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Abstract

Background. Global positioning systems (GPS) and altimeters are increasingly used to monitor
vertical space use by aerial species, a key aspect of their niche that we need to know to understand
their ecology and conservation needs, and to manage our own use of the airspace. However, there
are various sources of error in flight height data ("height” above ground, as opposed to “altitude”
above a reference like the sea level): vertical error from the devices themselves, error in the ground
elevation below the tracked animals, and error in the horizontal position of the animals and thus the

predicted ground elevation below them.

Methods. We used controlled field trials, simulations, and the reanalysis of raptor case studies with

state-space models to illustrate the effect of improper error management.

Results. Errors of a magnitude of 20 meters appear in benign conditions (expected to be larger in
more challenging context). These errors distort the shape of the distribution of flight heights, inflate
the variance in flight height, bias behavioural state assignments, correlations with environmental
covariates, and airspace management recommendations. Improper data filters such as removing all
negative recorded flight height records introduce several biases in the remaining dataset, and
preclude the opportunity to leverage unambiguous errors to help with model fitting. Analyses that
ignore the variance around the mean flight height, e.g., those based on linear models of flight height,

and those that ignore the variance inflation caused by telemetry errors, lead to incorrect inferences.

Conclusion. The state-space modelling framework, now in widespread use by ecologists and
increasingly often automatically implemented within on-board GPS data processing algorithms,
makes it possible to fit flight models directly to raw flight height records, with minimal data pre-
selection, and to analyse the full distribution of flight heights, not just the mean. In addition to basic
research about aerial niches, behaviour quantification, and environmental interactions, we highlight
the applied relevance of our recommendations for airspace management and the conservation of

aerial wildlife.
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Introduction

Describing the distribution of animals in environmental space is fundamental to understanding their
resource requirements, cognitive processes, energetic strategies, and ecological characteristics. The
distribution of animals in horizontal space has dominated ecological studies (Nathan et al. 2008),
however the vertical dimension is also important for flying animals, and for that matter also diving
and tree-climbing animals (Weimerskirch et al. 2005, Kunz et al. 2007, Bishop et al. 2015, Liechti et al.
2018). For example, flight height data could help documenting the vertical niche and community
ecology of aerial foragers (Arlettaz et al. 1997, Siemers and Schnitzler 2004). Flight height data
guantify the behaviour of flying animals and their flight strategies (Pirotta et al. 2018, Murgatroyd et
al. 2018), and their relationships with environmental factors (e.g., Péron et al. 2017). From an applied
perspective, we need an accurate, error-free description of the distribution of birds and other
animals in the aerosphere to avoid collisions with man-made structures, which is key to aircraft
safety and animal conservation, in the current context of increasing human encroachment into the

airspace (Lambertucci et al. 2015, Davy et al. 2017).

However, monitoring vertical airspace use by wildlife remains challenging. Ground-based surveys are
limited in their field of vision and time window. Airborne monitoring (e.g., from glider planes) is
logistically challenging and constrained by weather conditions. Radar-based methodologies are not
usually specific enough to assign records to species (but see Zaugg et al. 2008, Dokter et al. 2013).
Animal-borne tracking methodologies such as global positioning systems (GPS) and altimeters have
therefore become popular to monitor flying species (Lépez-Lépez 2016). They record data even when
the animals are out of sight for ground-based observers, over extensive, potentially uninterrupted
periods of time, and with no uncertainty about which species or individuals are being monitored. For
example, we can record raptors soaring over the high sea at night (Duriez et al. 2018). However, the
data that GPS and altimeters record are not error-free (D’Eon et al. 2002, Frair et al. 2004, Jerde and
Visscher 2005, Brost et al. 2015). Errors are particularly evident in the vertical axis because there are
unpassable barriers, e.g., the ground. Usually, a few unambiguously erroneous positions are
recorded beyond these barriers (Katzner et al. 2012, Ross-Smith et al. 2016, Weimerskirch et al.

2016, Péron et al. 2017, Krone and Treu 2018, Roeleke et al. 2018).

Most of the research into ways to deal with sampling errors in positioning data has focused on
horizontal animal movement (Freitas et al. 2008, Albertsen et al. 2015, Brost et al. 2015, Fleming et
al. 2016). There is very little guidance for ecologists about the challenges specific to vertical space
use data (Poessel et al. 2018). Many practitioners consider that vertical movement data need to be

“filtered” before analysis, i.e., they discard some records before proceeding with the analysis. They
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may discard records that are too far from preceding ones (as often done for horizontal data; Freitas
et al., 2008), too far beyond impassable barriers (Katzner et al. 2012, Krone and Treu 2018), or
obtained from an unreliable configuration of the GPS satellite network (Poessel et al., 2018). Instead
of discarding the more erroneous records, researchers have also sometimes chosen to reset them to
plausible values (Weimerskirch et al. 2016, Roeleke et al. 2018). However, when applied improperly,
such filters can have undesirable consequences. We start by reviewing the sources of error in GPS
and altimeter flight height data (Part 1). In Part 2, we reanalyse case studies into the flight height of
three raptor species (Péron et al. 2017), and complement them with novel data from controlled field
trials and from simulations, in order to illustrate the stakes of proper error-handling in vertical

airspace use data.

