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Abstract

CAPRI Rounds 37 through 45 introduced larger complexes, new macromolecules, and multi-stage
assemblies. For these rounds, we used and expanded docking methods in Rosetta to model 23
target complexes. We successfully predicted 14 target complexes and recognized and refined near-
native models generated by other groups for two further targets. Notably, for targets T110 and
T136, we achieved the closest prediction of any CAPRI participant. We created several innovative
approaches during these rounds. Since Round 39 (target 122), we have used the new RosettaDock
4.0, which has a revamped coarse-grained energy function and the ability to perform conformer
selection during docking with hundreds of pre-generated protein backbones. Ten of the complexes
had some degree of symmetry in their interactions, so we tested Rosetta SymDock, realized its
shortcomings, and developed the next-generation symmetric docking protocol, SymDock2, which
includes docking of multiple backbones and induced-fit refinement. Since the last CAPRI
assessment, we also developed methods for modeling and designing carbohydrates in Rosetta, and
we used them to successfully model oligosaccharide—protein complexes in Round 41. While the
results were broadly encouraging, they also highlighted the pressing need to invest in (1) flexible
docking algorithms with the ability to model loop and linker motions and in (2) new sampling and

scoring methods for oligosaccharide—protein interactions.
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Introduction

With the explosion in genomic data availability and the ever-increasing accuracy of in silico
protein folding methods, the ability to computationally model protein assemblies has taken center-
stage. Protein-docking methods provide a rapid way to model assemblies, and hence, their progress
has been a key focus of computational biophysics. Over the years, various approaches have been
developed, each with a different scope and ability to integrate experimental data. Since 2001, a
community-wide blind experiment, Critical Assessment of PRediction of Interactions (CAPRI),
has been used to assess the state-of-the-art in computational macromolecular docking.!
Participating groups predict the structure of a complex given the sequences of the constituent
proteins, stoichiometry of association, and, in case of homomeric complexes, the point symmetry.
Based on their resemblance to the unpublished, experimentally determined structure, the accuracy
of the predictions is ranked. With every new round, the organizers add to the complexity of the

modeling challenge by introducing more intricate complexes and non-protein macromolecules.

Our group has continuously evaluated our docking algorithm, RosettaDock? in CAPRI, leading to
advances such as docking antibodies with loop flexibility,> varying protonation states while
docking,* and interspersing conformational selection with docking.> Previous rounds of CAPRI
necessitated the creation of protocols for flexible protein assembly and oligosaccharide—protein
docking.®” During this latest period with rounds 37 through 45, we developed RosettaDock 4.0 to
model flexible proteins® and refined GlycanDock to predict oligosaccharide—protein interactions.’
Round 37 was a joint experiment between CAPRI and the Critical Assessment of Structure
Prediction (CASP) in which preliminary monomer models submitted by CASP12 participants

were provided to the CAPRI participants for docking.!® This round comprised nine symmetric
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homomers. Based on our performance on these homomers, we developed a new symmetric
docking algorithm called Rosetta SymDock2.!! Rounds 39 and 42 required global docking while
predicting the conformation of long, flexible loops. These targets gave us an opportunity to add
functionality to dock single-chain camelid antibodies in our antibody docking protocol,

SnugDock.?

In this article, we examine the challenge of modeling with the available information, discuss the
methodology we used, compare our CAPRI submissions to models made using new techniques,

and suggest improvements to improve modeling accuracy.

Methods and Results

We predicted the structures of 23 complexes in CAPRI rounds 37 through 45. We achieved 1 high-
quality, 6 medium-quality and 7 acceptable predictions. Table I summarizes successfully modeled

targets and Table Il summarizes our failed attempts.

Homomer docking successes

Targets 110—-112: Viral fiber head domains

The first three targets of round 37 were homo-trimeric fiber head domains from different viruses.

Target 110 (T110) was the fiber head domain of raptor adenovirus 1, T111 was that of lizard


https://doi.org/10.1101/749317
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/749317; this version posted November 3, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

adenovirus 2, and T112 was that of goose adenovirus 4, and the task was to predict the trimer

quaternary structure.

