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Abstract 42 

Premise of the Study 43 

Recent advances in generating large-scale phylogenies enable broad-scale estimation of 44 

species diversification rates. These now-common approaches typically (1) are characterized 45 

by incomplete coverage without explicit sampling methodologies, and/or (2) sparse backbone 46 

representation, and usually rely on presumed phylogenetic placements to account for species 47 

without molecular data. Here we use an empirical example to examine effects of incomplete 48 

sampling on diversification estimation and provide constructive suggestions to ecologists and 49 

evolutionists based on those results. 50 

Methods 51 

We used a supermatrix for rosids, a large clade of angiosperms, and its well-sampled 52 

subclade Cucurbitaceae, as empirical case studies. We compared results using this large 53 

phylogeny with those based on a previously inferred, smaller supermatrix and on a synthetic 54 

tree resource with complete taxonomic coverage. Finally, we simulated random and 55 

representative taxon sampling and explored the impact of sampling on three commonly used 56 

methods, both parametric (RPANDA, BAMM) and semiparametric (DR). 57 

Key Results 58 

We find the impact of sampling on diversification estimates is idiosyncratic and often strong. 59 

As compared to full empirical sampling, representative and random sampling schemes either 60 

depress or exaggerate speciation rates depending on methods and sampling schemes. No 61 

method was entirely robust to poor sampling, but BAMM was least sensitive to moderate 62 

levels of missing taxa. 63 

Conclusions 64 

We (1) urge caution in use of summary backbone trees containing only higher-level taxa, (2) 65 

caution against uncritical modeling of missing taxa using taxonomic data for poorly sampled 66 
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trees, and (3) stress the importance of explicit sampling methodologies in macroevolutionary 67 

studies. 68 

Key Words: Mega-phylogeny, rosids, diversification, modeling, sampling bias 69 

70 
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I. Introduction 71 

With recent advances in generating very large phylogenetic trees (e.g., Smith and 72 

O’Meara, 2012; Stamatakis, 2014; Hinchliff et al., 2015; Nguyen et al., 2015; Smith and 73 

Brown, 2018; Eiserhardt et al., 2018), and in analytical methods (Nee et al., 1994a,b; Pybus 74 

and Harvey, 200; Paradis et al., 2004; Alfaro et al., 2009; Stadler, 2011; Pennell et al., 2014; 75 

Rabosky, 2014; Morlon et al., 2016; Höhna et al., 2016), assessing macroevolutionary 76 

patterns for globally distributed clades with available biodiversity information has become 77 

common (e.g., Jetz et al., 2012; Morlon, 2014; Scholl and Wiens, 2016; Magallón et al., 78 

2018; Rabosky et al., 2018; Upham et al., 2019). Analyses of diversification rates have shed 79 

light on potential drivers of diversity gradients across wide phylogenetic and geographic 80 

scales (Jetz et al., 2012; Rabosky et al., 2018; Landis et al., 2018). However, inferring 81 

diversification processes based solely on extant species phylogenies is very challenging 82 

(Etienne et al., 2011; Didier et al., 2017; Sauquet and Magallón, 2018; Mitchell et al., 2019), 83 

and the accuracy of these methods is an area of intensive research and heated controversy 84 

(O’Meara and Beaulieu, 2016; Moore et al., 2016; Rabosky et al., 2017; Meyer et al., 2018; 85 

Rabosky, 2018). Many contemporary analytical workflows for studying diversification have 86 

seen little vetting to date with empirical datasets (but see Title and Rabosky, 2017), and much 87 

remains to be explored about the response of diversification methods to missing and biased 88 

species sampling (Sauquet and Magallón, 2018). 89 

On the empirical side, incomplete sampling of molecular phylogenetic data for many 90 

clades represents a long-standing constraint on assembling datasets to adequately explore 91 

large-scale macroevolutionary questions (e.g., Linder et al., 2005; Cusimano et al., 2012; 92 

Thomas et al., 2013). Diversification models generally have no information from which to 93 

draw inferences other than branching order and branch length among extant species, both of 94 
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which can be dramatically affected by (1) absolute taxon coverage (FitzJohn et al., 2009; 95 

Dvies et al., 2013; Title and Rabosky, 2017; Revell, 2018; Burin et al., 2018; Rabosky, 2018) 96 

and (2) sampling method at a given level of taxon coverage (Höhna et al., 2011; Höhna, 97 

2014; Cusimano et al., 2012). Hence, not only absolute taxon coverage, but also potential 98 

bias in this coverage, is important in interpreting diversification results, yet the identification 99 

and use of explicit sampling strategies remains uncommon in the field (O’Meara et al., 2016). 100 

Inclusion of data representing all extant lineages with molecular data from resources like 101 

GenBank, without an explicit sampling methodology, is perhaps the most common analytical 102 

strategy (e.g., Jetz et al., 2012; Zanne et al., 2014; Upham et al., 2019; but see, e.g., Magallón 103 

et al., 2018; O’Meara et al., 2016). A second commonly used approach is taxonomically 104 

representative sampling, including family-level or genus-level backbone trees (e.g., Magallón 105 

et al., 2018), which preferentially samples species to represent deep phylogenetic divergences 106 

to the exclusion of recent divergences. Representative sampling is the community standard 107 

for molecular phylogenetic studies, meaning that databases such as GenBank implicitly 108 

contain representative bias (reviewed in Cusimano et al., 2012; Höhna, 2014; O’Meara et al., 109 

2016; Sauquet and Magallón, 2018). Finally, random sampling procedures that sample extant 110 

species with equal probability are perhaps the least frequently used (although this approach 111 

corresponds best to common model assumptions; see O’Meara et al., 2016).  112 

Most current diversification approaches are able to model incomplete sampling; a 113 

variety of such methods is widely used in recent diversification studies (as a small sample 114 

across taxa: Jetz et al., 2012; Rabosky et al., 2018; Magallón et al., 2018). Methods for 115 

accounting for missing taxa make strong assumptions about the structure of missing species, 116 

typically assuming they are randomly missing, an assumption not matched in many empirical 117 

datasets (Höhna et al., 2011; Cusimano et al., 2012; Thomas et al., 2013; Revell, 2018), and 118 

the impact of alternative sampling approaches is not clear. An additional poorly understood 119 
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area is the impact of methods for incorporating described taxonomic diversity for which 120 

molecular phylogenetic data are unavailable. The increased availability of very large 121 

synthetic phylogenetic products with backbone taxonomy such as the Open Tree of Life 122 