Part 1: Review of the sources of error in flight height data
from GPS and altimeters

Throughout we refer to flight height h, which is the distance to the ground below the bird, different
from flight altitude z. The flight altitude denotes the distance to a reference altitude, often the
ellipsoid, i.e., a geometrically perfect (but simplistic) model of the sea level. Alternatively, some GPS
units may provide the altitude relative to the empirical sea level measured at a reference point over
a reference period (e.g., in France the “NGF-IGN 1969” norm means that altitude is measured
relative to the mean sea level in the port of Marseille between 1884 and 1896), or relative to the
geoid, which is a model of the sea level if it was only influenced by the local gravitational field and
the rotation of the Earth (Fowler 2005). There are databases and simple formulae to convert from
one system of reference to another, but this nevertheless represents a first potential source of error

in flight height data.

Flight height above the ground is computed as h = z- z;5y (X, ¥), where zpgy, (x, ) is the ground
altitude predicted by a digital elevation model (DEM) at the recorded horizontal position (x, y), in
the same system of reference as z. Errors in h can then be caused by errors in any of the three
components: z, Zpgy, or (x,y) (Fig. 1). Importantly, depending on the application, researchers might
want to study z not h (Pirotta et al. 2018, Murgatroyd et al. 2018). In the list below, sources of error

#3-#5 do not influence z.
1. Errorin z when z is given by a GPS.

If recorded by a GPS, z is affected by the “user equivalent range error” (UERE) and the “vertical
dilution of precision” (VDOP) (Parkinson and Spilker 1996, Sanz Subirana et al. 2013).
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122  The UERE stems from diffusion and diffraction in the atmosphere, reflection from obstacles, and
123 receiver noise (Parkinson and Spilker 1996, Sanz Subirana et al. 2013). The acronym UERE usually
124  directly refers to the root mean squared error, but here we will use the notation oygrg instead.
125  oyggg is usually in the order of a few meters and considered constant over time for a given device.
126  Some GPS manufacturers specify the horizontal oyggrg, or alternatively it can be estimated from the
127  data (Johnson et al. 2008). The oyggrg is however reputedly larger in the vertical axis than the

128  horizontal axes (D’Eon et al. 2002, Bouten et al. 2013), meaning that manufacturer-provided oygrg
129  should be considered conservative for vertical applications and should be used with appropriate

130 caution.

131  The vertical position dilution of precision factor (VDOP) quantifies the effect of changes in the size
132 and spatial configuration of the available satellite network on the precision of GPS records (Parkinson
133 & Spilker, 1996; Sanz Subirana et al., 2013; Fig. A1). The more satellites are available and the more
134  evenly spread apart they are, the more reliable the positioning is. Some GPS manufacturers do

135  provide a VDOP value for each record, but many only provide a more generic DOP value.

136 When oygrg and VDOP are known, the error-generating process can then be approximated by a
137  Gaussian process with time-varying standard deviation o,(t) = VDOP(t) - 6ygre (EQ. 6.45 in Sanz
138  Subirana et al., 2013). Therefore, the DOP is not a direct index of precision. The spread of the error
139 distribution increases with the DOP, but the error on any given record is stochastic. The DOP is

140  therefore not intended to be used as a data filter (e.g., discard any data with DOP above a given

141  threshold), but instead it should be used to model the error-generating process.
142
143 2. Errorin z when z is given by an altimeter

144 If recorded using an altimeter, z is computed from the barometric pressure, using the formula

145 z=c-T:log(Pggr/P) (Monaldo et al. 1986, Crocker and Jackson 2018). c is a calibration constant
146  that mostly depends on the composition of the air (e.g., percentage of vapour) and on the

147 gravitational field. T is the air temperature in Kelvin, P is the air pressure, and Pgg is the air pressure
148  at an elevation of reference (both pressures in mbar or in Pascal). However, this formula only holds
149  when the atmosphere is at equilibrium. Changes in temperature, pressure, and air composition, i.e.,
150 the weather, alter the link between z and P. These influences are difficult to control fully because one
151 would need to measure the weather variables both where the bird is, and at the reference elevation
152  immediately below the bird. In other words, altimeters can be more accurate than GPS to monitor
153 flight height, but only over short periods of time when the weather can be considered constant and

154  the altimeter is calibrated for that weather. One should ideally regularly re-calibrate the altimeters
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155  using direct observations of flight height and accurate measures of Prer and T. Unfortunately, field
156  calibrations are rarely feasible in practice (but see Shepard et al., 2016; Borkenhagen et al., 2018).
157  The consequence is that altimeters are often miscalibrated. The degree of miscalibration depends
158 mostly on the weather. This generates temporally autocorrelation in the error time series. Over a

159  restricted time period, the error patterns are thus more akin to a bias (a systematic over- or under-
160  estimation of flight height) than to an error in the statistical sense of a zero-mean, identically and

161  independently distributed random process. Importantly, altimeter data still allow one to compute
162  the derivative of flight height, i.e., climb rate, because the amount of bias can be considered constant
163  over short periods of time. In Part 2.1, we will directly compare the errors from GPS and altimeters

164 using controlled field experiments.
165 3. GPS horizontal error.

