

aMpLiTuDe MoDuLaTeD noise for tinnitus suppression in tonal and noise-like tinnitus

Schoisswohl, S.¹, Arnds, J.¹, Schecklmann, M.¹, Langguth, B.¹, Schlee, W.¹, and Neff, P.^{1,2*}

¹*Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.*

²*University Research Priority Program 'Dynamics of Healthy Aging', University of Zurich, Zurich, Switzerland.*

August 2019

***Corresponding Author:**

Full name: Patrick Neff

Department: Department of Psychiatry and Psychotherapy

Institute/University/Hospital: University of Regensburg

Street Name & Number: Universitaetsstrasse 84

City, State, Postal code, Country: 93053 Regensburg, Germany

Tel: 0049 941 941-2098

E-mail: patrick.neff@ukr.de

Keywords: tinnitus, noise, residual inhibition, amplitude modulation, bandpass filter

Abstract

Background: Acoustic stimulation offers a potential treatment approach for tinnitus but also insights in its basic mechanisms by short-term tinnitus suppression called residual inhibition (RI). The effects of RI were found to be depending on intensity, length or sound types covering the individual tinnitus characteristics. In patients with tonal tinnitus RI was increased with amplitude modulated (AM) pure tones at the individual tinnitus frequency while the effects of modulated noise sounds have not been systematically researched.

Objectives: The aim of the present study was to investigate whether in patients with noise-like tinnitus RI can be increased by AM noise-like stimuli according to the individual tinnitus frequency range.

Methods: For this purpose the individual tinnitus characteristics (noise-like and tonal tinnitus) were assessed via customizable noise-band matching, in order to generate bandpass filtered stimuli according to the individual tinnitus sound (individualized bandpass filtered sounds; IBP). Subsequent, various stimuli differing in bandpass filtering and AM were tested with respect to their potential to induce RI. Patients were acoustically stimulated with seven different types of stimuli for three minutes each and had to rate the loudness of their tinnitus after each stimuli.

Results: Results indicate a general efficacy of noise stimuli for the temporary suppression of tinnitus, but no significant differences between AM and unmodulated IBP. Significantly better effects were observed for the subgroup with noise-like tinnitus (n=14), especially directly after stimulation offset.

Conclusions: The study at hand provides further insights in potential mechanisms behind RI for different types of tinnitus. Beyond that, derived principles may qualify for new or extend current tinnitus sound therapies.

Introduction

1 Chronic subjective tinnitus is defined as the permanent perception of a sound such as ringing or
2 hissing in the absence of an external or internal source of noise. Approximately 10-15% of the
3 population in industrial countries experience this phantom sound [Langguth et al., 2013; Erlands-
4 son and Dauman, 2013; Heller, 2003; Hall et al., 2011]. Causes for the development of tinnitus are
5 divergent and not completely understood, though most commonly tinnitus occurs towards cochlear
6 damages due to noise trauma [Langguth et al., 2013]. In the majority of cases, the perceived tin-
7 nitus pitch is in accordance with the frequency spectrum of hearing loss (HL) [Basile et al., 2013;
8 Roberts et al., 2008]. As a consequence of decreased or absent auditory input and the subsequent
9 deficiency of neural input, maladaptive pathological changes in the auditory pathway are formed,
10 which lead to the perception of a “phantom sound” defined as tinnitus [Eggermont, 2007; Egger-
11 mont and Tass, 2015; Eggermont and Roberts, 2012]. Neurophysiological investigations were able
12 to demonstrate hyperactivity in auditory brain areas [Farhadi et al., 2010; Folmer, 2007] as well as
13 aberrant oscillatory brain activity and connectivity patterns [Schlee et al., 2009, 2014; Moazami-
14 Goudarzi et al., 2010; Mohan et al., 2016], in tinnitus patients. Available treatment options for
15 tinnitus have only limited efficacy and to date there is no cure available [Baguley et al., 2013].
16 Auditory stimulation is one potential treatment approach for tinnitus, but also provides insights to
17 basic mechanisms of tinnitus [Roberts et al., 2008; Fournier et al., 2018].

18 Almost half a century ago, Feldmann and colleagues investigated the phenomenon of short-term
19 tinnitus suppression after sound stimulation [Feldmann, 1971, 1983]. This temporary suppression
20 is referred to as “residual inhibition” (RI), which manifests in individual suppression patterns (i.e.,
21 duration, depth and shape) and can be triggered in 60-80% of subjects with tinnitus [Roberts, 2007;
22 Vernon and Meikle, 2003]. Various recent studies scrutinized RI in more depth. Data from several
23 investigations suggest the effects of RI to be more prominent with sounds close or within the
24 individual tinnitus frequency spectrum [Roberts et al., 2006, 2008; Schaette et al., 2010]. Equally,
25 factors like duration or intensity of the stimuli are essential for its mode of action [Terry et al., 1983;
26 Norena et al., 2002; Vernon and Fenwick, 1984; Neff et al., 2017]. In contrast, the underlying
27 neurophysiological mechanisms of RI are not clearly understood yet [Roberts, 2007; Galazyuk
28 et al., 2019]. Most recent work suggests that tinnitus suppression through sound stimulation is
29 related to reduced spontaneous firing of central auditory neurons [Galazyuk et al., 2017, 2019].
30 The importance of stimulation intensity and frequency was verified in a recent work from Fournier
31 et al. (2018) [Fournier et al., 2018], who developed a novel approach for RI testing described as
32 Minimum Residual Inhibition Level. Thereby, patients had to adjust the intensity of customized
33 stimuli up to the point where their tinnitus is suppressed during a given interval after the offset of
34 the stimulus. Results show an occurrence of RI in 86.7% of patients by the usage of this method
35 [Fournier et al., 2018].

36 Despite the manifestation of tinnitus perception as noise-like in many patients, to the best of

37 our knowledge none of the previous mentioned studies included a matching for the band-width
38 of noise-like tinnitus. Those which considered noise-like tinnitus for their methodological ap-
39 proaches, merely used likeliness rating methods for tinnitus matching [Roberts et al., 2006; Fournier
40 et al., 2018].

41 Recently Henry et al. (2013) [Henry et al., 2013] proposed a novel approach for tinnitus matching
42 procedures taking into consideration the tinnitus type. In addition to the determination of the centre
43 frequency, patients could also adjust the band-width of their tinnitus [Henry et al., 2013]. Here we
44 aim to use both frequency and band-with information to develop individualized stimuli, especially
45 for patients with noise-like tinnitus, for the investigation of residual inhibition.

46 In previous studies the effects of differently modulated sounds on RI were investigated. These
47 studies revealed that amplitude modulated (AM) tones near or at the individual tinnitus frequency
48 result in larger RI [Reavis et al., 2012; Tyler et al., 2014] with differential results for specific
49 amplitude modulation rates [Neff et al., 2017, 2019].

50 The hereafter described experiment aims at investigating the effects of different noise stimuli with
51 and without AM on RI. The overarching goal is to establish new acoustic stimulation techniques for
52 basic RI research as well as generating principles for possible future sound stimulation principles
53 with the AM stimulus class. For this purpose, the individual tinnitus characteristics are assessed
54 via noise-band matching as suggested by Henry et al. (2013) [Henry et al., 2013] in order to create
55 personalized stimuli for the RI examination.

56 Previous studies in the field of RI, already emphasized the impact of noise stimulation on tinnitus
57 perception in tonal tinnitus [Henry et al., 2013; Fournier et al., 2018; Roberts et al., 2006, 2008].
58 To the best of our knowledge, none of the existing experiments systematically investigated these
59 noise stimulation methods, in particular the application of AM or bandpass filters (BP) to noise
60 stimuli, in noise-like tinnitus.

61 According to this, the current experiment represents the first attempt to investigate the effects of
62 an administration of individualized BP settings (IBP) and different rates of AM (10 and 40 Hz) to
63 white noise on RI.

64 These stimulation methods are furthermore merged to a novel combinatory approach to apply IBP
65 and AM to white noise (WN) simultaneously and scrutinize its efficacy in RI.

66 Additionally each of the used stimuli was examined with regards to induced arousal and valence
67 as rated by the participants.

68 Besides the assumption of the efficacy of all deployed noise stimuli in short-term tinnitus inhi-
69 bition (in both noise-like and tonal tinnitus), we expect that IBP differs in its effects on RI from
70 unadjusted WN. Concretely, we presume that the IBP will result in differential residual tinnitus
71 suppression as compared to WN. Yet, given the lack of previous studies we are not able to define a
72 directed hypothesis here. Furthermore, building on the insights of previous work, we hypothesize
73 that stimulations with AM noise (filtered or unchanged) result in larger RI than their unmodulated
74 counterparts.

75 **Methods**

76 **Participants**

77 The sample for this experiment consisted of $N = 29$ participants (7 female) between 18 and 75 years
78 with noise-like ($n = 14$) or tonal tinnitus ($n = 15$) with a tinnitus duration of more than six months.
79 Participants were recruited from the Interdisciplinary Tinnitus Centre in Regensburg, Germany.
80 For detailed sample characteristics see table 1. Primary inclusion criteria were no somatic, mental
81 or neurological conditions and no current intake of psychotropic medications or substances. Alike,
82 participants were not allowed to participate in other tinnitus-related studies. The methods and the
83 procedures used in this study were examined and approved by the local ethics committee of the
84 University of Regensburg (16-101-0061). All participants were sufficiently informed about the
85 aim, methods and duration of the study, possible side effects, and gave written informed consent
86 prior to the start of the experiment.

87 **Psychometry**

88 Each participant filled in an online survey composed of German versions of the Tinnitus Handicap
89 Inventory (THI) [Newman et al., 1994; Kleinjung et al., 2007], the Tinnitus Questionnaire (TQ)
90 [Goebel and Hiller, 1994; Hallam et al., 1988], a brief version of the Hyperacusis Questionnaire
91 (mini-HQ9) [Goebel et al., 2013] and the Tinnitus Sample Case History Questionnaire (TSCHQ)
92 for tinnitus-related clinical and demographic information [Langguth et al., 2007].