(Hinchliff et al., 2015), as well as probabilistic methods for inserting backbone taxonomic 123 

information (e.g., polytomy resolver, Kuhn et al., 2011; PASTIS, Thomas et al., 2013; 124 

TACT, Rabosky et al., 2018), creates opportunities for very large analyses with complete 125 

sampling of known diversity. However, while these methods are often used (e.g., Jetz et al., 126 

2012; Rabosky et al., 2018; see review by Rabosky, 2015), the properties of diversification 127 

inference with contemporary methods using such backbone taxonomies remain poorly 128 

understood. 129 

Here we use the rosid clade in the flowering plants as a test case to explore how 130 

different sampling schemes influence the estimation of diversification with empirical data. 131 

Rosids (Rosidae; Cantino et al., 2007; Wang et al., 2009; APG IV, 2016) have great potential 132 

for understanding the evolution and diversification of angiosperms, considering their 133 

enormous species richness (90,000–120,000 species, representing around 25% of all 134 

angiosperms; Govaerts, 2001; Hinchliff et al., 2015; Folk et al., 2018). The clade, containing 135 

such globally important families as grapes, legumes, oaks and beeches, squash and melons, 136 

and mustards (respectively, Vitaceae, Fabaceae, Fagaceae, Cucurbitaceae, and Brassicaceae), 137 

originated in the early to late Cretaceous (115 to 93 million years ago, hereafter Myr), 138 

followed by rapid diversification in perhaps as little as 4 to 5 million years to yield the crown 139 

groups of fabids (112 to 91 Myr) and malvids (109 to 83 Myr; Wang et al., 2009; Bell et al., 140 

2010; Magallón et al., 2015). The rise of the rosids yielded today’s forests, which largely 141 

remain dominated by rosid species. The advent of these forests spurred diversification in 142 

many other lineages of life (e.g., ants: Moreau et al., 2006; Moreau and Bell, 2013; 143 

amphibians: Roelants et al., 2007; mammals: Bininda-Emonds et al., 2007; fungi: Hibbett and 144 
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Matheny, 2009; liverworts: Feldberg et al., 2014; ferns: Watkins and Cardelús, 2012; Testo 145 

and Sundue, 2016). However, biodiversity knowledge in the rosids remains limited, with 146 

perhaps only 23% of species having usable molecular data for phylogenetics (i.e., not 147 

repetitive DNA and other non-conserved markers; Folk et al., 2018). Sampling is likewise 148 

biased; species coverage is highly uneven, with economically important groups like the 149 

legume and beech orders (Fabales, Fagales) overrepresented compared to important but less 150 

familiar tropical groups like Malpighiales (Folk et al., 2018). 151 

Despite previous efforts assessing the impact of incomplete sampling (e.g., Cusimano 152 

et al., 2012; Höhna, 2014; Title and Rabosky, 2017), much remains unknown about how 153 

incomplete and biased taxon sampling approaches impact diversification estimates, 154 

particularly with empirical supermatrix data. Additionally, much of the methodological 155 

literature cited above does not include use of the most recent methods now widely used in the 156 

community. While offering limited power to generate biological insight about the 157 

diversification process, incomplete taxon coverage in the rosids is an opportunity to 158 

characterize the robustness of contemporary methods with an empirical dataset. We used a 159 

recently constructed, 5-locus, 19,700-taxon matrix for rosids (molecular data only; hereafter, 160 

20k-tip tree; Sun et al., 2019) to compare with a previously published 4-locus, 8,855-taxon 161 

rosid phylogeny (molecular data only; hereafter, 9k-tip tree; Sun et al., 2016) as well as the 162 

rosid clade extracted from Open Tree of Life (hereafter OpenTree) with complete species 163 

sampling (molecular data and backbone taxonomic data; hereafter, 100k-tip tree; Hinchliff et 164 

al., 2015; Smith and Brown, 2018). We explored results generated using these phylogenies 165 

from a suite of commonly used diversification approaches, comprising two parametric 166 

methods (RPANDA, Morlon et al., 2016; BAMM, Rabosky, 2014) and one semi-parametric 167 

method (the DR statistic, Jetz et al., 2012). We examined both variation in empirical 168 

sampling patterns in major rosid clades and a series of sampling perturbations to simulate 169 
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random and representative sampling methods. Using the workflow summarized in Fig. 1, we 170 

document a remarkably complex impact of taxon sampling on inference of 171 

macroevolutionary patterns. We focused on the following questions: (1) Do commonly used 172 

contemporary methods differ in their robustness to poor overall sampling? (2) Do datasets 173 

generated by random and representative sampling strategies result in different diversification 174 

inferences? (3) Does adding backbone taxonomic information actually improve 175 

diversification inference? 176 

II. Materials and Methods 177 

The 9k-tip tree 178 

This tree is the 4-gene tree of Sun et al. (2016) based on three chloroplast loci (atpB, 179 

rbcL, and matK) and one mitochondrial locus (matR). Details of its construction can be found 180 

in Sun et al. (2016). The data set consists of 8,855 ingroup species with 59.26% missing data 181 

and is largely congruent with other phylogenetic results for rosids (e.g., Wang et al., 2009; 182 

Soltis et al., 2011; Ruhfel et al., 2014; Gitzendanner et al., 2018). 183 

The 20k-tip tree 184 

The 20k-tip tree was built by adding the nuclear ITS locus to the four genes in the 4-185 

gene matrix of Sun et al. (2016), resulting in a 5-locus matrix with 19,740 ingroup species 186 

(135 families and 17 orders) and 70.55% missing data (See Sun et al., 2019). All families are 187 

monophyletic, and this phylogeny is also largely congruent with other inferences of rosid 188 

phylogeny (e.g., Wang et al., 2009; Soltis et al., 2011; Sun et al., 2016; Gitzendanner et al., 189 

