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42  Abstract

43  Premise of the Study

44  Recent advances in generating large-scale phylogenies enable broad-scal e estimation of

45  gpeciesdiversification rates. These now-common approaches typically (1) are characterized
46 by incomplete coverage without explicit sampling methodol ogies, and/or (2) sparse backbone
47  representation, and usually rely on presumed phylogenetic placements to account for species
48  without molecular data. Here we use an empirical example to examine effects of incomplete
49  sampling on diversification estimation and provide constructive suggestions to ecologists and
50 evolutionists based on those results.

51 Methods

52  Weused asupermatrix for rosids, alarge clade of angiosperms, and its well-sampled

53  subclade Cucurbitaceae, as empirical case studies. We compared results using this large

54  phylogeny with those based on a previously inferred, smaller supermatrix and on a synthetic
55  treeresource with complete taxonomic coverage. Finally, we simulated random and

56  representative taxon sampling and explored the impact of sampling on three commonly used
57  methods, both parametric (RPANDA, BAMM) and semiparametric (DR).

58 Key Results

59  Wefind theimpact of sampling on diversification estimates is idiosyncratic and often strong.
60 Ascompared to full empirical sampling, representative and random sampling schemes either
61  depress or exaggerate speciation rates depending on methods and sampling schemes. No

62  method was entirely robust to poor sampling, but BAMM was least sensitive to moderate

63 levels of missing taxa.

64 Conclusions

65 We (1) urge caution in use of summary backbone trees containing only higher-level taxa, (2)

66  caution against uncritical modeling of missing taxa using taxonomic data for poorly sampled
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67 trees, and (3) stress the importance of explicit sampling methodologies in macroevolutionary
68  studies.
69 Key Words: Mega-phylogeny, rosids, diversification, modeling, sampling bias
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l. I ntroduction

With recent advances in generating very large phylogenetic trees (e.g., Smith and
O’'Meara, 2012; Stamatakis, 2014; Hinchliff et al., 2015; Nguyen et al., 2015; Smith and
Brown, 2018; Eiserhardt et al., 2018), and in analytical methods (Nee et a., 1994a,b; Pybus
and Harvey, 200; Paradis et a., 2004; Alfaro et al., 2009; Stadler, 2011; Pennell et a., 2014;
Rabosky, 2014; Morlon et al., 2016; Hohna et al., 2016), assessing macroevolutionary
patterns for globally distributed clades with available biodiversity information has become
common (e.g., Jetz et a., 2012; Morlon, 2014; Scholl and Wiens, 2016; Magallon et al.,
2018; Rabosky et a., 2018; Upham et al., 2019). Analyses of diversification rates have shed
light on potential drivers of diversity gradients across wide phylogenetic and geographic
scales (Jetz et a., 2012; Rabosky et al., 2018; Landis et al., 2018). However, inferring
diversification processes based solely on extant species phylogeniesis very challenging
(Etienne et al., 2011; Didier et al., 2017; Sauquet and Magallon, 2018; Mitchell et al., 2019),
and the accuracy of these methods is an area of intensive research and heated controversy
(O'Mearaand Beaulieu, 2016; Moore et a., 2016; Rabosky et al., 2017; Meyer et al., 2018;
Rabosky, 2018). Many contemporary analytical workflows for studying diversification have
seen little vetting to date with empirical datasets (but see Title and Rabosky, 2017), and much
remains to be explored about the response of diversification methods to missing and biased
species sampling (Sauquet and Magallén, 2018).

On the empirical side, incomplete sampling of molecular phylogenetic data for many
clades represents along-standing constraint on assembling datasets to adequately explore
large-scale macroevolutionary questions (e.g., Linder et al., 2005; Cusimano et al., 2012;
Thomas et a., 2013). Diversification models generally have no information from which to

draw inferences other than branching order and branch length among extant species, both of
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which can be dramatically affected by (1) absolute taxon coverage (FitzJohn et al., 2009;
Dvieset a., 2013; Title and Rabosky, 2017; Revell, 2018; Burin et al., 2018; Rabosky, 2018)
and (2) sampling method at a given level of taxon coverage (Hohna et a., 2011; Hohna,
2014; Cusimano et al., 2012). Hence, not only absolute taxon coverage, but also potential
bias in this coverage, is important in interpreting diversification results, yet the identification
and use of explicit sampling strategies remains uncommon in the field (O’ Meara et al., 2016).
Inclusion of data representing all extant lineages with molecular data from resources like
GenBank, without an explicit sampling methodology, is perhaps the most common analytical
strategy (e.g., Jetz et a., 2012; Zanne et a., 2014; Upham et a., 2019; but see, e.g., Magallén
et a., 2018; O'Mearaet a., 2016). A second commonly used approach is taxonomically
representative sampling, including family-level or genus-level backbone trees (e.g., Magallon
et al., 2018), which preferentially samples species to represent deep phylogenetic divergences
to the exclusion of recent divergences. Representative sampling is the community standard
for molecular phylogenetic studies, meaning that databases such as GenBank implicitly
contain representative bias (reviewed in Cusimano et a., 2012; Hohna, 2014; O’'Mearaet al.,
2016; Sauquet and Magallon, 2018). Finally, random sampling procedures that sample extant
species with equal probability are perhaps the least frequently used (although this approach
corresponds best to common model assumptions; see O’ Meara et al., 2016).

