

1 **Title**

2 Functional genetic validation of key genes conferring
3 insecticide resistance in the major African malaria vector,
4 *Anopheles gambiae*

5 **Authors**

6 Adriana Adolfi^{1a}, Beth Poulton¹, Amalia Anthousi¹, Stephanie Macilwee^{1b}, Hilary
7 Ranson¹, and Gareth J Lycett¹

8 **Affiliation:**

9 ¹ Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3
10 5QA, UK

11 **Current affiliations and addresses:**

12 ^a Department of Microbiology and Molecular Genetics, School of Medicine,
13 University of California Irvine, Irvine, CA 92697, USA

14 ^b Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK

15 **ORCID identifiers:**

16 Adriana Adolfi: 0000-0003-0573-5076

17 Beth Poulton: 0000-0002-9831-5697

18 Amalia Anthousi: 0000-0003-3385-681X

19 Hilary Ranson: 0000-0003-2332-8247

20 Gareth J Lycett: 0000-0002-2422-053X

21 **Corresponding author**

22 Gareth J Lycett

23 Vector Biology Department

24 Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK

25 44(0)1517053137

26 Gareth.Lycett@lstm.ac.uk

27 **Keywords**

28 Insecticide resistance, Cytochromes P450, Glutathione-S-transferase,
29 GAL4/UAS, *Anopheles*, Functional analysis

30 ABSTRACT

31 Resistance in *Anopheles gambiae* to members of all four major classes (pyrethroids, carbamates,
32 organochlorines and organophosphates) of public health insecticides limits effective control of
33 malaria transmission in Africa. Increased expression of detoxifying enzymes has been associated
34 with resistance, but direct functional validation in *An. gambiae* has been lacking. Here we perform
35 transgenic analysis using the GAL4/UAS system to examine insecticide resistance phenotypes
36 conferred by increased expression of the three genes - *Cyp6m2*, *Cyp6p3* and *Gste2* - most often
37 found upregulated in resistant *An. gambiae*. We report the first evidence in *An. gambiae* that
38 organophosphate and organochlorine resistance is conferred by overexpression of *GSTE2* in a
39 broad tissue profile. Pyrethroid and carbamate resistance is bestowed by similar *Cyp6p3*
40 overexpression, and *Cyp6m2* confers only pyrethroid resistance when overexpressed in the same
41 tissues. Conversely, such *Cyp6m2* overexpression increases susceptibility to the organophosphate
42 malathion, presumably due to conversion to a more toxic metabolite. No resistant phenotypes are
43 conferred when either *Cyp6* gene overexpression is restricted to the midgut or oenocytes,
44 answering long standing questions related to the importance of these tissues in resistance to
45 contact insecticides. Validation of genes conferring resistance provides markers to guide control
46 strategies, and the observed negative cross-resistance due to *Cyp6m2* gives credence to proposed
47 dual insecticide strategies to overcome pyrethroid resistance. These transgenic *An. gambiae*
48 resistant lines are being used to test potential liabilities in new active compounds early in
49 development.

50 **SIGNIFICANCE STATEMENT**

51 Insecticide resistance in *Anopheles gambiae* mosquitoes can derail malaria control programs, and
52 to overcome it we need to discover the underlying molecular basis. Here, for the first time, we
53 characterise three genes most often associated with insecticide resistance directly by their
54 overproduction in genetically modified *An. gambiae*. We show that overexpression of each gene
55 confers resistance to representatives of at least one insecticide class and, taken together, the three
56 genes provide cross-resistance to all four major insecticide classes currently used in public health.
57 These data validate the candidate genes as markers to monitor the spread of resistance in
58 mosquito populations. The modified mosquitoes produced are also valuable tools to pre-screen
59 new insecticides for potential liabilities to existing resistance mechanisms.

60 INTRODUCTION

61 From the year 2000 until recently, the number of worldwide malaria cases had steadily fallen
62 mainly due to the widespread rollout of insecticide treated bed nets in endemic areas (1, 2), which
63 offer protection against bites from *Plasmodium* infected *Anopheles* mosquitoes. There is growing
64 evidence suggesting that the stalling in malaria control can be at least partially attributed to the
65 increasing levels of insecticide resistance in *Anopheles* vectors (3). Resistance in dominant
66 African *Anopheles* vectors has been recorded to all major insecticide classes currently used in
67 public health (pyrethroids, organochlorines, carbamates and organophosphates) (4). Therefore,
68 understanding the mechanisms by which mosquitoes evolve resistance is critical for the design of
69 mitigation strategies and in the evaluation of new classes of insecticides.

70 Research into the molecular mechanisms that give rise to resistance in mosquitoes have
71 identified target site modifications and increased metabolic detoxification as the two main
72 evolutionary adaptions (5), that often co-exist in *An. gambiae*. Families of detoxification enzymes,
73 including cytochromes P450 (CYP) and glutathione-S-transferases (GST), can provide phase I
74 metabolism of insecticides and phase II conjugation reactions that alter the toxicity of compounds
75 and increase polarity, enhancing excretion (6, 7).

76 To identify and characterise the role of the causative resistance genes from these detox families,
77 a sequential process of transcriptomic, proteomic and *in vivo* functional analysis is often applied
78 (8). Candidate genes with upregulated transcription or strong signatures of selection in resistant
79 mosquitoes are typically expressed in bacteria to provide evidence of insecticide depletion and/or
80 metabolism *in vitro* (9–19). Further studies have used the *Drosophila* transgenic model to
81 determine whether expression of single *Anopheles* genes confers increased tolerance to
82 insecticides (13–18, 20).

83 This workflow has implicated a role in resistance of two cytochrome P450 genes, *Cyp6m2* and
84 *Cyp6p3*, and a Glutathione S Transferase gene, *Gste2*, that are consistently upregulated in
85 resistant field populations found across Africa (21). However, there are often discrepancies in
86 results from recombinant protein activity and transgenic *Drosophila* analyses. For example, while
87 expression studies of *Cyp6m2* and *Cyp6p3* in *E. coli* (10, 11) and *Drosophila* (15) suggest that
88 both gene products can detoxify pyrethroids, the two systems produce conflicting results in
89 respect to carbamate (15) and organochlorine insecticide detoxification (12, 15, 19). Moreover,
90 the involvement of *An. gambiae* and *An. funestus* *Gste2* orthologues in resistance to pyrethroid
91 insecticides has produced contradictory results when explored in *Drosophila* (16, 20).

92 Clearly, functional validation of *Anopheles* genes directly in the mosquito would provide the
93 benchmark approach to address these questions, however to date transgenic tools to perform
94 such analysis have been limited. To this end, we have developed the GAL4/UAS expression

95 system in *An. gambiae* (22–24) which allows genes to be overexpressed in a susceptible
96 mosquito background and for resultant resistance phenotypes to be examined using the standard
97 insecticide assays that have been developed for comparative analysis in mosquitoes by WHO
98 (25).

99 *In vivo* functional analysis in *Anopheles* can also help discover the mosquito tissues that are
100 specifically involved in insecticide metabolism. Our previous research indicated high P450 activity
101 in the midgut and oenocytes, since the essential P450 co-enzyme CPR is highly expressed in
102 these tissues, and RNAi knockdown of *Cpr* increased mosquito sensitivity to a pyrethroid
103 insecticide (26). Moreover, *Cyp6m2* has been reported as enriched in the *An. gambiae* midgut
104 (11) and *Cyp6p3* was found upregulated in midguts from pyrethroid resistant populations (27).

105 Here we have used the GAL4/UAS system to overexpress *Cyp6m2* or *Cyp6p3* genes in multiple
106 tissues or specifically in the midgut or oenocytes of a susceptible *An. gambiae* strain and assayed
107 the modified mosquitoes against representatives of each insecticide class available for public
108 health use. In doing so, we determined the resistance profile generated for each gene and
109 compared these results to those obtained in *Drosophila* and *in vitro*. We then analysed the other
110 major candidate, *Gste2*, to examine its role in conferring DDT resistance and also extending its
111 testing to other classes of insecticides in which its role has yet to be tested *in vivo*.

112 In this work, we report the first use of the GAL4/UAS system in *Anopheles* as a benchmark to
113 determine whether single candidate genes and/or expression in individual tissues are able to
114 confer WHO-defined levels of resistance to the four public health classes of insecticides,
115 including for the first time organophosphates. Crucially we find that, when assayed in *An.*
116 *gambiae*, overexpression of *Cyp6m2*, *Cyp6p3* or *Gste2* produce cross-resistance phenotypes
117 that encompass members of all four classes of insecticides currently used for malaria control.