2018). 190 
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The 100k-tip tree 191 

We also assembled a complete species-level tree for all named rosid species using 192 

OpenTree. We pruned the rosid clade from a recent phylogeny dating all seed plants in 193 

OpenTree (see details in Smith and Brown, 2018; 194 

https://github.com/FePhyFoFum/big_seed_plant_trees/releases; file ALLOTB.tre), removed 195 

non-species designations as above, and smoothed the branch lengths after pruning. These 196 

steps were completed via functions from Phyx (Brown et al., 2018) and scripts from 197 

OpenTree PY Toys (https://github.com/blackrim/opentree_pytoys). The final cleaned tree 198 

contained 106,910 tips. 199 

Divergence time analyses for these three trees (9k-, 20k-, and 100k-tip trees) have 200 

already been conducted previously (see details from Sun et al., 2019, and Smith and Brown, 201 

2018, respectively; Fig. 2). Briefly, Sun et al. (2019) used treePL with 59 fossil constraints 202 

for the 9k-tip (Sun et al., 2016) and the 20k-tip phylogenies; likewise, Smith and Brown 203 

(2018) also used treePL with 590 constraints extracted from Magallón et al. (2015). 204 

Diversification Analyses and Comparisons 205 

To understand the impact of sampling strategies, we first used trends in empirical 206 

sampling across the three trees to investigate the correlation between sampling and inferred 207 

diversification. We compared patterns for both the overall trees and for the 17 orders (each 208 

monophyletic) of the rosid clade (APG IV, 2016), the species-level sampling of which differs 209 

by up to 8-fold among the trees. We applied three widely used contemporary methods: 210 

RPANDA (Morlon et al., 2016), BAMM (Rabosky, 2014), and the DR statistic (Jetz et al., 211 

2012; for implementation details, see below). To generate comparable metrics across 212 

methods, we focused on the diversification rate of present-day lineages (that is, speciation 213 

rate at time zero or “tip rate”), a metric that is commonly used and is comparable across all of 214 
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the methods employed (see Title and Rabosky, 2019). We used both global tip speciation 215 

rates (that is, speciation rates estimated at present, averaging across species; RPANDA, 216 

BAMM) and distributions of rates for individual contemporary species (=“tip rates”; BAMM, 217 

DR). For BAMM, we additionally examined speciation rates throughout the timeline of the 218 

phylogeny, using both averages across the entire tree (hereafter, tree-wide speciation rates) 219 

and rate-through-time plots. 220 

 221 

Sampling Treatments: Cucurbitaceae Test Case 222 

To examine diversification patterns further by generating known sampling patterns, 223 

we used the best-sampled rosid family (Cucurbitaceae; approximately 64% sampling 224 

following Flora of North America [Nesom, 2015] and Flora of China [Lu et al., 2011]). 225 

Sampling treatments—We extracted the Cucurbitaceae clade (a subset of 528 tips) 226 

from the 20k-tip tree to maximize species representation with molecular data alone. We 227 

simulated both random and representative sampling schemes, the former with and without 228 

backbone taxonomies. We (1) simulated randomly missing species by generating trees, 229 

randomly dropping extant species at four sampling levels (10%, 30%, 50%, and 75% of 230 

sampled species), with ten replicates for each sampling treatment. We then (2) simulated 231 

randomly missing species that are added in via backbone taxonomies (hereafter, “backbone-232 

addition”) via randomly dropping extant species at four sampling levels (10%, 30%, 50%, 233 

and 75% of sampled species) and then adding them back to the phylogeny by attaching them 234 

to the most recent common ancestor (MRCA) of the genus, with the tip branch length 235 

extended to the present, similar to the method of OpenTree. If there were not at least two 236 

species of a genus sampled to generate a genus node, the missing taxon was attached to the 237 

root of the tree (i.e., it was assignable to the family Cucurbitaceae but not to any sampled 238 

genus node). These steps were done in 10 replicates with OpenTree PY Toys 239 
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(https://github.com/blackrim/opentree_pytoys). Finally, to simulate representative sampling, 240 

we (3) pruned this tree to a genus-level phylogeny by randomly selecting one species in each 241 

genus in ten replicates. Across these scenarios we repeated the diversification methods for 242 

empirical trees (above) on these replicate trees. 243 

 244 

Diversification methods 245 

We used RPANDA v1.4 (Morlon et al., 2016), a likelihood method, to fit nine 246 

diversification models representing constant, linear, and exponential time-dependent pure-247 

birth and birth-death models (Morlon et al., 2014; Appendix S1.1, see Supplemental Data 248 

with this article). The best model was chosen individually across all empirical datasets, and 249 

simulated replicates and parameters presented are always from the individual best model. We 250 

accounted for incomplete sampling in each analysis to test whether this is adequately 251 

modeled by RPANDA, basing the sampling ratio on the total species number in the Open 252 

Tree Taxonomy (“OTT”) database (Table 1). We extracted the speciation rate parameter at 253 

present for downstream analyses as a metric comparable to commonly used per-species “tip 254 

rates” derived below from BAMM and DR. This quantity represents global speciation rates 255 

estimated for extant taxa and hereafter will be denoted “global tip speciation rate”. 256 

We used BAMM v2.5.0 (Rabosky, 2014), a Bayesian approach, to estimate tip 257 

speciation rates as with RPANDA (above). We also used BAMM to explore non-258 

contemporary speciation rates, examining both tree-wide speciation rates (that is, speciation 259 

rates averaged across all tree timeframes including the present) and rate-through-time plots 260 

(that is, speciation rates averaged in temporal windows, Appendix S1.2). We also accounted 261 

for incomplete sampling in BAMM, parameterizing this identically to RPANDA (above).  262 