Most current diversification approaches are able to model incomplete sampling; a
variety of such methods iswidely used in recent diversification studies (as a small sample
across taxa: Jetz et a., 2012; Rabosky et al., 2018; Magallén et a., 2018). Methods for
accounting for missing taxa make strong assumptions about the structure of missing species,
typically assuming they are randomly missing, an assumption not matched in many empirical
datasets (Hohna et al., 2011; Cusimano et al., 2012; Thomas et al., 2013; Revell, 2018), and

the impact of alternative sampling approachesis not clear. An additional poorly understood
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areais the impact of methods for incorporating described taxonomic diversity for which
molecular phylogenetic data are unavailable. The increased availability of very large
synthetic phylogenetic products with backbone taxonomy such as the Open Tree of Life
(Hinchliff et al., 2015), as well as probabilistic methods for inserting backbone taxonomic
information (e.g., polytomy resolver, Kuhn et al., 2011; PASTIS, Thomas et al., 2013;
TACT, Rabosky et al., 2018), creates opportunities for very large analyses with complete
sampling of known diversity. However, while these methods are often used (e.g., Jetz et d.,
2012; Rabosky et al., 2018; see review by Rabosky, 2015), the properties of diversification
inference with contemporary methods using such backbone taxonomies remain poorly
understood.

Here we use the rosid clade in the flowering plants as a test case to explore how
different sampling schemes influence the estimation of diversification with empirical data.
Rosids (Rosidae; Cantino et a., 2007; Wang et al., 2009; APG 1V, 2016) have great potential
for understanding the evolution and diversification of angiosperms, considering their
enormous species richness (90,000—120,000 species, representing around 25% of all
angiosperms; Govaerts, 2001; Hinchliff et al., 2015; Folk et al., 2018). The clade, containing
such globally important families as grapes, legumes, oaks and beeches, squash and melons,
and mustards (respectively, Vitaceae, Fabaceae, Fagaceae, Cucurbitaceae, and Brassicaceae),
originated in the early to late Cretaceous (115 to 93 million years ago, hereafter Myr),
followed by rapid diversification in perhaps as little as 4 to 5 million years to yield the crown
groups of fabids (112 to 91 Myr) and malvids (109 to 83 Myr; Wang et al., 2009; Bell et al.,
2010; Magallon et a., 2015). Therise of the rosids yielded today’ s forests, which largely
remain dominated by rosid species. The advent of these forests spurred diversification in
many other lineages of life (e.g., ants: Moreau et al., 2006; Moreau and Bell, 2013;

amphibians: Roelants et al., 2007; mammals: Bininda-Emonds et a., 2007; fungi: Hibbett and
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Matheny, 2009; liverworts: Feldberg et al., 2014; ferns: Watkins and CardelUs, 2012; Testo
and Sundue, 2016). However, biodiversity knowledge in the rosids remains limited, with
perhaps only 23% of species having usable molecular datafor phylogenetics (i.e., not
repetitive DNA and other non-conserved markers; Folk et al., 2018). Sampling is likewise
biased; species coverage is highly uneven, with economically important groups like the
legume and beech orders (Fabales, Fagales) overrepresented compared to important but less
familiar tropical groups like Malpighiales (Folk et al., 2018).

Despite previous efforts assessing the impact of incomplete sampling (e.g., Cusimano
et a., 2012; Hohna, 2014; Title and Rabosky, 2017), much remains unknown about how
incomplete and biased taxon sampling approaches impact diversification estimates,
particularly with empirical supermatrix data. Additionally, much of the methodological
literature cited above does not include use of the most recent methods now widely used in the
community. While offering limited power to generate biological insight about the
diversification process, incomplete taxon coverage in the rosids is an opportunity to
characterize the robustness of contemporary methods with an empirical dataset. We used a
recently constructed, 5-locus, 19,700-taxon matrix for rosids (molecular data only; hereafter,
20k-tip tree; Sun et al., 2019) to compare with a previously published 4-locus, 8,855-taxon
rosid phylogeny (molecular data only; hereafter, 9k-tip tree; Sun et a., 2016) as well asthe
rosid clade extracted from Open Tree of Life (hereafter OpenTree) with complete species
sampling (molecular data and backbone taxonomic data; hereafter, 100k-tip tree; Hinchliff et
al., 2015; Smith and Brown, 2018). We explored results generated using these phylogenies
from a suite of commonly used diversification approaches, comprising two parametric
methods (RPANDA, Morlon et al., 2016; BAMM, Rabosky, 2014) and one semi-parametric
method (the DR statistic, Jetz et al., 2012). We examined both variation in empirical

sampling patterns in major rosid clades and a series of sampling perturbations to simulate
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random and representative sampling methods. Using the workflow summarized in Fig. 1, we
document aremarkably complex impact of taxon sampling on inference of
macroevolutionary patterns. We focused on the following questions: (1) Do commonly used
contemporary methods differ in their robustness to poor overall sampling? (2) Do datasets
generated by random and representative sampling strategies result in different diversification
inferences? (3) Does adding backbone taxonomic information actually improve

diversification inference?

[. Materials and M ethods

The 9k-tip tree

This treeis the 4-gene tree of Sun et a. (2016) based on three chloroplast loci (atpB,
rbcL, and matK) and one mitochondrial locus (matR). Details of its construction can be found
in Sun et a. (2016). The data set consists of 8,855 ingroup species with 59.26% missing data
and is largely congruent with other phylogenetic results for rosids (e.g., Wang et al., 2009;

Soltiset a., 2011; Ruhfel et a., 2014; Gitzendanner et a., 2018).