166  (x,y)isalso affected by a user equivalent range error and a dilution of precision (Fig. 1). The

167  horizontal error in (x,y) can thus also be described as a Gaussian process with time-varying standard
168  deviation: gy, (t) = 1/v/2 - HDOP(t) - oygrg- Note that we use here a horizontal dilution of

169  precision factor, HDOP. An often-overlooked consequence of errors in the horizontal position is that
170  they introduce flaws in the link to spatially-explicit environmental covariates (Hays et al. 2001,

171  Bradshaw et al. 2007). In particular, the ground elevation zpg, is extracted from a location (x,y)
172 that s slightly different from the true location (Katzner et al. 2012). If the terrain is very rough, then
173 the ground elevation at the recorded location (x, y) may be significantly different from the ground
174  elevation below the actual location of the bird. In Part 2.2 we will use simulations to quantify the

175 influence of horizontal errors.
176 4. Interpolation errorin zpgy.

177  zpgu is interpolated from discrete ground elevation measurements (Gorokhovich and Voustianiouk
178 2006, Januchowski et al. 2010). The ground elevation is measured at a few select locations, but it is
179  interpolated between them. The result of the interpolation is then rasterized at a set resolution, and
180  the result is the DEM. This process can be quite imprecise (Gorokhovich and Voustianiouk 2006,

181  Januchowski et al. 2010). At a cliff, for example, the ground elevation may drop by several hundred

182  meters within a single pixel of the DEM.
183 5. Errorsin DEM base data.

184  The original measurements from which DEMs are interpolated are not necessarily error free either.

185  These errors are assumed small relative to the other sources, however, there is, to our knowledge,
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not much information available about the base datasets from which DEM are interpolated and their

precision.

Part 2: Field trials, simulations, and reanalysis of raptor
data

Material and Methods

Controlled field trials
To quantify the magnitude of the vertical error in altimeters and GPS devices, we conducted three

controlled trial experiments.

First, we attached an “Ornitrack 25” GPS-altimeter unit (Ornitela) to a drone. We then flew the drone
above the rooftop of the Max-Planck institute in Radolfzell, Germany at heights ranging from 0
(drone landed on the rooftop) to 90m. We conducted 6 flight sessions over two days, each lasting
between 15 and 140min, collecting one record every ten minutes for a total of 30 records. We also
monitored the air pressure and temperature on the rooftop, which we used to recalibrate the

altimeter post-hoc. Lastly, the drone carried a separate, on-board, altimeter.

In a second, separate experiment, we attached two “Gipsy 5” GPS units (Technosmart) to an ultra-
light aircraft, with a vertical distance of 1.8m between the two units. We then flew the aircraft near
Radolfzell while the two units simultaneously tracked its flight height, collecting one record per

second for a total of 11.5 hours over 5 days.

Third, we compared the vertical positions recorded by 4 different units from 3 different
manufacturers: Technosmart (AxyTrek and Gipsy 5), Microwave (GPS-GSM 20-70), and Ornitela (GPS-
GSM Ornitrack 85). We (RG and OD) carried these units to 21 known geodesic points, of which the
altitude was precisely documented by the French National Geographic Institute. The units recorded
their position once every minute for a total of 894, 934, 560, and 563 data points, keeping only the
unit * location combinations that yielded more than 25 fixes. We computed the bias and root mean
squared error of the vertical measurement by comparing these data to the actual, known altitudes of
the geodesic points. Importantly, the manufacturers do not use the same reference to compute the
altitude: Microwave uses the geoid (WGS 84 EGM-96 norm), whereas the others use the mean sea
level (assumed to correspond to the local reference, meaning the NGF-IGN 1969 norm, but sea
below). We expressed all altitudes in the same norm before computing biases and errors, and
accounted for sampling effort (number of fixes) and location when comparing the performance of

different units.
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Simulations of flight tracks

We simulated flight tracks that followed Ornstein-Uhlenbeck processes (Dunn and Gipson 1977). This
is a class of continuous-time stochastic models, which is not specific to vertical movement or even to
movement (Dunn and Gipson 1977). In the case of vertical movement, the parameters of the
Ornstein-Uhlenbeck processes control the mean flight height, the variance in flight height, and the
temporal autocorrelation in the flight height time series. We transformed the raw Ornstein-
Uhlenbeck simulations using an atanh link as described by Péron et al. (2017) to enforce positive
flight height. The time unit was arbitrary. An attractive feature of simulations in the context of this
study is that we know both the true flight height and the recorded flight height, which is the true

flight height plus an independent and identically distributed zero-mean Gaussian error.