Before we docked the models, the organizers provided us with the initial monomer models
submitted by CASP12 participants. First, we relaxed all the models using Rosetta FastRelax,!?
clustered those with similar backbone conformations, and chose between one and four monomer
backbones for docking. For T110, all homologous proteins had less than 40% sequence coverage
and identity. Importantly, all these distant homologs lacked a beta-hairpin predicted by CASP
monomer models (residues 358 to 373) present in T110. T111 had a homolog with 94% sequence
coverage and 50% identity, which strongly suggested that the native structure would resemble
snake adenovirus 1 fiber head (PDB ID: 4D0OV)'?. For T112, the avian adenovirus CELO fiber
head (2IUM)!* came the closest with 59% coverage and 27% identity. For T110, due to the
aforementioned beta-hairpin, we performed symmetric global docking simulations with different
monomer conformations, with and without the beta-hairpin, using Rosetta SymDock.!® For initial
subunit placement for T111 and T112, we used subunit arrangements derived from their respective
homologs and refined the complexes using fixed-backbone refinement of SymDock. Between

10,000 and 50,000 models per monomer were generated for all three targets.

For T110, the crystal structure (PDB ID: 5FJL)!¢ is shown in in Figure 1A (gray). The native
structure did indeed possess a beta-hairpin as predicted, which is highlighted in red. On the
superposed complex, the root-mean-square deviation of the C, atoms (RMSDc.) of the predicted
beta-hairpin was 1.4 A from the native. Our best model (yellow) recovered 67% of the native

contacts across the subunits and had a root-mean-square deviation of ligand backbone atoms
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(Lrmsd) of 2.35 A and a root-mean-square deviation of interface backbone atoms (Irmsd) of 1.73
A from the native, which were the lowest values among all of the models submitted by all of the
groups. The presence of a close homolog made T111 an easy target with multiple groups, including
us, predicting high-quality models. The crystal structure of the target is still unreleased, but we
assume it to be similar to snake adenovirus 1 fiber head (4D0V). In Figure 1B, our best model is
shown in orange superimposed on the gray crystal structure of the homolog. Conversely, the
absence of close homologs made T112 difficult to model both in the monomeric state and in the
trimeric state. No group achieved a medium- or high-quality prediction. The Lrmsd and Irmsd of
our best model was 5.8 A and 2.9 A, respectively and hence, it was classified as acceptable. The
crystal structure of the target is still unreleased and no close homolog is available for a visual

comparison.

Target 118: Fructose bisphosphatase homo-octamer

T118 was a refinement challenge involving fructose 1,6-bisphosphatase from Thermus
thermophilus. Although the organism is a hyperthermophile, we were not provided any
temperature information about this target. A close homolog structure of fructose 1,6-
bisphosphatase from a thermo-acidophilic archaeon, Sulfolobus tokodaii with 100% sequence

coverage, 46% identity, and the same D4 symmetry (3R1M)!” was available.

We extracted symmetry information from the aforementioned homolog, arranged the monomer
models and refined the complex using fixed-backbone refinement of SymDock. Figure 1C shows

our best model in color and the crystal structure of the homolog in gray. The crystal structure of
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the target is yet to be released. The model recovered 41% of the native contacts with Lrmsd and
Irmsd values of 1.7 A and 1.0 A, respectively, and hence, was classified as a medium-quality

model.

Target 119: Archaeal halo-thermophilic alcohol dehydrogenase

T119 challenged us with atypical modeling conditions. The homo-dimeric protein, alcohol
dehydrogenase, was from a halo-thermophilic archaeon expressed in a halo-mesophilic expression
system. The behavior of this enzyme is pH dependent: in the pH range of 9.6-10.2, its oxidative
reaction peaks, whereas at pH of 6.4, reduction reaction is dominant.!®* We were asked to predict

the structure of the complex at pH 10.

First, we relaxed and selected monomer models from CASP12 participants. The closest
homologous homo-dimer that we found was alcohol dehydrogenase 2 from the bacteria
Zymomonas mobilis (30WO)!". The two subunits of the homolog had extensive cross-beta sheet
interactions along the N-termini. The N-termini interaction served as a hinge, where a small error
in the backbone would result in a drastically different rigid-body conformation. Unfortunately, this
region of the target protein was predicted to be disordered and was different in all monomer
models. As a result, we had to partly truncate the N-terminus. We followed a two-pronged
approach to model this target: on the one hand, we explored the homo-dimeric conformational
space using the standard SymDock protocol; on the other hand, we sampled different residue

protonation states at pH 10 with a variant of RosettaDock called with Rosetta pHDock?*. We
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produced 10,000 docking models with each method and chose the most symmetric proteins

interacting at the N-terminus for pHDock.