118 **RESULTS**

119 *Mosquito lines generated for UAS-regulated expression of Cyp6m2 and Cyp6p3*

120 YFP marked UAS-*Cyp6m2* and -*Cyp6p3* lines were created by site directed recombination
121 mediated cassette exchange (RMCE) into a docking (CFP:2xattP) line A11 (24) to produce
122 mosquitoes carrying transgene insertions in the same genomic site. By mitigating for genomic
123 position effects, this allows more reliable comparison of the effects of *Cyp6m2* and *Cyp6p3*
124 overexpression on resistance.

125 A summary of the screening and crossing strategy used to create the UAS responder lines is
126 illustrated in Table 1. RMCE results in canonical cassette exchange in two potential orientations,
127 however integration of the whole donor transgene can also occur into either *attP* site. Fluorescent
128 marker screening of F₁ progenies from F₀ pooled mosquitoes revealed that cassette exchange
129 and integration events occurred in all experiments as shown by the recovery of individuals
130 carrying single (YFP: exchange) or double (CFP/YFP: integration) markers (Table 1).

131 Molecular analysis revealed one exchange orientation (A) in transgenic UAS-m2 individuals and
132 both orientations for UAS-p3 transformation as indicated by diagnostic PCR (Fig. S1). Overall, we
133 found at least two events for UAS-m2 transformation, having equal efficiencies of 2% for
134 cassette-exchange and integration (1/49 F₀ founders); while for the UAS-p3 transformation, at
135 least nine transformation events (six cassette exchanges, three in each orientation (A and B), and
136 three transgene integrations) were detected, with a minimum cassette-exchange efficiency of 5%
137 (6/124 F₀) and integration efficiency of 2% (3/124 F₀). For comparative functional analysis,
138 representative *Cyp6* lines in orientation A were maintained and crossed with alternative GAL4
139 driver lines.

140 *CYP6M2 or CYP6P3 overexpression in multiple tissues causes distinct profiles of
141 resistance to pyrethroids and bendiocarb*

142 We previously described the production of a GAL4 driver line, Ubi-A10, directing widespread
143 tissue expression (23). To quantify the overexpression achieved with this driver, we performed
144 RT-qPCR in the progeny of Ubi-A10 driver and UAS-*Cyp6* crosses. This revealed significant
145 2447x ($P=0.005$) and 513x ($P<0.001$) increases of *Cyp6m2* and *Cyp6p3* transcript abundance in
146 adult females compared to native expression in respective controls (Fig. 1A). Western analysis
147 also readily detected CYP6M2 in the adult female progeny of the Ubi-A10/UAS-m2 crosses, but

148 was beyond the level of detection in sibling controls (Ubi-A10/+ and +/UAS-m2) (Fig. 1B). No
149 suitable antiserum was available for analysis of CYP6P3.

150 WHO discriminating dose assays were then performed to assess the susceptibility of mosquitoes
151 overexpressing *Cyp6m2* or *Cyp6p3* compared to their Ubi-A10/+ siblings. WHO tube bioassays
152 are used to screen for the emergence of resistance in field populations and involve exposing
153 mosquitoes to fixed concentration of insecticides (twice the LC₉₉ for a susceptible strain) for 60
154 minutes, followed by a twenty-four-hour recovery period before recording mortality (25). The
155 parental strains used here are susceptible (>90% mortality) to all the insecticides tested,
156 therefore a decrease in mortality in test assays can be directly attributable to the overexpression
157 of the specific candidate gene.

158 Mosquitoes overexpressing either *Cyp6* gene under the Ubi-A10 driver showed resistance to
159 permethrin (*Cyp6m2* 28% mortality, $P<0.001$; *Cyp6p3* 43% mortality, $P<0.001$) and deltamethrin
160 (*Cyp6m2* 88%, $P=0.04$; *Cyp6p3* 52%, $P=0.004$) compared to controls (Fig. 1C). A significant
161 difference in mortality was observed between mosquitoes overexpressing the two different *Cyp6*
162 genes for deltamethrin assays ($P=0.003$), while no significant difference was observed for
163 permethrin ($P=0.15$). However, only *Cyp6p3* overexpressing mosquitoes showed resistance to
164 bendiocarb (13% mortality $P<0.001$) (Fig. 1C). No resistance to DDT was observed with either
165 gene in conjunction with the Ubi-A10 driver (Fig. 1C).

166 *CYP6M2 or CYP6P3 multi-tissue overexpression increases susceptibility to*
167 *malathion*

168 Malathion is an organophosphate pro-insecticide that is activated to a more toxic compound *in*
169 *vivo* through P450-based oxidative reactions (28). Preliminary analysis at a standard WHO
170 diagnostic dose and 60-minute exposure killed all test and control mosquitoes, however during
171 exposure it was clear that Ubi-A10-directed *Cyp6* overexpression induced more rapid knock-
172 down compared to controls suggesting malathion activation by these P450s. We therefore
173 examined the relative sensitivity of mosquitoes overexpressing *Cyp6m2* or *Cyp6p3* when
174 exposed to the same diagnostic dose of this organophosphate for a shorter time (25 minutes)
175 (Fig. 2). Under these conditions, mosquitoes overexpressing *Cyp6m2* under the control of the
176 Ubi-A10 driver showed significantly higher mortality rates compared to controls (95% vs 15%,
177 $P<0.001$) and Ubi-A10/UAS-p3 mosquitoes (95% vs 34% $P=0.002$). Although, the latter also
178 showed a trend of increased mortality compared to Ubi-A10/+ controls (34% vs 8% $P=0.05$).

179 *Overexpression of GSTE2 in multiple tissues causes resistance to diagnostic*
180 *doses of DDT and Fenitrothion*

181 To extend the analysis to the role of GSTE2 in insecticide resistance in *An. gambiae*, we utilised
182 the previously described Ubi-A10 GAL4 line (23) as a docking line for the first time. Integration of
183 the UAS cassette into a single docking site in this case would provide Ubi-A10GAL4 and UAS-
184 *Gste2* at the same locus (Ubi-A10GAL4:UAS-e2) and should natively overexpress *Gste2* without
185 the need for crossing separate lines. Alternatively, cassette exchange would generate a regular
186 UAS-*Gste2* responder line. After embryonic injections and screening, three exchange events, two
187 in orientation A and one in orientation B (Fig. S1), and three integration events were
188 independently recovered with an overall transformation efficiency of 9% (6/65 F₀), exchange
189 efficiency of 5% (3/65 F₀), and integration efficiency of 5% (3/65 F₀) (Table 1).

190 To obtain comparable data for *Gste2* and the *Cyp6* genes, we focused our analysis on the
191 progeny from crosses between UAS-e2 and Ubi-A10GAL4 mosquitoes. When exposed to
192 diagnostic doses of DDT, GSTE2 overexpressing mosquitoes showed a significantly lower
193 mortality (7%, *P*<0.001) compared to controls, while no significant difference in resistance was
194 found when exposed to diagnostic doses of permethrin, deltamethrin, malathion or bendiocarb
195 (Fig. 3). A trend of increased tolerance was observed in mosquitoes overexpressing *Gste2*
196 against malathion (Fig. 3), and further analysis with the related organophosphate fenitrothion
197 indicated high resistance in Ubi-A10/UAS-e2 mosquitoes, showing 8% (*P*<0.001) mortality (Fig.
198 3).

199 Preliminary analysis of Ubi-A10GAL4:UAS-e2 (integration) mosquitoes indicated the expected
200 increase in GSTE2 protein in whole body extracts compared with Ubi-A10 controls (Fig. S2A) and
201 a resistance phenotype against DDT in the F₁ generation of transformed male and female
202 mosquitoes (Fig. S2B).

203 *Oenocyte or midgut specific overexpression of CYP6M2 or CYP6P3 does not*
204 *confer resistance to insecticides*

205 To examine the role of oenocytes and midgut tissues in P450-based metabolism of insecticides
206 we utilised previously published GAL4 driver lines to regulate tissue specific expression. The
207 specificity of these GAL4 drivers has been established following crosses with UAS regulated
208 fluorescent gene reporter lines (22, 24), but to examine the relative increase in tissue-specific
209 *Cyp6* gene expression, we performed RT-qPCR and western blot analysis in progeny from
210 alternative driver and *Cyp6* responder crosses.