Simulations of synthetic landscapes

The objective was to quantify the influence of horizontal errors. We generated synthetic landscapes
of varying complexity and roughness (Fig. A2). We then transposed the flight track of a lesser kestrel
Falco naumanni over these synthetic landscapes. The individual originally flew over extremely flat
terrain (the Crau steppe in France). The data (Pilard and OD, unpublished) were collected every 3
minutes using a Gipsy 5 GPS unit from Technosmart, and processed through the state-space model of
Péron et al. (2017) to account for real sampling errors before use. We then added simulated random

telemetry noise of controlled standard deviation.

Raptor case studies

We reanalysed the data from Péron et al. (2017), where the field procedure, data selection, and data
analysis procedures are described in full. Briefly, we studied three species of large soaring raptors:
Andean condors Vultur gryphus (five juveniles, 1,692 individual.days of monitoring, 15 minute
interval), Griffon vultures Gyps fulvus (eight adults, 2,697 individual.days, 1-5 minute interval), and
Golden eagles Aquila chrysaetos (six adults, 3,103 individual.days, 6-10 minute interval). After
applying the analytical procedure, for each data point, we could compare the corrected position, an
estimate of the true position, to the recorded position, which was affected by the sources of errors

we listed in Part 1.

We selected the period between 11:00 and 15:00, which concentrates condor activity and therefore
flight time, and discarded other records. For the vultures, we selected the period between 09:00 and
16:00. For the eagles, we selected the period between 08:00 and 17:00 and, because a lot of time is
spent motionless in this species even during their core activity period, we further removed all the
records that were less than 15 meters from the previous record. We acknowledge the arbitrary

nature of this data selection and emphasize that it is not necessary or even recommended to apply
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such filters before analysis. We however stress that in the context of the present study, the case
studies perform an illustrative function, meaning that we use them to highlight the effect of
improper error-handling, at least during the particular time periods that we selected for analysis
because we consider them relevant for biological inference, and that the same analytical procedures

can indiscriminately be applied to other time frames.

Collision risk

In several instances, we will illustrate the potential effect of improper data-handling on management
recommendations by estimating the risk of collision with wind turbines as the proportion of records
between 60 and 180m above ground (assuming no behavioural adjustment in the presence of wind
turbines). Collision risk estimated from GPS tracks is increasingly used to make recommendations
about the choice of locations for new turbines, or to schedule the operation of existing ones. We
expected that the estimated collision risk would depend on flight parameters (mean flight height,
variance in flight height), on the magnitude of errors, and on error-handling. For example, a large
variance in flight height might lead to a high collision risk even if the mean flight height is beyond the
collision zone. Improperly handled errors may lead to positions being erroneously recorded in the
collision zone when the birds actually flew outside of it, and vice versa. The same type of thinking
could be applied to other types of collision risk, e.g., antennas, utility lines, buildings with bay

windows, except that the collision zone would be at a different height.

Part 2.1: The magnitude of vertical errors in GPS and altimeters

During the first controlled field trial (with the drone), DOP values between 1.2 and 1.6 indicated that
the configuration of the satellite network was reliable throughout. Nevertheless, 6.7% of the GPS
flight height records were below the rooftop height, i.e., obviously erroneous. For the altimeter, with
default settings, 10% of the records were below the rooftop height. The default settings of the
altimeter therefore did not correspond to the atmospheric conditions during the experiment. The
standard deviation of the difference between the recalibrated altimetry and the GPS data was 22m,
between the recalibrated altimetry and default-setting altimetry it was 14m, and between the
recalibrated altimetry and the on-board drone altimeter it was 19m. This means that, with default

settings, the altimeters had approximately the same precision as the GPS.

During the second controlled field trial (with two GPS units attached to the same aircraft), in 35% of
cases, the lower unit was erroneously recorded above the higher unit. The standard deviation of the
difference between the height recorded by the two units was 7.1m. The highest of the two units

recorded 3% of negative flight heights. The lowest unit recorded 13% of negative flight heights.
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During the third controlled field trial (with GPS units carried to a geodesic point of precisely known
altitude), the mean absolute bias of the vertical measurement was 27m on average across units and
locations. The root mean squared error ranged from 14m to 42m depending on the unit, with a small
effect of location. However, the within-session standard deviation ranged only to 28m, suggesting
that a bias in the sea level reference point (probably incorrectly assumed to follow the French norm)
inflated the RMSE. The average bias ranged between -17m and +12m depending on the unit, after
correcting for significant location effect, but without effect of altitude. This means that different
brands of GPS unit yield different rate of error in their altitude measurements, which can impair the
comparison of datasets collected by different units. Further investigation or communication with
manufacturers should decipher whether this stems from different fix acquisition procedures (e.g.,
satellite detection) or different post-processing algorithms, and should also make clear which sea

level reference point different manufacturers are using.