93 **Audiometry**

94 For the purpose of individual hearing threshold determination, frequencies ranging from 125 Hz
95 to 8kHz in octave steps including semi-octave steps between 0.5 and 1 (i.e., 0.75 kHz), 1 and 2
96 (i.e., 1.5 kHz), 2 and 4 (i.e., 3 kHz) and 4 and 8 kHz (i.e., 6 kHz) were quantified with a clin-
97 ical audiometer (Madsen Midimate 622D; GN Otometrics, Denmark). Sennheiser HDA 2000
98 headphones (Sennheiser, Germany) were used for audiometric measurements, subsequent tinnitus
99 matching and acoustic stimulation. Minimum Masking Level (MML) was assessed by increas-
100 ing the loudness of a WN sound (Madsen Midimate 622D; GN Otometrics, Denmark) until their
101 tinnitus was completely masked.

102 **Tinnitus matching**

103 In order to ascertain participants individual tinnitus pitch, the Method of Adjustment approach
104 (MOA) [Henry et al., 2013] was performed with a custom-made MAX application (MAX 7; Cy-
105 cling'74, USA) together with a modular hardware controller (Palette Expert Kit; Palette, Canada).

106 The matching procedure's steps were in accordance with the order within the Tinnitus Tester pro-
107 cedure [Roberts et al., 2008] with an additional test for octave confusion at the end. Prior tinnitus
108 matching, participants were asked to vocalize or describe their tinnitus to distinguish between
109 noise-like and tonal tinnitus types as indicated in the recruiting process. Following on that, they
110 were instructed and trained for the process of tinnitus matching. Parameters examined by the
111 matching procedure were as follows: tinnitus frequency, respectively centre frequency for noise-
112 like tinnitus (Hz), tinnitus loudness (dB) and tinnitus laterality (0 = left ear; 127 = right ear; thus
113 a value of 63 describes a bilateral tinnitus). Control units of the matching controller were labelled
114 accordingly. Step size of frequency dial was marginally below a semitone and ranged from 40
115 Hz to 16kHz. For tonal tinnitus matching, a 3 kHz pure tone with comfortable loudness was set
116 as a starting point, followed by an adjustment of the frequency by the participants to determine
117 their individual tinnitus frequency. Finally, tinnitus loudness and laterality were adjusted with the
118 matching controller to complete the matching procedure. In case of noise-like tinnitus the start-
119 ing sound was a filtered broadband noise (bandwidth: 1/3 octave of centre frequency). Patients
120 were able to adjust the centre frequency of the noise and also the bandwidth of the filter settings
121 according to their individual tinnitus noise. Subsequently, loudness and laterality were identified
122 just as with the pure tone matching. Finally, participants rated the agreement of their tinnitus with
123 the matched sound on a 1-10 scale. To assess individuals Sensation Level (SL), the hearing thresh-
124 old of the frequency next to the individual tinnitus frequency or centre frequency was used (i.e.,
125 stepping down to the next lower frequency. e.g., if the individual tinnitus frequency was 7.4 kHz,
126 the hearing threshold at 7 kHz was investigated). The matching procedure was repeated after the
127 acoustic stimulation block of the experiment.

128 Acoustic stimulation

129 Seven different modified noise stimuli were created in MATLAB (Matlab R2015a; Mathworks,
130 USA) and utilised for a three minute acoustic stimulation with an intensity of 60 dB SL. Stimuli
131 set consisted of unmodified WN, WN with AM rates at 10 Hz (WN10) and 40 Hz (WN40), as well
132 as a IBP with the same modulation rates (IBP, IBP10, IBP40). BP width was set according to the
133 matching results in noise-like tinnitus participants. In patients with tonal tinnitus, the previously
134 matched individual tinnitus pitch was used to deploy a IBP to WN with a range of one octave [Pan-
135 tev et al., 2012]. Furthermore a IBP WN with 10 Hz AM rates at MML intensity (BP10_MML)
136 was used for acoustic stimulation in order to contrast SL and MML. Acoustic stimulation was con-
137 ducted in a randomized order for each session with a maximum loudness of 80 dB SPL diotically
138 over the headphones. If participants experienced discomfort, they were able to stop the stimulation
139 and experimental procedures at any time. Following a three-minute stimulation for each stimulus,
140 participants evaluated their tinnitus loudness (%) in comparison to prior the particular stimulation
141 on a numeric rating scale (0% up to 140% in 10% steps) at seven different points in time (0, 30, 60,

¹⁴² 90, 120, 150 and 180 seconds after stimulation offset). Moreover, participants rated the induced
¹⁴³ valence and arousal of each single stimuli with pictorial manikin scales [Bradley and Lang, 1994].

¹⁴⁴ Statistical Analysis

¹⁴⁵ All statistical analysis were performed using the statistic software R (R version 3.4.3; R Foundation
¹⁴⁶ for Statistical Computing, Austria) and the packages "psych", "emmeans", "sjstats" and "lme4".
¹⁴⁷ Tinnitus loudness and stimulus evaluation (valence and arousal) data were analyzed by means of
¹⁴⁸ linear mixed effect models according to the following formula: $Y_i \sim X_i\beta + Z_iu_i + \epsilon_i$, whereby
¹⁴⁹ Y_i represents the dependent variable, X_i is the particular predictor or so called fixed effect of
¹⁵⁰ the model with β as its weight estimates. The notion Z_i describes the random effect with the
¹⁵¹ corresponding random vector u_i , plus ϵ_i serves as the random vector of the model fit error. In
¹⁵² order to identify the respective model with the best fit for the data, a step-wise selection approach
¹⁵³ was carried out by gradually adding a new fixed effect to the model. In a next step the model was
¹⁵⁴ compared to a corresponding "null" model without the fixed effect with a Likelihood Ratio Test
¹⁵⁵ (LRT) [Harrison et al., 2018]. Model-fitting procedure was performed for each dependent variable,
¹⁵⁶ denoted as response (tinnitus loudness, valence, arousal), individually and tested the following
¹⁵⁷ predictors as well as their interactions: condition (stimuli used; see acoustic stimulation section),
¹⁵⁸ group (noise-like tinnitus, tonal tinnitus), time (0sec, 30sec, 60sec, 90sec, 120sec, 150sec, 180sec
¹⁵⁹ after stimulation end), gender (male, female), age, tinnitus duration, tinnitus loudness (according
¹⁶⁰ to first tinnitus matching), MML and tinnitus distress (TQ sum score). The proportion of explained
¹⁶¹ variance was identified by marginal (variance of the fixed effects) and conditional (variance of fixed
¹⁶² and random effects) R^2 [Nakagawa et al., 2017]. In any of the fitted models, participant (id) was
¹⁶³ treated as a random effect. Fixed effects of the final model were tested via expected mean square
¹⁶⁴ approach. Post-hoc Tukey-tests were calculated to contrast responses for condition and group. In
¹⁶⁵ order to test for a potential bias due to the sequence of the stimuli used for acoustic stimulation
¹⁶⁶ (position effect), a median split was conducted on the positions variable and differences in means
¹⁶⁷ were then tested with student t-tests.

¹⁶⁸ Analysis of descriptive group differences (noise-like vs. tonal tinnitus) for parametric variables
¹⁶⁹ were conducted by the means of two-sample t-tests. Assumptions of normal distribution (Shapiro-
¹⁷⁰ Wilk-Test) and homoscedasticity (F-test) were tested and if violated, non-parametric testing via
¹⁷¹ independent sample Mann-Whitney U-tests was used.

¹⁷² Categorical data was analyzed by Fisher's exact tests, due to cell frequencies below 5 in all vari-
¹⁷³ ables.

¹⁷⁴ Reliability for the matching procedure (between first and second matching round) was assessed via
¹⁷⁵ Pearson correlations, or rather Spearman correlations in case of a violation of normal distribution,
¹⁷⁶ for tinnitus loudness and tinnitus or centre frequency. Statistical significance was defined as $p \leq$
¹⁷⁷ .05 for all analysis.

178 Results

179 Descriptives

180 Demographic and clinical characteristics for the whole study sample and for tinnitus subgroups
181 (noise-like and tonal tinnitus) can be found in table 1. A Fisher's exact test was able to identify
182 a significant association between gender and the type of tinnitus. In the group with tonal tinnitus
183 the proportion of female patients was significantly lower ($p = .03$). Statistical testing revealed
184 significant differences in terms of tinnitus duration and the subjective rating of tinnitus loudness
185 (VAS loudness), with noise-like tinnitus patients showing a shorter duration of tinnitus ($t_{(26.95)} = -2.45$,
186 $p = .02$) and evaluating their tinnitus loudness lower ($U = 57.00$, $p = .04$). Further, no
187 differences were found in TQ ($t_{(26.90)} = -.36$, $p = .72$), THI ($t_{(26.26)} = .22$, $p = .83$) or HQ9 ($t_{(25.28)} = -.09$,
188 $p = .93$) scores among the two subgroups.

189 Audiometry and Tinnitus

190 Table 1 shows audiometric and tinnitus matching results with a significant lower tinnitus loudness
191 (corresponding with subjective loudness rating; see descriptives section above) for both matching
192 procedures (matching 1: $t_{(26.94)} = -4.66$, $p < .01$; matching 2: $t_{(26.52)} = -4.31$, $p < .01$) and MML $t_{(24.12)} = -2.20$,
193 $p = .04$) in the group of noise-like tinnitus. On the basis of a consolidation of these
194 audiometric and tinnitus findings, figure 1 indicates an overlap of tinnitus frequency with the
195 frequency of HL. As might be expected, the length of the first and second matching process was
196 significant shorter in tonal tinnitus patients (cf. table 1). Mean HL difference for both ears were
197 not significant different between groups (left: $t_{(24.19)} = .60$, $p = .55$; right: $t_{(24.25)} = .69$, $p = .50$).
198 In both groups the HL was more pronounced on the left side.
199 There were positive significant correlations between the first and the second matching for tinnitus
200 loudness (noise-like: $r = .77$, $p < .01$; tonal: $r = .73$, $p = < .01$) in both groups. With respect to
201 tinnitus/ centre frequency a positive significant correlation was only observed in the tonal tinnitus
202 group (noise-like: $r = .14$, $p = .64$; tonal: $r = .65$, $p = < .01$).