The 20k-tip tree

The 20k-tip tree was built by adding the nuclear ITS locus to the four genesin the 4-
gene matrix of Sun et al. (2016), resulting in a 5-locus matrix with 19,740 ingroup species
(135 families and 17 orders) and 70.55% missing data (See Sun et al., 2019). All families are
monophyletic, and this phylogeny is also largely congruent with other inferences of rosid
phylogeny (e.g., Wang et al., 2009; Soltiset a., 2011; Sun et al., 2016; Gitzendanner et al.,

2018).
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The 100k-tip tree

We also assembled a complete species-level tree for all named rosid species using
OpenTree. We pruned the rosid clade from arecent phylogeny dating all seed plantsin
OpenTree (see detailsin Smith and Brown, 2018;
https://github.com/FePhyFoFum/big_seed_plant_trees/releases; file ALLOTB.tre), removed
non-species designations as above, and smoothed the branch lengths after pruning. These
steps were completed via functions from Phyx (Brown et a., 2018) and scripts from
OpenTree PY Toys (https://github.com/blackrim/opentree_pytoys). The final cleaned tree
contained 106,910 tips.

Divergence time analyses for these three trees (9k-, 20k-, and 100k-tip trees) have
already been conducted previously (see details from Sun et al., 2019, and Smith and Brown,
2018, respectively; Fig. 2). Briefly, Sun et al. (2019) used treePL with 59 fossil constraints
for the 9k-tip (Sun et al., 2016) and the 20k-tip phylogenies; likewise, Smith and Brown

(2018) also used treePL with 590 constraints extracted from Magallén et al. (2015).

Diversification Analyses and Comparisons

To understand the impact of sampling strategies, we first used trends in empirical
sampling across the three trees to investigate the correlation between sampling and inferred
diversification. We compared patterns for both the overall trees and for the 17 orders (each
monophyletic) of the rosid clade (APG IV, 2016), the species-level sampling of which differs
by up to 8-fold among the trees. We applied three widely used contemporary methods:
RPANDA (Morlon et al., 2016), BAMM (Rabosky, 2014), and the DR statistic (Jetz et al.,
2012; for implementation details, see below). To generate comparable metrics across
methods, we focused on the diversification rate of present-day lineages (that is, speciation

rate at time zero or “tip rat€”’), ametric that is commonly used and is comparable across all of

10
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the methods employed (see Title and Rabosky, 2019). We used both global tip speciation
rates (that is, speciation rates estimated at present, averaging across species; RPANDA,
BAMM) and distributions of rates for individual contemporary species (=“tip rates’; BAMM,
DR). For BAMM, we additionally examined speciation rates throughout the timeline of the
phylogeny, using both averages across the entire tree (hereafter, tree-wide speciation rates)

and rate-through-time plots.

Sampling Treatments: Cucur bitaceae Test Case

To examine diversification patterns further by generating known sampling patterns,
we used the best-sampled rosid family (Cucurbitaceae; approximately 64% sampling
following Flora of North America [Nesom, 2015] and Flora of China [Lu et al., 2011]).

Sampling treatments—We extracted the Cucurbitaceae clade (a subset of 528 tips)
from the 20k-tip tree to maximize species representation with molecular data alone. We
simulated both random and representative sampling schemes, the former with and without
backbone taxonomies. We (1) simulated randomly missing species by generating trees,
randomly dropping extant species at four sampling levels (10%, 30%, 50%, and 75% of
sampled species), with ten replicates for each sampling treatment. We then (2) simulated
randomly missing species that are added in via backbone taxonomies (hereafter, “backbone-
addition”) viarandomly dropping extant species at four sampling levels (10%, 30%, 50%,
and 75% of sampled species) and then adding them back to the phylogeny by attaching them
to the most recent common ancestor (MRCA) of the genus, with the tip branch length
extended to the present, similar to the method of OpenTree. If there were not at |east two
species of a genus sampled to generate a genus node, the missing taxon was attached to the
root of thetree (i.e., it was assignable to the family Cucurbitaceae but not to any sampled

genus node). These steps were donein 10 replicates with OpenTree PY Toys

11
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(https://github.com/blackrim/opentree_pytoys). Finaly, to simulate representative sampling,
we (3) pruned this tree to a genus-level phylogeny by randomly selecting one species in each
genus in ten replicates. Across these scenarios we repeated the diversification methods for

empirical trees (above) on these replicate trees.

Diversification methods

We used RPANDA v1.4 (Morlon et a., 2016), alikelihood method, to fit nine
diversification models representing constant, linear, and exponential time-dependent pure-
birth and birth-death models (Morlon et al., 2014; Appendix S1.1, see Supplemental Data
with this article). The best model was chosen individually across all empirical datasets, and
simulated replicates and parameters presented are always from the individual best model. We
accounted for incomplete sampling in each analysis to test whether this is adequately
modeled by RPANDA, basing the sampling ratio on the total species number in the Open
Tree Taxonomy (“OTT”) database (Table 1). We extracted the speciation rate parameter at
present for downstream analyses as a metric comparable to commonly used per-species “tip
rates’ derived below from BAMM and DR. This quantity represents global speciation rates
estimated for extant taxa and hereafter will be denoted “global tip speciation rate”.

We used BAMM v2.5.0 (Rabosky, 2014), a Bayesian approach, to estimate tip
speciation rates as with RPANDA (above). We also used BAMM to explore non-
contemporary speciation rates, examining both tree-wide speciation rates (that is, speciation
rates averaged across all tree timeframes including the present) and rate-through-time plots
(that is, speciation rates averaged in temporal windows, Appendix S1.2). We also accounted
for incomplete sampling in BAMM, parameterizing this identically to RPANDA (above).