These controlled field trials, along with other similar reports (Bouten et al., 2013; Ross-Smith et al.,
2016), highlight that even in benign conditions, GPS and altimeter data are sufficiently error-prone to
tamper with ecological inference in many cases (range of the standard deviation of the error: 4 —
50m). The issue is only suspected to be more acute in operational conditions when the DOP is larger,
the terrain rougher, the weather more variable, and there are more obstacles to signal diffusion than
in controlled field trials. Furthermore, the rate of error depended on the brand of the unit and on the

location, which can be of importance when comparing across studies.

Part 2.2: Horizontal errors can cause vertical errors

In the synthetic landscape simulations, the frequency of negative flight height records increased with
the standard deviation of both the horizontal and vertical telemetry error (Fig. A2a), and with the
landscape roughness and complexity (Fig. A2b). However, the various sources of errors acted in a
multiplicative way, so that even when the telemetry noise was small (SD of 1m), the error in h could
be large (SD of 20m; Fig. A2c; darkest grey curve). Perhaps unexpectedly, when the horizontal error
was large, the error in the height above ground tended to be independent of the vertical error in the
GPS (on average across all simulations; Fig. A2c; lightest grey curve). This means that the effect of the
horizontal error in the GPS can supersede the effect of the vertical error, if the terrain is rough. Even
in the absence of any vertical error, the horizontal error was indeed routinely sufficient to cause 10-

20% of the data points to be below ground (Fig. A2a).

Part. 2.3: Errors inflate the recorded variance in flight height

In the simulations of flight tracks, errors in h inflated the variance in the distribution of recorded

flight heights, i.e., the variance in the true flight height was consistently lower than the variance in
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the recorded flight height (Fig. 2). In the raptor case studies, we obtained the same result, with the
caveat that we did not access to the true flight height, but we could instead use the corrected flight

heights (Fig. 2).

Indeed, if the movement and error processes are independent, the total variance in flight height is
theoretically exactly the sum of the movement and sampling variances (e.g, Auger-Méthé et al.,
2016; see also Gould & Nichols, 1998 and references therein). If the movement and error processes
are not independent, the total variance is still larger than the movement variance. Yet, what we need
for biological inference is the movement variance. In a naive analysis of the raptor case studies that
would confound telemetry errors with rapid movements, the birds would therefore have appeared
more vertically mobile and with a more spread-out distribution in the aerosphere than they actually
were. This type of issue is potentially quite widespread in movement ecology, e.g., in behavioural
assignment exercises that use movement variances (daily displacements, turning angles, etc.) to

determine the behavioural state of animals.

Part 2.4: Negative flight height records provide useful information

In this section we focus on negative records, i.e., unrealistically low records, but the same logic can
be applied to unrealistically high records. Negative flight height records are more likely to occur
when animals are near the ground, either perched or flying. If we remove the negative records
(Poessel et al. 2018), perching and low flight are under-sampled in the final dataset (Roeleke et al.
2018). To illustrate this point, we used a flight track from a migrating juvenile osprey (Pandion
haliaetus) as it crossed the sea between the Italian mainland and Corsica (Duriez et al. 2018). During
a portion of that sea crossing, its Ornitela GPS unit recorded flight heights that oscillated between -
2m and -7m below the sea level (Fig. A3, inset). The amplitude of the oscillation suggested that the
bird followed the swell of the waves. The complete sequence (Fig. A3) depicts a progressive loss of
altitude as the bird glided towards firm ground, and a period of active flapping flight (as per the
accelerometery record) very low above the waves once the bird had lost all of its accumulated
potential energy before reaching firm ground. These negative flight height records documented a
critical time period. First, the risk of having to make a sea landing were clearly much greater in the
few minutes when the osprey was flying low over the waves, compared to the rest of the sea
crossing when the bird was often soaring high (Duriez et al. 2018). In addition, when flying low, the
bird had no other choice than to flap and therefore expend energy; whereas when higher above the
sea, the bird had the option to soar and therefore spare energy. It is critical that negative flight

height records like these are maintained, even if, instead of a fully interpretable high-resolution
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sequence like in this example, there are just a few isolated negative flight height records in a low-

resolution dataset.

In addition, if we only kept the records with positive flight height, we would obtain a biased sample
of the distribution of flight height. Both in simulations and in the raptor case studies, discarding
negative flight height records led to the overestimation of the mean flight height in the remaining
dataset, the underestimation of the variance in flight height, the introduction of a right skew in the
distribution of flight height, and the overestimation of the collision risk (Fig. 3). The latter result was
because negative records mostly occurred when the bird was flying below the collision zone, and
thus removing negative records led to under-sample safe periods of time. Note that this particular
result pertains to the wind turbine application case only; in other types of collision risk, e.g., buildings

and utility lines, the collision zone starts closer to the ground.

