayor, S, and Rao, M (2011). Spatiotemporal
914 regulation of chemical reactions by active cytoskeletal remodeling. *Proc Natl Acad Sci U S A*
915 108, 14825–14830.
- 916 Clark, PJ, and Evans, FC (1954). Distance to Nearest Neighbor as a Measure of Spatial
917 Relationships in Populations. *Ecology* 35, 445–453.
- 918 Crocker, JC, and Grier, DG (1996). Methods of Digital Video Microscopy for Colloidal Studies.
919 *J Colloid Interface Sci* 179, 298–310.
- 920 Donatello, S, Babina, IS, Hazelwood, LD, Hill, ADK, Nabi, IR, and Hopkins, AM (2012). Lipid
921 raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.
922 *Am J Pathol* 181, 2172–2187.
- 923 Freeman, SA et al. (2018). Transmembrane Pickets Connect Cyto- and Pericellular Skeletons
924 Forming Barriers to Receptor Engagement. *Cell* 172, 305–317.e10.

- 925 Fritzsche, M, Lewalle, A, Duke, T, Kruse, K, and Charras, G (2013). Analysis of turnover
926 dynamics of the submembranous actin cortex. *Mol Biol Cell* 24, 757–767.
- 927 Fujiwara, T, Ritchie, K, Murakoshi, H, Jacobson, K, and Kusumi, A (2002). Phospholipids
928 undergo hop diffusion in compartmentalized cell membrane. *J Cell Biol* 157, 1071–1081.
- 929 Fujiwara, TK et al. (2016). Confined diffusion of transmembrane proteins and lipids induced by
930 the same actin meshwork lining the plasma membrane. *Mol Biol Cell* 27, 1101–1119.
- 931 Garcia-Parajo, MF, Cambi, A, Torreno-Pina, JA, Thompson, N, and Jacobson, K (2014).
932 Nanoclustering as a dominant feature of plasma membrane organization. *J Cell Sci* 127, 4995–
933 5005.
- 934 Gerecht, S, Burdick, JA, Ferreira, LS, Townsend, SA, Langer, R, and Vunjak-Novakovic, G
935 (2007). Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human
936 embryonic stem cells. *Proc Natl Acad Sci U S A* 104, 11298–11303.
- 937 Ghosh, S, Saha, S, Goswami, D, Bilgrami, S, and Mayor, S (2012). Dynamic imaging of homo-
938 FRET in live cells by fluorescence anisotropy microscopy. *Methods Enzymol* 505, 291–327.
- 939 Gómez-García, PA, Garbacik, ET, Otterstrom, JJ, Garcia-Parajo, MF, and Lakadamyali, M
940 (2018). Excitation-multiplexed multicolor superresolution imaging with fm-STORM and fm-
941 DNA-PAINT. *Proc Natl Acad Sci U S A* 115, 12991–12996.
- 942 Goswami, D, Gowrishankar, K, Bilgrami, S, Ghosh, S, Raghupathy, R, Chadda, R,
943 Vishwakarma, R, Rao, M, and Mayor, S (2008). Nanoclusters of GPI-anchored proteins are
944 formed by cortical actin-driven activity. *Cell* 135, 1085–1097.
- 945 Gowrishankar, K, Ghosh, S, Saha, S, C, R, Mayor, S, and Rao, M (2012). Active remodeling of
946 cortical actin regulates spatiotemporal organization of cell surface molecules. *Cell* 149, 1353–
947 1367.
- 948 Hanke-Roos, M, Fuchs, K, Maleschlijski, S, Sleeman, J, Orian-Rousseau, V, and Rosenhahn, A
949 (2017). CD44 mediates the catch-bond activated rolling of HEPG2Iso epithelial cancer cells on
950 hyaluronan. *Cell Adh Migr* 11, 476–487.
- 951 Hill, A et al. (2006). Cortactin underpins CD44-promoted invasion and adhesion of breast cancer
952 cells to bone marrow endothelial cells. *Oncogene* 25, 6079–6091.
- 953 Hiramoto-Yamaki, N, Tanaka, KAK, Suzuki, KGN, Hirosawa, KM, Miyahara, MSH, Kalay, Z,
954 Tanaka, K, Kasai, RS, Kusumi, A, and Fujiwara, TK (2014). Ultrafast diffusion of a fluorescent
955 cholesterol analog in compartmentalized plasma membranes. *Traffic* 15, 583–612.
- 956 Hofman, EG, Bader, AN, Voortman, J, van den Heuvel, DJ, Sigismund, S, Verkleij, AJ,
957 Gerritsen, HC, and van Bergen en Henegouwen, PMP (2010). Ligand-induced EGF receptor
958 oligomerization is kinase-dependent and enhances internalization. *J Biol Chem* 285, 39481–
959 39489.
- 960 Howes, MT et al. (2010). Clathrin-independent carriers form a high capacity endocytic sorting
961 system at the leading edge of migrating cells. *J Cell Biol* 190, 675–691.
- 962 Ishihara, A, Holifield, B, and Jacobson, K (1988). Analysis of lateral redistribution of a plasma
963 membrane glycoprotein-monoclonal antibody complex [corrected]. *J Cell Biol* 106, 329–343.
- 964 Jaumouillé, V, Farkash, Y, Jaqaman, K, Das, R, Lowell, CA, and Grinstein, S (2014). Actin
965 cytoskeleton reorganization by Syk regulates Fc γ receptor responsiveness by increasing its