As an additional examination of common practices, we used BAMM to explore the 263 

impact of a global sampling probability (one missing species proportion imposed as the 264 
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parameter for the entire tree) and species-specific sampling probabilities (missing species 265 

parameters for arbitrarily defined clades, often named taxa) on diversification rates 266 

implemented in BAMM. We confirmed convergence of the MCMC chains and effective 267 

sample sizes >200 for the number of both shifts and log likelihoods (Appendix S2.1), after 268 

discarding 10% burn-in. The exception was in order-level BAMM analyses for the 100k-tip 269 

tree, for which 6 orders (Brassicales, Fabales, Malpighiales, Myrtales, Rosales, and 270 

Sapindales) could not reach suitable effective sample sizes despite runs in some cases 271 

exceeding 400 million generations; in these cases we imposed a 90% burn-in to ensure 272 

adequate convergence and reduce downstream computational time. We present results from 273 

these orders for comparison; results were qualitatively similar to other orders in the 100k-tip 274 

tree (see Results). 275 

Lastly, we employed the DR statistic (Jetz et al., 2012), one of the most widely used 276 

semiparametric approaches to diversification estimation. The DR statistic quantifies the 277 

“splitting rate” from each extant species to the tree root as a model-free estimate of 278 

diversification rate. Methods followed those described in Jetz et al. (2012) and Harvey et al. 279 

(2016). There is no straightforward way to model incomplete sampling with the DR statistic 280 

(but see Rabosky et al., 2018); aside from calculating DR for our 100k-tip synthetic tree, we 281 

did not account for missing taxa in order to represent the most typical way in which this 282 

statistic has been used. For BAMM, it was impossible to achieve convergence in the global 283 

20k-tip and 100k-tip trees, so we only ran this method on the 17 rosid orders (clades 284 

recognized in APG IV, 2016); global tree results were generated only for DR and RPANDA. 285 
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III. Results 286 

Diversification Analyses 287 

Empirical diversification patterns 288 

RPANDA—Both the 9k-tip and 20k-tip trees favored a birth-death model with 289 

speciation and extinction rates varying exponentially with time; the optimal model for the 290 

100k-tip tree was a pure birth model with linear speciation rate with respect to time 291 

(Appendix S1.1; Appendix S2.2). The tip speciation rate was highest for the 9k-tip tree 292 

(1.3905 Myr-1) with similarly high results from the 20k-tip tree (1.3058 Myr-1); estimated 293 

rates for the 100k-tip tree were much lower (0.0446 Myr-1; Fig 3a). 294 

BAMM—The values of both mean tip speciation rates and mean tree-wide speciation 295 

rates for the 9k-tip tree (1.1527 Myr-1 and 0.7829 Myr-1, respectively) are higher than those 296 

from both the 20k-tip tree (1.0731 Myr-1 and 0.5601 Myr-1; Appendix S2.1; Fig. 3) and 100k-297 

tip tree (0.1136 Myr-1 and 0.3914 Myr-1; Appendix S2.1; Fig. 3b-c). Among the 17 orders, 298 

both the tip and tree-wide speciation rates from the 9k-tip tree are likewise generally slightly 299 

higher than the 20k-tip tree and much higher than the 100k-tip tree (Appendix S2.1; Fig. 3bc). 300 

DR—On average, DR tip rates estimated from the 20k-tip tree yielded the highest 301 

value (0.4644 Myr-1), the 9k-tip tree was intermediate at 0.1889 Myr-1, while the 100k-tip tree 302 

yielded the lowest (0.0902 Myr-1; Appendix S2.3; Fig. 3d). As with the previous methods, 303 

this overall scaling was also generally true across the 17 orders (Appendix S2.3). 304 

Sampling and diversification among rosid orders 305 

RPANDA and BAMM showed a negative relationship between sampling ratio and 306 

estimated rates across the empirical data for the 17 rosid orders (that is, orders with less 307 

sampling effort had greater estimated speciation rates). However, this correlation was not 308 

significant (cf. Fig. 4). The DR method, however, showed a strong positive correlation (p = 309 
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1.658e-07) between sampling ratios and estimated rates, meaning that decreasing sampling 310 

effort predicts lower estimated speciation rates using this method (Fig. 4). 311 

Rate-through-time curves across all orders showed strong differences among the three 312 

trees (Appendix S3). The 9k- and 20k-tip trees were most similar across analyses; however, 313 

the improved sampling of the 20k-tip tree allowed for the detection of recent bursts within the 314 

last 15 million years in several orders that were not inferred in the 9k-tip tree (e.g., 315 

Brassicales, Cucurbitales, Fabales, Malpighiales, Vitales; Appendix S3). The difference 316 

between the 100k-tip tree and the 9k- and 20k-tip trees was more substantial. In the 100k-tip 317 

tree, with the exception of Huerteales, all order analyses detected early bursts of speciation 318 

rate not found in other trees, with lower estimated tip rates (here, at time 0) than the 9k- and 319 

20k-tip trees (also see Fig. 3c). 320 

Cucurbitaceae test case—Random sampling simulation 321 

RPANDA—With random sampling, the estimated global tip speciation rate increased 322 

with decreasing sampling effort, ranging about 1.5 fold from 0.4687 Myr-1 (10% random 323 

drop) to 0.7263 Myr-1  (75% random drop; Fig. 5a; Appendix S2.4). The 75% random-drop 324 

treatment was significantly higher in tip speciation rate than all other treatments; no other 325 

treatment comparisons were significantly different (Tukey HSD; see Appendix S2.5). 326 

BAMM—As with RPANDA, higher estimated mean tip speciation rates and tree-wide 327 

speciation rates were both associated with decreasing sampling effort under random 328 

sampling, ranging from 0.4658 Myr-1 to 0.6508 Myr-1 for mean tip speciation rates and from 329 

0.2466 Myr-1 (10% randomly dropped) to 0.5261 Myr-1 (75% randomly dropped) for mean 330 

tree-wide speciation rates (Fig. 5b,c; see Appendix S2.4). These rates were statistically 331 

identical for all treatments except the 75% random-drop treatment (Tukey HSD; see 332 

