

CHARACTERIZATION AND SAP TRANSMISSION OF CITRUS BENT LEAF VIROID IN MALAYSIA

**Yasir Iftikhar¹ Ying Wei Khoo², Taneswari Murugan², Nur Athirah Roslin², Rabiatul Adawiyah²,
Lih Ling Kong³, and *Ganesan Vadamalai^{2,3}**

¹Department of Plant Pathology, University of College of Agriculture, University of Sargodha, 40100 Sargodha, Pakistan

²Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

³Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

*corresponding author: G. Vadamalai (ganesanv@upm.edu.my)

^{1,2,3*} All the authors contributed this work equally

Abstract

A 328 nucleotide (nt) variant of *Citrus bent leaf viroid* (CBLVd) was characterized from citrus varieties in Malaysia showing leaf bending, stunting and midvein necrosis. CBLVd was detected by RT-PCR assay using CBLVd specific primers in 12 out of 90 samples, collected from six different areas in Malaysia. The viroid was present in five species of citrus namely *Citrofortunella microcarpa*, *Citrus aurantifolia*, *C. hystrix*, *C. maxima* and *C. sinensis*. Sequence analysis of the isolates obtained from this study showed 99-100% sequence identity to CBLVd Jp isolate (AB006734). Inoculation of sap obtained from a CBLVd positive *C. aurantifolia*, inoculated into six months old *C. microcarpa* seedlings showed the symptoms leaf bending, reduced leaf size of matured leaves and mild mosaic between 4 to 6 months after inoculation. The presence of CBLVd in the inoculated seedlings were confirmed by RT-PCR assay and sequencing.

Key words: Citrus bent leaf viroid, citrus, RT-PCR, inoculation, seedlings

Author Summary

28 The authors during a limited survey collected the citrus samples from citrus growing areas of
29 Malaysia to detect the citrus viroids. Citrus viroids are associated with decline in citrus
30 production. Thus, the presence of the citrus viroids and their spread needs to be investigated to
31 facilitate the management of this pathogen in citrus orchards. The authors detected and
32 characterized Citrus bent leaf viroid in Malaysian citrus.

33 **Introduction**

34 Citrus is an important economic fruit crop in Malaysia producing about 40,014 metric
35 tons of citrus in 2016 (FAOSTAT, 2016). Citrus species such as *C. aurantifolia*, *C. hystrix*, *C.*
36 *limon*, *C. maxima*, *C. microcarpa*, *C. reticulata* and *C. sinensis* are planted in Malaysia (Choi,
37 1994; Md Othman et al. 2016). Citrus production is affected by various pest and diseases
38 including viroid diseases. Citrus viroids cause devastating impact in citrus industries by
39 reducing yield and plant health. To date, there are seven viroids from four genera of
40 *Pospiviroidae* have been reported infecting citrus species. Major citrus viroids are Citrus
41 exocortis viroid (CEVd) of *Pospiviroid*, Citrus bent leaf viroid (CBLVd), Citrus dwarfing
42 viroid (CVd-III), Citrus viroid V and Citrus viroid VI (CVd-V and CVd-VI) of *Apscaviroid*,
43 *Hop stunt viroid* (HSVd) of *Hostuviroid*, and Citrus bark cracking viroid (CBCVd) of
44 *Cocadviroid* (Reanwarakon et al. 2003). Citrus viroids induce characteristic symptoms like
45 dwarfing, leaf bending, mid vein and petiole necrosis (Ito et al 2001). In addition, some of other
46 symptoms that have been associated with citrus viroids include wood pitting, bark scaling, leaf
47 epinasty and stunting (Cao et al. 2009, 2010; Ito et al. 2001; Malfitano et al. 2005). The viroid
48 infection in the citrus plants has been characterized as solely or in combination with each other
49 (Hashemian et al. 2010). Among them, CEVd and CBLVd are widely distributed (Ito et al
50 2002).

51 CBLVd have been reported in Al-Ain, United Arab Emirates (UAE) (Al-Shariqi et al.
52 2013), Campania, South Italy (Malfitano et al. 2005), Kohgiluyeh-Boyerahmad, Iran (Mazhar

53 et al. 2014) and Japan (Ito et al. 2000). It has different isolates which includes CVd-Ia, CVd-
54 Ib and a distinct variant CVd-1-LSS (Ito et al. 2000). CVd-Ib (315-319 nt) was first sequenced
55 and renamed as CBLVd, while CVd-Ia comprised of 327-329 nt. The CVd-I-LSS (325-330 nt)
56 isolates have only 82-85% similarity in sequence with CVd-I variants and regarded as low
57 sequence similarity. CBLVd and its isolates have been reported in Asia but there were no
58 reports of citrus viroids in Malaysia until recently, where CBLVd variants were reported
59 in Malaysian citrus (Khoo et al., 2017). This paper describes molecular detection and
60 characterization of CBLVd from citrus species in Malaysia and its sap transmissibility to the
61 healthy citrus plants.

62 **Results**

63 **Detection of CBLVd using RT-PCR.**

64 RT-PCR amplification of total nucleic acid extracted from 133 symptomatic and 60 non-
65 symptomatic citrus leaf samples using CBLVd specific primers showed the presence of
66 CBLVd in 23 out of 133 symptomatic citrus samples collected from five states in Malaysia;
67 four samples were from Johor, 10 from Malacca and nine from Selangor. All non-symptomatic
68 citrus samples were not detected with CBLVd. Among the seven citrus species sampled, the
69 CBLVd was detected in six species including three *C. aurantiifolia* samples, two from *C. hystrix*,
70 one from *C. jambhiri*, four from *C. maxima*, 11 from *C. microcarpa*, and two from *C. sinensis*
71 (Table 1). CBLVd was not detected in *C. reticulata*. Positive samples produced a band
72 approximately 330 bp in the agarose gel analysis (Fig. 1).