Figure 1D shows our best model in yellow, the crystal structure in gray, and the N-terminus of the
crystal structure in red. Despite missing key interactions at the N-terminus, we were able to predict
the rough placement of the subunits correctly, and hence our best model was adjudged acceptable.
The model predicted 61% of the native contacts with Lrmsd and Irmsd values 0of 9.9 A and 3.0 A,
respectively. This large difference of RMSD values arises from the aforementioned hinge motion,
where a small change in the N-terminus backbone leads to large changes globally. The best model

across all groups was a medium-quality model.

Target 136: Lysine decarboxylase homo-decamer

T136 was the homo-decameric lysine decarboxylase, LdcA from Pseudomonas aeruginosa. Close
homologs were available for the complex in the form of lysine decarboxylase, Ldcl from E. coli
(5FKZ) and arginine decarboxylase, AdiA (2VYC) from Salmonella typhimurium. The wing
domain of the subunits was given to be significantly different to the homologs leading to different
inter-subunit contacts. As the subunit arrangement was likely to be similar to its homologs, the
challenge of this complex was to model the wing domain correctly within the confines of the D5
symmetry. Another issue was the sheer size of the protein: ten subunits each with 750 residues
making extensive interfaces with other subunits makes it the largest CAPRI target to date,

requiring high-memory workstations for docking.
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We started by modeling the monomer using the online server, Robetta,?

which produced
convergent conformations for the wing domain that were distinct from the homologs. Drawing on
symmetry information from the homologs and arranging the subunits accordingly led to steric
clashes at the wing domain. All fixed-backbone refinement efforts using SymDock failed to
produce a plausible structure free of clashes. Instead, SymDock refinement resulted in an
unrealistic inter-subunit distance by expanding the complex to relieve the clashes. We conjectured
that the monomers needed to be relaxed in the context of the complex, and not independent of it.
We achieved this by superimposing ten copies of each monomer model onto each of the subunits
of the homolog, AdiA and then relaxing one of the monomers with the other nine copies present.
On doing so and then docking the context-refined monomers, we were able to obtain structures
where the wing domain readily fits into the given symmetry without steric clashes. Figure 1E
shows our model for LdcA with the wing domains of five subunits highlighted in darker hues
against lighter tints of the rest of the subunit. We predict that each wing domain contacts two
neighboring wing domains and well as a neighboring chain. Our scoring model (based on our

prediction model) was adjudged to be the highest quality for any group (medium quality overall)

and recovered 60% of the native contacts with Lrmsd and Irmsd of 2.4 A and 1.7 A, respectively.
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Post-hoc analysis of the performance of SymDock2 on CAPRI targets

We noticed a pattern of error whereby when starting from the symmetric arrangement of a
homolog, Rosetta SymDock protocol would expand the overall size of the complex to relieve inter-
chain clashes. This phenomenon progressively worsened for higher order symmetries. Given the
same set of inputs, we tested (post-CAPRI) whether SymDock2!! improved the quality of the

models for three of the complexes where this error was observed, viz. T110, T118, and T136.

For T110, the best model amongst the 10 top-scoring models had the same overall classification
as our original submission, medium-quality. However, its inter-subunit distance of 23.7 A was 2%
smaller than the native (SFJL) structure’s distance of 24.2 A. This reversed the trend of the best
structure from SymDock, which had a 4% larger inter-subunit distance of 25.0 A. The cause of
this compression is not because the individual monomers are closer to the native; in fact, the
RMSDy, of the monomers in SymDock was 1.1 A compared to 1.2 A after SymDock2. The tighter

fit was achieved by subtle backbone changes during SymDock2’s flexible backbone refinement.

We observed a big improvement for T118, where most of SymDock2’s 10 top-scoring models
were high-quality (using monomer model superposition to a close homolog, 3R1M, to approximate
native). The best structure from SymDock2 recovered 73% of the “native” contacts while having
a sub-angstrom Lrmsd. Had we submitted this structure during CAPRI, it would have been the
best structure across all groups. Moreover, the inter- subunit distance of the SymDock2 model was
40.3 A compared to 43.3 A in the SymDock model and 39.0 A in the homolog. Thus, the

SymDock?2 model expands by just 3% relative to the homolog and presumably recovers additional

10
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inter-chain contacts compared to the SymDock model, which expands by 11%. Supplementary
Figure S1A highlights the similarity of the SymDock2 model to the “native” and Figure S1B

compares the SymDock and SymDock2 models and the distance between monomers.