- 966 lateral mobility and clustering. *Dev Cell* 29, 534–546.
- 967 Jiang, H, Peterson, RS, Wang, W, Bartnik, E, Knudson, CB, and Knudson, W (2002). A
968 requirement for the CD44 cytoplasmic domain for hyaluronan binding, pericellular matrix
969 assembly, and receptor-mediated endocytosis in COS-7 cells. *J Biol Chem* 277, 10531–10538.
- 970 Klotzsch, E, and Schütz, GJ (2013). A critical survey of methods to detect plasma membrane
971 rafts. *Philos Trans R Soc Lond B Biol Sci* 368, 20120033.
- 972 Knudson, W, Bartnik, E, and Knudson, CB (1993). Assembly of pericellular matrices by COS-7
973 cells transfected with CD44 lymphocyte-homing receptor genes. *Proc Natl Acad Sci U S A* 90,
974 4003–4007.
- 975 Komura, N et al. (2016). Raft-based interactions of gangliosides with a GPI-anchored receptor.
976 *Nat Chem Biol* 12, 402–410.
- 977 Koyama-Honda, I, Ritchie, K, Fujiwara, T, Iino, R, Murakoshi, H, Kasai, RS, and Kusumi, A
978 (2005). Fluorescence imaging for monitoring the colocalization of two single molecules in living
979 cells. *Biophys J* 88, 2126–2136.
- 980 Kusumi, A, Ike, H, Nakada, C, Murase, K, and Fujiwara, T (2005). Single-molecule tracking of
981 membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-
982 philic signaling molecules. *Semin Immunol* 17, 3–21.
- 983 Kusumi, A, and Sako, Y (1996). Cell surface organization by the membrane skeleton. *Curr Opin
984 Cell Biol* 8, 566–574.
- 985 Kusumi, A, Suzuki, KGN, Kasai, RS, Ritchie, K, and Fujiwara, TK (2011). Hierarchical
986 mesoscale domain organization of the plasma membrane. *Trends Biochem Sci* 36, 604–615.
- 987 Lakshminarayan, R et al. (2014). Galectin-3 drives glycosphingolipid-dependent biogenesis of
988 clathrin-independent carriers. *Nat Cell Biol* 16, 595–606.
- 989 Martínez-Muñoz, L et al. (2018). Separating Actin-Dependent Chemokine Receptor
990 Nanoclustering from Dimerization Indicates a Role for Clustering in CXCR4 Signaling and
991 Function. *Mol Cell* 70, 106-119.e10.
- 992 Mori, T, Kitano, K, Terawaki, S, Maesaki, R, Fukami, Y, and Hakoshima, T (2008). Structural
993 basis for CD44 recognition by ERM proteins. *J Biol Chem* 283, 29602–29612.
- 994 Mrass, P, Kinjyo, I, Ng, LG, Reiner, SL, Puré, E, and Weninger, W (2008). CD44 mediates
995 successful interstitial navigation by killer T cells and enables efficient antitumor immunity.
996 *Immunity* 29, 971–985.
- 997 Murase, K, Fujiwara, T, Umemura, Y, Suzuki, K, Iino, R, Yamashita, H, Saito, M, Murakoshi,
998 H, Ritchie, K, and Kusumi, A (2004). Ultrafine membrane compartments for molecular diffusion
999 as revealed by single molecule techniques. *Biophys J* 86, 4075–4093.
- 1000 Overton, MC, and Blumer, KJ (2000). G-protein-coupled receptors function as oligomers in
1001 vivo. *Curr Biol* 10, 341–344.
- 1002 Pageon, S V et al. (2016). Functional role of T-cell receptor nanoclusters in signal initiation and
1003 antigen discrimination. *Proc Natl Acad Sci U S A* 113, E5454-63.
- 1004 Ponta, H, Sherman, L, and Herrlich, P a (2003). CD44: from adhesion molecules to signalling
1005 regulators. *Nat Rev Mol Cell Biol* 4, 33–45.

- 1006 Saha, S, Lee, I, Polley, A, Groves, JT, Rao, M, and Mayor, S (2015). Diffusion of GPI-anchored
1007 proteins is influenced by the activity of dynamic cortical actin. *Mol Biol Cell* 26, 4033–4045.
- 1008 Sahl, SJ, Leutenegger, M, Hilbert, M, Hell, SW, and Eggeling, C (2010). Fast molecular tracking
1009 maps nanoscale dynamics of plasma membrane lipids. *Proc Natl Acad Sci U S A* 107, 6829–
1010 6834.
- 1011 Senbanjo, LT, and Chellaiah, MA (2017). CD44: A Multifunctional Cell Surface Adhesion
1012 Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. *Front Cell Dev Biol* 5,
1013 18.
- 1014 Sezgin, E, Levental, I, Mayor, S, and Eggeling, C (2017). The mystery of membrane
1015 organization: composition, regulation and roles of lipid rafts. *Nat Rev Mol Cell Biol* 18, 361–
1016 374.
- 1017 Shao, B, Yago, T, Setiadi, H, Wang, Y, Mehta-D'souza, P, Fu, J, Crocker, PR, Rodgers, W, Xia,
1018 L, and McEver, RP (2015). O-glycans direct selectin ligands to lipid rafts on leukocytes. *Proc
1019 Natl Acad Sci U S A* 112, 8661–8666.
- 1020 Sharma, P, Varma, R, Sarasij, RC, Ira, Gousset, K, Krishnamoorthy, G, Rao, M, and Mayor, S
1021 (2004). Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. *Cell*
1022 116, 577–589.
- 1023 Shibata, ACE et al. (2012). Archipelago architecture of the focal adhesion: membrane molecules
1024 freely enter and exit from the focal adhesion zone. *Cytoskeleton (Hoboken)* 69, 380–392.
- 1025 Shyjan, AM, Heldin, P, Butcher, EC, Yoshino, T, and Briskin, MJ (1996). Functional cloning of
1026 the cDNA for a human hyaluronan synthase. *J Biol Chem* 271, 23395–23399.
- 1027 Siiskonen, H, Oikari, S, Pasonen-Seppänen, S, and Rilla, K (2015). Hyaluronan synthase 1: a
1028 mysterious enzyme with unexpected functions. *Front Immunol* 6, 43.
- 1029 Sinnecker, D, Voigt, P, Hellwig, N, and Schaefer, M (2005). Reversible photobleaching of
1030 enhanced green fluorescent proteins. *Biochemistry* 44, 7085–7094.
- 1031 Skandalis, SS, Kozlova, I, Engström, U, Hellman, U, and Heldin, P (2010). Proteomic
1032 identification of CD44 interacting proteins. *IUBMB Life* 62, 833–840.
- 1033 Strale, P-O et al. (2015). The formation of ordered nanoclusters controls cadherin anchoring to
1034 actin and cell-cell contact fluidity. *J Cell Biol* 210, 333–346.
- 1035 Tanaka, KAK et al. (2010). Membrane molecules mobile even after chemical fixation. *Nat
1036 Methods* 7, 865–866.
- 1037 Terrillon, S, and Bouvier, M (2004). Roles of G-protein-coupled receptor dimerization. *EMBO
1038 Rep* 5, 30–34.
- 1039 Thankamony, SP, and Knudson, W (2006). Acylation of CD44 and its association with lipid rafts
1040 are required for receptor and hyaluronan endocytosis. *J Biol Chem* 281, 34601–34609.
- 1041 Torreno-Pina, JA, Castro, BM, Manzo, C, Buschow, SI, Cambi, A, and Garcia-Parajo, MF
1042 (2014). Enhanced receptor-clathrin interactions induced by N-glycan-mediated membrane
1043 micropatterning. *Proc Natl Acad Sci U S A* 111, 11037–11042.
- 1044 Totsukawa, G, Yamakita, Y, Yamashiro, S, Hartshorne, DJ, Sasaki, Y, and Matsumura, F
1045 (2000). Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC
1046 phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. *J Cell Biol*

- 1047 150, 797–806.
- 1048 Vachon, E et al. (2006). CD44 is a phagocytic receptor. *Blood* 107, 4149–4158.
- 1049 Wang, Y, Yago, T, Zhang, N, Abdisalaam, S, Alexandrakis, G, Rodgers, W, and McEver, RP
1050 (2014). Cytoskeletal regulation of CD44 membrane organization and interactions with E-
1051 selectin. *J Biol Chem* 289, 35159–35171.
- 1052 Yang, C et al. (2012). The high and low molecular weight forms of hyaluronan have distinct
1053 effects on CD44 clustering. *J Biol Chem* 287, 43094–43107.
- 1054 van Zanten, TS, and Mayor, S (2015). Current approaches to studying membrane organization.
1055 *F1000Research* 4, 1–15.
- 1056 Zhu, D, and Bourguignon, LY (2000). Interaction between CD44 and the repeat domain of
1057 ankyrin promotes hyaluronic acid-mediated ovarian tumor cell migration. *J Cell Physiol* 183,
1058 182–195.
- 1059