As an additional examination of common practices, we used BAMM to explore the

impact of a global sampling probability (one missing species proportion imposed as the

12
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parameter for the entire tree) and species-specific sampling probabilities (missing species
parameters for arbitrarily defined clades, often named taxa) on diversification rates
implemented in BAMM. We confirmed convergence of the MCMC chains and effective
sample sizes >200 for the number of both shifts and log likelihoods (Appendix S2.1), after
discarding 10% burn-in. The exception was in order-level BAMM analyses for the 100k-tip
tree, for which 6 orders (Brassicales, Fabales, Malpighiales, Myrtales, Rosales, and
Sapindales) could not reach suitable effective sample sizes despite runs in some cases
exceeding 400 million generations; in these cases we imposed a 90% burn-in to ensure
adequate convergence and reduce downstream computational time. We present results from
these orders for comparison; results were qualitatively similar to other orders in the 100k-tip
tree (see Results).

Lastly, we employed the DR statistic (Jetz et al., 2012), one of the most widely used
semiparametric approaches to diversification estimation. The DR statistic quantifies the
“splitting rate’ from each extant species to the tree root as a model-free estimate of
diversification rate. Methods followed those described in Jetz et al. (2012) and Harvey et a.
(2016). There is no straightforward way to model incomplete sampling with the DR statistic
(but see Rabosky et a., 2018); aside from calculating DR for our 100k-tip synthetic tree, we
did not account for missing taxa in order to represent the most typical way in which this
statistic has been used. For BAMM, it was impossible to achieve convergence in the global
20k-tip and 100k-tip trees, so we only ran this method on the 17 rosid orders (clades

recognized in APG 1V, 2016); global tree results were generated only for DR and RPANDA.

13
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[1. Results

Diversification Analyses

Empirical diversification patterns

RPANDA—Both the 9k-tip and 20k-tip trees favored a birth-death model with
speciation and extinction rates varying exponentially with time; the optimal model for the
100k-tip tree was a pure birth model with linear speciation rate with respect to time
(Appendix S1.1; Appendix S2.2). The tip speciation rate was highest for the 9k-tip tree
(1.3905 Myr™) with similarly high results from the 20k-tip tree (1.3058 Myr™); estimated
rates for the 100k-tip tree were much lower (0.0446 Myr™; Fig 3a).

BAMM—The values of both mean tip speciation rates and mean tree-wide speciation
rates for the 9k-tip tree (1.1527 Myr™* and 0.7829 Myr ™, respectively) are higher than those
from both the 20k-tip tree (1.0731 Myr™* and 0.5601 Myr™; Appendix S2.1; Fig. 3) and 100k-
tip tree (0.1136 Myr™* and 0.3914 Myr*; Appendix S2.1; Fig. 3b-c). Among the 17 orders,
both the tip and tree-wide speciation rates from the 9k-tip tree are likewise generaly slightly
higher than the 20k-tip tree and much higher than the 100k-tip tree (Appendix S2.1; Fig. 3bc).

DR—On average, DR tip rates estimated from the 20k-tip tree yielded the highest
value (0.4644 Myr?), the 9k-tip tree was intermediate at 0.1889 Myr, while the 100k-tip tree
yielded the lowest (0.0902 Myr™; Appendix S2.3; Fig. 3d). As with the previous methods,
this overall scaling was aso generally true across the 17 orders (Appendix S2.3).

Sampling and diversification among rosid orders

RPANDA and BAMM showed a negative relationship between sampling ratio and
estimated rates across the empirical datafor the 17 rosid orders (that is, orders with less
sampling effort had greater estimated speciation rates). However, this correlation was not
significant (cf. Fig. 4). The DR method, however, showed a strong positive correlation (p =

14
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1.658e-07) between sampling ratios and estimated rates, meaning that decreasing sampling
effort predicts lower estimated speciation rates using this method (Fig. 4).

Rate-through-time curves across all orders showed strong differences among the three
trees (Appendix S3). The 9k- and 20k-tip trees were most similar across anayses; however,
the improved sampling of the 20k-tip tree allowed for the detection of recent bursts within the
last 15 million years in several ordersthat were not inferred in the 9k-tip tree (e.g.,
Brassicales, Cucurbitales, Fabales, Malpighiales, Vitales;, Appendix S3). The difference
between the 100k-tip tree and the 9k- and 20k-tip trees was more substantial. In the 100k-tip
tree, with the exception of Huerteales, all order analyses detected early bursts of speciation
rate not found in other trees, with lower estimated tip rates (here, at time 0) than the 9k- and

20k-tip trees (also see Fig. 3c).

Cucurbitaceae test case—Random sampling simulation

RPANDA—With random sampling, the estimated global tip speciation rate increased
with decreasing sampling effort, ranging about 1.5 fold from 0.4687 Myr™ (10% random
drop) t0 0.7263 Myr™ (75% random drop; Fig. 5a; Appendix S2.4). The 75% random-drop
treatment was significantly higher in tip speciation rate than all other treatments; no other
treatment comparisons were significantly different (Tukey HSD; see Appendix S2.5).

BAMM—As with RPANDA, higher estimated mean tip speciation rates and tree-wide
Speciation rates were both associated with decreasing sampling effort under random
sampling, ranging from 0.4658 Myr™ to 0.6508 Myr™* for mean tip speciation rates and from
0.2466 Myr™* (10% randomly dropped) to 0.5261 Myr™* (75% randomly dropped) for mean
tree-wide speciation rates (Fig. 5b,c; see Appendix S2.4). These rates were statistically
identical for al treatments except the 75% random-drop treatment (Tukey HSD; see
Appendix S2.5).

Rate-through-time plots from the trees show asimilar pattern (Fig. 6) to those
15
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observed for tip speciation rates. All of the sampling treatments tend to agree in rate
magnitude and curve shape with the complete tree except for the 75% random drop treatment;
in this treatment the overall speciation rates are higher at all timeframes, and the curvestend
to be flattened and linearized, with few of the complex details apparent with greater sampling
(Fig. 6).