As we could not generate a feasible structure for T136 using SymDock, a direct comparison is not
possible. Instead, first, we had relaxed the monomer in context of its partners and then used that
monomer with SymDock. The inter-subunit distance for the best-scoring model was 62.2 A, a 1%
increase over the distance of 61.6 A in a close homolog (2VYC). With SymDock2, we could
generate models starting from the initial homology-modeled monomers with the best-scoring
model having an inter-subunit distance of 63.1 A, which was 2% more than the homolog. Thus,
with better packing of interfaces due to flexible backbone refinement, SymDock2 resolves the
problem of complex expansion in SymDock and thus, significantly outperforms SymDock on

CAPRI targets.

Homomer docking failures

Target 114: Ljungan virus protein

T114 was the homodimeric-protein 2A2 from Ljungan virus. The function of this protein is
unknown. We were provided with monomer models from CASP12 participants. We relaxed the
models and chose five top-scoring, distinct models for docking. We found no homologs from
which to extract symmetry information, and hence, we performed a global search of C2

configuration space to generate 50,000 models for each monomer structure. None of the models
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submitted by us or any predictor was adjudged to be correct. As the experimental structure of this

protein has not been released yet, we could not determine the reason(s) for failure.

Target 116: Bifunctional histidine kinase

T116 was two domains (Dhp and CA) of the homo-dimer, CckA of Caulobacter crescentus. We
identified several homo-dimeric histidine kinase homologs with 97% or more sequence coverage
and 25% or more identity, like those from E. coli (4GCZ)*' and Geobacillus stearothermophilus
(3D36)?2. Each homolog had a different relative orientation of the Dhp and CA domain
equivalents, indicating that this target could only be successfully docked if the domains were

correctly oriented in the monomers.

Models from CASP12 participants had a variety of different relative orientations of these two
domains depending on the homolog template they chose. Using monomers with two different
orientations, we generated 25,000 global docked models per orientation. Unfortunately, the
relative orientations of the two CckA domains were very different from all available homologs as
shown in Supplementary Figure S2B. Without a good monomer conformation, we, as well as all

the other predictors, failed to dock the dimer correctly.
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Heteromer docking successes

Target 120: Group 1 dockerin—cohesin complex

In anaerobic bacteria, the cellulosome assembly digests plant fibers. The assembly of this complex
involves the binding of different enzyme-borne dockerin proteins (Doc) to cohesin modules of the
non-enzymatic protein, scaffoldin (Sca). As different groups of dockerins have significantly
different cohesin-binding interfaces, they have different binding modes for every cohesin.??
Moreover, within the same species, each dockerin binds cohesins promiscuously and with different
binding modes. Furthermore, single residue changes can affect binding, compounding the
challenge of identifying the correct mode.>* T120 was a hetero-dimer of ScaB3 cohesin with Docla

from Ruminococcus flavefaciens.

We started with homology models from CASP12 participants and relaxed them. Next, we searched
for homologous complexes to create an initial placement of the monomers. A complex of group I
dockerin and ScaB from Acetivibrio cellulolyticus (4UY Q)% provided a starting point despite low
homology with the individual proteins—the cohesin had 24% sequence coverage with 33%
identity and the dockerin had 79% coverage with 37% identity. Starting from an initial structure
where the monomers were aligned to the homologous complex, we docked the target. While
docking the proteins, we used an ensemble of 10 relaxed monomer models for each partner to

explore alternate backbone conformations.

13


https://doi.org/10.1101/749317
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/749317; this version posted November 3, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Figure 2A shows our best model in green (cohesin) and blue (dockerin) against the crystal structure
in gray. This model was adjudged to be acceptable; no other group submitted a higher-ranking
model. The bulge in the crystal structure of cohesin (highlighted in red) was not present in any of
the homology-modeled cohesins. This bulge changed the rigid-body conformation of the dockerin

and resulted in the dockerin having an Lrmsd of 4.9 A.