203 Acoustic stimulation

204 Prima facie, the stimulus IBP40 appeared to produce the strongest tinnitus suppression regardless
205 of group and time ($M = 86.16$, $SD = 25.60$), whereas at timepoint T0 (immediately after stimu-
206 lation offset), WN40 induced the lowest tinnitus loudness ($M = 73.10$, $SD = 41.76$). Descriptive
207 statistics for the 7 utilized stimuli averaged over time and for timepoint T0 are listed in table S1 for
208 the whole sample and divided for subgroups. Figure 2 shows the time curve for all stimuli with re-
209 spect to tinnitus loudness ratings, in the same manner figure S1 provides information about single
210 subject responses for each stimuli. No confounding effect caused by the order of the stimuli in the

211 stimulation sequence was detected by our analysis ($t_{(1215.60)} = .09$, $p = .93$) and therefore position
212 was not entered in the final model fitting procedure. In accordance with the previous described
213 model fitting approach (cf. section statistical analysis in methods part), we were able to identify
214 the following model with the best fit to our data: $response \sim condition + time * group + (1 | id)$.
215 Detailed results of the model fitting are outlined in table S2. By testing the fixed effects of the
216 model via expected mean square approach, significant effects for condition, time, group and for
217 the interaction time*group on tinnitus loudness were observed (cf. table 2). Subsequent post-hoc
218 contrasts for condition failed to find statistically significant differences in tinnitus loudness ratings
219 with respect to the applied stimuli (see table 3). Interestingly, a significant difference in tinnitus
220 loudness ratings between the two subgroups was revealed independently of condition and time as
221 exemplified in table 4 and figure 3 (noise-like: $M = 82.14$, $SD = 26.68$; tonal: $M = 94.79$, $SD =$
222 16.44 ; $t_{(31.15)} = 2.17$, $p = .04$). On the basis of a significant interaction among group and time, we
223 contrasted the mean tinnitus loudness for each group for all 7 timepoints after stimulation. Our
224 results point out a significant difference between the groups only at T0 (noise-like: $M = 63.98$, SD
225 $= 36.49$; tonal: $M = 90.19$, $SD = 28.01$; $t_{(38.40)} = 4.27$, $p < .01$) (cf. table 5).

226 **Stimulus evaluation**

227 **Arousal**

228 As pointed out in table S3 and figure 4, emotional stimuli evaluation for the whole group identified
229 the highest arousal ratings for stimulus IBP40, while IBP10_MML expectably manifested in the
230 lowest arousal values. Model fitting proceedings identified the subsequent model with the best fit
231 for our arousal data: $response \sim condition + (1 | id)$ (cf. table S4). Fixed effect testing detected
232 a significant effect for condition (cf. table 6). Ensuing post-hoc contrasts revealed significant
233 differences in arousal ratings for IBP vs. IBP40 ($t_{(180.21)} = -3.08$, $p = .04$), IBP10 vs. IBP10_MML
234 ($t_{(180.21)} = 2.98$, $p = .05$), IBP10_MML vs. IBP40 ($t_{(180.21)} = -4.33$, $p < .01$), IBP10_MML vs. WN10
235 ($t_{(180.21)} = -3.66$, $p < .01$) and IBP10_MML vs. WN40 ($t_{(180.21)} = -4.04$, $p < .01$). Post-hoc analysis
236 results are reported in table 7, relevant significant results are highlighted in bold.

237 **Valence**

238 In line with the descriptive arousal results, IBP10_MML had the highest ratings for valence,
239 whereas stimuli WN40 was evaluated with the least valence (cf. table S3 and figure 4). Same
240 model structure was fitted as for the arousal data (cf. table S4) and likewise a significant effect of
241 condition was found (cf. table 6). Post-hoc results are listed in table 7 and demonstrate a significant
242 difference for IBP10_MML vs. WN40 ($t_{(180.21)} = 3.78$, $p < .01$).

243 Discussion

244 The aim of the present study was to investigate the effects of different IBP and AM noise stimuli on
245 RI in patients with tonal and noise-like tinnitus. To the best of our knowledge, no former study has
246 systematically investigated the deployed acoustic stimulation procedures, especially neither AM or
247 IBP sounds in patients with noise-like tinnitus. A parametric noise-band matching approach was
248 applied in order to personalize BP settings in accordance with the tinnitus characteristics in the
249 group with noise-like tinnitus, whereas the group with tonal tinnitus matched their tinnitus via the
250 centre frequency of a fixed filter bandwidth. Taken together, all these aspects constitute novel lines
251 of investigation within tinnitus research. Omnibus results of our experiment emphasize the ability
252 of all used noise stimuli in inducing RI (cf. table 2). The time courses and different suppression
253 patterns for each stimuli appear in a similar manner as in previous studies, in that they generally
254 converge over time after an initial maximum of suppression [Feldmann, 1983; Roberts et al., 2008;
255 Neff et al., 2017, 2019; Vernon and Meikle, 2003; Roberts, 2007].

256 Contrary to our hypotheses, the central finding of our analysis indicates no statistically significant
257 differences between the various stimuli and their impact on tinnitus perception respectively RI. In
258 more detail, neither the customization of the noise bands nor the AM resulted in significant dif-
259 ferences between the conditions (i.e., stimuli). This outcome is in conflict with findings of earlier
260 studies, which have suggested advantages of AM pure tones for RI [Neff et al., 2017, 2019; Reavis
261 et al., 2012; Tyler et al., 2014]. Yet, looking at these studies, merely pure tones were compared
262 to AM pendants with the exception of Tyler et al. (2014) [Tyler et al., 2014], who contrasted AM
263 pure tones with unmodulated broadband noise. No former study aimed at investigating AM and
264 IBP noises for RI or sound therapy, especially in noise-like tinnitus, which renders the discussion
265 of the current results difficult. These observations, while not explaining the non-existing effects
266 in this study, certainly help to better understand the parameters of RI stimuli (here: carrier sounds
267 and modulation rates) in the research branch of acoustic stimulation in tinnitus. Alternatively, a
268 potential explanation for the lack of advantages of AM stimuli could be attributed to the circum-
269 stances, that noise is inherently composed of a wide spectrum of frequencies and signal-inherent
270 amplitude modulation rates. These may cover up or neutralize the potential effects of certain AM
271 rates for RI.

272 To the best of our knowledge, no former study specifically tested RI or sound therapies in patients
273 with noise-like tinnitus. Of special interest, our analysis revealed statistical differences in RI for the
274 subgroups noise-like and tonal tinnitus, with noise-like patients demonstrating larger RI than the
275 tonal group. These significant differences were only observed immediately after the stimulation,
276 suggesting a time-limited advantage of noise stimuli for RI in noise-like tinnitus. The reason for
277 this group-difference is not clear, a possible rationale may be due to physiological differences
278 between these two groups with a supposed additional contribution of the extralemniscal system in
279 noise-like tinnitus [Møller, 2006].

280 A further potential confounding factor for this group effect might be the fact that tinnitus loudness
281 as elicited by MML, tinnitus matching and also in subjective ratings via VAS scales was found
282 to be significant higher in the tonal subgroup. On the other hand, with no meaningful difference
283 in HL between the groups and in consequence similar SLs, the putative confounding influence of
284 these measures may play a negligible role. An in-depth analysis of the noise-like tinnitus group
285 exclusively, demonstrated no statistical differences in tinnitus loudness ratings with respect to the
286 used stimuli in a similar fashion as the analysis of the whole study sample.

287 However, since bandwidth of BP filter settings in tonal tinnitus patients was set to a range of one
288 octave around the individual tinnitus frequency, whereas noise-like patients were able to individually
289 adjust the BP filter settings, the differences in the subgroups may also derive from discrepancies in
290 stimuli creation.

291 It is naturally supposed, that a stimulation with noise is more pleasant or tolerable than a stimula-
292 tion with pure tones. Unlike this assumption, our findings reveal a similar tolerability pattern
293 for AM noise stimuli as Neff et al. (2019) [Neff et al., 2019] on the basis of AM pure tones (cf.
294 figure 4). The analysis conducted also show, that AM might lead to more arousal as indicated on
295 a descriptive level as well as the significant difference between IBP and IBP40 (cf. table 7). As
296 must be expected, the lower intensity stimulus (IBP10_MML) had the lowest arousal and highest
297 valence ratings.

298 Our results indicate that the used matching method is feasible for determining tinnitus charac-
299 teristics. In detail there was good consistency for both tinnitus loudness and frequency for both
300 matching trials in noise-like and tonal tinnitus groups. These findings are in line with Henry et
301 al. (2013) [Henry et al., 2013], who already reported test-retest reliability for noise-band tinnitus
302 matching.

303 **Limitations**

304 The generalizability of these results is subject to certain limitations. As already discussed above,
305 the significantly lower tinnitus loudness in the group of noise-like tinnitus could weaken our find-
306 ings of subgroup differences in short-term tinnitus suppression. However, as no difference in HL
307 and equality in SL were observed, this may not play a significant role.

308 Likewise, the sample size of this experiment is rather small and gender ratio in the subgroups is
309 unbalanced. One main issue is the impossibility to control for potential participant-related failures
310 in noise-band matching. But for all of that, unavailable validation of the quantification of patients
311 tinnitus characteristics represents a common problem in tinnitus matching approaches, as it is a
312 subjective phenomenon. Future studies should strive for new possibilities in verifying tinnitus
313 matching results, as well as optimization of given methodological approaches.