Figure 1

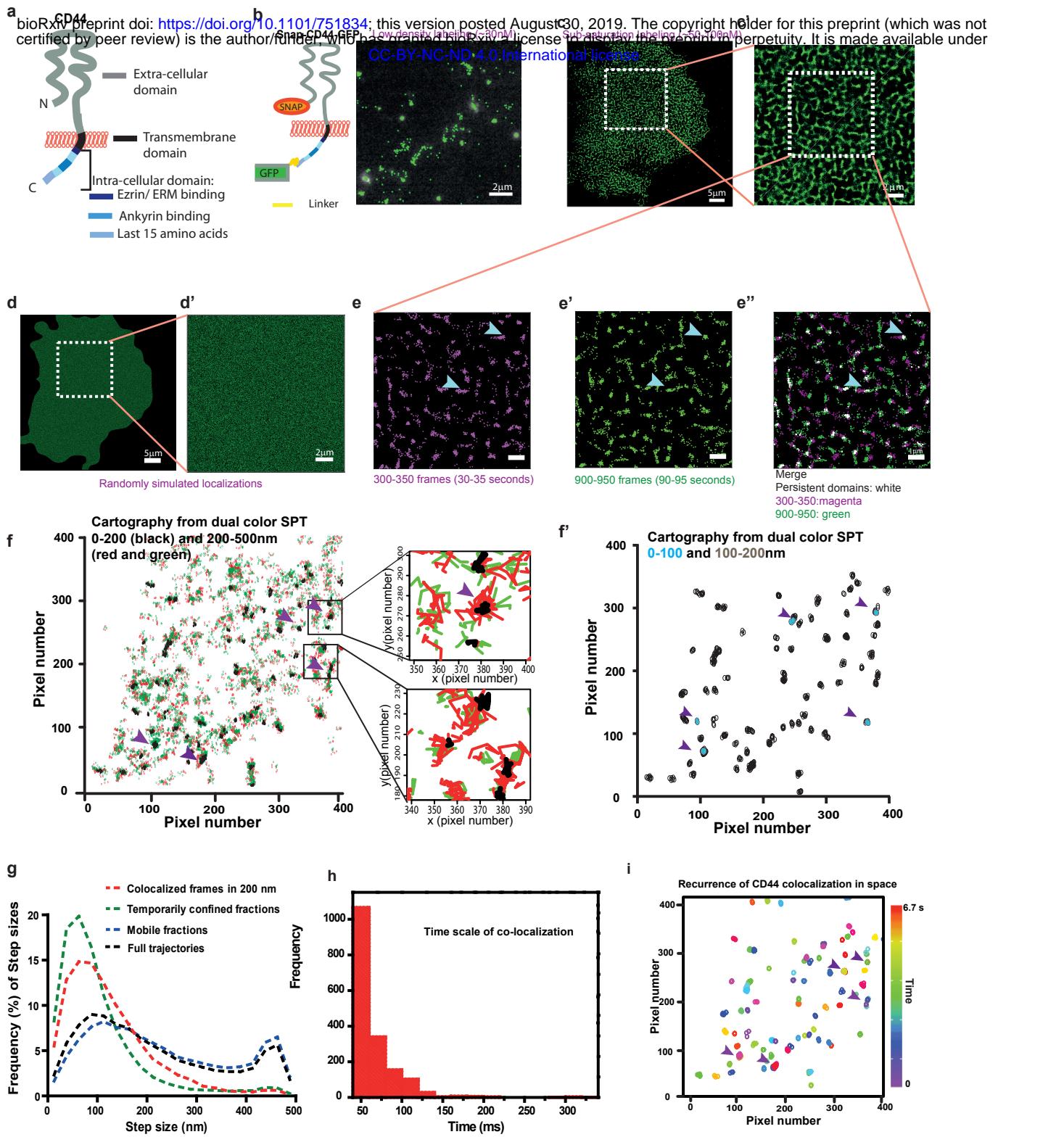


Figure 1: CD44 exhibits a non-random distribution at the plasma membrane at multiple spatiotemporal scales. (a) Schematic of a standard isoform of CD44 showing key domains of the protein, namely, the extra-cellular domain(ECD), transmembrane domain (Tm) and the intra-cellular domain(ICD). (b) Schematic of SNAP-CD44-GFP and representative dynamic cartography of CD44 obtained at sub-labeling conditions (~30nM). Each dot corresponds to the (x,y) co-ordinates (with sub-pixel accuracy) of individual receptors as they diffuse on the cell membrane. The (x,y) coordinates over 50 sequential frames are collapsed and overlaid in to a single fluorescence frame. (c) Cartography of SNAP-CD44-GFP obtained at higher labeling conditions (~50-100 nM); (x,y) co-ordinates from 1000 frames (1354066 localizations) collapsed in a single map with a zoomed-in ROI(c'). (d) Simulated cartography with similar number of localizations as in (c), distributed in a random fashion, and enlarged ROI . (e) Cartography construction of (x,y) coordinates in the marked ROI in (c) from 50 consecutive frames obtained at two different experimental time windows, between 30s-35s (magenta, e) and 90s-95s (green, e') and merged image (right, e''). Blue arrowheads highlight regions of confinement, and white dots represent persistent confinement regions or sites re-visited by the receptor. (f) Cartography obtained from 400 frames (~6.7 s) of DC-SPT data obtained by co-labeling CD44 with JF549-cpSNAP ligand and JF646 SNAP ligand. Green and red dots correspond to localizations with the two different dyes indicating inter-particle distances between 200-500 nm and black dots correspond to inter-particle distances < 200nm. Zoomed-in ROIs depict the indicated reconstructed trajectories; f' shows the subset corresponding to localization of particles with 0-200nm inter-particle distance (black in f) where the inter-particle distance corresponds to <100nm (blue circles) and 100-200nm (grey circles). Note the <100nm co-localization events always correspond to regions where localizations at the larger length scale of 100- 200nm and 200-500 nm inter-particle distance are also found (indicated by purple arrowheads in f and f'). (g) Frequency distribution of step sizes of particles from trajectories wherein particles exhibit co-localization (red), temporary arrest (green); mobile (blue) and from the full trajectories (black) (27856 trajectories). (h) Frequency distribution of duration of co-localization of particles identified in Fig 1f. Note the lifetime of co-localization is in the range of < 100ms. (i) 2D plot of all co-localized particles (<200 nm) obtained from the trajectories identified in panel (f), where purple arrowheads indicate colocalization events which occur repeatedly at the same spot over the time period of observation. Color LUT bar indicates observation time from 0-6.7 seconds.