Appendix S2.5). 333 

Rate-through-time plots from the trees show a similar pattern (Fig. 6) to those 334 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2019. ; https://doi.org/10.1101/749325doi: bioRxiv preprint 

https://doi.org/10.1101/749325
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 16

observed for tip speciation rates. All of the sampling treatments tend to agree in rate 335 

magnitude and curve shape with the complete tree except for the 75% random drop treatment; 336 

in this treatment the overall speciation rates are higher at all timeframes, and the curves tend 337 

to be flattened and linearized, with few of the complex details apparent with greater sampling 338 

(Fig. 6). 339 

DR—In contrast to RPANDA and BAMM, DR rates decreased with decreasing 340 

sampling effort from 0.3599 Myr-1 (10% random drop) to 0.1910 Myr-1 (75% random drop; 341 

Fig. 5d; Appendix S2.4). The DR rates were significantly different across all treatment 342 

comparisons (Tukey HSD; see Appendix S2.5). 343 

Summary—As observed with empirical sampling among the 17 rosid orders (above), 344 

the estimated contemporary speciation rates increased in RPANDA and BAMM with 345 

decreasing sampling effort (10% to 75% random drop; Fig. 5a,c), while rates estimated in DR 346 

decreased with decreased sampling (Fig. 5d). 347 

Cucurbitaceae test case—Random sampling simulation with backbone taxonomic addition 348 

RPANDA—Under random sampling with addition of backbone taxa, the estimated tip 349 

speciation rate decreased with decreasing sampling effort (in contrast to random sampling 350 

alone; see above), ranging about four-fold from 0.3740 Myr-1 (10% backbone-addition; 351 

comparable to the 10% random drop treatment, above) to 0.0966 Myr-1  (75% backbone-352 

addition; Appendix S2.4). The 10% backbone-addition treatment was significantly higher in 353 

contemporary speciation rate than all other treatments (Fig. 5e); no other treatment 354 

comparisons were significant (Tukey HSD; see Appendix S2.6). 355 

BAMM—As with RPANDA, estimated mean tip speciation rates decreased with 356 

decreasing sampling effort and backbone-addition, although the effect was smaller, ranging 357 

from 0.4054 (10% random drop & add in) Myr-1 to 0.3412 (75% random drop & add in; Fig. 358 

5g; Appendix S2.4). The 10% backbone-addition treatment was significantly higher in 359 
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contemporary speciation rates than all other treatments; the remaining treatment comparisons 360 

were not significant (Tukey HSD; see Appendix S2.6). 361 

Unlike tip speciation rates, decreasing sampling effort with backbone-addition 362 

resulted in increased estimated tree-wide speciation rates, ranging from 0.3871 Myr-1 (10% 363 

random drop & add in) to 0.9545 Myr-1 (75% random drop & add in; Fig. 5f; Appendix 364 

S2.4). In this case, the tree-wide rates were higher than the tip rates, indicating that the 365 

sampling scenario induced early-burst inferences (below). The 10% backbone-addition 366 

treatment was significantly lower in contemporary speciation rates than all other treatments; 367 

no other treatment comparisons were significant (Tukey HSD; see Appendix S2.6). 368 

Rate-through-time plots from these backbone-addition trees all show a similar pattern 369 

of inferring spurious early bursts of diversification (Fig. 7) that were not reconstructed in the 370 

original Cucurbitaceae tree (Fig. 7; black curve). Unsurprisingly, these bursts correspond to 371 

nodes where backbone taxonomic data were added in these trees. 372 

DR—DR rates decreased with decreasing sampling effort from 0.3372 Myr-1 (10% 373 

random drop & add in) to 0.1397 Myr-1 (75% random drop & add in; Fig. 5h; Appendix 374 

S2.4). The DR rates estimated from all four-level backbone-addition treatments were 375 

significantly different for all group comparisons (Tukey HSD; see Appendix S2.6). 376 

Summary—Using backbone taxonomic addition to account for missing taxa did not 377 

prevent under- or overestimated tip speciation rates. Adding backbone taxa tended to result in 378 

the inference of spurious early bursts of diversification (Fig. 7), consistent with the empirical 379 

results for the 100k-tip tree (above). 380 

Cucurbitaceae test case—Representative sampling simulation 381 

RPANDA—Under a representative sampling scenario, the mean tip speciation rate for 382 

representative sampling simulations was 0.3022 Myr-1 (Fig. 8; see Appendix S2.7), lower by 383 

~1.5 fold than that for the complete Cucurbitaceae tree (0.4635 Myr-1); hence, estimated 384 
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speciation rates decreased with decreased sampling, opposite the pattern recovered above 385 

with random sampling but similar to that recovered with random sampling with backbone-386 

addition. 387 

BAMM—Unlike RPANDA, BAMM has two approaches for handling incomplete 388 

sampling, both implemented here: specifying either clade-specific or global missing taxon 389 

parameters. While global sampling fractions were used elsewhere, we included clade-specific 390 

sampling fractions here to match common methods used for family-level trees and other 391 

backbone phylogenetic data. In the global sampling fraction scenario, mean tip speciation 392 

rates (0.1275 Myr-1) were lower than the global tree (0.4625 Myr-1) while mean tree-wide 393 

speciation rates (0.2539 Myr-1) were higher than the global tree (0.2408 Myr-1). Clade-394 

specific sampling fractions resulted in unilaterally lower estimated speciation rates; both 395 

mean tip rates (0.1275 Myr-1) and mean tree-wide speciation rates (0.1764 Myr-1) were lower 396 

than those estimated from the global tree (0.4625 Myr-1 and 0.2408 Myr-1, respectively; Fig. 8; 397 