314 Due to a lack of tonal stimuli in the present experiment and the missing comparison of tonal and
315 noise stimuli, it is not possible to make a statement about a general superiority of noise stimuli in

316 short-term tinnitus suppression in noise-like tinnitus patients.

317 Conclusion

318 The current study demonstrates a general efficacy of noise stimuli with different AM rates and
319 filtering strategies for RI. Contrary to our expectations, no differences between the types of stimuli
320 were observed, namely between unfiltered WN and IBP as well as unmodulated WN and different
321 AM rates, respectively. Rather, differences in RI among the subgroups of noise-like and tonal
322 tinnitus, with better performance directly after the stimulation in the noise-like tinnitus group, were
323 observed. Although, no stable rationale for the group differences can be provided, the findings
324 may provide insights in the mechanism of RI for different tinnitus types. Future studies with
325 larger sample sizes, improved matching/ audiometry procedures and more acoustic stimulation
326 repetitions per stimuli are needed to investigate these potential differences in more detail in order
327 to enhance our understanding of the effects of acoustic stimulation on tinnitus perception.
328 Taken together these results illustrate the potential of noise-stimuli in short-term tinnitus suppression,
329 especially in patients with noise-like tinnitus.

330 Acknowledgement

331 We want to thank Susanne Staudinger for her extremely valuable support in the collection of the
332 data. This project was conducted as part of the European School for Interdisciplinary Tinnitus
333 Research (ESIT) [Schlee et al., 2018].

334 Statement of Ethics

335 This study was approved by the ethics committee of the University of Regensburg, Germany (16-
336 101-0061).

337 Disclosure Statement

338 The authors have no conflicts of interest to declare.

339 Funding Sources

340 Stefan Schoisswohl received funding from the European Union's Horizon 2020 research and inno-
341 vation programme under the Marie Skłodowska-Curie grant [agreement number 722046]. Patrick
342 Neff holds an Early-PostDoc Grant from the Swiss National Science Foundation (P2ZHP1_174967)

343 and was supported by the University Research Priority Program ‘Dynamics of Healthy Aging’ of
344 the University of Zurich.

345 Author Contributions

346 The authors P.N., W.S and S.S. designed the study. J.A. collected the data. S.S. and P.N. analyzed
347 the data and wrote the main manuscript. All authors contributed to and reviewed the manuscript.

348 References

349 Baguley, D., McFerran, D., and Hall, D. (2013). Tinnitus. *The Lancet*, 382(9904):1600–1607.

350 Basile, C., Fournier, P., Hutchins, S., and Hébert, S. (2013). Psychoacoustic Assessment to Im-
351 prove Tinnitus Diagnosis. *PLoS ONE*, 8(12):e82995.

352 Bradley, M. M. and Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the
353 semantic differential. *Journal of Behavior Therapy and Experimental Psychiatry*, 25(1):49–59.

354 Eggermont, J. J. (2007). Pathophysiology of tinnitus. *Prog. Brain Res.*, 166:19–35.

355 Eggermont, J. J. and Roberts, L. E. (2012). The Neuroscience of Tinnitus: Understanding Abnor-
356 mal and Normal Auditory Perception. *Frontiers in Systems Neuroscience*, 6.

357 Eggermont, J. J. and Tass, P. A. (2015). Maladaptive Neural Synchrony in Tinnitus: Origin and
358 Restoration. *Frontiers in Neurology*, 6.

359 Erlandsson, S. and Dauman, N. (2013). Categorization of tinnitus in view of history and medical
360 discourse. *International Journal of Qualitative Studies on Health and Well-being*, 8(1):23530.

361 Farhadi, M., Mahmoudian, S., Saddadi, F., Karimian, A. R., Mirzaee, M., Ahmadizadeh, M.,
362 Ghasemikian, K., Gholami, S., Ghoreyshi, E., Beyti, S., Shamshiri, A., Madani, S., Bakaev, V.,
363 Moradkhani, S., and Raeisali, G. (2010). Functional brain abnormalities localized in 55 chronic
364 tinnitus patients: fusion of SPECT coincidence imaging and MRI. *J. Cereb. Blood Flow Metab.*,
365 30(4):864–870.

366 Feldmann, H. (1971). Homolateral and contralateral masking of tinnitus by noise-bands and by
367 pure tones. *Audiology*, 10(3):138–144.

368 Feldmann, H. (1983). Time Patterns and Related Parameters in Masking of Tinnitus. *Acta Oto-
369 Laryngologica*, 95(5-6):594–598.

370 Folmer, R. L. (2007). Lateralization of neural activity associated with tinnitus. *Neuroradiology*,
371 49(8):689–691; author reply 693–696.

372 Fournier, P., Cuvillier, A.-F., Gallego, S., Paolino, F., Paolino, M., Quemar, A., Londero, A., and
373 Norena, A. (2018). A New Method for Assessing Masking and Residual Inhibition of Tinnitus.
374 *Trends Hear*, 22.

375 Galazyuk, A. V., Longenecker, R. J., Voytenko, S. V., Kristaponyte, I., and Nelson, G. L. (2019).
376 Residual inhibition: From the putative mechanisms to potential tinnitus treatment. *Hear. Res.*,
377 375:1–13.

378 Galazyuk, A. V., Voytenko, S. V., and Longenecker, R. J. (2017). Long-Lasting forward Sup-
379 pression of Spontaneous Firing in Auditory Neurons: Implication to the Residual Inhibition of
380 Tinnitus. *Journal of the Association for Research in Otolaryngology*, 18(2):343–353.

381 Goebel, G., Berthold, A., Scheffold, J., and Bläsing, L. (2013). Ein valides Screening-und Evalu-
382 tionsinstrument zu Erfassung der Hyperakusisbelastung unter Berücksichtigung von Phonopho-
383 bie und Rekrutiment und Schwerhörigkeit. In *Kongreß der Deutschen HNO-Gesellschaft*, page
384 154.

385 Goebel, G. and Hiller, W. (1994). [The tinnitus questionnaire. A standard instrument for grading
386 the degree of tinnitus. Results of a multicenter study with the tinnitus questionnaire]. *HNO*,
387 42(3):166–172.

388 Hall, D. A., Láinez, M. J., Newman, C. W., Sanchez, T. G., Egler, M., Tennigkeit, F., Koch, M.,
389 and Langguth, B. (2011). Treatment options for subjective tinnitus: Self reports from a sample
390 of general practitioners and ENT physicians within Europe and the USA. *BMC Health Serv Res*,
391 11:302.

392 Hallam, R. S., Jakes, S. C., and Hinchcliffe, R. (1988). Cognitive variables in tinnitus annoyance.
393 *Br J Clin Psychol*, 27 (Pt 3):213–222.

394 Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E.,
395 Robinson, B. S., Hodgson, D. J., and Inger, R. (2018). A brief introduction to mixed effects
396 modelling and multi-model inference in ecology. *PeerJ*, 6:e4794.

397 Heller, A. J. (2003). Classification and epidemiology of tinnitus. *Otolaryngologic Clinics of North
398 America*, 36(2):239–248.

399 Henry, J. A., Roberts, L. E., Ellingson, R. M., and Thielman, E. J. (2013). Computer-Automated
400 Tinnitus Assessment: Noise-Band Matching, Maskability, and Residual Inhibition. *Journal of
401 the American Academy of Audiology*, 24(6):486–504.

402 Kleinjung, T., Fischer, B., Langguth, B., Sand, P. G., Hajak, G., Dvorakova, J., and Eichhammer, P.
403 (2007). Validierung einer deutschsprachigen Version des Tinnitus Handicap Inventory. *Psychiat
404 Prax*, 34(S 1):S140–S142.

405 Langguth, B., Goodey, R., Azevedo, A., Bjorne, A., Cacace, A., Crocetti, A., Del Bo, L., De Ridder, D., Diges, I., Elbert, T., Flor, H., Herraiz, C., Ganz Sanchez, T., Eichhammer, P., Figueiredo, R., Hajak, G., Kleinjung, T., Landgrebe, M., Londero, A., Lainez, M. J. A., Mazzoli, M., Meikle, M. B., Melcher, J., Rauschecker, J. P., Sand, P. G., Struve, M., Van de Heyning, P., Van Dijk, P., and Vergara, R. (2007). Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006. *Prog. Brain Res.*, 166:525–536.

412 Langguth, B., Kreuzer, P. M., Kleinjung, T., and De Ridder, D. (2013). Tinnitus: causes and 413 clinical management. *The Lancet Neurology*, 12(9):920–930.

414 Moazami-Goudarzi, M., Michels, L., Weisz, N., and Jeanmonod, D. (2010). Temporo-insular 415 enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of 416 chronic tinnitus patients. *BMC Neuroscience*, 11.

417 Mohan, A., De Ridder, D., and Vanneste, S. (2016). Graph theoretical analysis of brain connectiv- 418 ity in phantom sound perception. *Scientific Reports*, 6:19683.

419 Møller, A. R. (2006). Neural plasticity in tinnitus. *Prog. Brain Res.*, 157:365–372.

420 Nakagawa, S., Johnson, P. C. D., and Schielzeth, H. (2017). The coefficient of determination R2 421 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and 422 expanded. *J R Soc Interface*, 14(134).

423 Neff, P., Michels, J., Meyer, M., Schecklmann, M., Langguth, B., and Schlee, W. (2017). 10 424 Hz Amplitude Modulated Sounds Induce Short-Term Tinnitus Suppression. *Frontiers in Aging 425 Neuroscience*, 9.

426 Neff, P., Zielonka, L., Meyer, M., Langguth, B., Schecklmann, M., and Schlee, W. (2019). Com- 427 parison of Amplitude Modulated Sounds and Pure Tones at the Tinnitus Frequency: Residual 428 Tinnitus Suppression and Stimulus Evaluation. *Trends in Hearing*, 23:233121651983384.