DR—In contrast to RPANDA and BAMM, DR rates decreased with decreasing
sampling effort from 0.3599 Myr™* (10% random drop) to 0.1910 Myr™ (75% random drop;
Fig. 5d; Appendix S2.4). The DR rates were significantly different across all treatment
comparisons (Tukey HSD; see Appendix S2.5).

Summary—As observed with empirical sampling among the 17 rosid orders (above),
the estimated contemporary speciation rates increased in RPANDA and BAMM with
decreasing sampling effort (10% to 75% random drop; Fig. 5a,c), while rates estimated in DR

decreased with decreased sampling (Fig. 5d).

Cucurbitaceae test case—Random sampling simulation with backbone taxonomic addition

RPANDA—Under random sampling with addition of backbone taxa, the estimated tip
speciation rate decreased with decreasing sampling effort (in contrast to random sampling
aone; see above), ranging about four-fold from 0.3740 Myr™ (10% backbone-addition;
comparable to the 10% random drop treatment, above) to 0.0966 Myr™ (75% backbone-
addition; Appendix S2.4). The 10% backbone-addition treatment was significantly higher in
contemporary speciation rate than all other treatments (Fig. 5€); no other treatment
comparisons were significant (Tukey HSD; see Appendix S2.6).

BAMM—As with RPANDA, estimated mean tip speciation rates decreased with
decreasing sampling effort and backbone-addition, although the effect was smaller, ranging
from 0.4054 (10% random drop & add in) Myr™* to 0.3412 (75% random drop & add in; Fig.

5g; Appendix S2.4). The 10% backbone-addition treatment was significantly higher in
16
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contemporary speciation rates than all other treatments; the remaining treatment comparisons
were not significant (Tukey HSD; see Appendix S2.6).

Unlike tip speciation rates, decreasing sampling effort with backbone-addition
resulted in increased estimated tree-wide speciation rates, ranging from 0.3871 Myr™* (10%
random drop & add in) to 0.9545 Myr™* (75% random drop & add in; Fig. 5f; Appendix
S2.4). In this case, the tree-wide rates were higher than the tip rates, indicating that the
sampling scenario induced early-burst inferences (below). The 10% backbone-addition
treatment was significantly lower in contemporary speciation rates than all other treatments;
no other treatment comparisons were significant (Tukey HSD; see Appendix S2.6).

Rate-through-time plots from these backbone-addition trees all show asimilar pattern
of inferring spurious early bursts of diversification (Fig. 7) that were not reconstructed in the
original Cucurbitaceae tree (Fig. 7; black curve). Unsurprisingly, these bursts correspond to
nodes where backbone taxonomic data were added in these trees.

DR—DR rates decreased with decreasing sampling effort from 0.3372 Myr™ (10%
random drop & add in) to 0.1397 Myr™ (75% random drop & add in; Fig. 5h; Appendix
S2.4). The DR rates estimated from all four-level backbone-addition treatments were
significantly different for all group comparisons (Tukey HSD; see Appendix S2.6).

Summary—Using backbone taxonomic addition to account for missing taxa did not
prevent under- or overestimated tip speciation rates. Adding backbone taxa tended to result in
the inference of spurious early bursts of diversification (Fig. 7), consistent with the empirical

results for the 100k-tip tree (above).

Cucurbitaceae test case—Representative sampling simulation

RPANDA—Under arepresentative sampling scenario, the mean tip speciation rate for
representative sampling simulations was 0.3022 Myr™* (Fig. 8; see Appendix S2.7), lower by

~1.5 fold than that for the complete Cucurbitaceae tree (0.4635 Myr™*); hence, estimated
17
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speciation rates decreased with decreased sampling, opposite the pattern recovered above
with random sampling but similar to that recovered with random sampling with backbone-
addition.

BAMM—Unlike RPANDA, BAMM has two approaches for handling incomplete
sampling, both implemented here: specifying either clade-specific or global missing taxon
parameters. While global sampling fractions were used el sewhere, we included clade-specific
sampling fractions here to match common methods used for family-level trees and other
backbone phylogenetic data. In the global sampling fraction scenario, mean tip speciation
rates (0.1275 Myr™) were lower than the global tree (0.4625 Myr™) while mean tree-wide
speciation rates (0.2539 Myr™) were higher than the global tree (0.2408 Myr™). Clade-
specific sampling fractions resulted in unilaterally lower estimated speciation rates; both
mean tip rates (0.1275 Myr™) and mean tree-wide speciation rates (0.1764 Myr™) were lower
than those estimated from the global tree (0.4625 Myr™* and 0.2408 Myr, respectively; Fig. 8;
Appendix S2.7).

Rate-through-time plots (Fig. 8c) were similar to the mean rate results. Global
sampling factions tended to increase the scaling of the entire rate curve, with up to ~two-fold
higher speciation rates (at the present), compared to assigning cladewise sampling fractions;
the global sampling fraction result was closer to the total Cucurbitaceae tree. While the
scaling was different, the rate through time curves were similar in completely failing to detect
the burst of speciation rates towards the present seen in the total Cucurbitaceae tree (Fig. 8c);
instead, BAMM inferred a spurious early burst of speciation rates at the root (see also
backbone-addition, above).

DR—The mean DR tip rate for the representative sampling trees was 0.0875 Myr,
far lower than the total Cucurbitaceae tree (0.3794 Myr™Y), as well as lower than the other

rates estimated by RPANDA and BAMM (Fig. 8a-b).

18
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410 Summar y—A cross methods, representative sampling results in lower tip speciation
411 rate estimates and similar to backbone-addition (above), consistent with these results being
412  driven solely by afailure to sample nodes. However, tree-wide speciation rates were higher
413  on average, rate through time curves (Fig. 8c) showed that this behavior is dueto failure to
414  detect recent bursts of speciation and instead inferring higher rates of evolution at earlier time

415 intervals (see aso Cusmano et a., 2010).