Appendix S2.7). 398 

Rate-through-time plots (Fig. 8c) were similar to the mean rate results. Global 399 

sampling factions tended to increase the scaling of the entire rate curve, with up to ~two-fold 400 

higher speciation rates (at the present), compared to assigning cladewise sampling fractions; 401 

the global sampling fraction result was closer to the total Cucurbitaceae tree. While the 402 

scaling was different, the rate through time curves were similar in completely failing to detect 403 

the burst of speciation rates towards the present seen in the total Cucurbitaceae tree (Fig. 8c); 404 

instead, BAMM inferred a spurious early burst of speciation rates at the root (see also 405 

backbone-addition, above). 406 

DR—The mean DR tip rate for the representative sampling trees was 0.0875 Myr-1, 407 

far lower than the total Cucurbitaceae tree (0.3794 Myr-1), as well as lower than the other 408 

rates estimated by RPANDA and BAMM (Fig. 8a-b). 409 
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Summary—Across methods, representative sampling results in lower tip speciation 410 

rate estimates and similar to backbone-addition (above), consistent with these results being 411 

driven solely by a failure to sample nodes. However, tree-wide speciation rates were higher 412 

on average; rate through time curves (Fig. 8c) showed that this behavior is due to failure to 413 

detect recent bursts of speciation and instead inferring higher rates of evolution at earlier time 414 

intervals (see also Cusimano et al., 2010). 415 

IV. Discussion 416 

We found surprisingly diverse effects of sampling effort on inferences of 417 

diversification using the methods we employed. Overall, BAMM showed the greatest 418 

robustness to incomplete sampling. In BAMM, all random taxon-dropping treatments 419 

resulted in statistically identical tip speciation rates with the exception of the most extreme 420 

treatment (dropping 75% of taxa; Fig. 5b-c), where estimated tip speciation rate increased 421 

dramatically (Appendix S2.4). BAMM also tended to be more robust to the other sampling 422 

scenarios, with the exception of representative sampling, where no method was robust. Tree-423 

wide speciation rates and rate-through-time curves in BAMM showed similar patterns (Figs. 424 

6-7), although in some cases these metrics were more sensitive to incomplete sampling than 425 

tip speciation rates.  426 

In contrast to BAMM, both RPANDA and DR were highly sensitive to missing taxa. 427 

For most analyses, the effect of all incomplete sampling scenarios using RPANDA and DR 428 

was disturbingly near-linear (e.g., Fig. 5a, d), in contrast to the threshold behavior of BAMM. 429 

Methods also differed in the direction of parameter bias in response to incomplete sampling; 430 

DR in all cases resulted in underestimates of tip speciation rates, while BAMM and 431 

RPANDA under- or overestimated speciation rates compared to the complete tree, dependent 432 

on sampling scenario. 433 
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Opposing bias patterns in representative and random sampling 434 

Under the random sampling scenarios simulated here, speciation estimates increased 435 

in both RPANDA and BAMM with decreasing sampling efforts (i.e., they were 436 

overestimated; Fig. 5). In contrast, representative sampling resulted in decreased estimates of 437 

tip speciation rate across methods. Interestingly, in contrast to random sampling, BAMM tip 438 

rates were not robust to representative sampling strategies, and these simulations exhibited 439 

some of the highest rate estimate differences from the complete Cucurbitaceae tree (Fig. 8b; 440 

Appendix S2.7). 441 

Only BAMM and RPANDA showed differential bias patterns, whereas with DR 442 

(which does not model taxon absence), decreased sampling always resulted in underestimates 443 

of speciation rates. This suggests that modeling taxon absence can result in an 444 

“overcorrection” that overestimates rate parameters, even in our taxon-dropping perturbations 445 

that were random and therefore matched modeling assumptions. These results make intuitive 446 

sense and to some extent are consistent with previous literature (e.g., Cusimano and Renner, 447 

2010). While we attempted to account for incomplete sampling, typically, missing species 448 

must be modeled as randomly missing in most implementations of diversification methods. 449 

Representative sampling can be seen as a form of sampling bias in that it selectively 450 

preserves long phylogenetic branches while dropping short branches. This will have the 451 

effect of masking recent, shallow radiation events and pushing apparent diversification 452 

patterns backwards in time and depressing estimates of extinction (see Cusimano and Renner, 453 

2010; Höhna et al., 2011). Rate-through-time plots in BAMM exemplify this effect (Figs. 8c, 454 

Appendix S3); representative sampling flattened inferred curves and essentially erased any 455 

signal of recent diversification, an effect only seen in random sampling with the most 456 

extreme scenario (75%; Fig. 6). Instead of a recent burst, representative sampling tends to 457 

result in spurious inferences of early bursts not evident with improved sampling (see also 458 
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Cusimano and Renner, 2010). Understanding this bias is important, as typical molecular 459 

phylogenetic sampling schemes seek to represent deep phylogenetic branches 460 

disporportionately (Höhna et al., 2011); hence genetic resources like GenBank are likely to 461 

be populated primarily by data from studies that used representative sampling schemes. 462 

Comparison with an angiosperm-wide study—As an additional exploration of 463 

sampling protocols, our BAMM mean speciation rates for the molecular-only trees (9k-tip 464 

and 20-k tip; Appendix S2.1) can be directly compared to a recent angiosperm-wide analysis 465 

in BAMM exemplifying very coarse representative sampling (Magallón et al., 2018; cf. 466 

Supplementary Data “aob-18219-s06”) covering 792 species or ~0.2% of angiosperm species 467 

richness. While Magallón et al. (2018) accounted for incomplete sampling with similar 468 

methods to our current study, the difference in results is remarkable. Our estimates of 469 

speciation rate with stronger sampling in the same rosid orders (including tree-wide averages 470 

and rate-through-time plots) were uniformly higher, the difference sometimes exceeding an 471 

order of magnitude (e.g., compare Sapindales, Myrtales, and Vitales; Fig. 3 in Magallón et 472 

al., 2018). The mean clade speciation rates we obtained from BAMM ranged up to ~2.5 Myr-473 

1 for the 9k-tip tree and ~1.7 Myr-1 for the 20-tip tree, all values consistent with other rapidly 474 

diversifying plant taxa (scaling of plant diversification rates is reviewed in Lagomarsino et 475 

al., 2016). All mean clade speciation rates reported in Magallón et al. (2018) were at least 5-476 

fold smaller in magnitude, and even the highest individual lineage speciation rates were at 477 

least 2-fold smaller. Unsurprisingly, this angiosperm backbone tree failed to recover 478 

signatures of recent diversification; rate curves (Magallón et al., 2018: Fig. 3) were strongly 479 

flattened compared to our results, particularly for rate variation within the last ~15 million 480 

years, consistent with our representative sampling experiments (Figs. 8c, Appendix S3). 481 