429 Newman, C. W., Wharton, J. A., Shivapuja, B. G., and Jacobson, G. P. (1994). Relationships 430 among Psychoacoustic Judgments, Speech Understanding Ability and Self-Perceived Handicap 431 in Tinnitus Subjects. *International journal of audiology*, 33(1):47–60.

432 Norena, A., Micheyl, C., Chéry-Croze, S., and Collet, L. (2002). Psychoacoustic Characterization 433 of the Tinnitus Spectrum: Implications for the Underlying Mechanisms of Tinnitus. *Audiology 434 and Neurotology*, 7(6):358–369.

435 Pantev, C., Okamoto, H., and Teismann, H. (2012). Music-induced cortical plasticity and lateral 436 inhibition in the human auditory cortex as foundations for tonal tinnitus treatment. *Frontiers in 437 Systems Neuroscience*, 6.

438 Reavis, K. M., Rothholtz, V. S., Tang, Q., Carroll, J. A., Djalilian, H., and Zeng, F.-G. (2012).
439 Temporary Suppression of Tinnitus by Modulated Sounds. *J Assoc Res Otolaryngol*, 13(4):561–
440 571.

441 Roberts, L. E. (2007). Residual inhibition. In *Progress in Brain Research*, volume 166, pages
442 487–495. Elsevier.

443 Roberts, L. E., Moffat, G., Baumann, M., Ward, L. M., and Bosnyak, D. J. (2008). Residual Inhi-
444 bition Functions Overlap Tinnitus Spectra and the Region of Auditory Threshold Shift. *Journal*
445 *of the Association for Research in Otolaryngology*, 9(4):417–435.

446 Roberts, L. E., Moffat, G., and Bosnyak, D. J. (2006). Residual inhibition functions in relation to
447 tinnitus spectra and auditory threshold shift. *Acta Oto-Laryngologica*, 126(sup556):27–33.

448 Schaette, R., Koenig, O., Hornig, D., Gross, M., and Kempter, R. (2010). Acoustic stimulation
449 treatments against tinnitus could be most effective when tinnitus pitch is within the stimulated
450 frequency range. *Hearing Research*, 269(1-2):95–101.

451 Schlee, W., Hall, D. A., Canlon, B., Cima, R. F. F., de Kleine, E., Hauck, F., Huber, A., Gallus,
452 S., Kleinjung, T., Kypraios, T., Langguth, B., Lopez-Escamez, J. A., Lugo, A., Meyer, M.,
453 Mielczarek, M., Norena, A., Pfiffner, F., Pryss, R. C., Reichert, M., Requena, T., Schecklmann,
454 M., van Dijk, P., van de Heyning, P., Weisz, N., and Cederroth, C. R. (2018). Innovations in
455 Doctoral Training and Research on Tinnitus: The European School on Interdisciplinary Tinnitus
456 Research (ESIT) Perspective. *Front Aging Neurosci*, 9.

457 Schlee, W., Hartmann, T., Langguth, B., and Weisz, N. (2009). Abnormal resting-state cortical
458 coupling in chronic tinnitus. *BMC Neuroscience*, 10(1):11.

459 Schlee, W., Schecklmann, M., Lehner, A., Kreuzer, P. M., Vielsmeier, V., Poepll, T. B., and
460 Langguth, B. (2014). Reduced Variability of Auditory Alpha Activity in Chronic Tinnitus.
461 *Neural Plasticity*, 2014:1–9.

462 Terry, A. M. P., Jones, D. M., Davis, B. R., and Slater, R. (1983). Parametric Studies of Tinnitus
463 Masking and Residual Inhibition. *British Journal of Audiology*, 17(4):245–256.

464 Tyler, R., Stocking, C., Secor, C., and Slattery, W. H. (2014). Amplitude Modulated S-Tones Can
465 Be Superior to Noise for Tinnitus Reduction. *American Journal of Audiology*, 23(3):303.

466 Vernon, J. and Fenwick, J. (1984). Identification of Tinnitus: A Plea for Standardization. *The*
467 *Journal of Laryngology & Otology*, 98(S9):45–53.

468 Vernon, J. A. and Meikle, M. B. (2003). Tinnitus: clinical measurement. *Otolaryngologic Clinics*
469 *of North America*, 36(2):293–305.

470 **Tables**

	Total sample				Noise-like tinnitus				Tonal tinnitus				p	
	N (female)		29 (7) 4/ 4/ 21		14 (6) 4 / 3/ 7				15 (1) 0/ 1/ 14					
	M ± SD	Md	Min	Max	M ± SD	Md	Min	Max	M ± SD	Md	Min	Max	t (df) / U	
Age (years)	55.59 ± 9.51	57.00	22.00	71.00	58.50 ± 7.81	60.00	45.00	71.00	53.07 ± 10.44	54.00	22.00	66.00	1.59 (25.83)	.12
Tinnitus duration (months)	159.97 ± 92.72	161.00	20.00	420.00	119.86 ± 80.28	102.00	20.00	240.00	197.40 ± 90.00	190.00	60.00	420.00	-2.45 (26.95)	.02
Centre frequency (Hz) – matching 1					5404.21 ± 1618.94	5399.00	1684.00	8301.00						
Centre frequency (Hz) – matching 2					5483.07 ± 3748.85	4280.00	523.00	13298.00						
Tinnitus frequency (Hz) – matching 1									5395.27 ± 1893.54	5501.00	2796.00	9334.00		
Tinnitus frequency (Hz) – matching 2									5683.73 ± 1980.87	5617.00	2471.00	9766.00		
Tinnitus loudness (dB SPL) – matching 1	65.08 ± 13.41	69.56	40.75	84.61	55.98 ± 10.98	53.44	40.75	73.86	73.57 ± 10.29	75.15	52.36	84.61	-4.66 (26.94)	<.01
Tinnitus loudness (dB SPL) – matching 2	63.23 ± 14.14	63.54	36.88	84.61	53.87 ± 11.64	51.28	36.88	76.44	71.97 ± 10.93	71.71	45.91	84.61	-4.31 (26.52)	<.01
Matching 1 length (min)	11.07 ± 4.46	11.00	4.00	19.00	13.50 ± 3.59	15.00	6.00	17.00	8.8 ± 4.06	8.00	4.00	19.00	170.00	<.01
Matching 2 length (min)	5.17 ± 2.45	5.00	2.00	14.00	6.29 ± 2.95	5.50	3.00	14.00	4.13 ± 1.25	4.00	2.00	6.00	158.00	.02
Hearing loss left (dB)	17.98 ± 9.99	17.27	2.73	38.64	19.16 ± 11.45	18.64	2.73	38.64	16.88 ± 8.67	17.27	4.09	33.18	.60 (24.19)	.55
Hearing loss right (dB)	17.27 ± 10.32	15.91	3.18	40.45	18.67 ± 11.79	15.91	3.64	40.45	15.97 ± 8.96	15.91	3.18	32.27	.69 (24.25)	.50
Minimum masking level (dB)	54.17 ± 16.84	55.00	20.00	80.00	47.43 ± 17.90	40.50	20.00	76.00	60.47 ± 13.47	57.00	41.00	80.00	-2.20 (24.12)	.04
Sensation level (dB) (1 missing value)	32.50 ± 19.08	35.00	5.00	70.00	31.54 ± 21.74	35.00	5.00	70.00	33.33 ± 17.18	35.00	5.00	55.00	-.24 (22.79)	.81
TQ total score (0-84)	33.28 ± 16.97	32.00	7.00	60.00	32.07 ± 16.03	31.00	7.00	60.00	34.40 ± 18.28	35.00	10.00	58.00	-.36 (26.90)	.72
THI total score (0-100)	39.03 ± 22.56	34.00	4.00	98.00	40.00 ± 24.09	36.00	6.00	98.00	38.13 ± 21.85	34.00	4.00	70.00	.22 (26.26)	.83
HQ9 (0-27)	11.31 ± 5.76	11.00	1.00	24.00	11.21 ± 4.81	11.50	5.00	20.00	11.40 ± 6.71	8.00	1.00	24.00	-.09 (25.28)	.93
VAS loudness (0-100)	45.00 ± 22.81	36.00	8.00	82.00	35.79 ± 21.90	30.00	8.00	82.00	53.60 ± 20.77	61.00	14.00	77.00	.57.00	.04

Table 1: Sample characteristics. M = mean; SD = standard deviation; Md = median; Min = minimum; Max = maximum; TQ = Tinnitus Questionnaire; THI = Tinnitus Handicap Inventory; Mini-HQ9 = Mini Hyperacusis Questionnaire; VAS loudness = Visual Analog Scale tinnitus loudness

	numDF	denDF	F	p
Condition	6.00	1392.00	3.35	<.01
Time	6.00	1392.00	39.84	<.01
Group	1.00	29.00	5.04	.03
Time*Group	6.00	1392.00	15.17	<.01

Table 2: Fixed effect testing. numDF = degrees of freedom numerator; denDF = degrees of freedom denominator

Contrast	Estimate	t	p
IBP - IBP10	-1.53	-1.06	0.94
IBP - IBP10_MML	-4.38	-3.05	0.04
IBP - IBP40	1.08	0.75	0.99
IBP - WN	-2.76	-1.92	0.47
IBP - WN10	-2.17	-1.51	0.74
IBP - WN40	-0.34	-0.24	>.99
IBP10 - IBP10_MML	-2.86	-1.98	0.42
IBP10 - IBP40	2.61	1.81	0.54
IBP10 - WN	-1.23	-0.86	0.98
IBP10 - WN10	-0.64	-0.44	>.99
IBP10 - WN40	1.18	0.82	0.98
IBP10_MML - IBP40	5.47	3.80	<.01
IBP10_MML - WN	1.63	1.13	0.92
IBP10_MML - WN10	2.22	1.54	0.72
IBP10_MML - WN40	4.04	2.81	0.08
IBP40 - WN	-3.84	-2.67	0.11
IBP40 - WN10	-3.25	-2.26	0.27
IBP40 - WN40	-1.43	-0.99	0.96
WN - WN10	0.59	0.41	>.99
WN - WN40	2.41	1.68	0.63
WN10 - WN40	1.82	1.27	0.87