Figure 2

bioRxiv preprint doi: <https://doi.org/10.1101/751834>; this version posted August 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

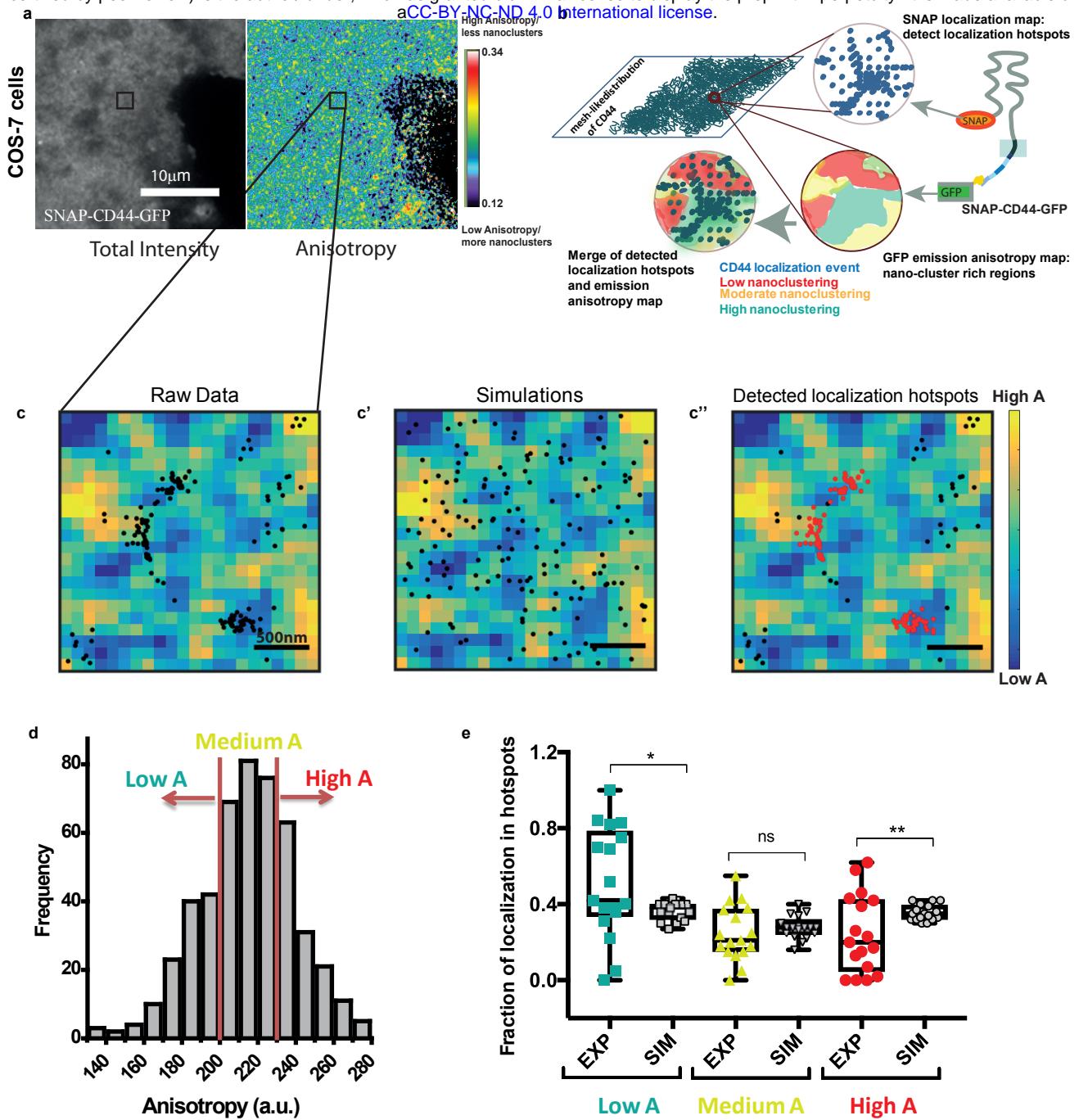


Figure 2: Meso-scale meshwork of CD44 co-localizes with regions enriched in CD44 nanoclusters. (a) Total GFP fluorescence intensity and anisotropy map of the SNAP-CD44-GFP protein expressed in COS-7 cells that exhibit low levels of surface CD44. Note that the anisotropy image shows regions of low anisotropy (blue) and high anisotropy (red), corresponding respectively, to regions enriched in, or depleted of CD44 molecules in nanoscale proximity (CD44 nanoclusters). (b) Schematic depicting the methodology by which FRET based anisotropy maps was correlated to localization maps obtained from high density single molecule imaging and cartography analysis. (c, c', c'') Representative ROI image depicting the anisotropy map overlaid with localizations from raw cartography images integrated over 40 frames (left), random localizations obtained from simulations (center) and detected localization hotspots (red dots) of SNAP-CD44-GFP (right). (d) Histogram of the anisotropy values for the ROI shown in panel (c). Red vertical lines indicate the thresholds chosen to classify regions of low anisotropy (Low A), medium anisotropy (Medium A) and high anisotropy (High A), where medium anisotropy is binned around the median value of anisotropy in a given ROI. (e) Fraction of detected localizations in the 'localization hotspots' in low, medium and high anisotropy regions compared to simulated localizations. Each symbol in the plot corresponds to a single ROI, and the data is obtained from at least 6 different cells from >15 ROIs. Difference between distributions has been tested using Kolmogorov-Smirnov test.