211 Using the midgut driver (GAL4-mid), *Cyp6m2* and *Cyp6p3* transcripts were 2730x ($P=0.002$) and
212 659x ($P=0.011$) more abundant in midguts dissected from GAL4/UAS mosquitoes compared to
213 controls (Fig. 4A). A low level of overexpression was detected in the remaining carcass of
214 GAL4/UAS mosquitoes compared to that of controls (*Cyp6m2*: 77x, $P=0.038$; *Cyp6p3*: 7x,
215 $P=0.08$). In GAL4-eno crosses, *Cyp6m2* and *Cyp6p3* were specifically upregulated in transgenic
216 dissected abdomens (66x, $P=0.013$ for *Cyp6m2*; 153x, $P<0.001$ for *Cyp6p3*) where oenocytes
217 are located (Fig. 4B). Background overexpression was also found in the remaining carcass of
218 GAL4/UAS-m2 and -p3 adults compared to controls (26x, $P<0.001$; 2x, $P<0.001$ respectively). In
219 western blot analysis, CYP6M2 antiserum again only detected the target protein in GAL4/UAS
220 mosquitoes. CYP6M2 was found exclusively in dissected midguts (and whole mosquitoes) from
221 the progeny of GAL4-mid crosses, but was not observed in GAL4/UAS carcasses or extracts from
222 controls (Fig. 4C). Similarly, in GAL4-eno crosses CYP6M2 signal was only detected in whole
223 adult female extracts and in dissected abdomen integument, but not in the remaining carcass or
224 control extracts (Fig. 4D).

225 Adult females overexpressing *Cyp6m2* in the midgut (Fig. 4E) or in the oenocytes (Fig. 4F)
226 showed complete susceptibility to permethrin, deltamethrin, DDT, and bendiocarb. Similar results
227 were obtained with *Cyp6p3* (Fig. 4E and F), however potential resistance (95% mortality,
228 $P=0.013$) was suggested in oenocyte specific *Cyp6p3* overexpressing mosquitoes when exposed
229 to permethrin (Fig. 4F). Further analysis was performed to detect subtle differences in
230 susceptibility by repeating the assays with reduced exposure time (Fig. S3). However, no
231 significant decrease ($P<0.01$) was found in the mortality rates of mosquitoes overexpressing
232 *Cyp6m2* or *Cyp6p3* in the midgut or oenocytes compared to their respective controls when
233 exposed for 20 minutes to the same diagnostic doses of the four insecticides (Fig. S3).

234 Finally, the 25-minute reduced exposure bioassay for malathion showed no significant difference
235 in the mortality of mosquitoes overexpressing *Cyp6m2* or *Cyp6p3* in midgut or oenocytes
236 compared to controls (Fig. S4).

237 **DISCUSSION**

238 *In vivo* functional analysis is critical to provide evidence of causative links between candidate
239 genes and their proposed phenotypes. Here we demonstrate the utility of new GAL4/UAS-based
240 tools to characterise gene function directly in *An. gambiae* by reporting the first use of the system
241 to validate the ability of single candidate genes to confer WHO-defined resistance to different
242 classes of insecticides. Overall, the transgenic analysis in *An. gambiae* is more in accordance
243 with data generated from recombinant protein studies of insecticide metabolism rather than those
244 obtained from *Drosophila* survival assays (Table 2).

245 In *Anopheles*, multi-tissue overexpression of *Cyp6m2* and *Cyp6p3* demonstrated that resistance
246 to permethrin and deltamethrin (type I and II pyrethroids respectively) can be conferred by the
247 sole overexpression of either *Cyp6* gene. *Cyp6p3* expression also conferred resistance to
248 bendiocarb (carbamate); while the overexpression of either *Cyp6* gene did not alter DDT
249 (organochlorine) sensitivity. These phenotypes correlate with the profile of metabolism or
250 substrate depletion of the respective insecticides for the two recombinant P450 enzymes (Table
251 2). More variable results have been observed using *Drosophila* as an *in vivo* model, with
252 overexpression of *Cyp6m2* surprisingly generating increased tolerance to bendiocarb compared
253 with *Cyp6p3*, despite *in vitro* analysis not detecting activity against bendiocarb for *Cyp6m2* (15,
254 19). DDT tolerance was also observed in *Cyp6m2* overexpressing fruitflies, but data for *Cyp6p3*
255 could not be generated (15) (Table 2). In this study, DDT resistance was monitored by dose
256 response assays over a 24 hr exposure time, whilst bendiocarb resistance was not observed
257 when measured through such dose response assays but was reported following 24 hr exposure
258 to a diagnostic dose. In the latter case, the controls used to compare *Cyp6m2* and *Cyp6p3*
259 overexpression showed very different levels of sensitivity to bendiocarb, which appeared to
260 contribute to the differences in resistance levels observed; whilst there was no data for the
261 respective *Cyp6p3* controls in the DDT analysis for comparison. It may thus be a difference in
262 genetic background that gives rise to the discrepant results observed in *Drosophila*. However, it
263 should also be noted that the different methods of insecticide bioassay may not yield directly
264 comparable results to the diagnostic WHO level of resistance in mosquitoes used in this study
265 and extensively used to assess the emergence of resistance in endemic countries. Our data in
266 mosquitoes unequivocally indicate though that the expression of single *Cyp6* genes can confer
267 resistance to different pyrethroids, and that *Cyp6p3* overexpression confers cross resistance to
268 prominent representatives of at least two classes of public health insecticides.

269 In contrast to our *Cyp6* studies, increased *An. gambiae* *Gste2* (*AgGste2*) expression generates
270 clear DDT resistance, while resistance to bendiocarb and pyrethroids was not observed. These
271 phenotypes again validate predictions from the DDT activity observed *in vitro* for recombinant

272 AgGST2 (9, 13) as well as the increased DDT tolerance (13) and lack of pyrethroid tolerance
273 (20) observed when overexpressed in *Drosophila*. The corresponding *in vitro* data for AgGST2
274 activity against bendiocarb and pyrethroids have not been reported, and this is the first time that
275 bendiocarb resistance has been examined *in vivo* following *Gste2* overexpression.

276 Although DDT tolerance was also observed in *Drosophila* overexpressing the orthologous *An.*
277 *funestus* *Gste2* (*AfGste2*) (16, 18), conflicting results were reported about activity towards
278 pyrethroids. For example, recombinant AfGST2 depleted permethrin but not deltamethrin *in*
279 *vitro*, yet *Drosophila* acquired increased tolerance to both insecticides when *AfGste2* was
280 overexpressed (16, 18). RNAi analysis in deltamethrin resistant *Ae. aegypti* of *AaGste2* has also
281 indicated a role in pyrethroid resistance (29). It is possible that the variation observed in
282 resistance profiling are due to intrinsic differences in the activity of GST2s derived from the
283 different mosquito species. In this context, it has been speculated that the predominant pyrethroid
284 detoxification role of GSTs in some insects is sequestration or protection against oxidative stress
285 rather than direct metabolism (30). Our results show that even high levels of *AgGste2*
286 overexpression do not confer WHO diagnostic levels of resistance to this class of insecticides in
287 isolation. It is possible that *AgGste2* may need to work in concert with other genes, that are not
288 upregulated in the sensitive genetic background of the *An. gambiae* transgenic lines, to produce a
289 pyrethroid resistance phenotype. Future work will test this hypothesis by co-expression of other
290 UAS regulated detoxification genes using the Ubi-A10GAL4:UAS-e2 (integration) line. Although
291 beyond the scope of this work, this mosquito line expresses GAL4 and GST2 and can be
292 crossed with other UAS lines to provide co-expression with other detoxification enzymes to
293 examine additive or synergistic interactions.

294 Although GSTs have been associated with organophosphate (OP) metabolism through
295 biochemical studies (7), we report the first evidence that the expression of a single gene can
296 provide OP resistance in mosquitoes. The high resistance shown towards fenitrothion by *Gste2*
297 overexpressing *An. gambiae* is intriguing. It is currently unclear if GST2 detoxifies fenitrothion by
298 sequestration, free radical protection or directly through conjugation/modification. Evidence from
299 early studies (31) suggest that *Anopheles* GST activity is associated with the conversion of
300 fenitrothion to the non-toxic metabolite desmethyl fenitrooxon through an oxidised intermediate.
301 Similar analysis in the *Gste2* overexpressing lines would clarify which of these mechanisms is
302 involved. Further investigation is also needed on the OP malathion, for which we report
303 suspected resistance when *Gste2* is overexpressed.

304 We have also demonstrated that *Cyp6* overexpression increases susceptibility to malathion, as
305 well as conferring permethrin resistance, which may have direct implications on insecticide
306 management, especially if replicated with other OPs that may be used for *Anopheles* control (32).
307 Such sensitivity profiles are readily explained by the bio-activation of malathion to its more toxic

308 metabolite malaoxon (33) by a P450-mediated mechanism (28). Here we provide the first direct *in*
309 *vivo* evidence that CYP6 enzymes can confer negative cross resistance. Furthermore, there
310 appears to be substrate specificity in the alternative P450-mediated reactions, since we observed
311 higher mortality when assayed against *Cyp6m2* overexpression compared to *Cyp6p3*. This may
312 suggest that *Cyp6m2* favours the higher steady state production of the toxic intermediate
313 compared to *Cyp6p3*.