416 |V. Discussion

417 We found surprisingly diverse effects of sampling effort on inferences of

418 diversfication using the methods we employed. Overall, BAMM showed the greatest

419  robustnessto incomplete sampling. In BAMM, al random taxon-dropping treatments

420 resulted in statistically identical tip speciation rates with the exception of the most extreme
421  treatment (dropping 75% of taxa; Fig. Sb-c), where estimated tip speciation rate increased
422  dramatically (Appendix S2.4). BAMM also tended to be more robust to the other sampling
423  scenarios, with the exception of representative sampling, where no method was robust. Tree-
424 wide speciation rates and rate-through-time curves in BAMM showed similar patterns (Figs.
425  6-7), although in some cases these metrics were more sensitive to incompl ete sampling than
426  tip speciation rates.

427 In contrast to BAMM, both RPANDA and DR were highly sensitive to missing taxa.
428  For most analyses, the effect of all incomplete sampling scenarios using RPANDA and DR
429  wasdisturbingly near-linear (e.g., Fig. 5a, d), in contrast to the threshold behavior of BAMM.
430 Methods also differed in the direction of parameter bias in response to incomplete sampling;
431 DRinall casesresulted in underestimates of tip speciation rates, while BAMM and

432 RPANDA under- or overestimated speciation rates compared to the complete tree, dependent

433  onsampling scenario.
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Opposing bias patterns in representative and random sampling

Under the random sampling scenarios simulated here, speciation estimates increased
in both RPANDA and BAMM with decreasing sampling efforts (i.e., they were
overestimated; Fig. 5). In contrast, representative sampling resulted in decreased estimates of
tip speciation rate across methods. Interestingly, in contrast to random sampling, BAMM tip
rates were not robust to representative sampling strategies, and these simulations exhibited
some of the highest rate estimate differences from the complete Cucurbitaceae tree (Fig. 8b;
Appendix S2.7).

Only BAMM and RPANDA showed differential bias patterns, whereas with DR
(which does not model taxon absence), decreased sampling always resulted in underestimates
of speciation rates. This suggests that modeling taxon absence can result in an
“overcorrection” that overestimates rate parameters, even in our taxon-dropping perturbations
that were random and therefore matched modeling assumptions. These results make intuitive
sense and to some extent are consistent with previous literature (e.g., Cusimano and Renner,
2010). While we attempted to account for incomplete sampling, typically, missing species
must be modeled as randomly missing in most implementations of diversification methods.
Representative sampling can be seen as aform of sampling biasin that it selectively
preserves long phylogenetic branches while dropping short branches. Thiswill have the
effect of masking recent, shallow radiation events and pushing apparent diversification
patterns backwards in time and depressing estimates of extinction (see Cusimano and Renner,
2010; Hohnaet al., 2011). Rate-through-time plotsin BAMM exemplify this effect (Figs. 8c,
Appendix S3); representative sampling flattened inferred curves and essentially erased any
signal of recent diversification, an effect only seen in random sampling with the most
extreme scenario (75%; Fig. 6). Instead of a recent burst, representative sampling tends to

result in spurious inferences of early bursts not evident with improved sampling (see also
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Cusimano and Renner, 2010). Understanding this biasis important, as typical molecular
phylogenetic sampling schemes seek to represent deep phylogenetic branches
disporportionately (Hohna et al., 2011); hence genetic resources like GenBank are likely to
be populated primarily by data from studies that used representative sampling schemes.
Comparison with an angiosper m-wide study—As an additional exploration of
sampling protocols, our BAMM mean speciation rates for the molecular-only trees (9k-tip
and 20-k tip; Appendix S2.1) can be directly compared to a recent angiosperm-wide analysis
in BAMM exemplifying very coarse representative sampling (Magallon et a., 2018; cf.
Supplementary Data “aob-18219-s06") covering 792 species or ~0.2% of angiosperm species
richness. While Magallon et al. (2018) accounted for incomplete sampling with similar
methods to our current study, the difference in resultsis remarkable. Our estimates of
speciation rate with stronger sampling in the same rosid orders (including tree-wide averages
and rate-through-time plots) were uniformly higher, the difference sometimes exceeding an
order of magnitude (e.g., compare Sapindales, Myrtales, and Vitales; Fig. 3in Magallon et
al., 2018). The mean clade speciation rates we obtained from BAMM ranged up to ~2.5 Myr’
! for the 9k-tip tree and ~1.7 Myr ™ for the 20-tip tree, all values consistent with other rapidly
diversifying plant taxa (scaling of plant diversification ratesis reviewed in Lagomarsino et
al., 2016). All mean clade speciation rates reported in Magallén et al. (2018) were at least 5-
fold smaller in magnitude, and even the highest individual lineage speciation rates were at
least 2-fold smaller. Unsurprisingly, this angiosperm backbone tree failed to recover
signatures of recent diversification; rate curves (Magallon et al., 2018: Fig. 3) were strongly
flattened compared to our results, particularly for rate variation within the last ~15 million
years, consistent with our representative sampling experiments (Figs. 8c, Appendix S3).
Previous work using coarse phylogenetic sampling with semiparametric methods (Magallén

and Sanderson, 2001) had similar scaling of diversification ratesto Magallon et al. (2018).

21


https://doi.org/10.1101/749325
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/749325; this version posted August 29, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

484  The magnitude of this downscaling of speciation rate likewise is similar to that between our
485  molecular-only trees (9k-tip and 20k-tip) and our tree with added taxonomic backbone data
486  (100k-tip; Appendix S3). These observations, along with our sampling manipulation

487  experiments, suggest caution in interpreting the results from diversification studies sampling
488  avery small proportion of species-level diversity with backbone trees and relying heavily on

489  taxonomic datato cover sampling gaps.