73
74
75
76
77
78
79
80
81
82

83 **Table 1.** Detection of infection of CBLVd in citrus species from commercial orchards in
84 different states using Multiplex RT-PCR.

State (N) ^a	Number of citrus species detected with CBLVd (n) ^b							Total
	<i>C. aurantifolia</i>	<i>C. hystrix</i>	<i>C. jambhiri</i>	<i>C. maxima</i>	<i>C. microcarpa</i>	<i>C. reticulata</i>	<i>C. sinensis</i>	
Johor (23)	2 (15)	0 (4)	-	-	0 (1)		2 (3)	4
Malacca (25)	1 (2)	-	1 (1)	-	8 (22)	-	-	10
Selangor (48)	0 (8)	2 (12)	-	4 (7)	3 (20)	0 (1)	-	9
Pahang (12)	0 (2)	0 (7)	-	-	0 (2)	-	0 (1)	0
Perak (25)	-	-	-	0 (8)	0 (2)	0 (15)	-	0
Total	3 (27)	2 (23)	1 (1)	4 (15)	11 (47)	0 (16)	2 (4)	23

85

86 “ - ”: absence of that particular citrus species in the field

87 a in parentheses: total number of sampled plants from different states

88 b in parentheses: number of sampled plants from each citrus species

89

90 **Cloning and Sequencing.** Cloning and sequencing of the purified PCR products of the RT-
91 PCR positive samples produced 12 cDNA clones of 328nt. Sequence analysis of the 12 clones
92 showed that all clones had 99-100% similarity with CBLVd isolate Japan (GenBank Acc No.
93 AB006734). Five of the clones were 100% similar with CBLVd isolate Japan while seven
94 clones were 99 % similar with the Japan isolate. Among the 12 clones, four clones were from
95 Malacca (MyMalacca), four clones from Johor (MyMuar) and four clones from Selangor
96 (MySerdang) (Table 2). In addition, out of the 12 clones, five were obtained from *C. microcarpa*,
97 three clones from *C. aurantifolia*, and two clones from *C. sinensis* and *C. maxima*
98 respectively (Table 2). All the sequences obtained in this study were deposited in GenBank
99 (Table 2).

100 Alignment of the seven clones with 99% sequence similarity showed base substitutions in
101 Terminal left (TL), Pathogenic (P), Variable (V) and Terminal right (TR) domain of the
102 CBLVd Jp isolate (Table 3). Clone MySerdang01/01 had a substitution at base 59 (A→G) of
103 the P region. Meanwhile, clone MySerdang01/02 had a substitution at base 33 (C→U) and 251
104 (U→C), 265 (U→C) of TL and P region respectively. Base substitutions also occurred in clone
105 MySerdang01/06 at 285 (A→G) and 177 (C→U) at P and TR region respectively. The base

106 substitution that occurred in MyMuar01/03 was at base 69 (G→C) and 208 (C→A), 209 (G→A)
107 of the P and V region respectively. Meanwhile, the base substitution of clone MyMuar01/15
108 was similar to clone MyMuar01/03, but with an addition of a substitution at base 118 (G→A)
109 of V region. Base substitution also occurred in clone MyMalacca01/10 at base 69 (G→C) of P
110 region while for clone MyMalacca01/20, the base substitution occurred at 180 (A→G) of TR
111 region (Table 3).

112

113 **Table 2.** Host, GenBank accession numbers and sequence similarity of CBLVd clones
114 obtained in Malaysia.

Clone	Host	GenBank Accession number	% identity with CBLVd Japan isolate (AB006734)
MyMalacca01/08	<i>Citrofortunella microcarpa</i>	MF361856	100
MyMalacca01/10	<i>Citrofortunella microcarpa</i>	MF346702	99
MyMalacca01/13	<i>C. aurantifolia</i>	MF361857	100
MyMalacca01/20	<i>Citrofortunella microcarpa</i>	MF346703	99
MyMuar01/01	<i>C. aurantifolia</i>	KX823338	100
MyMuar01/03	<i>C. aurantifolia</i>	KX823339	99
MyMuar01/14	<i>C. sinensis</i>	KU194472	100
MyMuar01/15	<i>C. sinensis</i>	KU936033	99
MySerdang01/01	<i>C. maxima</i>	KX823340	99
MySerdang01/02	<i>C. maxima</i>	KX823341	99
MySerdang01/06	<i>Citrofortunella microcarpa</i>	KX823342	99
MySerdang01/08	<i>Citrofortunella microcarpa</i>	KX823343	100

115

116

117

118

119

120

121 **Table 3.** Nucleotide changes of CBLVd clones obtained in this study compared with CBLVd
122 isolate Japan (AB006734)
123

Isolate	Position of nucleotides changes in compared with CBLVd isolate Japan (GenBank Acc no AB006734)			
	TL	P	V	TR
MySerdang01/01 (KX823340)	-	59 (A→G)	-	-
MySerdang01/02 (KX823341)	33 (C→U)	251 (U→C), 265 (U→C)	-	-
MySerdang01/06 (KX823342)	-	285 (A→G)	-	177 (C→U)
MyMuar01/03 (KX823339)	-	69 (G→C)	208 (C→A), 209 (G→A)	-
MyMuar01/15 (KU936033)	-	69 (G→C)	118 (G→A), 208 (C→A), 209 (G→A)	-
MyMalacca01/10 (MF346702)	-	69 (G→C)	-	-
MyMalacca01/20 (MF346703)	-	-	-	180 (A→G)