314 Malathion activation by *Cyp6m2* is also supported by recent evidence provided by Ingham et al
315 (34) who found that knock down of the transcription factor Maf-S results in increased survival
316 following malathion exposure. One of the P450s downregulated by Maf-S knockdown was
317 *Cyp6m2*, whereas *Cyp6p3* transcription was not modified. Taken together, the results provide
318 experimental evidence to support the use of OPs, and potentially other pro-insecticides activated
319 by CYP6 enzymes, for *Anopheles* control in areas where pyrethroid resistance is also conferred
320 by detoxification by the same enzyme/s. One such strategy involves combining the use of
321 pyrethroid-based bed nets with OP-based residual wall spraying or impregnated hangings (32).
322 This takes advantage of the additive effect of the two classes of insecticides, while sensitising
323 *Cyp6*-based pyrethroid resistant mosquitoes to malathion (35). In conjunction with recombinant
324 enzyme assays, the modified mosquitoes described may thus become valuable tools to assess
325 the susceptibility of new public health pro-insecticides, for example chlорfenapyr (36), to activation
326 and detoxification by xenobiotic metabolising P450 genes in *Anopheles*.

327 When validating resistance phenotypes conferred by transgenic overexpression, the spatial
328 pattern of overexpression can give clues to the identity of key tissues of detoxification. The
329 expression driven by Ubi-A10 is spread over multiple tissues, which makes it impossible to
330 pinpoint which tissue/s are particularly important for generating the resistance phenotype. Here,
331 we directly investigated the involvement of the midgut and oenocytes in conferring P450-
332 mediated resistance. Critically, we did not observe clear resistance to any insecticide class when
333 either *Cyp6m2* or *Cyp6p3* were specifically expressed in either of these tissues, despite achieving
334 highly enriched expression and the knowledge that oenocytes and the midgut express abundant
335 P450 co-enzyme CPR (26). Furthermore, since our previous expression profiling of the Ubi-A10
336 driver indicated lack of expression in Malpighian tubules (23) yet resistance to multiple
337 insecticides was observed with this driver, it would appear that the insecticides tested are not
338 predominately metabolised in the Malpighian tubules either, and other unidentified tissues may be
339 critical, alone or in combination, for detoxification. As described earlier, some evidence of tissue
340 specificity of P450s associated with insecticide resistance has been derived from transcriptomic
341 analysis of crude dissections of tissues and body segments from pyrethroid resistant and
342 sensitive strains (27). This study indicated that *Cyp6p3* is more highly expressed in the midgut of
343 the resistant strain, whereas *Cyp6m2* has a broader upregulation in midgut, Malpighian tubules

344 and the abdomen (integument, fat body and ovaries). The relevance of elevated *Cyp6p3* levels in
345 the midgut of the examined resistant strain is difficult to reconcile with the lack of a resistance
346 phenotype when the same gene is overexpressed in this tissue with the GAL4/UAS system.

347 Previous *Drosophila* studies have shown that overexpression using drivers active in multiple
348 tissues, such as actin5C-GAL4 (14–18) or tubulin-GAL4 (20) are generally needed to modify
349 resistance. Nevertheless, there are few examples in which tissue-specific drivers have been used
350 to validate *Cyp6* gene based resistance in *Drosophila*. Yang et al (37) demonstrated the central
351 role of Malpighian tubules for *DmCyp6g1*-mediated DDT resistance, whilst Zhu et al (38)
352 demonstrated the importance of neuronal expression to provide deltamethrin resistance in
353 *Drosophila* expressing *T. castaneum* *Cyp6bq9*. Even in this latter analysis, however, the neuronal
354 driver showed leaky expression in other tissues, leading to the possibility that the observed
355 phenotype results from expression in multiple tissues. Overall, a more detailed analysis with
356 further tissue-specific drivers, as they become available, is needed to clarify the potential
357 involvement of specific tissues in the detoxification of insecticides in *An. gambiae*.

358 **Conclusions**

359 This work reports on the first functional analysis of mosquito insecticide resistance genes
360 conducted in transgenic *An. gambiae*. The mosquitoes generated are resistant, in a solely
361 metabolism-based manner, to at least one representative insecticide from the major classes used
362 in public health, and are therefore useful in liability screens of new and repurposed active
363 compounds, including insecticides, pro-insecticides, synergists and sterilising agents. The lines
364 can also be used in combination with strains carrying genome edited target sites (e.g. Kdr and
365 Ace-1R) to examine the additive or synergistic effects of multiple resistance mechanisms.
366 Similarly, it is possible to use the integration line carrying both Ubi-GAL4 and UAS-Gste2 to cross
367 with other UAS-detox genes to analyse metabolic interactions, for example combining phase I
368 and II metabolism. In addition, the Ubi-A10 driver is active in larval stages (23) and can thus be
369 used to examine gene function in immature stages.

370 Importantly, for future work, there is growing evidence on the involvement in resistance of genes
371 that are very difficult to test *in vitro* due to the lack of appropriate assays. These include genes
372 coding for cuticle components (39), transcription factors (34) and other binding proteins, e.g.
373 hexamerins and α -crystallins (21), for which current transgenic tools, including GAL4/UAS, make
374 *An. gambiae* the most relevant option for functional genetic analysis.

375 MATERIALS AND METHODS

376 *Plasmid construction*

377 Responder plasmids were designed for the expression of the *An. gambiae* genes *Cyp6m2*
378 (AGAP008212), *Cyp6p3* (AGAP002865), or *Gste2* (AGAP009194) under the regulation of the
379 UAS and carried a YFP marker gene regulated by the 3xP3 promoter. The coding sequences of
380 *Cyp6m2* (1500 bp), derived from the susceptible strain Kisumu, was amplified from
381 PB13:CYP6M2 (11) using primers M2fw and M2rv (Table S1). The coding sequence of *Cyp6p3*
382 was obtained by amplifying a 193 bp fragment from Kisumu cDNA using primers P3fw1 and
383 P3rv1 (Table S1) and a 1362 bp fragment from pCW:17a-*Cyp6p3* (10) using primers P3fw2 and
384 P3rv2 (Table S1). P3fw1 and P3rv2 were then used to join the two fragments and obtain the 1530
385 bp full length *Cyp6p3* coding sequence. The 666 bp *Gste2-114T* coding sequence derived from
386 the DDT-resistant strain ZAN/U was amplified from the K1B plasmid (13) using primers
387 *Gste2k1bfor* and *Gste2k1brev* (Table S1). All coding sequences were cloned into the YFP-
388 marked responder plasmid pSL*attB:YFP:Gyp:UAS14i:Gyp:attB (24) downstream of the UAS
389 using EcoRV/Xhol (*Cyp6*) or EcoRI/Ncol (*Gste2*).

390 *Creation of UAS responder lines by PhiC31-mediated cassette exchange*

391 For creating responder lines carrying *Cyp6* genes, embryos of the docking line A11 (24), which
392 carries two inverted *attP* sites and is marked with 3xP3-driven CFP, were microinjected with 350
393 ng/μl of the responder plasmid and 150 ng/μl of the integrase helper plasmid pKC40 encoding the
394 phiC31 integrase (40) as described in Pondeville et al (41). The same protocol was followed to
395 create the *Gste2* responder line using embryos of the docking line Ubi-A10 (23) which carries two
396 inverted *attP* sites and is marked with 3xP3-driven CFP. Emerging F₀ were pooled into sex
397 specific founder cages and outcrossed with wild type G3s. F₁ progenies were screened for the
398 expression of YFP (cassette exchange) and CFP/YFP (cassette integration) in the eyes and
399 nerve cord. Orientation check to assess the direction of cassette exchange was performed on F₁
400 YFP-positive individuals or on the F₂ progeny deriving from single YFP-positive individuals. This
401 was carried out by PCR using alternative combinations of four primers designed to give a product
402 only in one of the orientations: PiggyBacR-R2 + Red-seq4R (PCR1) and M2intFW or P3intFW or
403 Gste2_v1 + ITRL1R (PCR2) to detect insertions in orientation A; PiggyBacR-R2 + M2intFW or
404 P3intFW or Gste2_v2 (PCR3) and Red-seq4R + ITRL1R (PCR4) for orientation B. All definitive
405 responder lines were created from individuals showing orientation of insertion A, which was
406 chosen for consistency with previous RMCE lines created in this laboratory. Transformation

407 efficiencies were calculated as the number of independent transgenic events (exchanges or
408 integrations) over the number of surviving F₀ adults.