The simulations nicely complemented the raptor case studies by 1) eliminating any debate about
whether the corrected flight heights in the raptor case studies were trustworthy or not (in the
simulations, the true flight heights are exactly known) and 2) increasing the range of flight
behaviours, since the raptors tended to exhibit lower percentage of time near the ground (in part
because we purposely tried to exclude time spent perched) and different distributions of the
sampling error. The amount of bias appeared highly dependent on the underlying flight behaviour
and error distribution, and therefore not easy to predict and account for without appropriate error-

handling methodology.

Additionally, there are many other major consequences of discarding negative flight heights. One is
the disruption of the expected balance of positive and negative errors in the remaining data.
Negative flight height records only arise when the error is negative, and so removing them
introduces a bias towards positive errors, thereby disrupting the shape of the distribution of errors in
the remaining data. Yet, we need the full range of errors to fit the models in Part 3. Another,
unrelated consequence is the disruption of the sampling schedule of the remaining data. Many
movement analyses are critically sensitive to the sampling schedule, and therefore their outcome will
not be the same after removing the negative records. Lastly, and perhaps most importantly, negative
flight height records can help fit the models that separate the error and movement processes,
because they are unambiguously erroneous and can be informed as such in the model-fitting
procedure (cf. Part 3). Some authors have applied less stringent filters, such as removing only the
most negative flight height records and removing an equal amount of extremely positive flight height
records. While the effect on the remaining distribution, and on the balance of negative and positive

errors is supposedly weaker than if removing all of the negative records, we warn that the remaining
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records are still affected by the same error process that generated the records that were deemed too
erroneous to keep, thus the issues in Part 2.3 still need to be addressed. In addition, these extremely
erroneous records are potentially the most informative regarding the shape of the error distribution

(cf. Part 3).

Part 2.5: The mean flight height is not sufficient to describe the
distribution of flight heights

Flight height datasets are often reduced to a single summary metric, the mean flight height and its
variation with environmental and individual covariates (Walter et al. 2012, Cleasby et al. 2015,
Poessel et al. 2018, Tikkanen et al. 2018, Balotari-Chiebao et al. 2018). This decision is mostly based
on the ease of implementing spreadsheets, linear models, moving averages, or spline models. In this
section we instead call for approaches that describe the full distribution of flight heights in the
aerosphere, not only the mean flight height. To justify this call, we again focus on collision risk
estimation. Indeed, if the variance in flight height is large enough, a proportion of time may be spent
in the collision zone even if the mean flight height is outside the collision zone. In simulations, the
proportion of time spent in the collision zone indeed depended on both the mean and the variance in
flight height (Fig. 4a-b). In the raptor datasets, the estimated probability of flying in the collision zone
did not decrease much for the individuals whose mean flight height was estimated above the
collision zone (Fig. 4c). Similarly, the individuals that had an estimated mean flight height well below
the collision zone were predicted to spend about 20% of their time in the collision zone (Fig. 4c). We
strongly recommend that collision risk forecasts should not be based on the fixed effects of linear
models, but instead on the full distribution of flight heights —a recommendation that will likely hold

for all studies into vertical airspace use.

Part 3: Statistical solutions

The state-space model framework (de Valpine & Hastings, 2002; Fig. 5) has a structure that is
naturally aligned with the challenges of sampling errors in vertical space-use data. A state-space
model is a stochastic model describing the changes over time in a state variable (here, the true flight
height), when that variable is imperfectly observed (here, the recorded flight height). There is a
“state process”, separated from an “observation process” (Fig. 5). State-space models are routinely
used to correct for positioning errors in satellite-tracking data (chap. 6 in Sanz Subirana et al., 2013),
including in wildlife studies (Patterson et al. 2008, Johnson et al. 2008, Albertsen et al. 2015, Brost et
al. 2015, Buderman et al. 2015, Fleming et al. 2017). Importantly, these applications are not to be

confused with another application of state-space models to movement data, when the focal state
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415  variable is a “behavioural state” whose Markovian transitions drive changes in movement rates
416  (Gurarie et al. 2016, Pirotta et al. 2018, Murgatroyd et al. 2018). Instead, when the objective is to

417  correct for positioning errors, the state variable is the position itself.

418 In studies of flight height, the movement model can be set up such that the state variable always
419  stays above zero. Then, if the recorded flight height is -7m, the model “knows” that the error was at
420  least 7m (Ross-Smith et al., 2016; cf. Part 2.4). Actually, the presence of unambiguously erroneous
421  records makes flight height studies better-suited to apply state-space models than many studies into
422  horizontal space use by animals. Indeed, even when in theory the model is estimable, sometimes
423 only a subset of the parameters of a state-space model are separately estimable, a phenomenon
424  called “weak identifiability” that occurs when the sampling variance largely exceeds the process

425  variance. An example of weak identifiability is when the difference between two classes of

426  individuals are larger than the differences within the classes (Garrett and Zeger 2000). In addition,
427  there are large statistical correlations between variance parameters in a movement model (Fleming
428  etal 2017), making it extra difficult to accurately separate movements and errors in sparse datasets.
429 In that context, unambiguously erroneous records, such as negative flight heights, represent an

430  additional source of information (Brost et al. 2015). They can help separate the process and sampling

431  variances (Péron et al. 2017) and solve issues of weak identifiability.