Previous work using coarse phylogenetic sampling with semiparametric methods (Magallón 482 

and Sanderson, 2001) had similar scaling of diversification rates to Magallón et al. (2018). 483 
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The magnitude of this downscaling of speciation rate likewise is similar to that between our 484 

molecular-only trees (9k-tip and 20k-tip) and our tree with added taxonomic backbone data 485 

(100k-tip; Appendix S3). These observations, along with our sampling manipulation 486 

experiments, suggest caution in interpreting the results from diversification studies sampling 487 

a very small proportion of species-level diversity with backbone trees and relying heavily on 488 

taxonomic data to cover sampling gaps. 489 

Impact of backbone taxonomic addition 490 

Thus far, we have focused on our 9k- and 20k-tip trees containing only taxa with 491 

molecular data. Diversification patterns observed with the 100k-tip tree using backbone 492 

taxonomies were remarkably different across methods; the differences mainly comprised (1) 493 

spurious inference of early bursts of speciation and (2) depression or exaggeration of tip 494 

speciation rates. This difference was consistent across analyses despite a similar phylogenetic 495 

backbone across all trees and a similar overall distribution of clade dates between 100k-tip 496 

tree and the 9k- and 20k-tip trees (Fig. 2) without obvious overall bias in node age. Despite 497 

considerable interest in using synthetic trees for evolutionary studies, we are aware of no 498 

similar studies of the behavior of taxon addition by MRCA, as used in OpenTree (Hinchliff et 499 

al., 2015; for alternative probabilistic methods, see Thomas et al., 2013; Rabosky, 2015; 500 

Rabosky et al., 2018). Among the three diversification methods we used (RPANDA, BAMM, 501 

DR), the 100k-tip tree always resulted in far lower estimated tip speciation rates than 502 

observed with the 9k- and 20k-tip trees, usually around 10-fold smaller in magnitude (Figs. 3, 503 

Appendix S3; Appendix S2.1-S2.3). Although the magnitude is surprising, this pattern makes 504 

intuitive sense given that synthetic phylogenies (100k-tip) were built by insertion of missing 505 

taxa at the MRCA of the least inclusive clade of which membership is known (e.g., genus, 506 

family, etc.). Assuming correct taxonomic assignments, this approach will result in 507 

consistently older node ages than would be inferred with molecular data and an empirical tree 508 
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(9k- and 20k-tip), pushing back the apparent timing of diversification and therefore 509 

depressing estimates of tip speciation rate (Figs. 3c, Appendix S3). Simulating this behavior 510 

in our backbone-addition experiments confirmed that this practice results in lower estimates 511 

of tip speciation rates (Fig. 5e-h; Appendix S2.4), and rate curves showed that this is largely 512 

driven by inferring spurious early bursts of evolution (Figs. 7, Appendix S3). As with the 513 

random sampling scenario, tip rates in BAMM were most robust to backbone-addition among 514 

the methods employed (Fig. 5g), although overall BAMM rates were very sensitive (Fig. 5f). 515 

V. Conclusions 516 

We found strong impacts of sampling on diversification inference that were 517 

surprisingly diverse, and potentially large enough in magnitude to change evolutionary 518 

conclusions. For example, our representative and backbone-addition sampling simulations 519 

were sufficient to generate spurious early bursts of speciation and erase signals of recent 520 

bursts of speciation. Although improvement of molecular taxon sampling to overcome this 521 

heterogeneity would be ideal, for large clades this is not always feasible, necessitating 522 

methods that adequately account for missing biodiversity knowledge. Our results indicated 523 

greater robustness to moderate incomplete sampling in BAMM, especially for estimating tip 524 

speciation rate. Some types of rate metrics were more robust than others and more reliable for 525 

poorly sampled datasets; tip speciation rates were generally the most robust. 526 

A frequently used alternative to adding molecular data to a given phylogenetic tree is 527 

to incorporate taxonomic knowledge and presumed taxonomic placements, often using 528 

backbone addition. To date, the benefits of backbone taxonomic addition (e.g., Jetz et al., 529 

2012; Rabosky et al., 2018; Stein et al., 2018) have largely been assumed rather than 530 

demonstrated with test cases. We find here that adding taxa without molecular data has 531 

unpredictable effects and was not necessarily more accurate than other approaches. Based on 532 
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the dramatic inferential differences we observed among analyses, we advise (1) strong 533 

caution in the inference of diversification using very poorly sampled trees regardless of 534 

method; (2) the use of sensitivity analyses similar to those we implemented in Cucurbitaceae 535 

to characterize whether empirical results are conditional on methods that account for missing 536 

taxa, and (3) especially strong caution in using summary backbone phylogenies for 537 

diversification estimation. 538 
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Table 1. Ordinal-level summary sampling table for the 9k- and 20k-tip rosid sampling 

compared to the rosid clade of the Open Tree Taxonomy (“OTT”) database v. 3.0 

(https://devtree.opentreeoflife.org/about/taxonomy-version/ott3.0; Hinchliff et al., 2015) and 

matching taxon names between these data sets. Orders follow APG IV (2016). A summary 

table at the family level for the 20k-tip tree is available in Sun et al. (2019). 

Order 
9k-tip Tree 20k-tip Tree 
Matched 
genus % 

Matched 
species % 

Matched 
genus % 

Matched 
species % 

Brassicales 36.85% 7.49% 71.12% 28.50% 
Celastrales 59.45% 13.34% 61.26% 18.15% 
Crossosomatales 92.85% 29.26% 92.86% 29.27% 
Cucurbitales 85.71% 13.93% 87.97% 26.60% 
Fabales 66.66% 8.25% 76.04% 21.95% 
Fagales 44.59% 10.91% 48.65% 21.92% 
Geraniales 60.00% 12.16% 75.00% 30.67% 
Huerteales 100.00% 23.33% 100.00% 23.33% 
Malpighiales 64.98% 8.33% 65.77% 17.37% 
Malvales 54.81% 9.72% 62.96% 16.54% 
Myrtales 48.21% 4.05% 54.11% 8.28% 
Oxalidales 59.42% 4.21% 62.32% 8.25% 
Picramniales 66.66% 8.77% 66.67% 8.77% 
Rosales 54.03% 3.38% 60.45% 8.22% 
Sapindales 56.98% 11.21% 62.07% 18.34% 
Vitales 60.00% 3.63% 60.00% 9.52% 
Zygophyllales 62.96% 10.58% 66.67% 17.65% 