409 *Driver lines and GAL4 x UAS crosses*

410 Crosses for ubiquitous expression were established between the CFP-marked driver Ubi-A10
411 (23) and individuals of the responder lines marked with YFP. While to obtain tissue-localised
412 expression dsRed-marked drivers specific for expression in the midgut (GAL4-mid) (22) or in the
413 oenocytes (GAL4-eno) (24) were used. Responder lines were kept as a mix of homozygous and
414 heterozygous individuals so to obtain GAL4/+ progeny to be used as transgenic blank controls.

415 *Cyp6 gene expression analysis*

416 To quantify *Cyp6* gene expression in GAL4/UAS and GAL4/+ individuals, total RNA was
417 harvested from pools of 2-5-day-old whole adults and their relevant dissected body part (midgut
418 or abdomen cuticle). The adult tissues remaining after dissection constituted the carcass. Three
419 biological replicates consisting of 5 mosquitoes (or body parts) each were collected from each
420 mosquito population. RNA extraction was performed using the TRI Reagent® protocol (Sigma).
421 To remove genomic DNA contamination, samples were treated with the Turbo DNA-Free kit
422 (Ambion). RNA was then reverse-transcribed using the SuperScript III First-Strand Synthesis
423 System (Life Technologies) following the oligo(dT) reaction protocol. RT-qPCR reactions were set
424 up using 1x Brilliant III Ultra-Fast SYBR® Green qPCR Master Mix (Agilent Technologies) and
425 primers qM2fw and qM2rv for quantification of *Cyp6m2*, and qP3fw and qP3sub for *Cyp6p3* (15)
426 (Table S1). The qP3sub primer bears a nucleotide substitution (A11G) to conform its sequence to
427 that of the G3 strain template. Two housekeeping genes, the ribosomal protein S7 (RPS7)
428 (AGAP010592) and ribosomal protein L40/Ubiquitin (AGAP007927), were also quantified using
429 primers qS7fw, qS7rv, qUBfw and qUBrv (42) (Table S1). Transcription data obtained by RT-
430 qPCR were analysed using the $\Delta\Delta Ct$ method as described in SI. Gene expression analysis was
431 not performed to assess upregulation of the *Gste2* transcript.

432 *CYP6 and GSTE2 protein expression analysis*

433 To detect protein expression in GAL4/UAS and GAL4/+ individuals, total protein extracts were
434 obtained from whole 2-5-day-old female adults and their dissected body parts. Protein extracts

435 equivalent to 1/3 of a mosquito or its body part were analysed to detect CYP6 expression driven
436 by tissue-specific drivers. With the exception of midgut samples, for which two whole midguts
437 were analysed. The higher amount of midgut sample was required to visualise signal of the α -
438 tubulin loading control. The equivalent of 1/10 of a single female mosquito was used to assess
439 expression driven by ubiquitous drivers. CYP6s were probed using primary affinity-purified
440 polyclonal peptide antibodies produced in rabbit against CYP6M2 or CYP6P3 (gifts from Dr M.
441 Paine), while GSTE2 was probed with anti-GSTE2-28 rabbit primary antibodies (9). Secondary
442 antibodies were anti-rabbit-HRP IgGs (Bethyl Laboratories). Detection of the loading control α -
443 tubulin was performed using primary mouse anti- α tubulin antibodies (Sigma or Fisher Scientific)
444 and secondary goat anti-mouse-HRP IgG antibodies (Abcam). Signal detection was carried out
445 using SuperSignal™ West Dura Extended Duration Substrate (Life Technologies).

446 *Assessment of susceptibility to insecticides*

447 Susceptibility to insecticides was assessed in mosquitoes overexpressing *Cyp6* genes using the
448 WHO tube bioassay (25). Pools of 20-25 GAL4/UAS and GAL4/+ adult female mosquitoes were
449 exposed 2-5 days post-emergence to standard discriminating doses of insecticides – 0.75%
450 permethrin, 0.05% deltamethrin, 0.1% bendiocarb, 4% DDT – for 60 minutes and mortality rates
451 assessed after a 24 hour recovery period. For mosquitoes expressing *Cyp6* genes in the midgut
452 or oenocytes a modified version of the standard WHO test was also performed reducing the
453 exposure time to 20 minutes (26). For assessing susceptibility to 5% malathion in mosquitoes
454 overexpressing *Cyp6* genes, the exposure time was decreased to 25 minutes. Mosquitoes
455 overexpressing *Gste2* were additionally tested for 1% fenitrothion using the recommended 2 h
456 exposure time. 1-4 biological replicates were performed for each insecticide tested. A total of 2-8
457 technical replicate tubes were tested for each population. Welch's t-test was performed to
458 determine statistical differences between mortality rates in GAL4/UAS and GAL4/+ . Details on
459 statistical analysis and replicate numbers of bioassay experiments are reported in Table S2.

460 **ACKNOWLEDGMENTS**

461 We gratefully acknowledge the LSTM and the MRC (MR/P016197/1) for sponsoring PhD
462 studentships to AA and BP respectively, and to the Innovative Vector Control Consortium for
463 follow on funding to AA. Thanks also go to Dave Weetman for very useful comments on the
464 manuscript.

465 **REFERENCES**

466 1. S Bhatt *et al.*, The effect of malaria control on *Plasmodium falciparum* in Africa between
467 2000 and 2015. *Nature* **526**, 207-211 (2015).

468 2. World Health Organization, World Malaria Report 2018 (World Health Organization,
469 Geneva, Switzerland, 2018). <https://www.who.int/malaria/publications/world-malaria-report-2018/report/en/>. Accessed 27 August 2019.

470 3. T. S. Churcher, N. Lissenden, J. T. Griffin, E. Worrall, H. Ranson, The impact of pyrethroid
471 resistance on the efficacy and effectiveness of bednets for malaria control in Africa. *Elife* **5**
472 1–26 (2016).

473 4. H. Ranson, N. Lissenden, Insecticide Resistance in African Anopheles Mosquitoes: A
474 Worsening Situation that Needs Urgent Action to Maintain Malaria Control. *Trends
475 Parasitol.* **32**, 187–196 (2016).

476 5. J. Hemingway, N. J. Hawkes, L. McCarroll, H. Ranson, The molecular basis of insecticide
477 resistance in mosquitoes. *Insect Biochem. Mol. Biol.* **34**, 653–665 (2004).

478 6. J.-P. David, H. M. Ismail, A. Chandor-Proust, M. J. Paine, Role of cytochrome P450s in
479 insecticide resistance: impact on the control of mosquito-borne diseases and use of
480 insecticides on Earth. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* **368**, 20120429 (2013).

481 7. A. A. Enayati, H. Ranson, J. Hemingway, Insect glutathione transferases and insecticide
482 resistance. *Insect Mol. Biol.* **14**, 3-8 (2005).

483 8. M. J. Donnelly, A. T. Isaacs, D. Weetman, Identification, Validation, and Application of
484 Molecular Diagnostics for Insecticide Resistance in Malaria Vectors. *Trends Parasitol.* **32**,
485 197-206 (2016).

486 9. F. Ortelli, L. C. Rossiter, J. Vontas, H. Ranson, J. Hemingway, Heterologous expression of
487 four glutathione transferase genes genetically linked to a major insecticide-resistance
488 locus from the malaria vector *Anopheles gambiae*. *Biochem. J.* **373**, 957–963 (2003).

489 10. P. Müller *et al.*, Field-caught permethrin-resistant *Anopheles gambiae* overexpress
490 CYP6P3, a P450 that metabolises pyrethroids. *PLoS Genet.* **4**, e1000286 (2008).

491 11. B. J., Stevenson *et al.*, Cytochrome P450 6M2 from the malaria vector *Anopheles
492 gambiae* metabolizes pyrethroids: Sequential metabolism of deltamethrin revealed. *Insect
493 Biochem. Mol. Biol.* **41**, 492–502 (2011).

494 12. S. N., Mitchell *et al.*, Identification and validation of a gene causing cross-resistance
495 between insecticide classes in *Anopheles gambiae* from Ghana. *Proc. Natl. Acad. Sci.*

497 *U.S.A.* **109**, 6147–6152 (2012).

498 13. S. N., Mitchell *et al.*, Metabolic and target-site mechanisms combine to confer strong DDT
499 resistance in *Anopheles gambiae*. *PLoS One* **9**, e92662 (2014)

500 14. J. M., Riveron *et al.*, Directionally selected cytochrome P450 alleles are driving the spread
501 of pyrethroid resistance in the major malaria vector *Anopheles funestus*. *Proc. Natl. Acad.*
502 *Sci. U.S.A.* **110**, 252–257 (2013).