Target 122: Human IL-23-receptor complex

For T122, we were asked to model the interaction between IL-23 and its receptor, IL-23R. Several
crystal structures of IL-23 were available in the Protein Data Bank.?¢ A disulfide bond held
together its two subunits, IL-23A and IL-12B and hence, we expected their bound state to remain
largely unchanged. We modeled the receptor, IL-23R using Modeller?” based on multiple sequence
alignment of homologs with manual input on the alignment of loop regions. In addition, we also

used models from Robetta,?® which used a different homolog as its template.

From the variety of models obtained, it was apparent that the receptor might have inter-domain
flexibility between its three domains. This flexibility ruled out the possibility of global docking. A
literature survey revealed that the binding site observed in other cytokine/cytokine receptor
complexes in this family was likely used to bind IL-12RB1 (which was not the receptor chain we
were modeling) and not IL-23R.?® Based on prior experimental experience on IL-23 interactions,
a collaborator (Jamie Spangler) advised us that the interaction was likely between the D1 domain
of IL-23R and IL-23 with the conserved Trp-156 on IL-12B serving as the ‘lightning rod’. Using

this information, we obtained a starting state and locally docked the receptor against the cytokine
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heterodimer while constraining the conserved tryptophan residue to contact the receptor. This was
the first target for which we used RosettaDock 4.0, and as a result we were able to efficiently dock

65 receptor backbone conformations to 56 cytokine backbone conformations.

Figure 2B shows our best model superimposed on the crystal structure (SMZV, in gray)?’. The
conserved tryptophan of IL-12B is highlighted in red. This model was able to capture the rough
binding mode along with the tryptophan lightning rod interaction. With 22% of the native contacts
recovered and an Irmsd of 0.7 A, our model was adjudged acceptable. None of the models of IL-
23R (yellow) had RMSDc, under 4.2 A because of the different orientations of the three domains
and as a result the Lrmsd of the model was 16.8 A. The best model across all the CAPRI groups

was a medium-quality model with 40% of the native contacts.

Target 125: NKR-P1-LLT1 hetero-hexamer

T125 was the complex between the extracellular domains of natural killer cell surface receptor,
NKR-P1 and a cell surface ligand, LLT1. It presented a three-step docking challenge: first, a dimer
of NKR-P1 had to be modeled, then the LLT1-NKR-P1 hetero-trimer complex had to be
determined, and finally, two of these hetero-trimers had to be docked together to construct the

hetero-hexamer.

For NKR-P1, we generated dimer models by symmetric docking of the monomer models of NKR-
P1 obtained from Robetta. We chose seven dimer configurations for further docking. We then

modeled the NKR-P1 dimer-LLT1 complex by global docking of the models using ClusPro

15
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followed by local refinement in Rosetta. A structure of LLT1 dimer was already available (4QKH);
we used this as a reference to assemble the complex model. This step also filtered out trimer
configurations that clashed with each other. Finally, we locally refined three candidate complexes,

generating 5,000 models each.

Our best model captured 40% of the native contacts on the LLT1-NKR-P1 with an Irmsd of 0.969
A and Lrmsd of 1.971 A and was classified as medium-quality. On post ex facto analysis, the
closest docked conformation had an RMSDc, of 4.7 A from the crystal structure of NKR-P1
homodimer (SMGS). As a result, we, as well as other predictors, could not predict the full hexamer

correctly.

Target 133: Colicin DNase—immunity protein complex

T133 was a colicin E2 DNase-Im2 complex designed to change partner specificity from the native
complex. The crystal structure of the native colicin E2 DNase-Im2 was available (3U43).3°
However, the organizers informed us that the mutations led to an altered binding mode. Therefore,
the challenge of this target was recognizing changes in the binding mode brought about by the
mutations. The designed colicin, EP** had mutations in 17 of the 132 positions while the immunity
protein ImP®* had 15 of its 85 positions mutated, most of which were situated in a loop. Three
residues, identified as native-sequence hotspots for binding (Y54 and Y55 on Im2 plus F86 on
E2),3 were not changed. After mutating and refining the structures of the mutant proteins, we
explored different conformations of the ImP*s® loop with the mutations (residues 20-35) and closed

the loop with kinematic closure.?! For EP®3, we obtained a variety of backbone conformations
p y
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using Rosetta Backrub.’?> We then docked an ensemble of EP®3 conformations with an ensemble

Of ImDesS

conformations while constraining the three hotspot residues to interact.