Table 3: Post-hoc tukey contrasts for condition. Degrees of freedom = 1410.23; standard error = 1.44

Contrast	Estimate	t	p
Tonal vs. noise-like	12.65	2.17	.04

Table 4: Post-hoc tukey contrasts for group. Degrees of freedom = 31.15; standard error = 5.84

Contrast	Estimate	t	p
Tonal vs. noise-like	Time		
	0	26.21	<.01
	30	20.05	.10
	60	13.61	.62
	90	9.91	.93
	120	7.61	>.99
	150	5.54	>.99
	180	5.59	>.99

Table 5: Post-hoc tukey contrasts for group*time. Degrees of freedom = 38.40; standard error = 6.13

	numDF	denDF	F	p
Arousal				
Condition	6.00	174.00	5.17	<.01
Valence				
Condition	6.00	174.00	3.25	<.01

Table 6: Fixed effect testing - arousal & valence. numDF = degrees of freedom numerator; denDF = degrees of freedom denominator

Contrast	Arousal				Valence		
	Estimate	t	p	Estimate	t	p	
IBP - IBP10	-0.62	-1.73	0.60	0.17	0.39	>.99	
IBP - IBP10_MML	0.45	1.25	0.87	-0.48	-1.08	0.93	
IBP - IBP40	-1.10	-3.08	0.04	0.59	1.31	0.85	
IBP - WN	-0.38	-1.06	0.94	0.14	0.31	>.99	
IBP - WN10	-0.86	-2.41	0.20	0.79	1.77	0.57	
IBP - WN40	-1.00	-2.79	0.08	1.21	2.70	0.10	
IBP10 - IBP10_MML	1.07	2.98	0.05	-0.66	-1.47	0.76	
IBP10 - IBP40	-0.48	-1.35	0.83	0.41	0.93	0.97	
IBP10 - WN	0.24	0.67	0.99	-0.03	-0.08	>.99	
IBP10 - WN10	-0.24	-0.67	0.99	0.62	1.39	0.81	
IBP10 - WN40	-0.38	-1.06	0.94	1.03	2.32	0.24	
IBP10_MML - IBP40	-1.55	-4.33	<.01	1.07	2.39	0.21	
IBP10_MML - WN	-0.83	-2.31	0.25	0.62	1.39	0.81	
IBP10_MML - WN10	-1.31	-3.66	0.01	1.28	2.86	0.07	
IBP10_MML - WN40	-1.45	-4.04	<.01	1.69	3.78	<.01	
IBP40 - WN	0.72	2.02	0.41	-0.45	-1.00	0.95	
IBP40 - WN10	0.24	0.67	0.99	0.21	0.46	>.99	
IBP40 - WN40	0.10	0.29	>.99	0.62	1.39	0.81	
WN - WN10	-0.48	-1.35	0.83	0.66	1.47	0.76	
WN - WN40	-0.62	-1.73	0.60	1.07	2.39	0.21	
WN10 - WN40	-0.14	-0.38	>.99	0.41	0.93	0.97	

Table 7: Post-hoc tukey contrasts for condition. Arousal: Degrees of freedom = 180.21; standard error = .36; Valence: Degrees of freedom = 180.21; standard error = .45

471 **Figures**

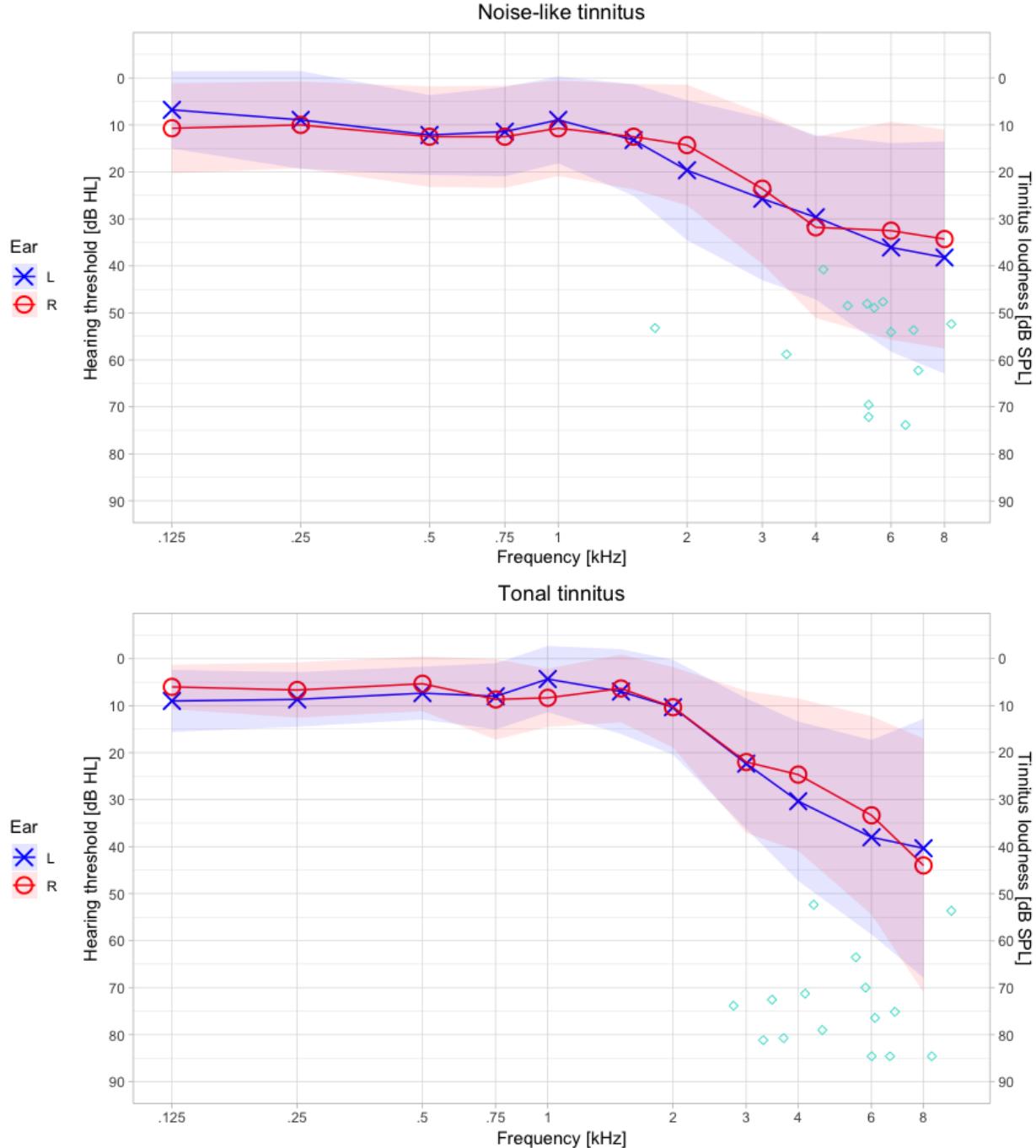


Figure 1: Audiometry and Tinnitus. Audiometric measurement results for both ears together with individual tinnitus frequency (i.e., centre frequency of the IBP) and loudness as identified by tinnitus matching splitted for noise-like and tonal tinnitus. It should be noted, that tinnitus/ centre frequency overlaps with the frequencies of hearing loss.