Total 57.80% 7.28% 66.34% 16.25% 
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Figure Legends: 

Fig. 1. Workflow employed for empirical data and simulations in this study. Abbreviation 

notes: 9k-tip tree = 4-gene, 8,855-species rosid tree from Sun et al. (2016); 20k-tip tree = 5-

locus, 19,740-species rosid tree from Sun et al. (2019); 100k-tip tree = 106,910-species tree 

extracted from OpenTree (Smith and Brown, 2018); bd-models = nine birth-death models 

from RPANDA (see Appendix S1.1). Tree-wide rate means speciation rate averaged 

throughout the tree. 

Fig. 2. Age distribution of crown ages for clades extracted from the 9k-, 20k-, and 100k-tip 

trees. The two dating methods used, treePL and PATHd8, are shown in orange and blue, 

respectively. The two methods resulted in substantially different date scaling; for the treePL 

trees used in this study, the probability density distributions of clade dates were very similar 

across very different sampling levels. 

Fig. 3. Tip speciation rate boxplots (here denoted λ0) for RPANDA, BAMM (including tip 

speciation rates and tree-wide speciation rates), and DR, across the three empirical datasets, 

9k-tip tree, 20k-tip tree, and 100k-tip tree. The boxes and whiskers represent the 0.25–0.75 

and the 0.05–0.95 quantile ranges, respectively. 
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Fig. 4. Correlation between sampling effort and speciation rates among the 17 rosid orders 

from 9k- and 20k-tip trees. The X axis is the ratio of sampling percentages; the Y axis is the 

ratio of speciation rates (9k-tip/20k-tip in both cases; values closer to one indicate values 

closer to the more fully sampled 20k-tip tree); each dot represents a single rosid order. The R2 

and p-values are color-coded following the legend colors. Gray plot zones indicate curve 95% 

confidence intervals. Only the DR statistic showed a significant positive relationship between 

sampling percentage and diversification rate; for other methods, the rosid orders do not show 

a significant relationship between sampling effort and estimated speciation rate. 

Fig. 5. Sampling simulation boxplots with four treatments and three different rate metrics 

using the Cucurbitaceae tree. Contemporary speciation rates (λ) estimated by RPANDA (λ 

RPANDA), BAMM (speciation rate: λBAMM tree-wide; and tip rate: λ BAMM tip), and DR (λ DR). The 

(a-d) panels correspond to the random sampling simulations and (e-f) panels to the random 

sampling simulations with backbone-addition.  

Fig. 6. Rate-through-time plots with the random sampling simulations. The thick black line 

stands for the original Cucurbitaceae 528-tip tree; the color-coded rate-through-time curves 

were generated by 10 random trees each under 10%, 30%, 50%, and 75% of taxa randomly 

dropped. The results for all sampling treatments were very similar to the full empirical 

sampling result except for the most extreme dropping experiment (75% of tips). 
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Fig. 7. Rate-through-time plots with the random sampling simulations with backbone-

addition. The thick black line stands for the original Cucurbitaceae 528-tip tree; the color-

coded rate-through-time curves were generated by 10 random trees each under 10%, 30%, 

50%, and 75% of taxa randomly dropped and added in as backbone taxonomic data. With 

moderate missing taxa (10% dropped), few spurious early bursts were inferred, but these 

were frequent with more missing taxa. 

Fig. 8. Comparisons of tip speciation rate for full empirical and representative sampling 

levels for RPANDA, BAMM, and DR using Cucurbitaceae data. (a) Boxplot of 

contemporary speciation rate and tree-wide rate (BAMM) of the 10 random genus-level tree 

results estimated by RPANDA, BAMM, and DR. (b) Boxplot showing rate differences by 

subtracting rates in (a) from those inferred from the family-level 528-tip tree; 0 would 

indicate identical results. Note that in some cases the magnitude of the difference is nearly as 

large as the overall speciation rate. (c) Color-coded rate through time plots in BAMM 

showing rate differences among global sampling fraction (blue), clade-specific sampling 

fraction (orange), and original family tree (black).  Abbreviations for boxplot figures: 

BAMMglobal tip = tip speciation rates estimated with global sampling fractions; 

BAMMglobal tree-wide = tree-wide speciation rates estimated with global sampling 

fractions; BAMMspecific tip = tip speciation rates estimated with clade-specific sampling 

fractions; BAMMspecific tree-wide = tree-wide speciation rates estimated with clade-specific 

sampling fractions. 
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Fig. 5 
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SUPPORTING INFORMATION:  

Appendix S1 Supplemental methods: 

Appendix S1.1: Diversification analyses implemented by RPANDA 

Appendix S1.2: Diversification analyses implemented by BAMM 

Appendix S2 Supplemental Tables: 

Appendix S2.1. Summary table for BAMM analyses (also see Appendix S1.2). 

Appendix S2.2. Best models and speciation rates estimated for 9k-, 20k, and 100k-tip trees 

and each of 17 rosid orders from these trees using RPANDA with nine birth-death 

models (cf. Appendix S1.1). 

Appendix S2.3. Summary table for the DR statistic. 

Appendix S2.4. Summary table for diversification simulations in the Cucurbitaceae test case. 

Appendix S2.5. Tukey HSD test across the RPANDA, BAMM, and DR methods for the 

Cucurbitaceae test case under the random taxon-dropping scenario. 

Appendix S2.6. Tukey HSD test across the RPANDA, BAMM, and DR methods for the 

Cucurbitaceae test case under the backbone-addition scenario. 

Appendix S2.7. Summary table for diversification analyses for the Cucurbitaceae test case 

under the representative sampling scenario. 

Appendix S3 Supplemental Figure: Comparison of rate-through-time plots for each of the 

17 rosid orders (a-q). 
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