Figure 2C shows our best E%? (green)-ImP*3 (blue) model (submitted as our 14" model)
superimposed with the crystal structure (gray) of E4*— ImP*? complex (6ERE)*}. Unfortunately,
we predicted larger backbone changes (yellow) than were actually a part of the design (red). The
hotspot residues (orange sticks) interact as predicted. This medium-quality model predicts 42% of
native contacts with 2.2 A Irmsd and 4.1 A Lrmsd. We only submitted acceptable structures in our

top ten.

Heteromer docking failures

Target 113: Contact-dependent toxin—immunity protein complex

In T113, we were asked to model the interaction between the C-terminal domain of the toxin,
CdiA-CT, and its cognate immunity protein, Cdil2 from Cupriavidus taiwanensis. We started with
monomer models from the CASP12 predictors. We observed variability in the CdiA-CT models
and consequently chose nine that had convergent secondary structure signatures for further
modeling. There was less variability in Cdil2 models, but for the eleven-residue N-terminal tail.
We chose three models with significantly different tail conformations from each other to hedge
our bets. As we could not find a homologous complex, we searched the global conformational
space using ClusPro** and chose the binding mode compatible with most of the monomer

conformations. Restricting our search to the local space around this mode, we then docked the
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ensemble of nine CdiA-CT backbone with three Cdil2 backbones to generate 15,000 models. As
we could not predict this tail conformation correctly in the model, we predicted the rigid body
conformation of CdiA-CT incorrectly (see Supplementary Fig S2A). The best model across all

groups was classified as acceptable.

Target 117: Pins—Insc tetramer

T117 was the tetrameric complex of two molecules of Pins, a cell polarity determining protein and
two molecules of Insc, an adapter protein. A structure of the Pins monomer was available (3SF4).
For the structure of Insc, we relied on models from CASP12 participants. Owing to the absence of
close homologs, we obtained a variety of different models, which we then relaxed and clustered
by similarity. The models that clustered most tightly still had a variety of conformations of the first
35 (N-terminal) residues, which we consequently truncated. Based on literature,*> we decided to
construct a homo-dimer of hetero-dimer model, where we first docked the Insc to Pins, generating
50,000 models, then selected an ensemble of 15 distinct top-scoring dimers, and finally we
symmetrically docked the dimers, starting from four distinct orientations, and generating 50,000

models for each orientation.

The crystal structure of the complex (5A7D, see Supplementary Fig S2C) is a homo-dimer of two
hetero-dimers as we predicted, but is not symmetric. The primary contacts of Insc in each hetero-
dimer unit occur in the thirty-residue unfolded N-terminal peptide, Insc?EPT. As a result, there is a
large amount of conformational flexibility in the hetero-dimer subcomplex with the two

subcomplexes in the crystal structure having significantly different conformations. We had
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truncated this peptide and hence could not model either the hetero-subcomplex or the whole
complex correctly. This was arguably the hardest challenge of round 37 because it involved not
only multi-body docking, but also predicting the interactions of an unfolded peptide stretch with

large conformational flexibility. No CAPRI team submitted an acceptable or better model.

Targets 123 & 124: PorM—camelid nanobody complex

T123 and T124 comprised the N- and C- terminal domains (respectively) of PorM, a periplasmic
member of the type IX secretion system found in Porphyromonas gingivalis, in complex with
nanobody chaperones. In their presence, the N-terminal domain crystallized as a monomer whereas
the C-terminal domain crystallized as a dimer. Generally, nanobodies recognize antigens primarily
by interactions in three variable loops called HI, H2 and H3. The H3 loop is the longest and most
flexible loop, and as a result it is the primary determinant of binding. Thus, we modeled the
constant core of the nanobody and the H1 and H2 loops from available homologs and then we
generated 1,000 models with different H3 loop conformations using RosettaAntibody.*¢*"In T123,
PorMn-term in complex with nb02, the H3 loop was 12 residues long, whereas in T124, PorMc-term

dimer in complex with nb130, the H3 was 21 residues long.

For T123, we obtained PorMn..erm models from Robetta. For T124, we obtained PorMc.term
monomer conformations from Robetta and docked them together symmetrically to attain a dimer
configuration. In both cases, no homologs were available as templates and hence the monomers
were modeled de novo from sequence, which was a source of error. Using the lowest-scoring PorM

models, we searched for suitable nanobody-binding regions by global docking using ClusPro. We

19


https://doi.org/10.1101/749317
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/749317; this version posted November 3, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

then refined the distinct binding modes obtained from ClusPro while simultaneously sampling
various nanobody variable loop conformations using SnugDock,*3¢ a variant of RosettaDock

specialized for docking antibodies.