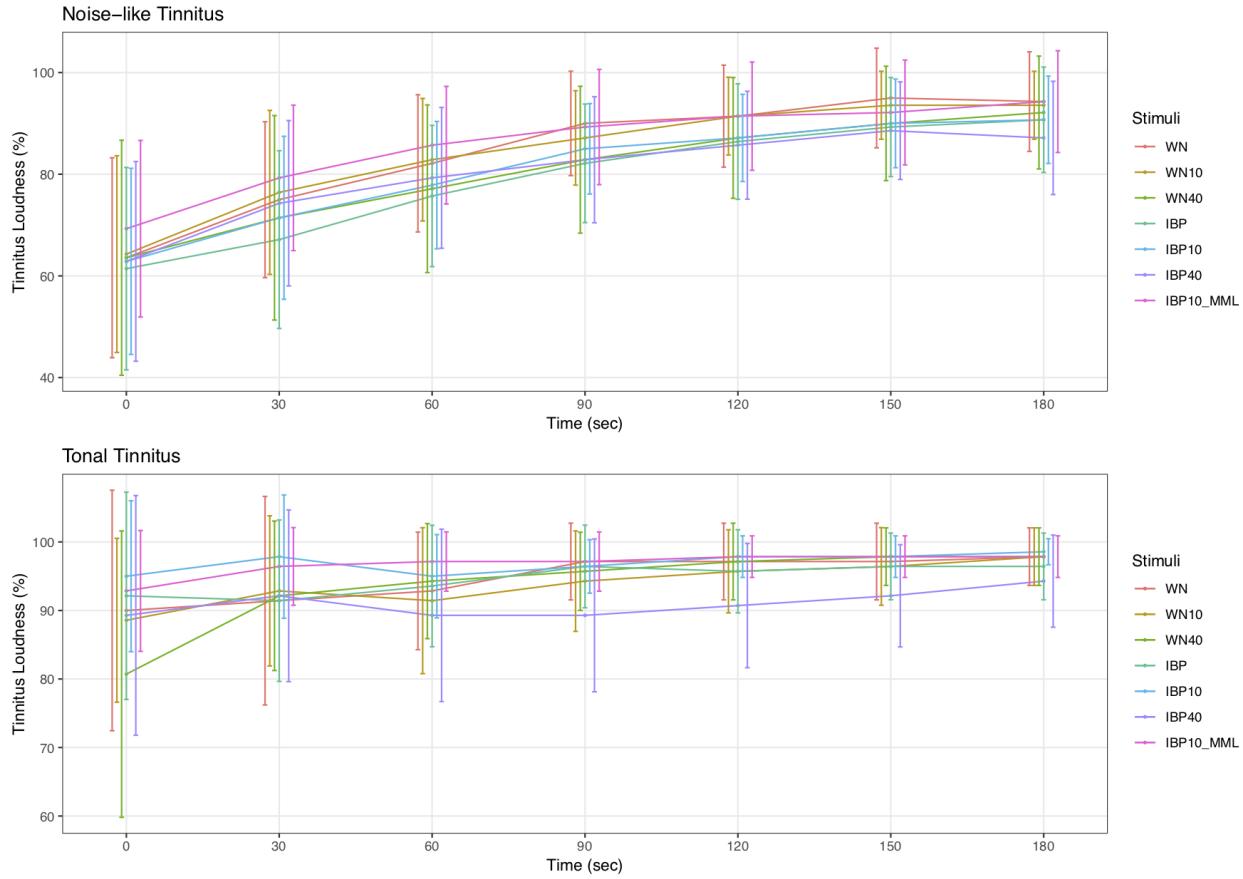


Figure 2: Tinnitus loudness time curve splitted by group. For each stimuli the tinnitus loudness rating over all time points is plotted separated for noise-like and tonal tinnitus (confidence intervals at 95% shown as brackets). Overall, each stimulus was able to suppress tinnitus loudness (cf. table S1). In terms of suppression averaged over time but also at T0, stimulus IBP appeared to produce the strongest effect on loudness in the noise-like tinnitus group. Whereas in the tonal group, stimulus IBP40 induced the lowest tinnitus loudness on average. However, directly after stimulation WN40 showed the strongest suppression.

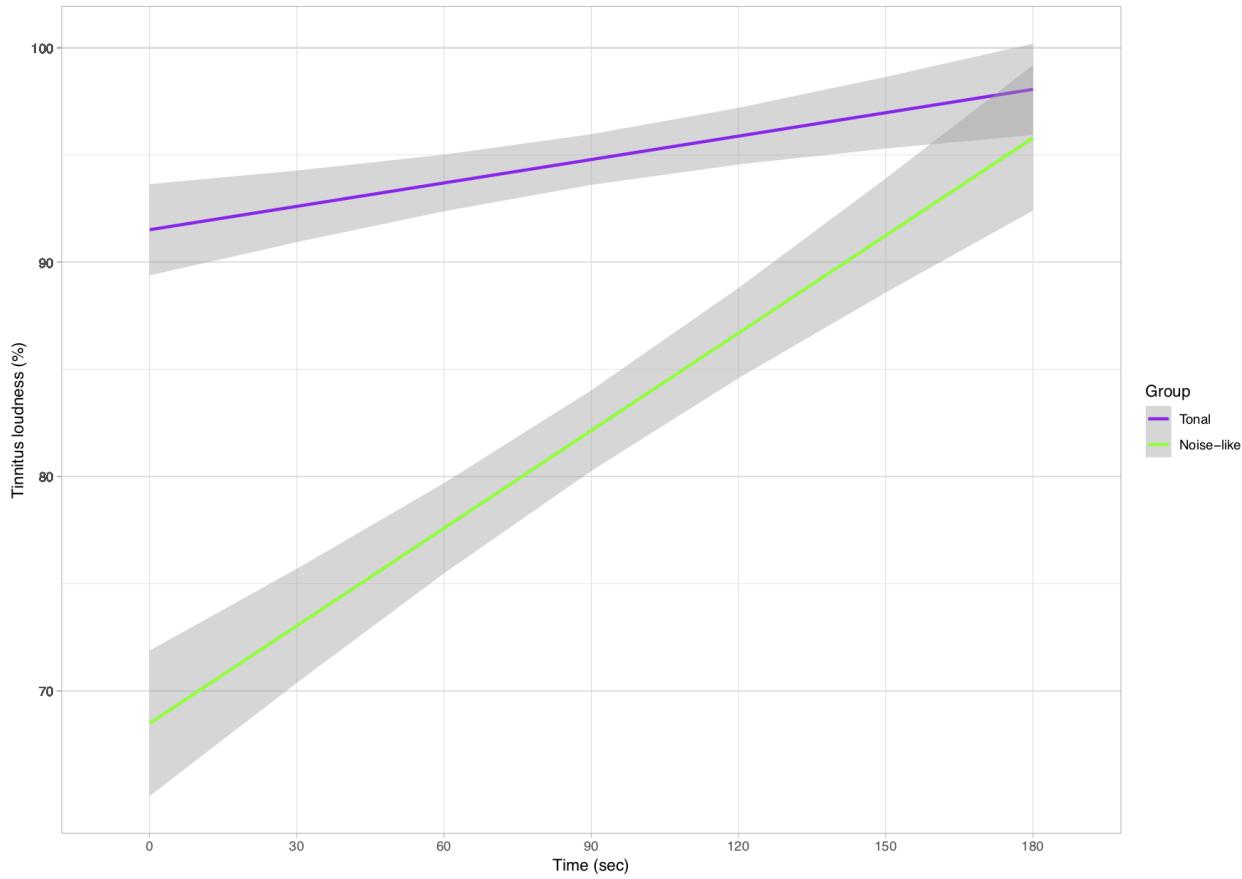


Figure 3: Mean suppression differences between groups. Time curve of the averaged tinnitus suppression values splitted for tonal and noise-like tinnitus. Standard deviation for the mean suppression data of each group is plotted as a grey ribbon. Differences between the two subgroups were found to be significant.

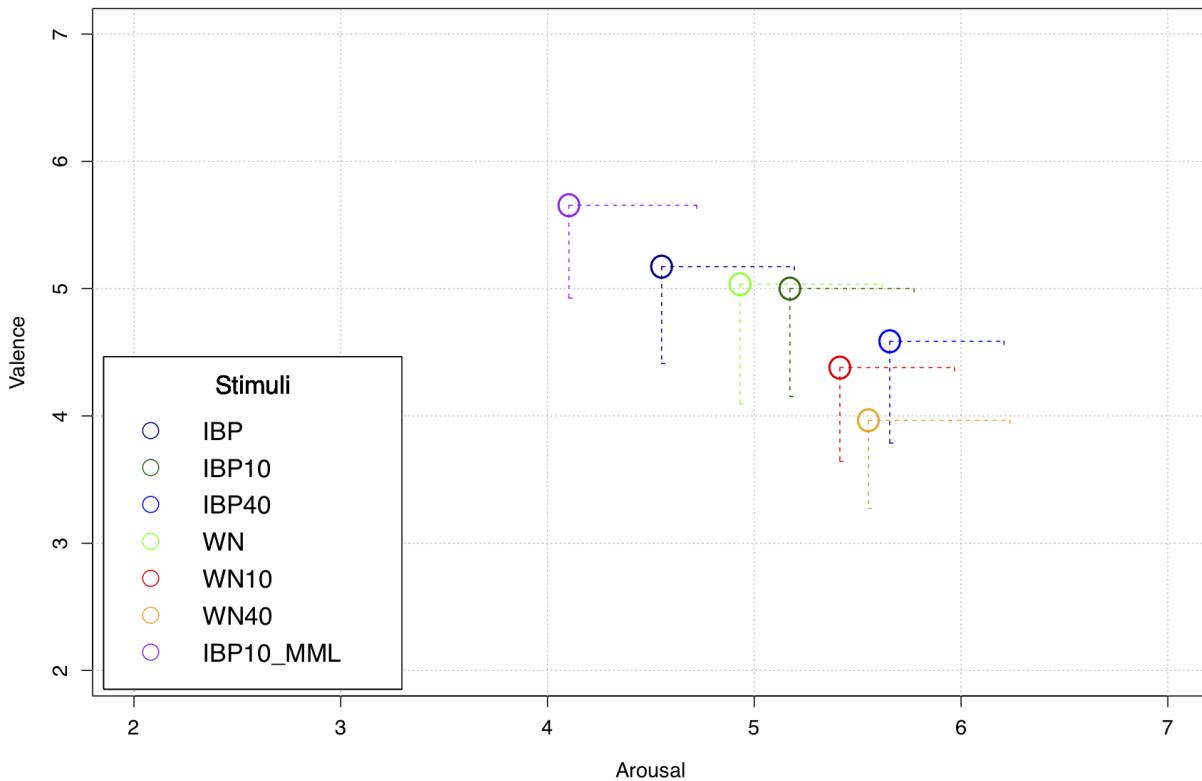


Figure 4: Valence and arousal rating per stimuli. Parentheses show 95 % confidence interval for arousal and valence ratings for all stimuli. Lowest tolerability was found in WN40 as indicated by high arousal and low valence stimulus valuation. Whereas stimulus IBP10_MML shows the highest tolerability.