124
125 **Phylogenetic analysis.** Phylogenetic tree demonstrated the sequences were grouped into four
126 main clades that exhibited the origin of samples. All Malaysian clones were in clade I.
127 MyMalacca01/08, MyMalacca01/13, MyMuar01/01, MyMuar01/14, MySerdang01/08, and
128 CBLVd Japan isolate (AB006734) were in sub-cluster A. MyMalacca01/10 was in sub-cluster
129 B. MyMuar01/03 and MyMuar01/15 shared the same sub-cluster C. Sub-cluster D contained
130 MyMalacca01/20, MySerdang01/02, MySerdang01/06 and MySerdang01/01 (Fig. 2).
131 **Pathogenicity test.** All the 10 calamondin (*C. microcarpa*) seedlings inoculated with the sap
132 extracted from a CBLVd positive citrus plant (MySerdang01/08) exhibited leaf bending, leaf
133 rolling, chlorosis and mild necrosis on mid rib of the leaves. In addition, the matured leaves of
134 inoculated seedlings were smaller in size compared to the healthy seedlings. However, no
135 stunting was observed in all inoculated seedlings. All the symptoms were observed after three
136 month post inoculation (Fig. 3). Leaf samples from all the 10 inoculated seedlings were
137 detected with CBLVd through RT-PCR using CBLVd specific primers (Fig. 4). The presence

138 of CBLVd was confirmed through sequencing the PCR product which resulted in 100%
139 similarity with the sequence of CBLVd Japan isolate (AB006734).

140 **Discussion**

141 RT-PCR amplification of total nucleic acid extracted from citrus leaf samples using
142 CBLVd specific primers showed the presence of CBLVd in 23 samples collected from 3 states
143 in Malaysia and six citrus species. However, as only 23 out of 133 symptomatic citrus plants
144 were detected with CBLVd, which indicates that the symptoms observed in the field were not
145 specific for CBLVd infection. The field symptoms observed might be due other causes as
146 Citrus Tristeza Virus also cause stunting (Moreno *et al.*, 2008) and leaf yellowing could be due
147 to nitrogen deficiency in citrus plants (Futch and Tucker, 2003). CBLVd might be endemic in
148 Asia Pacific region. Previous studies have shown that CBLVd was widely distributed in Asia
149 Pacific region such as China, Japan, Malaysia, Pakistan and Philippines (Hataya *et al.* 1998;
150 Ito *et al.* 2000; Cao *et al.* 2009; Wu *et al.* 2014; Khoo *et al.* 2017). Results showed that CBLVd
151 were detected in *Citrofortunella microcarpa*, *C. aurantiifolia*, *C. hystrix*, *C. maxima* and *C.*
152 *sinensis* but not in *C. reticulata*. The findings suggested that citrus could be a natural host to
153 CBLVd (Eiras *et al.* 2013; Hammond and Owens, 2006). CBLVd was detected in Johor,
154 Malacca and Selangor suggested that infected citrus plant materials could be the source of
155 CBLVd dissemination. Previous studies have showed that contaminated propagated materials
156 helped in the dissemination of Citrus greening and Citrus tristeza virus in Peninsular Malaysia
157 (Ahmad *et al.* 2008; Ayazpour *et al.* 2011). However, further studies are required to determine
158 the epidemiology of CBLVd in Peninsular Malaysia. Interestingly, CBLVd was not detected
159 in citrus plants in Pahang and Perak. Exploration about the source of propagated materials and
160 rootstock used for citrus plants in Perak and Pahang should be examined.

161 CBLVd of 328 nt was detected by RT-PCR using CBLVd specified primer sets
162 indicated the efficiency of RT-PCR to detect and characterize CBLVd. Bernard and Durán-

163 Vila (2006) have reported about RT-PCR being employed to detect and characterize citrus
164 viroids. Sequence analysis of 12 clones showed that the CBLVd variants from this study
165 showed 99-100% sequence homology to CBLVd isolate Japan (AB006734). Besides, the
166 clones isolated from *C. microcarpa*, *C. aurantiifolia*, *C. maxima* and *C. sinensis* were identical
167 and were defined as the consensus sequence of CVd-Ia which is a derivative of citrus bent leaf
168 viroid (Formerly known as CVd-Ib). Therefore, based on the percentage sequence similarity,
169 the CBLVd variant from citrus in Malaysia was determined as CVd-Ia (Hataya et al. 1998; Ito
170 et al. 2002). In addition, sequence analysis showed that seven out of 12 clones obtained in this
171 study had base substitution mainly occurred in Pathogenicity and Variable domain compared
172 to CBLVd japan isolate. Substitution of nucleotide occurring at different domains on the
173 secondary structure of the viroid, suggesting the adaptation of CBLVd to the host condition.
174 The finding is consistent with Lin *et al.* (2015), which showed that nucleotides alterations were
175 used by two citrus viroids (CEVd and HSVd) to adapt to different hosts.

176 The phylogenetic analysis revealed that the 12 CBLVd isolates obtained in this study
177 shared the sub-cluster with isolates from Japan (AB006734) indicating the closeness of region
178 shaped genetic homology. This finding is consistent with previous study revealed that some of
179 Australian grapevine viroid (AGVd) isolates from India similar to Chinese isolates (Adkar-
180 Purushothama et al. 2014). No information available with regards to the molecular
181 phylogenetic analyses to adequately identify and illuminate the evolution of CBLVd from
182 Japan with relation to the Malaysian isolates and other isolates from different countries.
183 Extensive phylogenetic analyses are required to give more information on the source of origin
184 as well as evolutionary relationship of CBLVd.