490 Impact of backbone taxonomic addition

491 Thus far, we have focused on our 9k- and 20k-tip trees containing only taxawith

492  molecular data. Diversification patterns observed with the 100k-tip tree using backbone

493  taxonomies were remarkably different across methods; the differences mainly comprised (1)
494  spurious inference of early bursts of speciation and (2) depression or exaggeration of tip

495  gpeciation rates. This difference was consistent across analyses despite asimilar phylogenetic
496  backbone across al trees and asimilar overall distribution of clade dates between 100k-tip
497  tree and the 9k- and 20k-tip trees (Fig. 2) without obvious overall bias in node age. Despite
498  considerableinterest in using synthetic trees for evolutionary studies, we are aware of no

499  dimilar studies of the behavior of taxon addition by MRCA, as used in OpenTree (Hinchliff et
500 al., 2015; for alternative probabilistic methods, see Thomas et al., 2013; Rabosky, 2015;

501 Rabosky et a., 2018). Among the three diversification methods we used (RPANDA, BAMM,
502 DR), the 100k-tip tree aways resulted in far lower estimated tip speciation rates than

503  observed with the 9k- and 20k-tip trees, usually around 10-fold smaller in magnitude (Figs. 3,
504  Appendix S3; Appendix S2.1-S2.3). Although the magnitude is surprising, this pattern makes
505 intuitive sense given that synthetic phylogenies (100k-tip) were built by insertion of missing
506 taxaatthe MRCA of the least inclusive clade of which membership is known (e.g., genus,
507  family, etc.). Assuming correct taxonomic assignments, this approach will result in

508 consistently older node ages than would be inferred with molecular data and an empirical tree
22
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509  (9k- and 20k-tip), pushing back the apparent timing of diversification and therefore

510 depressing estimates of tip speciation rate (Figs. 3c, Appendix S3). Simulating this behavior
511  in our backbone-addition experiments confirmed that this practice results in lower estimates
512  of tip speciation rates (Fig. 5e-h; Appendix S2.4), and rate curves showed that thisis largely
513  driven by inferring spurious early bursts of evolution (Figs. 7, Appendix S3). Aswith the

514  random sampling scenario, tip ratesin BAMM were most robust to backbone-addition among

515 the methods employed (Fig. 5g), athough overal BAMM rates were very sensitive (Fig. 5f).

516 V. Conclusions

517 We found strong impacts of sampling on diversification inference that were

518  surprisingly diverse, and potentially large enough in magnitude to change evolutionary

519 conclusions. For example, our representative and backbone-addition sampling simulations
520  were sufficient to generate spurious early bursts of speciation and erase signals of recent

521  bursts of speciation. Although improvement of molecular taxon sampling to overcome this
522  heterogeneity would beideal, for large clades thisis not always feasible, necessitating

523  methods that adequately account for missing biodiversity knowledge. Our results indicated
524  greater robustness to moderate incomplete sampling in BAMM, especially for estimating tip
525  gpeciation rate. Some types of rate metrics were more robust than others and more reliable for
526  poorly sampled datasets; tip speciation rates were generally the most robust.

527 A frequently used alternative to adding molecular datato a given phylogenetic treeis
528 toincorporate taxonomic knowledge and presumed taxonomic placements, often using

529  backbone addition. To date, the benefits of backbone taxonomic addition (e.g., Jetz et al.,
530 2012; Rabosky et a., 2018; Stein et a., 2018) have largely been assumed rather than

531 demonstrated with test cases. We find here that adding taxa without molecular data has

532  unpredictable effects and was not necessarily more accurate than other approaches. Based on
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the dramatic inferential differences we observed among analyses, we advise (1) strong
caution in the inference of diversification using very poorly sampled trees regardless of
method; (2) the use of sensitivity analyses similar to those we implemented in Cucurbitaceae
to characterize whether empirical results are conditional on methods that account for missing
taxa, and (3) especially strong caution in using summary backbone phylogenies for

diversification estimation.
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Table 1. Ordinal-level summary sampling table for the 9k- and 20k-tip rosid sampling
compared to the rosid clade of the Open Tree Taxonomy (“*OTT”) database v. 3.0
(https://devtree.opentreeoflife.org/about/taxonomy-version/ott3.0; Hinchliff et al., 2015) and
matching taxon names between these data sets. Orders follow APG IV (2016). A summary

table at the family level for the 20k-tip treeisavailablein Sun et a. (2019).

9Kk-tip Tree 20k-tip Tree
Order M atched Matched Matched Matched
genus % species % genus%  species %

Brassicales 36.85% 7.49% 71.12% 28.50%
Celastrales 59.45% 13.34% 61.26% 18.15%
Crossosomatales 92.85% 29.26% 92.86% 29.27%
Cucurbitales 85.71% 13.93% 87.97% 26.60%
Fabales 66.66% 8.25% 76.04% 21.95%
Fagales 44.59% 10.91% 48.65% 21.92%
Geraniales 60.00% 12.16% 75.00% 30.67%
Huerteales 100.00% 23.33% 100.00%  23.33%
Malpighiaes 64.98% 8.33% 65.77% 17.37%
Malvaes 54.81% 9.72% 62.96% 16.54%
Myrtales 48.21% 4.05% 54.11% 8.28%
Oxalidales 59.42% 4.21% 62.32% 8.25%
Picramniales 66.66% 8.77% 66.67% 8.77%
Rosales 54.03% 3.38% 60.45% 8.22%
Sapindales 56.98% 11.21% 62.07% 18.34%
Vitales 60.00% 3.63% 60.00% 9.52%
Zygophyllaes 62.96% 10.58% 66.67% 17.65%
Total 57.80% 7.28% 66.34% 16.25%
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Figure Legends:

Fig. 1. Workflow employed for empirical dataand simulations in this study. Abbreviation
notes: 9k-tip tree = 4-gene, 8,855-species rosid tree from Sun et al. (2016); 20k-tip tree = 5-
locus, 19,740-species rosid tree from Sun et a. (2019); 100k-tip tree = 106,910-species tree
extracted from OpenTree (Smith and Brown, 2018); bd-models = nine birth-death models
from RPANDA (see Appendix S1.1). Tree-wide rate means speciation rate averaged
throughout the tree.