432  Asa perspective, we stress that there are also ways to obtain unambiguously correct records. These
433 records could in theory perform a role similar to that of unambiguously erroneous records. For

434  example, sometimes the position of the animals can be confirmed, e.g., at a documented feeding
435  site, a nest, or by an incidental ground-based sighting. Those records can then be matched to the
436  GPS track, yielding an exact measure of the local error. Animal-borne devices may also include a

437  transponder designed to signal passage near strategically-placed emitters (e.g., Rebke, Coulson,

438 Becker, & Vaupel, 2010). This type of validation data is routinely used in other applications of the GPS
439  technology (Sanz Subirana et al. 2013). Lastly, the state-space framework is naturally conducive to
440  the joint analysis of multiple sources of error-prone data (e.g., Péron, Nicolai, & Koons, 2012). In

441  flight height studies, it is therefore possible to jointly analyse GPS and altimeter data, or multiple GPS
442  streams coming from the same animal. This double-data approach is expected to help with statistical
443  covariance issues, but cannot be expected to fully resolve all identifiability issues (Besbeas & Morgan,

444  2017), which only error-free validation data can do.

445  We should eventually stress that several wildlife GPS manufacturers already use a state-space model
446  as part of the onboard data pre-processing algorithm, i.e., the released data have already been

447 corrected by a proprietary state-space algorithm which may furthermore rely on proprietary
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448  validation data (Ornitela staff, pers. comm.). From our experience, in wildlife applications, these pre-
449  processing algorithms are only applied during “bursts” of high-frequency data acquisition, not when
450  the users request a more traditional low-frequency data acquisition schedule. Importantly, the data
451  may not be pre-processed across bursts. The error from the first location of a burst is then carried
452  over the entire burst sequence. Flight height tracks affected by this issue would exhibit a staircase-
453  shaped profile. Overall, this type of data pre-processing trades a lower error variance against a larger
454  error autocorrelation. Additional state-space modelling of the released pre-processed data can deal
455  with this type of error autocorrelation, but the models need to be custom-made, i.e., are not

456  routinely implemented in software. Perhaps more worryingly, some commercially-available GPS units
457  apparently simply truncate the recorded height at zero above sea level (pers. obs.). We call for a

458  more open approach to these data manipulations, including making the raw, unprocessed GPS

459  records available, in addition to any pre-processed data, and with a formal description of the pre-

460  processing algorithm.

461  We also acknowledge that the fitting of state-space models to vertical space use data still requires
462  relatively rare statistical skills. Nevertheless, there are already several free, open-source computing
463 environments to fit state-space models to vertical (and horizontal) movement data, and thereby
464  estimate the most likely movement track as a by-product of the estimated parameters, similarly to
465  how the individual values would be computed in a generalized mixed model with individual random

466 effects:

467 - The crawl (Johnson et al. 2008) and ctmm (Calabrese et al. 2016) packages for R. These compute
468  the likelihood of the state-space model using a Kalman filter. This algorithm is fast but requires all the
469  model processes to be Gaussian or approximately Gaussian (no truncation or constraint, no excess

470 extreme values, no excess kurtosis or skew).

471  -The TMB package for R (Kristensen et al. 2014) approximates the likelihood of the state-space

472  model using the automatic differentiation algorithm with Laplace approximation. That approach
473  makes computing times shorter than the next option, while still allowing for flexible modelling such
474  as non-Gaussian errors (Albertsen et al. 2015), custom link functions (Péron et al. 2017), or multiple

475 data streams.

476 - The Monte Carlo Markov Chain Bayesian framework (Plummer 2003, Spiegelhalter et al. 2003,

477  Csilléry et al. 2010) generates parameter distributions that iteratively converge towards the solution.
478  This option is the most flexible in terms of nonlinearities and non-Gaussian features, such as

479  truncated distributions (Brost et al. 2015), but the computing time can be prohibitive large for

480 datasets.
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Conclusion

Improper error-handling methodologies yield a flawed picture of aerial niches. For example,
discarding negative flight height records artificially truncates the observed distribution of flight
heights (Fig. 3), and focusing on the mean flight height alone (for example when using linear models)
does not fully describe the aerial niche (Fig. 4). While these observations are quite intuitive, bad
practices remain common enough that it was important to stress these issues and illustrate them
thoroughly. On the other hand, not addressing the occurrence of errors at all would artificially
spread-out the observed distribution of flight heights (Fig. 2), leading for example to increased
observed vertical overlap between species and individuals, which can modify the inference about
community processes. Improper error handling procedures would also tamper with the
quantification of behaviour and flight strategies, by increasing or decreasing the observed vertical
velocity, and interfere with behavioural state assignments. Lastly, errors may covary with
environmental covariates such as terrain roughness and wind speed, e.g., GPS positioning precision
decreases with terrain roughness (D’Eon et al. 2002) and wind speed decreases near the ground
(Sachs 2005). Thereby, selectively discarding records based on the number of available satellites or
the dilution of precision would lead to imbalanced sampling of terrain roughness, and discarding
negative flight height records (that predominantly occur near the ground) would lead to

misrepresent the relationship to wind speed.