185 Inoculation of calamondin (*C. microcarpa*) seedlings with sap extracted from a
186 calamondin (MySerdang01/08) induced symptoms such as leaf bending, leaf rolling, chlorosis
187 and mild necrosis on mid rib of the leaves, 3-month post inoculation. The symptoms observed

188 in this study, specifically the leaf bending symptoms on the inoculated calamondins
189 corresponds to the symptoms induced by CBLVd infections in citrus regardless of varieties as
190 previously reported (Gandía and Durán-Vila, 2004). In addition, the observation of chlorosis,
191 mid vein necrosis, leaf rolling and smalling of matured leaves in this study have not been
192 reported in calamondins. The appearance of these symptoms could be attributed to the
193 nucleotide changes of CBLVd in host calamondin (Sano et al. 1992). This study also showed
194 that CBLVd is able to be transmitted through sap. The mechanical transmission of viroids
195 through vegetative propagation and contact of tools used in plantations has already been
196 described by Hadidi et al. 2003, thus, the current finding could serve as a platform for future
197 study of interlink between sap transmission and citrus viroids and potential insect vector.

198 In conclusion, CBLVd was detected from citrus in Malaysia using RT-PCR with
199 CBLVd specific primers. CBLVd was detected in *C. aurantiifolia*, *C. hystrix*, *C. jambhiri*, *C.*
200 *maxima*, *C. microcarpa*, and *C. sinensis* except *C. reticulata*. Cloning and sequencing showed
201 that all CBLVd were variant of CVd-Ia with 328 nt in length with 99-100% sequence homology
202 with CBLVd isolate Jp (AB006734). Pathogenicity of CBLVd in *C. microcarpa* was confirmed
203 through mechanical inoculation of sap. Further studies on different variants of CBLVd, host
204 range and geographical distribution are important to fill up the gap in research on CBLVd.

205 Materials and Methods

206 **Collection of samples.** Citrus samples were collected from citrus growing areas of Johor,
207 Malacca, Pahang, Perak and Selangor. Leaves samples citrus plants exhibiting leaf bending,
208 stunted growth and midvein necrosis were collected from 133 citrus plants of different varieties
209 of citrus including calamondin (*Citrofortunella microcarpa* (Bunge) Wijnands), kaffir lime
210 (*Citrus hystrix* DC.), key lime (*C. aurantiifolia* (Cristm.) Swingle), mandarin (*C. reticulata*
211 Blanco), pomelo (*C. maxima* Merr.), rough lemon (*C. jambhiri* Lush.) and sweet orange (*C.*
212 *sinensis* (L.) Osbeck). In addition, 60 non-symptomatic citrus samples were also collected from

213 the same citrus growing areas. The samples were surface sterilized with 10% sodium
214 hypochlorite followed by distilled water and kept at -20°C until use.

215 **Extraction of total nucleic acid.** The total nucleic acid was extracted from leaf samples using
216 the TESLP buffer (0.13 M Tris-HCl (pH 8.9), 0.017 M EDTA (pH 7.0), 1.0 M LiCl, 0.83%
217 SDS, 5% PVP) (Ito et al. 2000) following the steps described in Nakahara et al. (1999) with
218 slight modification. Mid-ribs from 4 g of leaves were removed. The leaves were chopped into
219 small pieces and grounded in liquid nitrogen using mortar and pestle. The powder was
220 transferred to 50 ml screw cap tube. A total of 10 ml of TESLP buffer was added into the tube
221 followed by 16 μ l of 2-mercaptoethanol and incubated for 30 min at room temperature in a
222 rotary shaker. The mixture was centrifuged at 13,000 g for 15 min. The resulting supernatant
223 was collected and extracted with 2 vol of Phenol, Chloroform and Isoamyl Alcohol (PCA,
224 25:24:1). The mixture was again centrifuged for 15 min at 13,000 g. The supernatant was re-
225 extracted into a new tube with 3 vol of Chloroform and Isoamyl Alcohol (CA, 24:1) followed
226 by centrifugation for 15 min at 13,000 g. The supernatant was transferred into a new 15 ml
227 screw cap tube added with 0.9 volume of 90% isopropanol. The mixture was mixed by
228 inverting and incubated at -80°C for 30 min. The pellet was collected by centrifugation 15 min
229 at 13,000 g. The pellet was washed twice with 1 ml of 70 % ethanol, air dried for 20-30 min
230 and suspended in 50 μ l of sterile double distilled water.

231 **Reverse transcription for RT-PCR.** cDNA was synthesized using a reverse primer, CBLV-
232 CP (5'-CGTCGACGAAGGCTCGTCAGCT-3') (Ito et al. 2002) to synthesize the cDNA.
233 Total nucleic acid (5.0 μ l), reverse primer (1.0 μ l) and double distilled water (2.5 μ l) was added
234 to a reaction vol of 8.5 μ l. The reaction mix was incubated at 80°C for 12 min and immediately
235 transferred to ice for 5 min. AMV-RT (1.0 μ l), dNTPs (2.0 μ l), RNAse Inhibitor (0.5 μ l),
236 MgCL₂ (4.0 μ l) and RT buffer (4.0 μ l) were then added. The reaction was incubated at 55°C

237 for 30 min and stopped by incubation at 10°C. The cDNA obtained was stored in -80°C freezer
238 until use.

239 **Reverse Transcription Polymerase Chain Reaction Amplification.** A set of specific primer
240 to amplify the full-length genome of CBLVd, forward, CBLV-CM (5'-
241 ACGACCAGTCAGCTCCTCTG-3') and reverse, CBLV-CP (5'-
242 CGTCGACGAAGGCTCGTCAGCT-3') was used for RT-PCR (Ito et al. 2002). The final
243 volume of PCR product was 25.0 µl which consisted of 12.5 µl of PCR master mix, 5.0 µl of
244 cDNA, 5.5 µl of sterile double distilled water, 1.0 µl each for forward and reverse primers (0.4
245 pmol/ µl each primer in final concentration). The conditions for PCR amplification for 35
246 cycles were 94°C for 10 min, 94°C for 30 sec followed by gradual decreasing at 60°C for 1 min.
247 Annealing was at 60°C for 10 sec. The reaction was ended with the extension at 72°C for 5 min.