Fig. 2. Agedistribution of crown ages for clades extracted from the 9k-, 20k-, and 100k-tip
trees. The two dating methods used, treePL and PATHdS, are shown in orange and blue,
respectively. The two methods resulted in substantially different date scaling; for the treePL
trees used in this study, the probability density distributions of clade dates were very similar

across very different sampling levels.

Fig. 3. Tip speciation rate boxplots (here denoted 1o) for RPANDA, BAMM (including tip
speciation rates and tree-wide speciation rates), and DR, across the three empirical datasets,
9k-tip tree, 20k-tip tree, and 100k-tip tree. The boxes and whiskers represent the 0.25-0.75

and the 0.05-0.95 quantile ranges, respectively.
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Fig. 4. Correlation between sampling effort and speciation rates among the 17 rosid orders
from 9k- and 20k-tip trees. The X axisisthe ratio of sampling percentages; the Y axisisthe
ratio of speciation rates (9k-tip/20k-tip in both cases; values closer to one indicate values
closer to the more fully sampled 20k-tip tree); each dot represents asingle rosid order. The R?
and p-values are color-coded following the legend colors. Gray plot zones indicate curve 95%
confidence intervals. Only the DR statistic showed a significant positive relationship between
sampling percentage and diversification rate; for other methods, the rosid orders do not show

asignificant relationship between sampling effort and estimated speciation rate.

Fig. 5. Sampling simulation boxplots with four treatments and three different rate metrics
using the Cucurbitaceae tree. Contemporary speciation rates (1) estimated by RPANDA (1
rPANDA), BAMM (speciation rate: Agamm treewide; @Nd tip rate: A gamm tip), and DR (4 pRr). The
(a-d) panels correspond to the random sampling simulations and (e-f) panels to the random

sampling simulations with backbone-addition.

Fig. 6. Rate-through-time plots with the random sampling simulations. The thick black line
stands for the original Cucurbitaceae 528-tip tree; the color-coded rate-through-time curves
were generated by 10 random trees each under 10%, 30%, 50%, and 75% of taxarandomly
dropped. The results for all sampling treatments were very similar to the full empirical

sampling result except for the most extreme dropping experiment (75% of tips).
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Fig. 7. Rate-through-time plots with the random sampling simulations with backbone-
addition. The thick black line stands for the original Cucurbitaceae 528-tip tree; the color-
coded rate-through-time curves were generated by 10 random trees each under 10%, 30%,
50%, and 75% of taxa randomly dropped and added in as backbone taxonomic data. With
moderate missing taxa (10% dropped), few spurious early bursts were inferred, but these

were frequent with more missing taxa

Fig. 8. Comparisons of tip speciation rate for full empirical and representative sampling
levels for RPANDA, BAMM, and DR using Cucurbitaceae data. (a) Boxplot of
contemporary speciation rate and tree-wide rate (BAMM) of the 10 random genus-level tree
results estimated by RPANDA, BAMM, and DR. (b) Boxplot showing rate differences by
subtracting rates in (a) from those inferred from the family-level 528-tip tree; O would
indicate identical results. Note that in some cases the magnitude of the differenceis nearly as
large as the overall speciation rate. (c) Color-coded rate through time plotsin BAMM
showing rate differences among globa sampling fraction (blue), clade-specific sampling
fraction (orange), and original family tree (black). Abbreviations for boxplot figures:
BAMMglobal tip = tip speciation rates estimated with global sampling fractions;
BAMMglobal tree-wide = tree-wide speciation rates estimated with global sampling
fractions; BAMMspecific tip = tip speciation rates estimated with clade-specific sampling
fractions, BAMMspecific tree-wide = tree-wide speciation rates estimated with clade-specific

sampling fractions.
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SUPPORTING INFORMATION:

Appendix S1 Supplemental methods:

Appendix S1.1: Diversification analyses implemented by RPANDA

Appendix S1.2: Diversification analyses implemented by BAMM

Appendix S2 Supplemental Tables:

Appendix S2.1. Summary table for BAMM analyses (also see Appendix S1.2).

Appendix S2.2. Best models and speciation rates estimated for 9k-, 20k, and 100k-tip trees
and each of 17 rosid orders from these trees using RPANDA with nine birth-death
models (cf. Appendix S1.1).

Appendix S2.3. Summary table for the DR statistic.

Appendix S2.4. Summary table for diversification simulationsin the Cucurbitaceae test case.

Appendix S2.5. Tukey HSD test across the RPANDA, BAMM, and DR methods for the
Cucurbitaceae test case under the random taxon-dropping scenario.

Appendix S2.6. Tukey HSD test across the RPANDA, BAMM, and DR methods for the
Cucurbitaceae test case under the backbone-addition scenario.

Appendix S2.7. Summary table for diversification analyses for the Cucurbitaceae test case

under the representative sampling scenario.

Appendix S3 Supplemental Figure: Comparison of rate-through-time plots for each of the

17 rosid orders (a-q).
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