503 15. C. V. Edi *et al.*, CYP6 P450 Enzymes and ACE-1 Duplication Produce Extreme and
504 Multiple Insecticide Resistance in the Malaria Mosquito *Anopheles gambiae*. *PLoS Genet.*
505 **10**, e1004236 (2014).

506 16. J. M. Riveron *et al.*, A single mutation in the GSTe2 gene allows tracking of metabolically
507 based insecticide resistance in a major malaria vector. *Genome Biol.* **15**, R27 (2014).

508 17. J. M. Riveron *et al.*, The highly polymorphic CYP6M7 cytochrome P450 gene partners
509 with the directionally selected CYP6P9a and CYP6P9b genes to expand the pyrethroid
510 resistance front in the malaria vector *Anopheles funestus* in Africa. *BMC Genomics* **15**,
511 817 (2014).

512 18. J. M. Riveron *et al.*, Genome-Wide Transcription and Functional Analyses Reveal
513 Heterogeneous Molecular Mechanisms Driving Pyrethroids Resistance in the Major
514 Malaria Vector *Anopheles funestus* Across Africa. *G3 (Bethesda)* **7**, 1819–1832 (2017).

515 19. C. Yunta *et al.*, Cross-resistance profiles of malaria mosquito P450s associated with
516 pyrethroid resistance against WHO insecticides. *Pestic. Biochem. Physiol.*
517 <https://doi.org/10.1016/j.pestbp.2019.06.007> (2019). Available online 13 June 2019.

518 20. P. J. Daborn *et al.*, Using *Drosophila melanogaster* to validate metabolism-based
519 insecticide resistance from insect pests. *Insect Biochem. Mol. Biol.* **42**, 918–924 (2012).

520 21. V. A. Ingham, S. Wagstaff, H. Ranson, Transcriptomic meta-signatures identified in
521 *Anopheles gambiae* populations reveal previously undetected insecticide resistance
522 mechanisms. *Nat. Commun.* **9**, 5282 (2018).

523 22. A. Lynd, G. J. Lycett, Development of the bi-partite Gal4-UAS system in the African
524 malaria mosquito, *Anopheles gambiae*. *PLoS One* **7**, e31552 (2012).

525 23. A. Adolfi, E. Pondeville, A. Lynd, C. Bourgouin, G. J. Lycett, Multi-tissue GAL4-mediated
526 gene expression in all *Anopheles gambiae* life stages using an endogenous polyubiquitin
527 promoter. *Insect. Biochem. Mol. Biol.* **96**, 1–9 (2018).

528 24. A. Lynd *et al.*, Development of a functional genetic tool for *Anopheles gambiae* oenocyte

529 characterisation: application to cuticular hydrocarbon synthesis. *BioRxiv*
530 doi:<https://doi.org/10.1101/742619> (21 August 2019).

531 25. World Health Organization, Test procedures for insecticide resistance monitoring in
532 malaria vector mosquitoes: Second edition (World Health Organization, Geneva,
533 Switzerland, 2016) <https://www.who.int/malaria/publications/atoz/9789241511575/en/>.
534 Accessed 27 August 2019.

535 26. G. J. Lycett *et al.*, Anopheles gambiae P450 reductase is highly expressed in oenocytes
536 and in vivo knockdown increases permethrin susceptibility. *Insect Mol. Biol.* **15**, 321–327
537 (2006).

538 27. V. A. Ingham *et al.*, Dissecting the organ specificity of insecticide resistance candidate
539 genes in Anopheles gambiae: known and novel candidate genes. *BMC Genomics* **15**,
540 1018 (2014).

541 28. M. Voice, A. W. Kaaz, C. F. Peet, M. J. Paine, Recombinant CYP6M2 inhibition by
542 insecticides recommended by WHO for indoor residual spraying against malaria vectors.
543 *Drug Metab. Rev.* doi:<http://dx.doi.org/10.3109/03602532.2012.744573> (2012).

544 29. N. Lumjuan, L. McCarroll, L. A. Prapanthadara, J. Hemingway, H. Ranson, Elevated
545 activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue
546 vector, Aedes aegypti White star. *Insect Biochem. Mol. Biol.* **35**, 861–871 (2005).

547 30. J. G. Vontas, G. J. Small, J. Hemingway, Glutathione S-transferases as antioxidant
548 defence agents confer pyrethroid resistance in Nilaparvata lugens. *Biochem. J.* **357**, 65–
549 72 (2001).

550 31. H. Ranson *et al.*, Identification of a novel class of insect glutathione S-transferases
551 involved in resistance to DDT in the malaria vector Anopheles gambiae. *Biochem. J.* **359**,
552 295–304 (2001).

553 32. C. L. Wanjala *et al.*, Pyrethroid and DDT Resistance and Organophosphate Susceptibility
554 among Anopheles spp. Mosquitoes, Western Kenya *Emerg. Infect. Dis.* **21**, 2178–2181
555 (2015).

556 33. S. D. Cohen, Mechanisms of toxicological interactions involving organophosphate
557 insecticides. *Fundam. Appl. Toxicol.* **4**, 315–324 (1984).

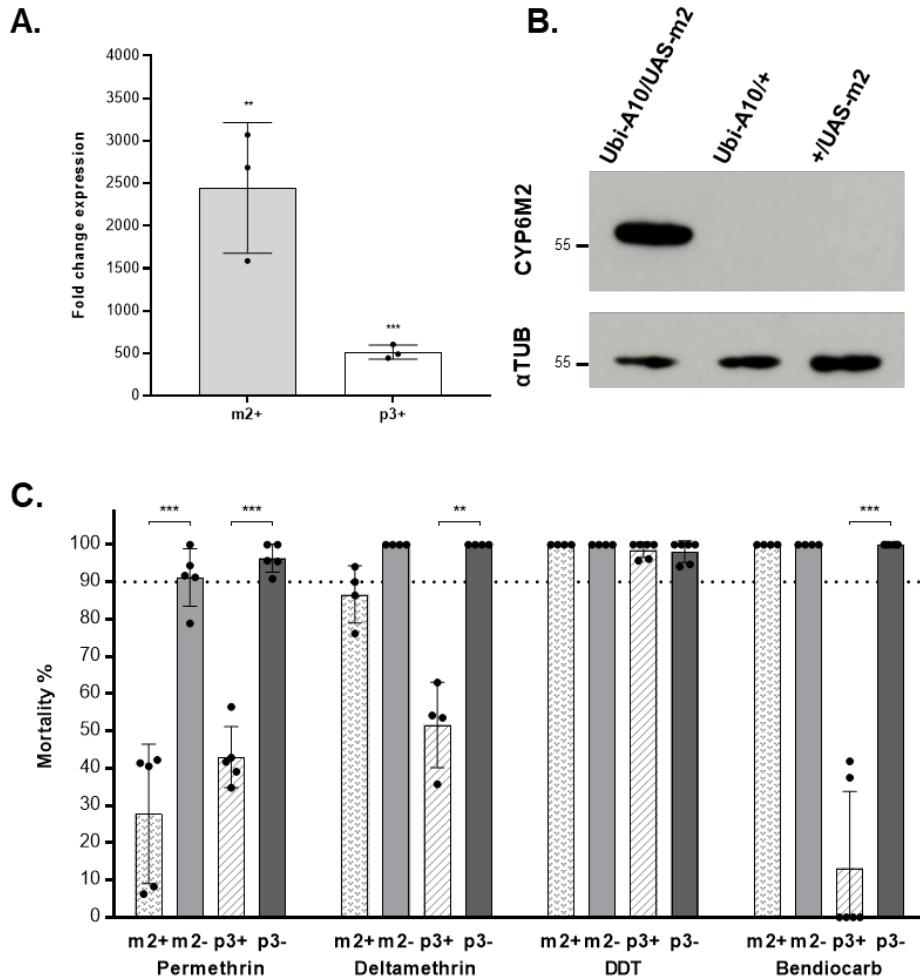
558 34. V. A. Ingham, P. Pignatelli, J. D. Moore, S. Wagstaff, H. Ranson, The transcription factor
559 Maf-S regulates metabolic resistance to insecticides in the malaria vector Anopheles
560 gambiae. *BMC Genomics* **18**, 669 (2017).

561 35. T. Martin, O. G. Ochou, M. Vaissayre, D. Fournier, Organophosphorus insecticides
562 synergize pyrethroids in the resistant strain of cotton bollworm, *Helicoverpa armigera*
563 (Hübner) (Lepidoptera: Noctuidae) from West Africa. *J. Econ. Entomol.* **96**, 468–474
564 (2003).