248 **Agarose Gel Electrophoresis.** The PCR products were fractionated in 2% agarose gel
249 prepared in 1x TBE buffer at 100 V for 50 min. The gel was stained with ethidium bromide for
250 10 min followed by destained with distilled water for 5 min. The gel was visualized under
251 Trans UV and captured with Gel Doc XR model.

252 **Cloning and sequencing.** Positive PCR products were purified using MinElute® Gel
253 Extraction Kit (QIAGEN) according to the manufacturer's recommendation. The purified PCR
254 products were ligated into a cloning vector (pCR2.1-TOPO, Invitrogen) followed by
255 transformation with heat shock at 42°C for 30 sec in a water bath. The samples were
256 immediately put on ice for 5 min. SOC medium was added and incubated at 37°C for 90 min
257 at 200 rpm. X-gal was spread gently on LBA plate containing 50 mg/ L kanamycin. The plate
258 was sealed, wrapped with aluminum foil, inverted and incubated for 45 min prior to spreading
259 the samples. The clones were selected and sequenced at First Base and Next Gene (Malaysia).
260 The sequences were compared for similarity against the available sequences from NCBI

261 database Blast program. The sequences from clones were aligned using the software BioEdit
262 version 7.2.5 (Hall et al. 1999).

263 **Phylogenetic analysis.** A phylogenetic tree was constructed by MEGA 6.0 employing the
264 maximum likelihood method with bootstrap analysis (1,000 replicates) (Lin et al. 2015). Potato
265 spindle tuber viroid (PSTVd, Accession No. AY492084) was used as outgroup sequence. The
266 Malaysian isolates were analysed together with isolates from China, Japan, Pakistan and Spain
267 (Table 4).

268 **Table 4.** Host, origin and sequence similarity of clones of CBLVd worldwide isolates with
269 CBLVd isolate Japan (AB006734) from *C. clementina*.

Clone	Host	Origin	Accession numbers	% identity with Jp isolate
E83AK	‘Satsuma’ mandarin orange	Japan	AB054636	99
Jp	‘Clementine de Nules’ mandarin orange	Japan	AB006734	100
7	Citron	Spain	AY226164	99
14	Citron	Spain	AY226161	99
17a	Citron	Spain	AY226163	98
21	Citron	Spain	AY226162	99
IaS1	Clementine mandarin	Spain	GQ246193	99
IaS3	Clementine mandarin	Spain	GQ246196	99
A33-1-1	Sweet orange	Punjab, Pakistan	FJ773263	98
A33-1-5	Sweet orange	Punjab, Pakistan	FJ773267	98
		Hubei Province, China		
Hb-C1-2	Citron	JF742600		99

270
271 **Pathogenicity Test.** Leaf sap was extracted from 5 g of CBLVd positive citrus leaves
272 (MySerdang01/08) exhibiting leaf bending, petiole necrosis and yellowing symptoms in 0.02
273 M phosphate buffer (pH 7) with one vol of tissue to five vol of buffer using pestle and mortar
274 (Iftikhar et al. 2004). The sap was filtered through muslin cloth and kept on ice. Carborandum
275 was dusted on 6 months old calamondin (*C. microcarpa*) seedlings before inoculation. Sap was
276 applied to the leaves. About 4-6 leaves of each seedling were selected for inoculation.
277 Altogether 10 seedlings were inoculated with filtered sap. The inoculated seedlings were

278 washed out under the tap water after 3-5 min to remove the excessive filtrate. Another ten
279 seedlings were inoculated with distilled water as control. All seedlings were kept in insect free
280 screenhouse for 6 months to observe for symptom development and CBLVd presence.

281

282 **Acknowledgements**

283 The authors gratefully acknowledge the collaboration of TWAS and UPM under
284 TWAS-UPM post-doc fellowship program and University of Sargodha, Pakistan for sabbatical
285 leave to conduct this study.

286

287 **Literature cited**

288 Adkar-Purushothama CR, Kanchepalli PR, Yanjarappa SM, Zhang Z, Sano T. Detection,
289 distribution, and genetic diversity of Australian grapevine viroid in grapevines in India.
290 Virus genes. 2014; 49:304-311.

291 Ahmad K, Sijam K, Habibuddin H, Kadir J, Syed SO. Occurrence and spread of *Candidatus*
292 *Liberibacter asiaticus*, the causal agent of Huanglongbing disease of citrus in Malaysia.
293 Res. J. Agric. Biol. Sci. 2008; 4:103-111.

294 Al-Shariqi RM, Al-Hammadi MS, Al-Sadi AM. First report of Citrus bent leaf viroid in the
295 United Arab Emirates, J Plant Path. 2013; 95.

296 Ayazpour K, Sijam K, Vadomalai G, Jaafar H. Status of citrus tristeza virus (CTV) in
297 Peninsular Malaysia. Afr. J. Microb. Res. 2011; 5: 838-843.

298 Cao MJ, Atta S, Liu, Y, Wang XF, Zhou CY, Mustafa A, Iftikhar Y. First Report of Citrus bent
299 leaf viroid and Citrus dwarfing viroid from Citrus in Punjab, Pakistan. Plant Dis. 2009;
300 93:840.

301 Cao MJ, Liu YQ, Wang XF, Yang FY, Zhou CY. First report of Citrus bark cracking viroid
302 and Citrus viroid V infecting citrus in China. Plant Dis. 2010; 94:922.