Regarding applied consequences, we focused on demonstrating how improper methods would
imperfectly quantify the time spent by GPS-tracked raptors in the rotor-swept zone of wind turbines
(Fig. 3b). There are many other human-wildlife conflicts for the use of the aerosphere, for example
bird strikes near airports and disturbance of wildlife by drones and other recreational aircraft.
Regarding bird strikes, GPS-based predictive models of bird flight height (e.g., Péron et al. 2017)
might help plan ahead the operation of airports. The state-space class of model that we advocate is
actually already used, in real time, to exploit bird activity data from radar monitors and generate a
warning system for airport managers (Bruder 1997). Regarding recreational aircraft and drones,
analysing bird-borne GPS tracks may help reveal the effect of the disturbance, which is expected to
increase in frequency as drones in particular become more popular (Rebolo-Ifran et al. 2019). The
recommendations we made about the effect of errors on the estimation of aerial niche overlaps and

the quantification of behaviours seem particularly relevant in this context.

In conclusion, the issue of properly handling errors in flight height data is key to any aeroecology

study. We strongly advise against ad-hoc “data quality” filters, and against statistical tools that only
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514  document variation in the mean flight height instead of the full distribution of flight height. Our
515  proposed statistical framework based on state-space models and the analysis of the full distribution
516  of flight heights requires interdisciplinary work between experts in flight behaviour and experts in
517 data analysis, and the emergence of interface specialists, but the insights and the applied decisions

518  based on those insights are expected to be more reliable.

519

520 List of abbreviation: h: flight height above ground; z: flight altitude (relative to the same reference as
521 the DEM, e.g., the ellipsoid); DEM: digital elevation model; UERE: user equivalent range error; DOP:
522  dilution of precision; SD: standard deviation.
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Figure legends

Fig. 1: lllustration of the difference between true and recorded flight height. A: True flight height
above ground (he), and true elevation above ellipsoid (z..). B: Adding the five sources of error, with
circled numbers referring to headings in Part 1. DEM stands for Digital Elevation Model. C: Two tracks
with the same amount of error. The bird of track 1 is flying high so all the recorded flight height data
remain positive despite the errors. The bird of track 2 is flying low, so some of the recorded data fall

below the digital elevation model.

Fig. 2: Comparison between the standard deviation of the recorded flight height (y-axis) and of the
corrected flight height (x-axis), assumed to represent the true flight height, in three species of large
soaring raptors. Each point stands for one bird over its entire monitoring period. The state-space
model that we used to correct the flight heights, and in particular its robustness to variation in
sampling resolution across populations, is explained in Péron et al. (2017). The diagonal line shows

where the points should be if the recorded flight heights were error-free.

Fig. 3: Removing the negative recorded flight heights introduces biases in the distribution of the
remaining flight heights. Left group of panels: in simulations, where the true flight height is known.
Right group of panels: in the raptor case studies, where the corrected flight height is assumed to
represent the true flight height. In all panels, the x-axis features the variance in the true (or
corrected) flight height. The y-axis features the percentage bias in (a) mean flight height; (b) collision
risk (proportion of time spent between 60 and 180m above ground); (c) variance in flight height; and
(d) skewness of the distribution of flight height. A percentage bias of +10% means that the focal

quantity is 10% larger after we remove the negative records.

Fig. 4. The variance in flight height influences the percentage of time spent in the collision zone of a
wind farm (grey area, between 60 and 180 m). (a) Four simulated tracks (where the true flight height
is known) with the same mean flight height (200m) but different variances (10, 50, 100, and 250m?).
(b) More extensive simulations. Each point corresponds to one simulated track with a different mean
flight height. (c) Same as (b) but using real datasets collected from three raptor species, where the
corrected flight height is assumed to represent the true flight height. Each symbol stands for an

individual over its entire monitoring period.
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753

754  Fig. 5: Schematic overview of the principles of a state-space model as applied to the correction of
755  sampling errors in flight height data. The movement (or state) process accounts for the distribution
756  of true flight heights. The observation process introduces sampling errors of various origins (Part 1)
757  andyields the recorded flight heights. It also accounts for the sampling schedule. By fitting this model
758  torecorded flight height time series, we can retrospectively compute the corrected flight height, an

759  estimate of the true flight height.
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