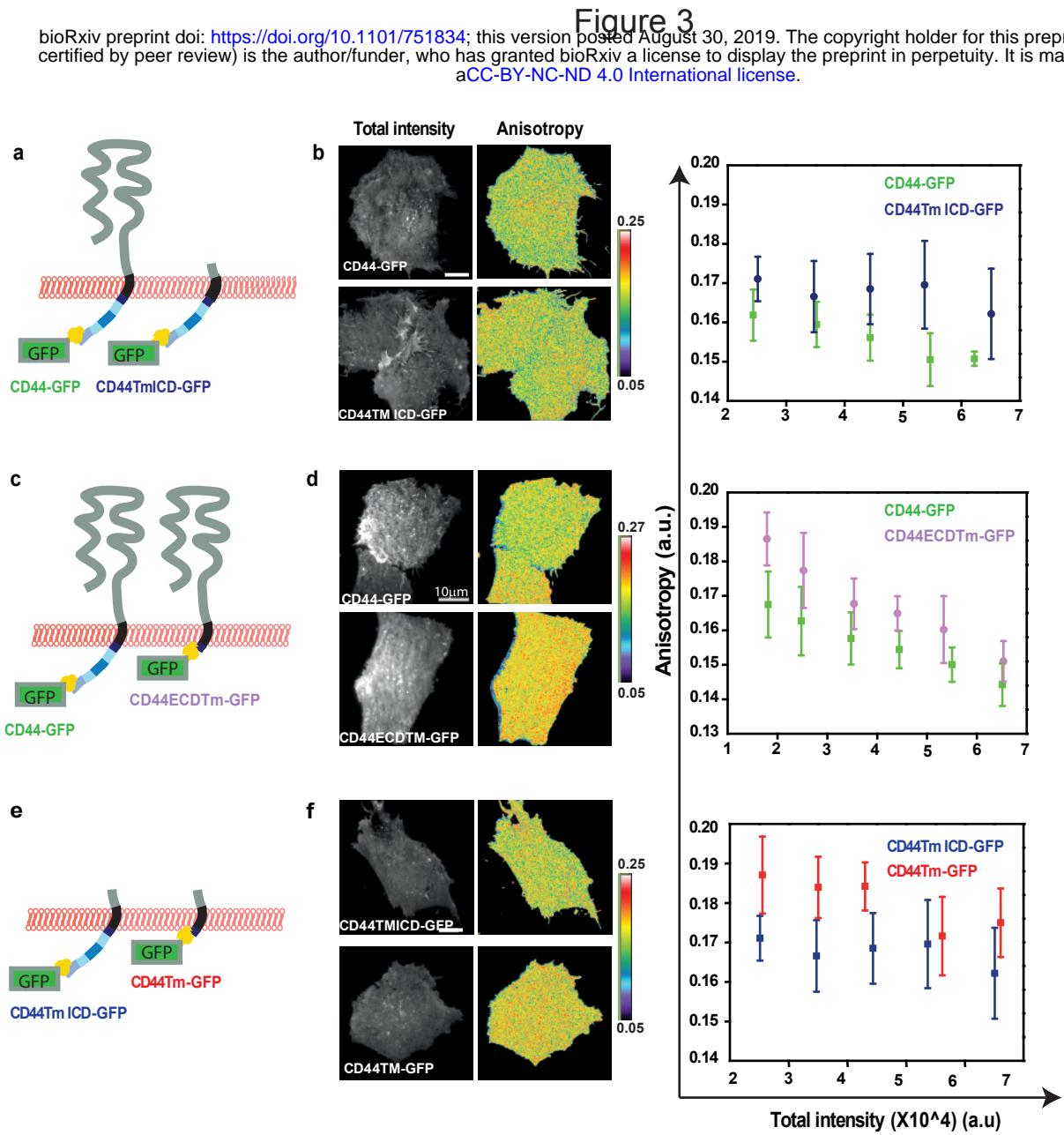


Figure 3: ECD and ICD independently affect CD44 nanoclustering. Schematics (a,c and e) depict CD44-GFP constructs expressed in CHO cells, used to generate the corresponding intensity and anisotropy images in (b, d and f). Anisotropy versus intensity plots show a significant increase in anisotropy in the truncated protein lacking the extra-cellular domain (a, b; $p = < 10^{-43}$), intracellular domain (c, d; $p < 10^{-58}$), or when the construct lacking the extra-cellular domain (data from the same experiment as a and b) is compared to one lacking both extracellular domain and the intracellular domain (e, f; $p < 10^{-77}$). All raw distributions are statistically significant by Mann-Whitney test for each condition. (The data is from one representative experiment. Fig. 3b: CD44-GFP= 20 fields, CD44TmICD-GFP = 27 fields; Fig. 3d: CD44-GFP = 25 fields, CD44ECDTm-GFP = 13 fields; Fig. 3f: CD44Tm-GFP = 15 fields).

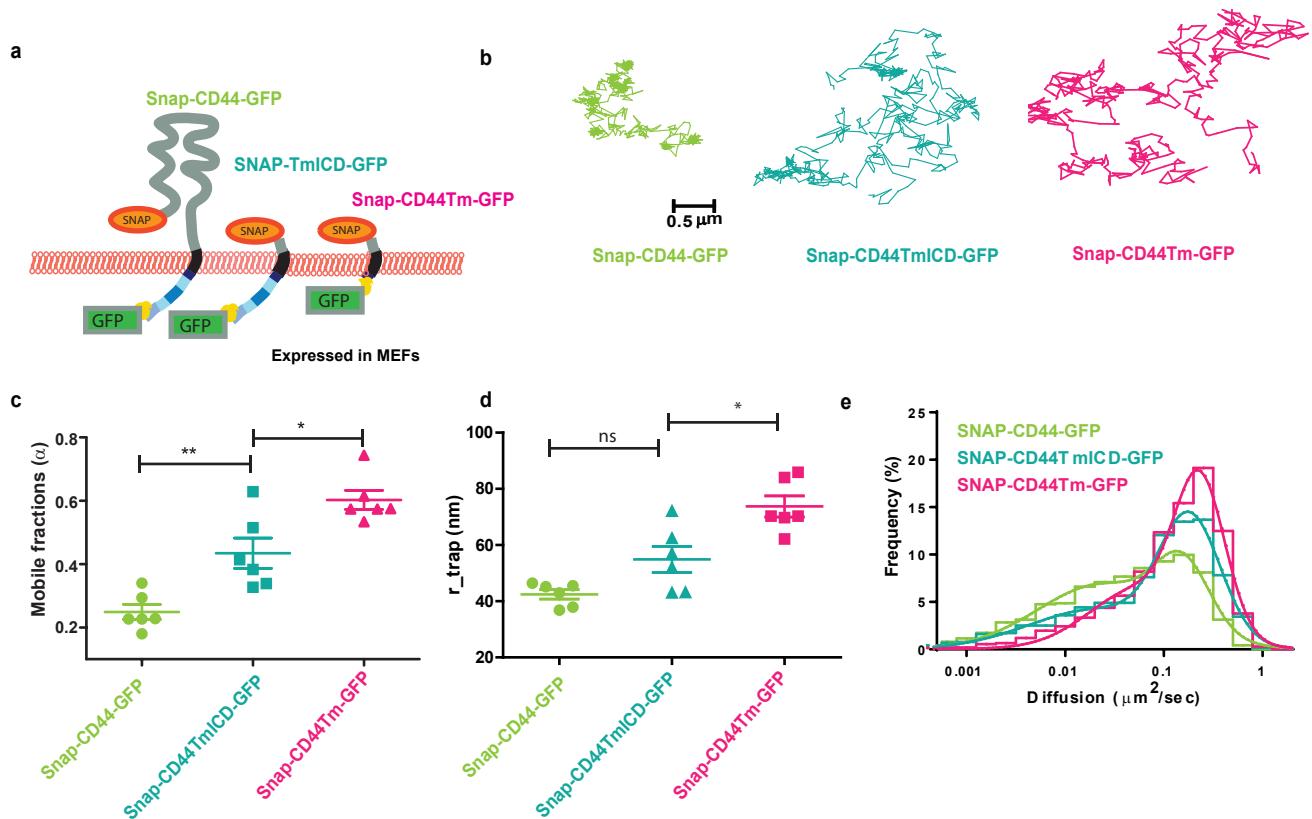


Figure 4: Extent of CD44 nanoclustering correlates with the strength of tethering on the cell membrane. (a) Schematic show SNAP-tagged constructs expressed in MEFs, utilized for SPT. (b) Representative trajectories for the indicated constructs show distinct diffusion characteristics of the different constructs; (c-e) Quantification of the (c) mobile fraction by escape probability method, (d) confinement radius (r_{trap}), (e) and diffusion coefficients of the full length and the truncated mutants. The data is derived from at least 6 cells for each construct. Number of trajectories: SNAP-CD44-GFP= 2977; SNAP-CD44TmICD-GFP = 2783; SNAP-CD44Tm-GFP = 4744.