303 Chooi OH. The ethnobotany of Citrus and their relatives. Korean J. Pl. Taxon. 1994; 24: 157-
304 171.

305 Eiras M, Silva SR, Stuchi ES, Carvalho SA, Garcêz RM. Identification and characterization of
306 viroids in 'Navelina ISA 315'sweet orange. Trop. Pl. Path. 2013; 38:58-62.

307 FAOSTAT (2016). Malaysia: Citrus fruits, total, production quantity (tons). Retrieved from:
308 <http://www.factfish.com/statistic-country/malaysia/citrus+fruits+total+production+quantity>

309 Futch SH, Tucker DPH. Guide to citrus nutritional deficiency and toxicity identification. Citrus
310 and Vegetable Magazine 2003; 26-29.

311 Gandía M, Durán-Vila N. Variability of the progeny of a sequence variant Citrus bent leaf
312 viroid (CBLVd). Arch Virol. 2004; 149:407-416.

313 Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program
314 for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999; 41:95-98.

315 Hadidi A, Flores, R., Randles, J., and Semancik, J. 2003. Viroids: properties, detection,
316 diseases and their control. Csiro Publishing.

317 Hammond RW, Owens RA. Viroids: new and continuing risks for horticultural and agricultural
318 crops. 2006. APSnet Features. doi: 10.1094/APSnetFeature-2006-1106

319 Hashemian SMB, Murcia N, Trenor I, Durán-Vila N. Low performance of citrus trees grafted
320 on Carrizo citrange is associated with viroid infection. J. Plant Pathol. 2010; 92: 511-517

321 Hataya T, Nakahara K, Ohara T, Ieki H, Kano T. Citrus viroid Ia is a derivative of citrus bent
322 leaf viroid (CVd-Ib) by partial sequence duplications in the right terminal region. Arch.
323 Virol, 1998; 143: 971-980.

324 Iftikhar Y. Yellow Vein Clearing Virus of Lemon in Pakistan: Some Biological and Physical
325 Properties of Yellow Vein Clearing Virus in Lemon. Pak. J. Phytopath. 2004; 16:5-8.

326 Ito T, Ieki H, Ozaki K. A population of variants of a viroid closely related to citrus viroid-I in
327 citrus plants. Arch. Virol. 2000; 145:2105-2114.

328 Ito T, Ieki H, Ozaki K, Ito, T. Characterization of a new citrus viroid species tentatively termed
329 Citrus viroid OS. *Arch. Virol.* 2001; 146:975-982.

330 Ito T, Ieki H, Ozaki K, Iwanami T, Nakahara K, Hataya T, Ito T, Isaka M, Kano T. Multiple
331 citrus viroids in citrus from Japan and their ability to produce exocortis-like symptoms in
332 citron. *Phytopath.* 2002; 92:542-547.

333 Khoo YW, Iftikhar Y, Murugan T, Roslin NA, Adawiyah R, Kong LL, Vadomalai G. First
334 Report of Citrus Bent Leaf Viroid in Malaysia. *J. Plant Pathol.* 2017; 99: 293.

335 Lin CY, Wu ML, Shen TL, Yeh HH, Hung TH. 2015. Multiplex detection, distribution, and
336 genetic diversity of Hop stunt viroid and Citrus exocortis viroid infecting citrus in Taiwan.
337 *Virology.* 2015; 12:11 doi: 10.1186/s12985-015-0247-y.
338 <https://www.ncbi.nlm.nih.gov/pubmed/25645458>)

339 Malfitano M, Barone M, Durán-Vila N, Alioto D. Indexing of viroids in citrus orchards of
340 Campania, Southern Italy. *J Plant Pathol.* 2005; 87: 115-121.

341 Mazhar MA, Bagherian SAA, Ardakani AS, Izadpanah K. Nucleotide Sequence and Structural
342 Features of Hop Stunt Viroid and Citrus Bent Leaf Viroid Variants from Blighted Citrus
343 Plants in Kohgiluyeh–Boyerahmad Province of Iran. *J. Agr. Sci. Tech.* 2014; 16: 657-665.

344 Moreno P, Ambros S, Albiach-marti MR, Guerri L, Pena L. Citrus tristeza virus: a pathogen
345 that changed the course of the citrus industry. *Mol. Plant Pathol.* 2008; 9(2): 251-268.

346 Othman Md, Hassan SNA, Nahar MA, Basar L, Jamil NS, Sarker SD. Essential Oils from the
347 Malaysian Citrus (Rutaceae) Medicinal Plants. *Medicines.* 2016; 3:
348 13. <https://doi.org/10.3390/medicines3020013> Received: 18 January 2016 / Revised: 11
349 May 2016 / Accepted: 16 May 2016 / Published: 3 June 2016)

350 Nakahara K, Hataya T, Uyeda, I. A simple, rapid method of nucleic acid extraction without
351 tissue homogenization for detecting viroids by hybridization and RT-PCR. *J. Virol. Meth.*
352 1999; 77: 47-58.

353 Reanwarakorn K, Pomma S, Attathom S. 2003. Evidence of Citrus Exocortis Viroid in
354 Thailand. *Kasetsart J.* 2003; 37: 453-459.

355 Sano T, Candresse T, Hammond RW, Diener TO, Owens, RA. Identification of multiple
356 structural domains regulating viroid pathogenicity. *Proc. Nat. Acad. Sci.* 1992; 89:10104-
357 10108.

358 Wu Q, Cao M, Su H, Atta S, Yang F, Wang X, and Zhou C. Molecular characterization and
359 phylogenetic analysis of Citrus viroid I-LSS variants from citrus in Pakistan and China
360 reveals their possible geographic origin. *Eur. J. Plant Pathol.* 2014; 139:13-17.