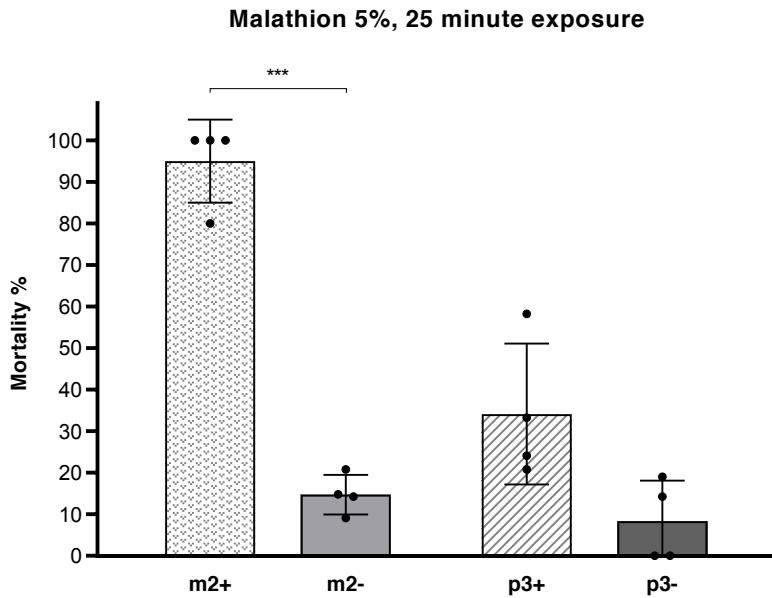
565 36. R. M. Oxborough *et al.*, The activity of the pyrrole insecticide chlорfenapyr in mosquito
566 bioassay: Towards a more rational testing and screening of non-neurotoxic insecticides for
567 malaria vector control. *Malar. J.* **14**, 124 (2015)

568 37. J. Yang *et al.*, A *Drosophila* systems approach to xenobiotic metabolism. *Physiol.*
569 *Genomics* **30**, 223–31 (2007).

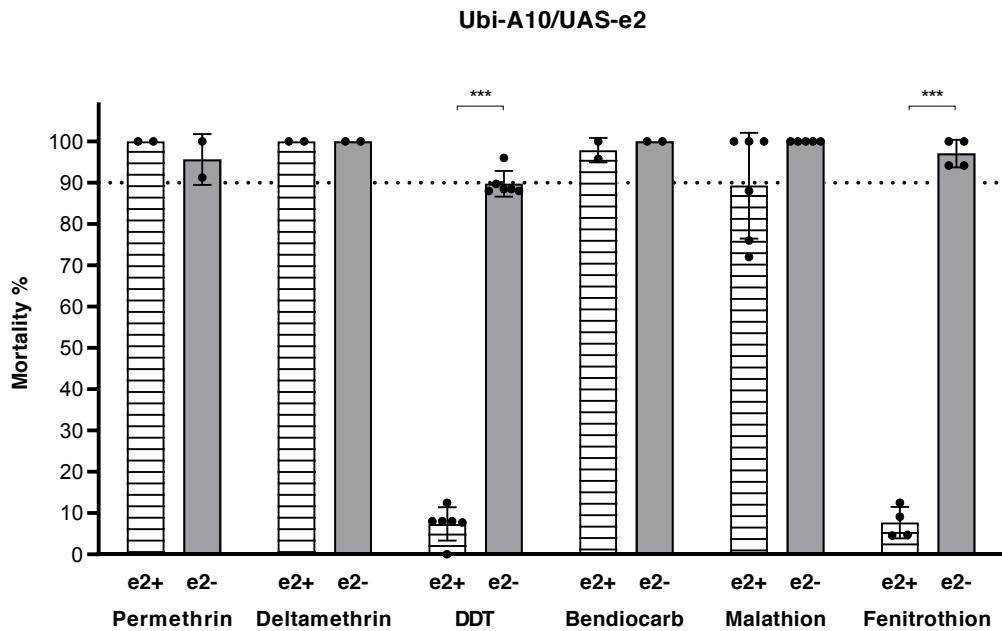
570 38. F. Zhu *et al.*, A brain-specific cytochrome P450 responsible for the majority of deltamethrin
571 resistance in the QTC279 strain of *Tribolium castaneum*. *Proc. Natl. Acad. Sci. U.S.A.*
572 **107**, 8557–8562 (2010).

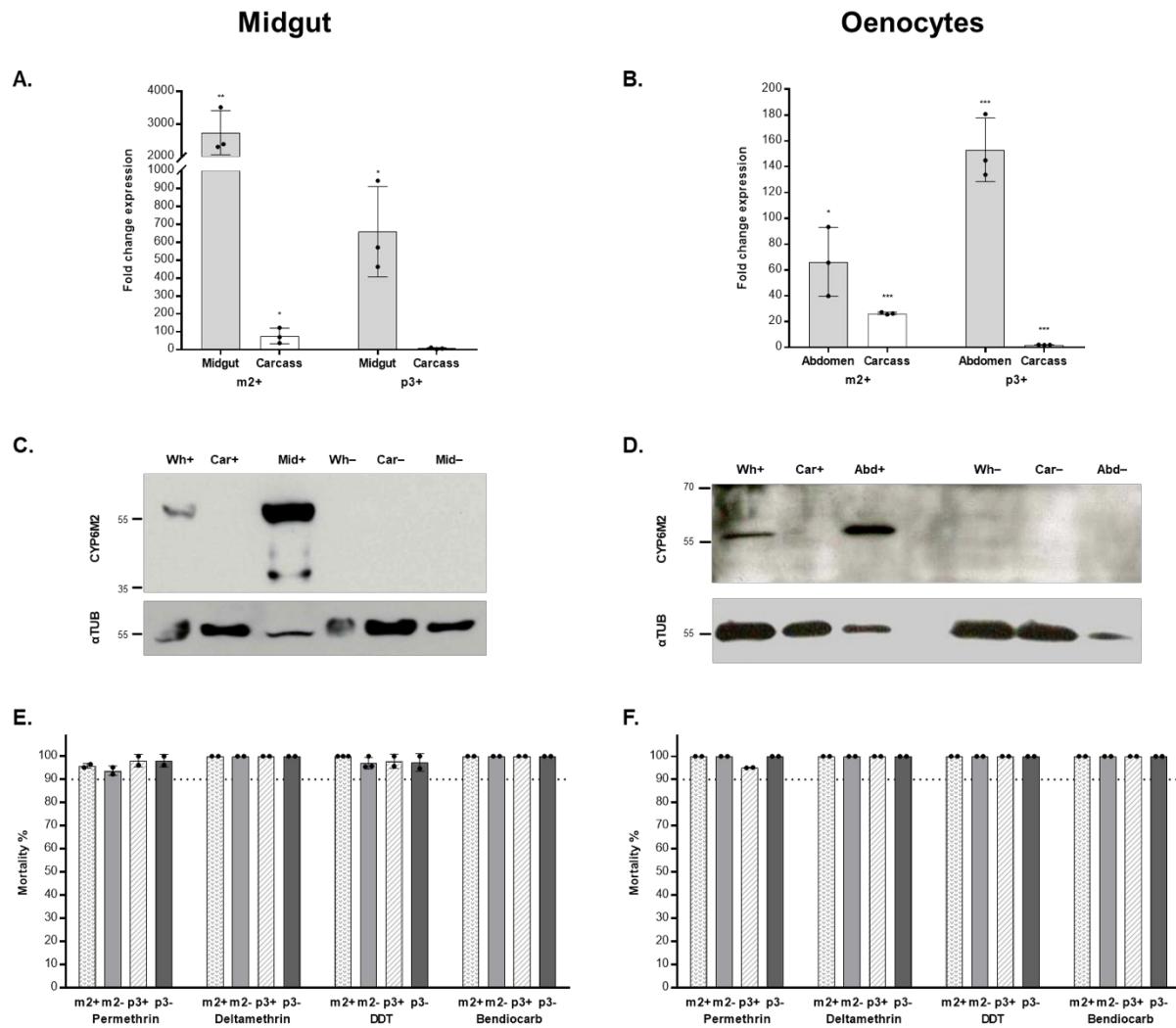

573 39. V. Balabanidou *et al.*, Cytochrome P450 associated with insecticide resistance catalyzes
574 cuticular hydrocarbon production in *Anopheles gambiae*. *Proc. Natl. Acad. Sci. U.S.A.*
575 **113**, 9268–9273 (2016).