Figure 5

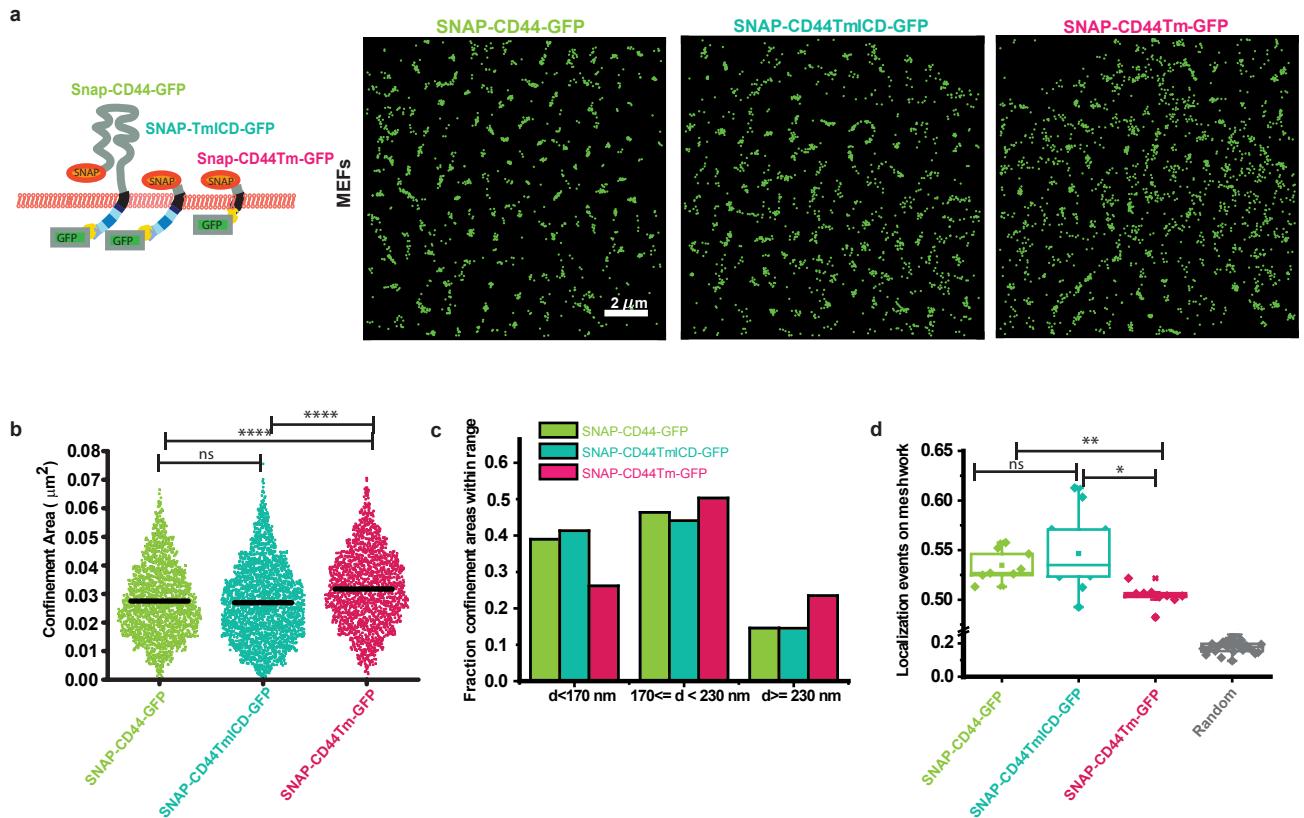


Figure 5: Meso-scale organization of CD44 is determined primarily by interactions of the intra-cellular domain. (a) Representative cartography maps of the indicated CD44 constructs expressed in MEFs obtained from imaging at 10fps and accumulating the spatial coordinates of individual molecules over 2s (20 frames). (b) Quantification of the confinement areas for the different constructs during 2s. Black lines correspond to the mean value. (c) Relative fractions of confinement areas for the different constructs, classified as a function of the confinement length, i.e., $d < 170 \text{ nm}$, $170 \leq d < 230 \text{ nm}$ or $d \geq 230 \text{ nm}$. (d) Fraction of localization events that belong to the meshwork for the different constructs and compared to the fraction of similar type of localizations measured from randomized localizations. The data is from one representative experiment. The experiment has been conducted at least twice with similar results. Data were obtained from a number of cells expressing SNAP-CD44-GFP (8), SNAP-CD44TmICD-GFP (11) or SNAP-CD44Tm-GFP (9). Difference between distributions was tested for significance using Kruskal-Wallis and post hoc test with Tukey-Kramer. (b): SNAP-CD44-GFP & SNAP-CD44TmICD-GFP: $p = 0.258$ (ns); SNAP-CD44-GFP & SNAP-CD44Tm-GFP: $p < e-9$; SNAP-CD44TmICD-GFP & SNAP-CD44Tm-GFP: $p < e-9$. (d): SNAP-CD44-GFP & SNAP-CD44TmICD-GFP: $p = 0.8564$ (ns); SNAP-CD44-GFP & SNAP-CD44Tm-GFP: $p < 0.005$; SNAP-CD44TmICD-GFP & SNAP-CD44Tm-GFP: $p = 0.0218$. SNAP-CD44Tm-GFP(n) = 9 cells, SNAP-CD44TmICD-GFP(n) = 11 cells, SNAP-CD44-GFP(n) = 8 cells.