361

362

363

364

365

366

367

368

369

370

371

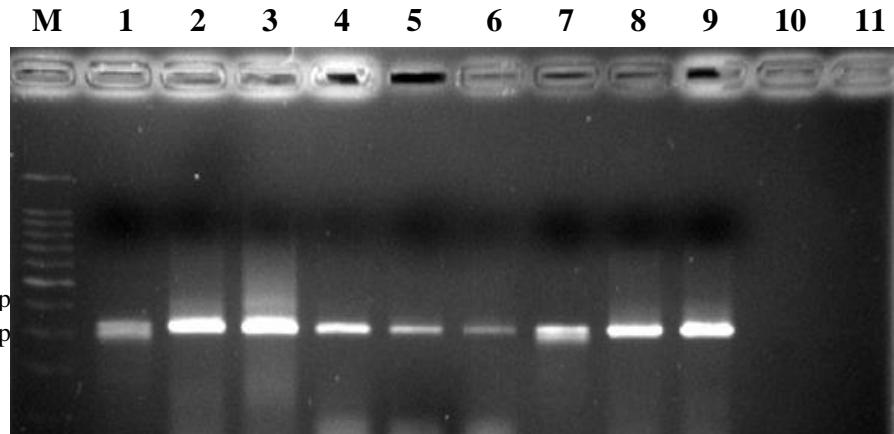
372

373

374

375

376


377

378

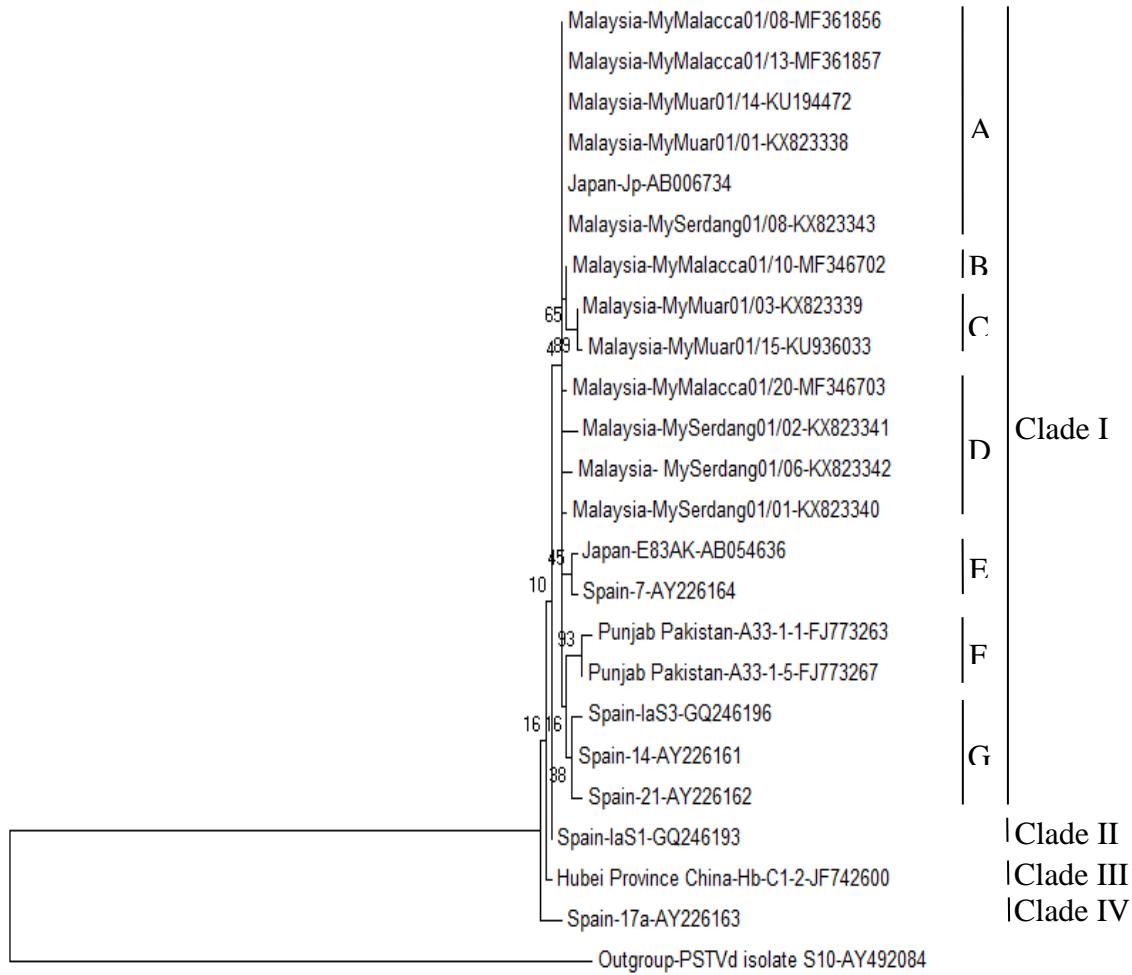
379

380

381

382

383 **Fig. 1.** Reverse transcription-polymerase chain reaction assay of CBLVd positive samples from
384 Johor, Malacca and Selangor with CBLVd specific primer sets analyzed in 2.0% agarose gel
385 electrophoresis. An amplicon of approximately 330 bp were observed in CBLVd positive
386 samples in Lane 1-3 (Johor), Lane 4-6 (Malacca), Lane 7-9 (Selangor). Lane 10 is non-template
387 control. Lane 11 is healthy sample from non-symptomatic citrus leaf sample.