576 40. L. Ringrose, Transgenesis in *Drosophila melanogaster*. *Methods Mol. Biol.*
577 doi:10.1007/978-1-60327-019-9_1 (2009).


578 41. E. Pondeville *et al.*, Efficient ΦC31 integrase–mediated site-specific germline
579 transformation of *Anopheles gambiae*. *Nat. Protoc.* **9**, 1698–1712 (2014).

580 42. C. M. Jones *et al.*, The dynamics of pyrethroid resistance in *Anopheles arabiensis* from
581 Zanzibar and an assessment of the underlying genetic basis. *Parasit. Vectors* **6**, 343
582 (2013).


583 **FIGURES AND TABLES**


584 **Fig. 1. Multi-tissue *Cyp6* gene upregulation affects sensitivity to two pyrethroids and a**
585 **carbamate insecticide. A)** Relative transcription levels of *Cyp6m2* (m2+) and *Cyp6p3* (p3+) in
586 adult females where expression is driven by the Ubi-A10 driver compared to GAL4/+ controls.
587 Bars represent SD (N = 3). Unpaired t test, * P<0.05. ** P<0.01. *** P<0.001. **B)** Expression of
588 CYP6M2 and α-tubulin in adult females from Ubi-A10 x UAS-m2 crosses with respective Ubi-
589 A10/+ and +/UAS-m2 controls. Protein extract from the equivalent of 1/10 of a whole female
590 mosquito was loaded in each lane. **C)** Sensitivity to insecticides of GAL4/UAS (+) females
591 overexpressing *Cyp6m2* or *Cyp6p3* ubiquitously under the control of the Ubi-A10 driver compared
592 to GAL4/+ controls (-) measured by WHO tube bioassay. Bars represent SD (N = 4-6, Table S2).
593 Dotted line marks the WHO 90% mortality threshold for defining resistance. Welch's t test with
594 P<0.01 significance cut off, ** P<0.01, *** P<0.001.

595 **Fig. 2. Multi-tissue *Cyp6* gene upregulation increases sensitivity to the organophosphate
596 insecticide malathion (reduced exposure).** Sensitivity to malathion of females overexpressing
597 *Cyp6m2* (m2+) or *Cyp6p3* (p3+) ubiquitously under the control of the Ubi-A10 driver compared to
598 respective GAL4/+ controls (m2-, p3-) measure by a modified WHO tube bioassay representing
599 mortality rates after 25 minutes of exposure and 24 h recovery. Bars represent SD (N = 4, Table
600 S2). Welch's t test with $P < 0.01$ significance cut off, *** $P < 0.001$.

601 **Fig. 3. Multi-tissue overexpression of GSTE2 affects sensitivity to an organochlorine and**
602 **an organophosphate insecticide.** Sensitivity to insecticides of adult female mosquitoes
603 overexpressing *Gste2* (e2+) ubiquitously under the control of the Ubi-A10 driver compared to Ubi-
604 A10 controls (e2-) measured by WHO tube bioassay. Bars represent SD (N = 2-6, Table S2).
605 Dotted line marks the WHO 90% mortality threshold for defining resistance. Welch's t test with
606 $P < 0.01$ significance cut off, *** $P < 0.001$.

607 **Fig. 4. Cyp6 gene upregulation in the mosquito midgut or oenocytes does not affect**
608 **sensitivity to insecticides. A-B)** Relative transcription levels of *Cyp6m2* (m2+) and *Cyp6p3*
609 (p3+) in dissected midguts (A) and abdomens (B) of GAL4/UAS female mosquitoes compared to
610 the equivalent body parts in GAL4/+ controls. Carcass is whole body without the relevant
611 dissected part. Bars represent SD (N = 3). Unpaired t test, * P<0.05. ** P<0.01. *** P<0.001. **C-D)**
612 Expression of CYP6M2 and α-tubulin in females from the GAL4-mid x UAS-m2 (C) and GAL4-
613 oeno x UAS-m2 (D) crosses. Wh: protein extract from 1/3 of a single whole female; Car: protein
614 extract from 1/3 of a single female carcass (whole body without midgut); Mid: two dissected
615 midguts; Abd: abdomen cuticle; +: GAL4/UAS-m2; -: GAL4/+.

616 **E-F)** Sensitivity to insecticides of
617 GAL4/UAS females overexpressing (+) *Cyp6m2* or *Cyp6p3* in the midgut (E) or in the oenocytes
618 (F) compared to GAL4/+ controls (-) measured by WHO tube bioassay. Bars represent SD (N =
619 2-3, Table S2). Dotted line marks the WHO 90% mortality threshold for defining resistance.

620 **Table 1.** Summary of the screening and crossing strategy adopted to create and establish the
 621 UAS responder lines by RMCE.

Docking line (No. Embryos)	F ₀ pools (No. and sex)	F ₀ isofemale	F ₁ transgenics		Orientation of cassette exchange**
			YFP+	YFP+/CFP+	
A11_UAS- <i>Cyp6m2</i> (347)	M2-1 (24 ♀)	G	0	2	N/A
		J	2♂	0	2 F ₁ ♂ - A
	M2-2 (25 ♂)	N/A	0	0	N/A
A11_UAS- <i>Cyp6p3</i> (460)	P3-1 (28 ♀)	N/A	7♀, 4♂	1	5 F ₁ ♀ - A x2, B x3
	P3-2 (27 ♀)	N/A	2♀, 8♂	2	2 F ₁ ♀ - A, B
	P3-3 (13 ♀)	N/A	0	0	N/A
	P3-4 (56 ♂)	N/A	10♀, 13♂	4	3 F ₁ ♀ - A, B x2
Ubi-A10_ UAS- <i>Gste2</i> (208)	E2-1 (10 ♂)	N/A	0	0	N/A
	E2-2 (12 ♀)	N/A	0	0	N/A
	E2-3 (19 ♂)	N/A	2♂	36♀, 44♂	2 F ₁ ♂ - A
	E2-4 (24 ♀)	A	3♀, 3♂	(7)*	F ₂ progeny of 1 F ₁ ♂ - B
		E	4♀, 3♂	2♀, 2♂	1 F ₁ ♀ - A F ₂ progeny of 1 F ₁ ♂ - A

622 *did not survive to adulthood.

623 **As cassette exchange may occur in two different orientations with respect to the chromosome,
 624 designated A or B, orientation check was performed on F₁ YFP-positive individuals or on the F₂
 625 progeny deriving from single YFP-positive individuals.

626 **Table 2.** *In vitro* (metabolism and/or depletion) and *in vivo* (*An. gambiae* and *D. melanogaster*)
627 functional validation of *An. gambiae* *Cyp6m2*, *Cyp6p3*, and *Gste2* genes.

Class	Insecticide	Gene	<i>In vitro</i>	<i>An. gambiae</i> (this study)	<i>Drosophila</i>
Pyrethroids	Permethrin	<i>Cyp6m2</i>	✓ ≠ (11), § (19)	✓	✓ (15)
		<i>Cyp6p3</i>	✓ ≠ (10), § (19)	✓	✓ (15)
		<i>Gste2</i>	N/A	✗	✗ (20)
	Deltamethrin	<i>Cyp6m2</i>	✓ ≠ (11), § (19)	✓	✓ (15)
		<i>Cyp6p3</i>	✓ ≠ (10), § (19)	✓	✓ (15)
		<i>Gste2</i>	N/A	✗	N/A
Organochlorines	DDT	<i>Cyp6m2</i>	✗ § (19) ✓ ≠* (12)	✗	✓ (15)
		<i>Cyp6p3</i>	✗ § (19)	✗	N/A
		<i>Gste2</i>	✓ ≠ (9, 13)	✓	✓ (13, 20)
	Bendiocarb	<i>Cyp6m2</i>	✗ § (15, 19)	✗	✓ (15)
		<i>Cyp6p3</i>	✓ § (15, 19)	✓	✓ (15)
		<i>Gste2</i>	N/A	✗	N/A
Organophosphates	Malathion	<i>Cyp6m2</i>	✓ ≠ (28), § (19)	✓	N/A
		<i>Cyp6p3</i>	✓ § (19)	✓	N/A
		<i>Gste2</i>	N/A	✗	N/A
	Fenitrothion	<i>Cyp6m2</i>	✓ § (19)	N/A	N/A
		<i>Cyp6p3</i>	✓ § (19)	N/A	N/A
		<i>Gste2</i>	N/A	✓	N/A

628 Presence (✓) or absence (✗) of *in vitro* activity or *in vivo* WHO-defined insecticide

629 resistance (*An. gambiae*) or increased insecticide tolerance (*Drosophila*).

630 ≠ metabolism; § depletion

631 *in presence of added cholate