Figure 6

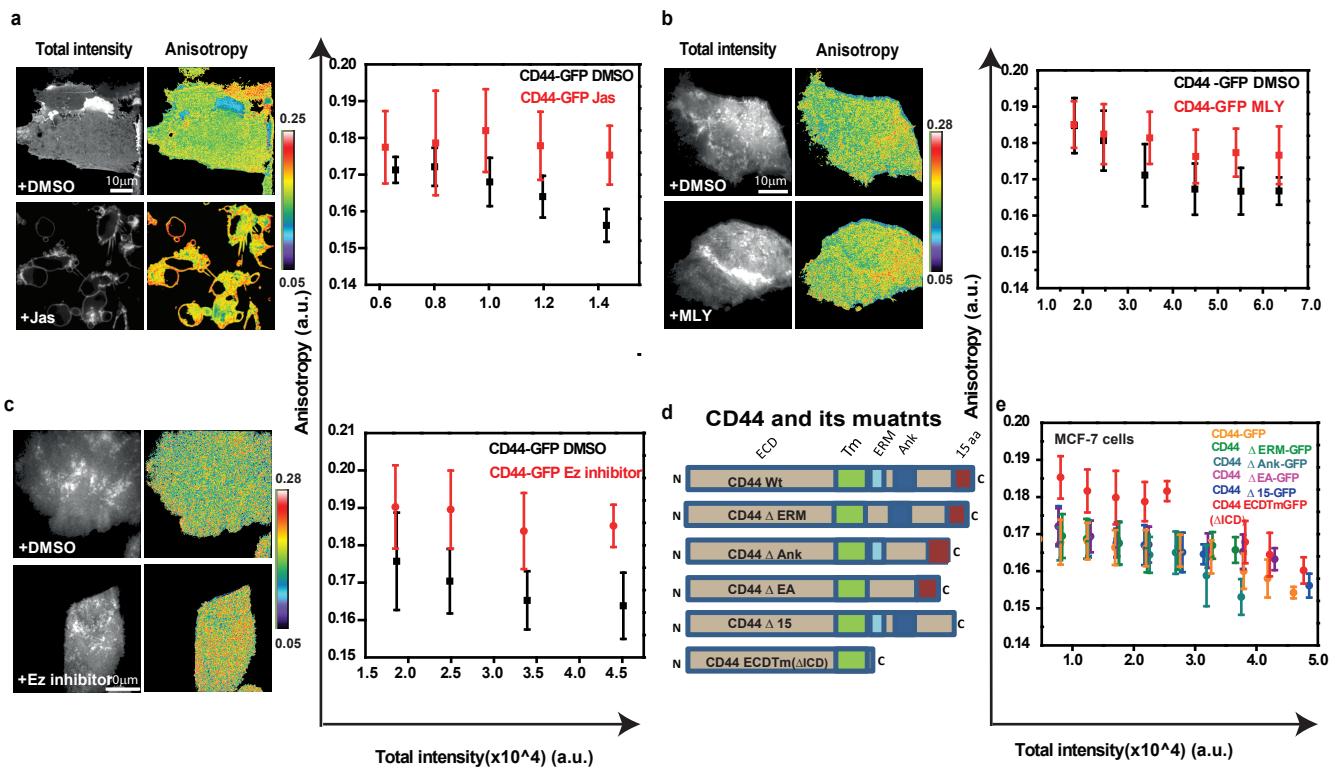


Figure 6: CD44 nanoclustering is regulated by the underlying actomyosin machinery. Total intensity and anisotropy images of cells expressing CD44-GFP (a-c) expressed in CHO cells, either untreated or treated with actin polymerization stabilizer, Jasplakinolide (a; Jas; 14 μ M, 15 min; Con (n) = 10 fields, Treatment (n) = 22 fields), Myosin inhibition cocktail (b; MLY 20 μ M; 60 min; Con (n) = 20 fields, Treatment (n) = 26 fields), Ezrin inhibitor (c; 25 μ M; 60 min, Con (n) = 16 fields, Treatment (n) = 11 fields). Graphs show anisotropy values plotted against intensity collected from regions from the cells as detailed in experimental methods. In all conditions treatment with the indicated inhibitors show a significant difference in the recorded values of anisotropy ($p < 10^{-5}$), Difference between distributions has been tested for significance by Mann-Whitney tests. The data is from one representative experiment. Each experiment was conducted at least twice with similar results. (d) Schematic of CD44 and different deletion mutants for ezrin, ankyrin and last 15 amino acids of the tail with the names of the constructs indicated next to its diagram. (e) Plot shows intensity versus anisotropy distributions of the CD44 mutants in MCF-7 cells which exhibit low surface levels of CD44. (Distribution of anisotropy values were tested for significance using Mann-Whitney test and $p < 10^{-120}$ was obtained for CD44-GFP and CD44ECDTm-GFP; CD44-GFP (n) = 19 fields, CD44-ECDTm-GFP (n) = 15 fields, CD44- Δ 15GFP (n) = 16 fields, CD44- Δ ERM-GFP(n) = 13 fields, CD44- Δ EA-GFP (n) = 16 fields, CD44- Δ Ank-GFP (n) = 17 fields).

Figure 7

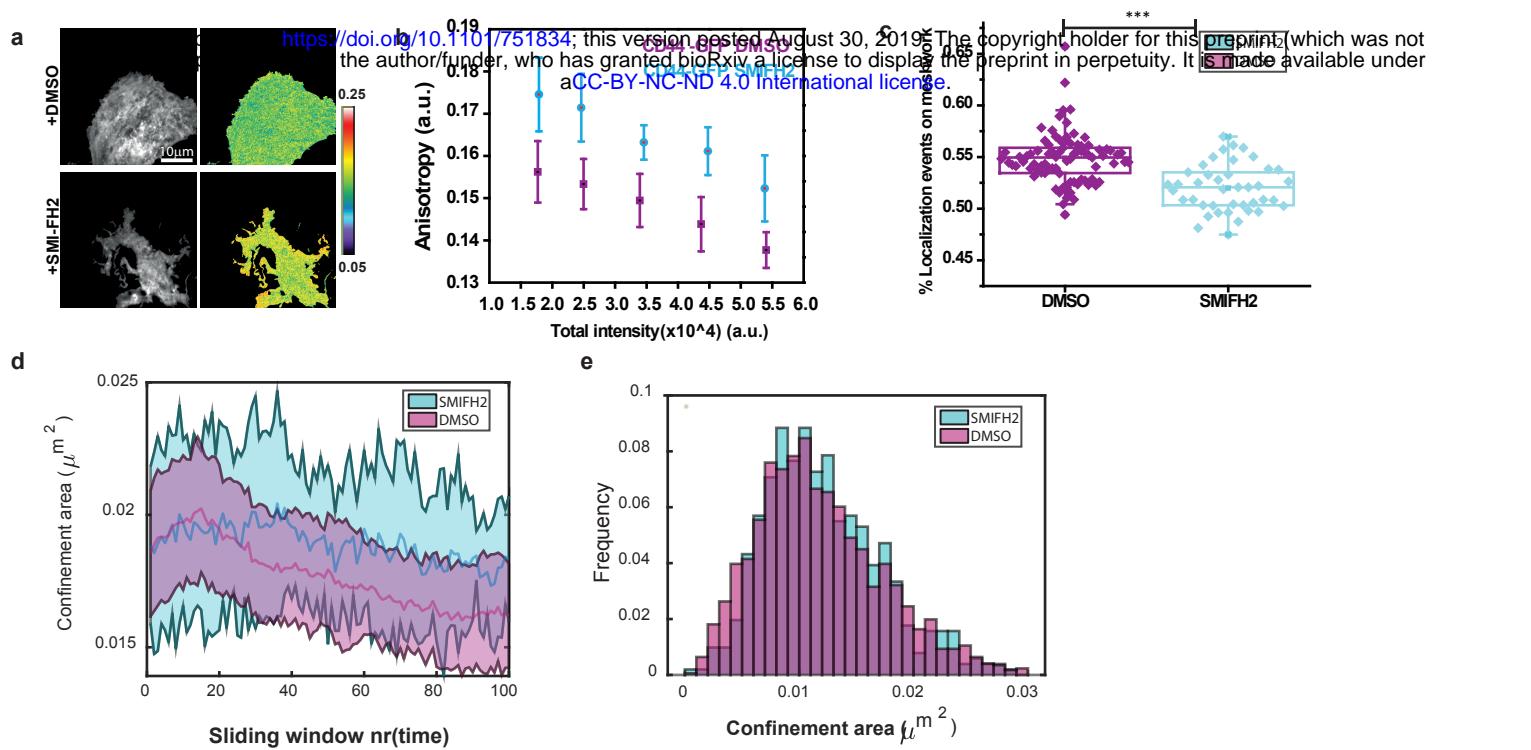


Figure 7: Formin mediated Actin polymerization affect nano as well as meso-scale distribution and turnover of CD44. (a, b) Total intensity and anisotropy images of cells expressing CD44-GFP expressed in CHO cells treated with formin inhibitor (SMIFH2 10 μ M, 30 min; Con (n) = 19 fields, Treatment (n) = 13 fields, $p < 10^{-5}$). (c) Plot describing fraction of localizations detected on the meshwork in control cells compared to formin inhibited condition ($p < 10^{-8}$) (d) Plot depicting time evolution of meso-sale domains upon vehicle (DMSO) versus formin inhibitor treatment. X axis depicts time as 2 seconds sliding window (depicted as frame number) and Y axis depicts confinement area. (e) Plot depicting confinement area of the mesoscale domains in formin perturbed cells compared to untreated ones do not exhibit detectable differences. (DMSO(n)= 12 cells, SMIFH2(n) = 9 cells).