388

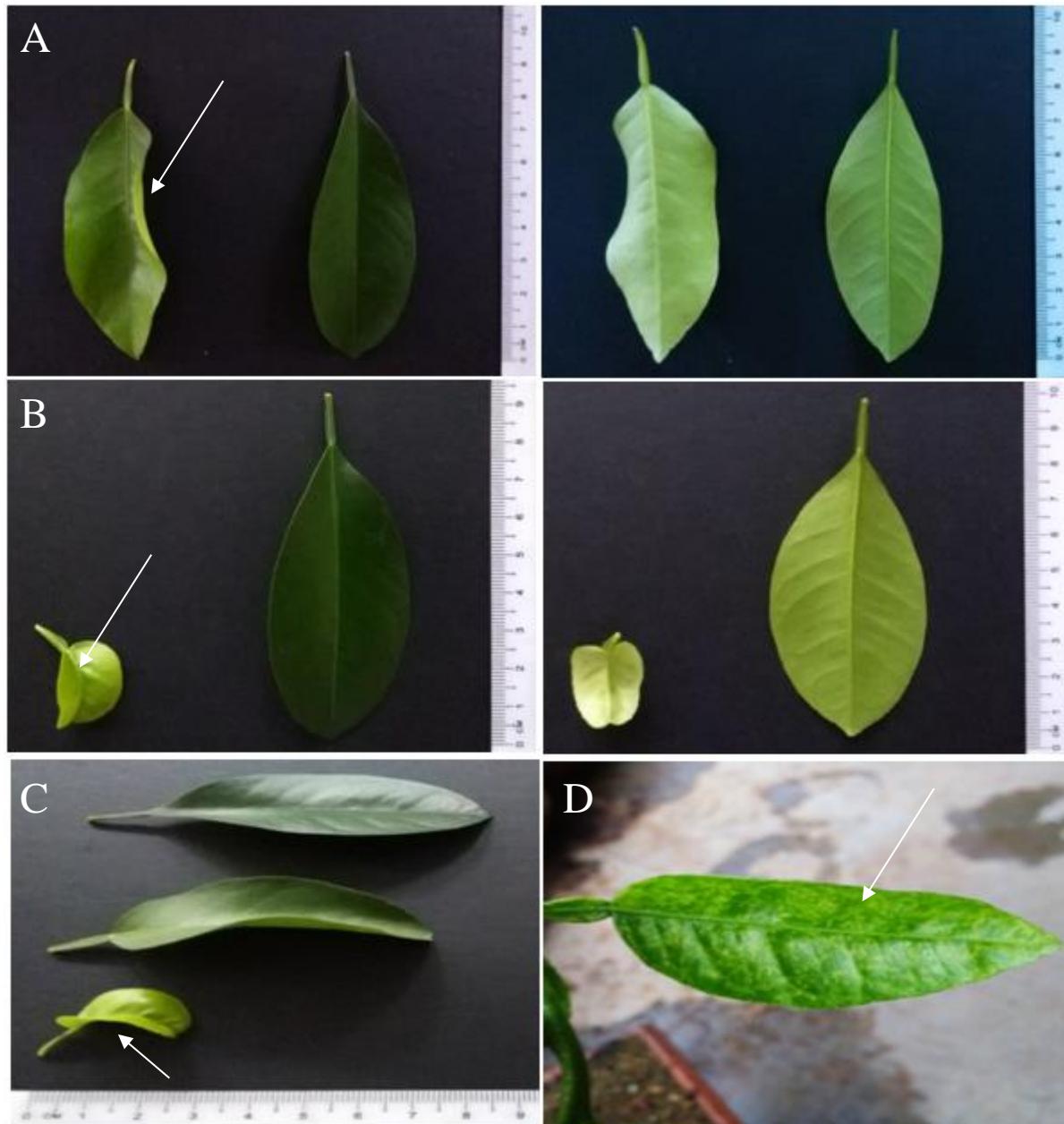
389

390

391

392

408 **Fig. 2.** Phylogenetic relationships of Citrus bent leaf viroid (CBLVd) sequence variants using
409 MEGA 6.0 based on 1000 bootstrap replication. Potato spindle tuber viroid (PSTVd, Accession
410 No. AY492084) was used as outgroup sequence.


411

412

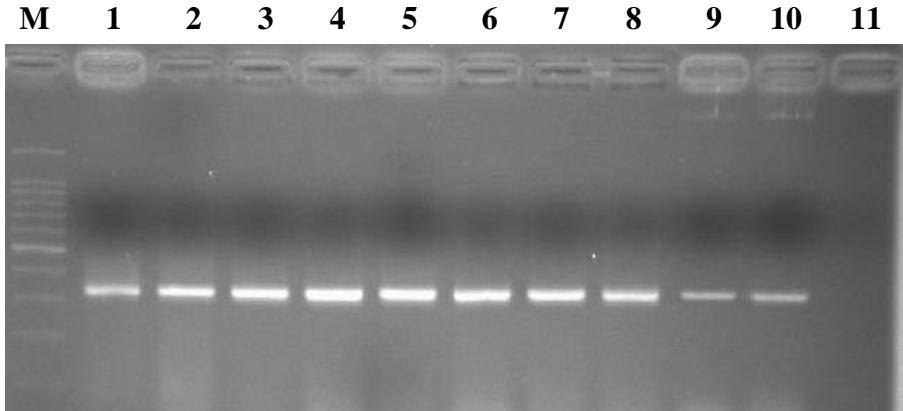
413

414

415

417 **Fig. 3.** Symptoms observed on 6 month old calamondin seedlings were indicated with arrow.
418 A, B, C and D, Leaf rolling (A), Small leaves (B), mild necrosis on mid rib (B), leaf bending
419 (C), chlorosis (D) induced by CBLVd in 6-month-old calamondin seedlings after 3-month post-
420 inoculation.

421


422

423

424

425

426