472 **Supplemental material**

	Total				T0			
	M ± SD	Md	Min	Max	M ± SD	Md	Min	Max
IBP	87.24 ± 23.93	100.00	.00	120.00	77.59 ± 36.22	100.00	.00	120.00
IBP10	88.77 ± 20.82	100.00	10.00	140.00	77.95 ± 32.56	80.00	10.00	140.00
IBP10_MML	91.63 ± 19.01	100.00	10.00	110.00	81.72 ± 28.17	100.00	10.00	110.00
IBP40	86.16 ± 24.60	100.00	.00	130.00	77.59 ± 37.57	100.00	.00	130.00
WN	90.00 ± 23.29	100.00	.00	140.00	77.59 ± 37.00	100.00	.00	140.00
WN10	89.41 ± 20.93	100.00	.00	120.00	77.24 ± 32.28	80.00	.00	120.00
WN40	87.95 ± 26.51	100.00	.00	130.00	73.10 ± 41.76	100.00	.00	130.00
Noise-like								
IBP	78.98 ± 27.86	90.00	.00	120.00	61.43 ± 38.00	65.00	.00	120.00
IBP10	80.71 ± 24.67	90.00	10.00	120.00	62.86 ± 34.96	50.00	10.00	120.00
IBP10_MML	85.92 ± 24.49	100.00	10.00	110.00	69.29 ± 33.16	80.00	10.00	110.00
IBP40	80.10 ± 26.81	90.00	.00	120.00	62.86 ± 37.50	55.00	.00	120.00
WN	84.49 ± 26.56	100.00	.00	110.00	63.57 ± 37.54	70.00	.00	110.00
WN10	84.18 ± 24.41	100.00	.00	120.00	64.29 ± 36.94	65.00	.00	120.00
WN40	80.61 ± 31.29	100.00	.00	120.00	63.57 ± 44.13	70.00	.00	120.00
Tonal								
IBP	94.95 ± 16.24	100.00	10.00	120.00	92.67 ± 27.89	100.00	10.00	120.00
IBP10	96.29 ± 12.50	100.00	50.00	140.00	92.00 ± 23.36	100.00	50.00	140.00
IBP10_MML	96.95 ± 9.11	100.00	50.00	110.00	93.33 ± 16.33	100.00	50.00	110.00
IBP40	91.81 ± 20.93	100.00	10.00	130.00	91.33 ± 33.14	100.00	10.00	130.00
WN	95.14 ± 18.46	100.00	.00	140.00	90.67 ± 32.40	100.00	.00	140.00
WN10	94.29 ± 15.68	100.00	40.00	120.00	89.33 ± 22.19	100.00	40.00	120.00
WN40	94.10 ± 19.05	100.00	.00	130.00	82.00 ± 38.77	100.00	.00	130.00

Table S1: Tinnitus loudness per condition. M = mean; SD = standard deviation; Md = median; Min = minimum; Max = maximum; T0 = immediately after stimulation offset

	R ² (marginal)	R ² (conditional)	df	AIC	BIC	logLik	LRT	p
Intercept only: response ~ 1 + (1 id)	.00	.51	3	12046.00	12061.00	-6019.00		
Fitted model : response ~ condition + time * group + (1 id)	.17	.60	22	11774.00	11890.00	-5865.20	309.22	<.01

Table S2: Model fitting. df = degrees of freedom; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; logLik = log-likelihood; LRT = Likelihood Ratio Test

	Arousal				Valence			
	M ± SD	Md	Min	Max	M ± SD	Md	Min	Max
IBP	4.55 ± 1.76	5.00	1.00	7.00	5.17 ± 2.09	5.00	2.00	9.00
IBP10	5.17 ± 1.65	5.00	2.00	8.00	5.00 ± 2.33	5.00	1.00	9.00
IBP10_MML	4.10 ± 1.70	4.00	.00	8.00	5.66 ± 2.00	5.00	2.00	9.00
IBP40	5.66 ± 1.52	6.00	2.00	8.00	4.59 ± 2.20	4.00	1.00	9.00
WN	4.93 ± 1.89	5.00	1.00	8.00	5.03 ± 2.58	5.00	1.00	9.00
WN10	5.41 ± 1.52	5.00	3.00	9.00	4.38 ± 2.03	4.00	1.00	9.00
WN40	5.55 ± 1.88	5.00	1.00	9.00	3.97 ± 1.90	3.00	1.00	9.00
Noise-like								
IBP	3.86 ± 1.88	4.00	1.00	7.00	5.86 ± 2.21	6.00	2.00	9.00
IBP10	4.93 ± 1.69	5.00	3.00	8.00	5.29 ± 2.58	5.50	1.00	9.00
IBP10_MML	3.71 ± 1.33	3.50	2.00	6.00	5.93 ± 2.16	6.00	2.00	9.00
IBP40	5.36 ± 1.50	5.00	3.00	8.00	5.00 ± 2.29	5.00	1.00	9.00
WN	4.57 ± 1.45	5.00	2.00	7.00	5.21 ± 2.33	5.00	2.00	9.00
WN10	5.36 ± 1.50	5.00	3.00	8.00	4.50 ± 2.21	4.00	1.00	9.00
WN40	5.57 ± 2.34	6.00	1.00	9.00	3.79 ± 2.22	3.00	1.00	9.00
Tonal								
IBP	5.20 ± 1.42	5.00	3.00	7.00	4.53 ± 1.81	4.00	2.00	8.00
IBP10	5.40 ± 1.64	5.00	2.00	7.00	4.73 ± 2.12	4.00	2.00	9.00
IBP10_MML	4.47 ± 1.96	5.00	.00	8.00	5.40 ± 1.88	5.00	3.00	9.00
IBP40	5.93 ± 1.53	6.00	2.00	8.00	4.20 ± 2.11	3.00	1.00	8.00
WN	5.27 ± 2.22	5.00	1.00	8.00	4.87 ± 2.88	5.00	1.00	9.00
WN10	5.47 ± 1.60	5.00	3.00	9.00	4.27 ± 1.91	4.00	1.00	7.00
WN40	5.53 ± 1.41	5.00	3.00	8.00	4.13 ± 1.60	4.00	2.00	7.00

Table S3: Stimulus evaluation. M = mean; SD = standard deviation; Md = median; Min = minimum; Max = maximum

Model	R² (marginal)	R² (conditional)	df	AIC	BIC	logLik	LRT	p
Arousal								
Intercept only: response ~ 1 + (1 id)	.00	.33	3	776.28	786.22	-385.14		
Fitted model: response ~ condition + (1 id)	.09	.42	9	759.72	789.54	-370.86	28.56	<.01
Valence								
Intercept only: response ~ 1 + (1 id)	.00	.37	3	858.16	868.10	-426.08		
Fitted model: response ~ condition + (1 id)	.06	.42	9	851.69	881.51	-416.84	18.48	<.01

Table S4: Model fitting - arousal & valence. df = degrees of freedom; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; logLik = log-likelihood; LRT = Likelihood Ratio Test

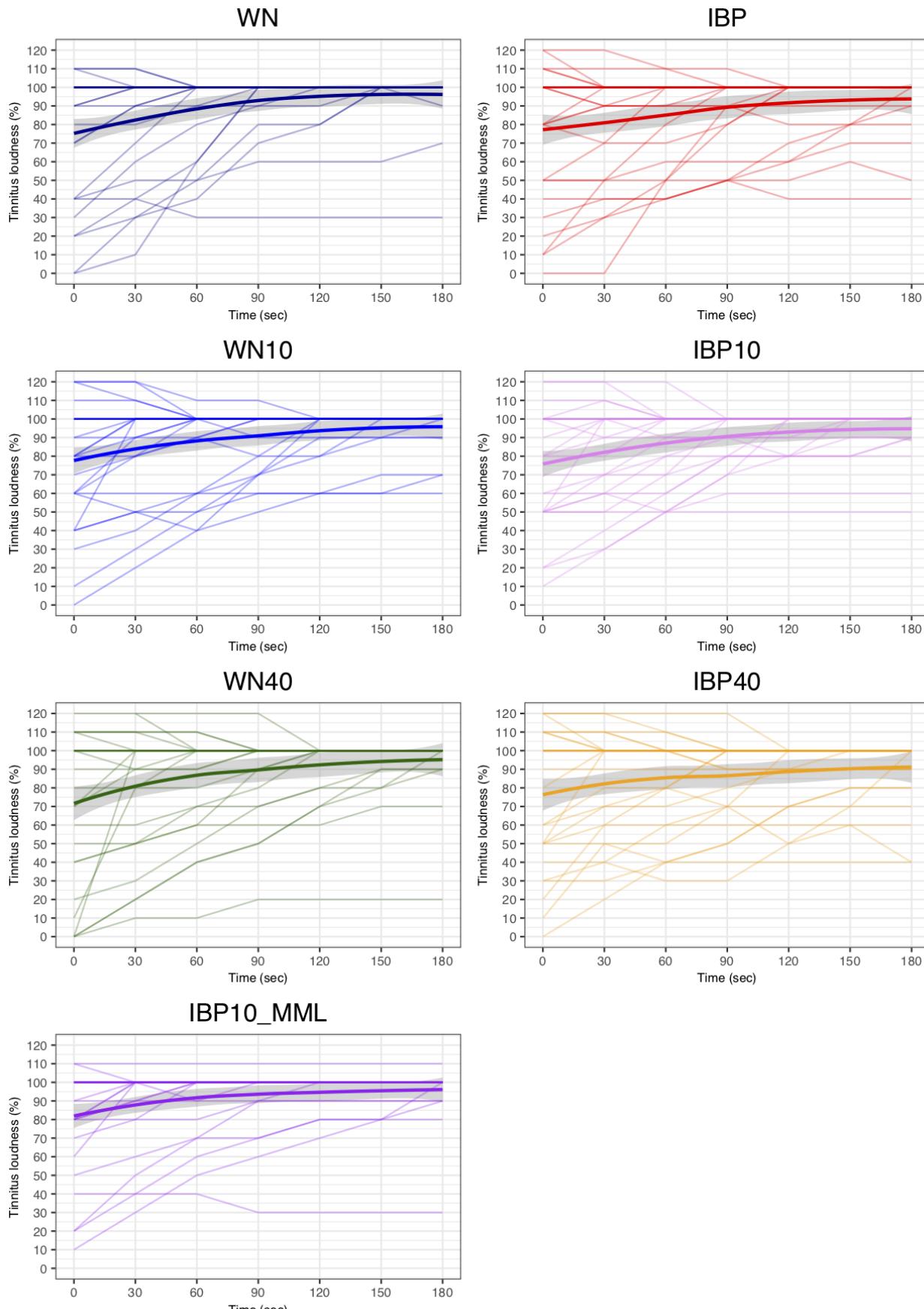


Figure S1: Tinnitus loudness time curve - single patient response. Tinnitus loudness ratings are illustrated on a single participant level for all rating timepoints separated for each stimuli. Thick lines show the mean tinnitus loudness (%) for each stimulus, standard deviations are illustrated as grey ribbons.