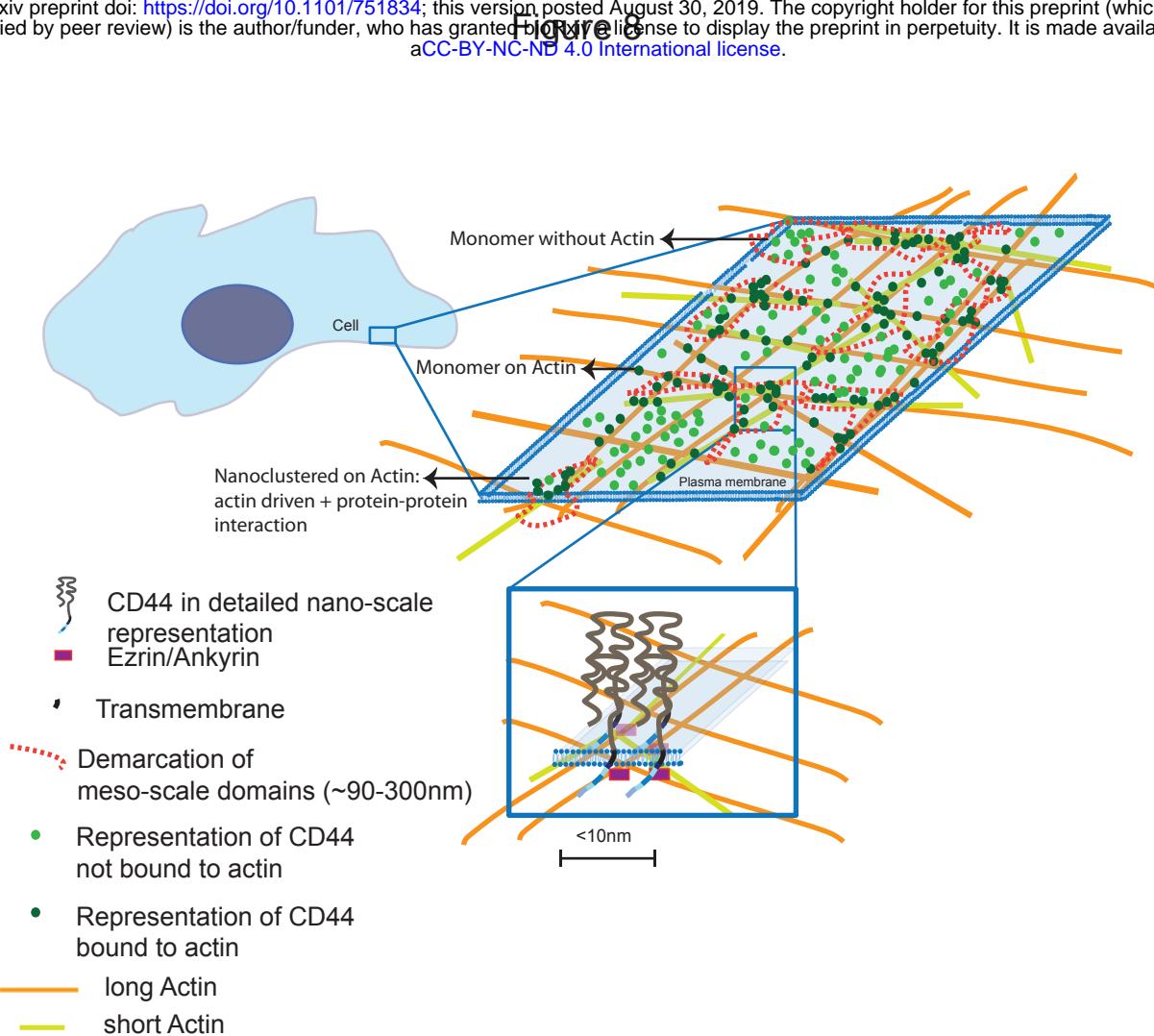


Figure 8: Proposed model for plasma membrane organization of CD44. In the cell membrane an ROI is outlined to show the distribution of monomers as well as clusters of CD44 receptors. Nanoclustered receptors are shown coupled to actin cytoskeletal elements by adaptors such as ezrin/ ankyrin (see zoomed-in nanocluster), interspersed with unattached CD44 molecules. The clusters of receptors are depicted as being driven by the action of formin polymerized actin filaments and myosin driven actin motility (molecules not depicted in the schematic). The meso-scale domains are CD44 localization hotspots identified in our experiment which are characterized by their close association with nanoclusters of the protein. The emerging meso-scale meshwork of the cell membrane receptor (depicted by the orange dotted line) may reflect the cytoskeletal meshwork juxtaposed to the plasma membrane.

Table 1: CD44 diffusion characteristics from single particle tracking
 bioRxiv preprint doi: <https://doi.org/10.1101/251434>; this version posted April 10, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Protein Chimera	Percentage transient confinement	Trap radius in nanometers(nm)	Diffusion co-efficient in $\mu\text{m}^2/\text{sec}$
SNAP -CD44-GFP	68.4 ± 2.3	42.5 ± 1.6	0.02 ± 0.01 (slow:~(69±4)%) 0.16 ± 0.01 (fast: ~(31±10)%)
SNAP -CD44TmICD-GFP	57.1 ± 4.2	54.9 ± 4.6	0.02 ± 0.01 (slow:49.3±3.2)% 0.18 ± 0.004 (fast: 50.7±9.9)%)
SNAP-CD44Tm-GFP	45.4 ± 8.3	68.9 ± 11.7	0.06 ± 0.02 (slow: 29.5±9.5)% 0.23 ± 0.01 (fast: 70.5±4.4)%)

Table 2: List of different constructs used in the study

Name	Description	Backbone
CD44-GFP	Wild type mouse CD44 standard isoform C-terminally tagged with EGFP	pEGFP -N1 CMV promoter
SNAP-CD44-GFP	N terminal SNAP tagged and C terminal EGFP tagged standard isoform of CD44	pHR_mGFP(lentiviral) SFFV promoter
CD44TmICD-GFP	Extra-cellular domain truncated CD44 tagged with GFP at the C-terminus	pEGFP -N1 CMV promoter
SNAP-CD44TmICD-GFP	Extra-cellular domain truncated CD44 tagged with SNAP at N-terminus, GFP at the C-terminus	pHR_mGFP(lentiviral) SFFV promoter
FR-CD44TmICD	Extra-cellular domain truncated CD44 tagged with Folate receptor(FR) at N-terminus	pHR_IRES_Puro (lentiviral) SFFV promoter
CD44Tm-GFP	Transmembrane domain of CD44 tagged with GFP at C-terminus	pEGFP -N1 CMV promoter
SNAP-CD44Tm-GFP	Transmembrane domain of CD44 tagged with Folate receptor at N term and GFP at C-terminus	pHR_mGFP(lentiviral) SFFV promoter
FR-CD44Tm	Transmembrane domain of CD44 tagged with Folate receptor(FR) at N-terminus	pHR_IRES_Puro (lentiviral) SFFV promoter
CD44ECDTm-GFP	Intra-cellular domain truncated CD44 tagged with GFP at C-terminus	pEGFP -N1 CMV promoter
CD44ΔERM -GFP	Ezrin non-binding mutant generated by deleting 298K-300K residues of ERM binding domain	pEGFP -N1 CMV promoter
CD44ΔAnk-GFP	Ankyrin non-binding mutant made by deleting (304N ₁₀ GGNGTVEDRK ₁₀ PSEL318) residues	pEGFP-N1 CMV promoter
CD44ΔEA - GFP	Ezrin + Ankyrin non binding mutant generated by deletion mutagenesis (298K-318L)	pEGFP-N1 CMV promoter
CD44Δ15-GFP	Mutant lacking last 15 amino acids in the tail of CD44 (346DETRNLQSVDMKIGV360)	pEGFP- N1 CMV promoter