For T123, the PorMn.term—nb02 complex, we did not produce an acceptable model or better. Since
the structure is not yet released, we cannot analyze the reason for our failure. Only one acceptable
solution was submitted across all participants. T124, the PorMc.erm dimer—nb130, complex
involved multiple challenges: modeling monomers without templates, predicting their dimeric
form and then docking the nanobody correctly (see Supplementary Figure S3A). All our PorMc.
term Monomeric models were incorrect. Although we were able to model the nb02 H3 loop within
2.4 A RMSDcy, all our complex models had an Lrmsd of more than 18 A. As a result, we, as well

as all the other participants, failed to model this complex correctly.

Targets 131 & 132: CEACAM1-HopQ complex

T131 and T132 were the complexes of Helicobacter pylori adhesins HopQl and HopQ2,
respectively, bound to the N-terminal domain of cell adhesion molecule CEACAMI1. Multiple
structures were available for the N-terminal domain of CEACAMI1 (2GK2, 4QXW, 4WHD, and
5DZL).3*3% For T131, the structure of HopQ1 was available with four loops missing at the putative
binding interface (5LP2).4° Using this structure as a template, complete models were obtained from
Robetta. Robetta produced different conformations for the two longest loops (residues 135148
and 245-255), which suggested potential flexibility. A mutation study indicated that residues Y34

and 191 of CEACAM I are essential for HopQ binding.*! The authors of the study also conjectured
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that the first long loop of HopQl1 is involved in binding CEACAMs. We modeled the missing loop
using fragment insertion and closed the loop with cyclic coordinate descent.*? Using an ensemble
of 200 different loop conformations for the first HopQ1 loop and constraints to ensure CEACAM1
Y34 and 191 contact HopQ1, we generated 10,000 models each from two different starting states.
For T132, we modeled the structure of the HopQ2 monomer based on its homology to HopQl1

1.43

using Rosetta Remodel.*> We followed a similar protocol for HopQ1 loop conformation sampling

(for a slightly shorter loop of residues 135—144) and docking.

In both the cases, our loop modeling methods failed to provide the necessary bound conformation,
often producing extended loops, instead of the compact structure in the crystal. As a result, the
rigid-body orientation of CEACAMI1 was completely incorrect. The two CEACAMI residues
predicted to be at the interface were indeed found to be there and are shown as salmon sticks in

Supplementary Figure S3B.

While we did not predict the structure correctly, we did successfully refine and score structures
submitted by another group. Our best refined model was classified as acceptable with 27% of
native contacts predicted, Lrmsd and Irmsd of 11.8 A and 3.2 A, respectively. This demonstrates
that the REF2015 score function** can recognize the near-native structure. Therefore, the

outstanding challenge is to sample the conformation de novo.
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Protein—Oligosaccharide docking

Targets 126—130: Arabino-oligosaccharide binding to proteins

In round 41 of CAPRI, we modeled the interaction between arabino-oligosaccharide ligands of
different lengths and the arabinose sensor, AbnE, or the arabinanase, AbnB — two important
components of the L-arabinan-utilization system of Geobacillus stearothermophilus. Specifically,
T126-129 challenged us with the docking of 1,5-a-L-arabinohexose (A6) through 1,5-0-L-
arabinotriose (A3), respectively, to AbnE. T130 involved the docking of A5 to a catalytic mutant

(E201A) of AbnB.

We modeled AbnE from homologs with 95% or more sequence coverage and 25% or more identity
using Modeller?” and relaxed the models in Rosetta.*> Additionally, we obtained models from the
Robetta server.?’ One of the homologs that we used to model the target, the maltose-binding
protein GacH from Streptomyces glaucescens, exists in two conformations: an unliganded open
conformation and a closed, ligand-bound conformation.*® From all the aforementioned protein
models, we used the conformation closest to the ligand-bound GacH conformation to model T126—
129. As the chemical description of arabinose was absent in Rosetta, we programmed the required
geometry, partial charge, and chemical connectivity information to model arabinose ligands with
the RosettaCarbohydrate framework.” To obtain a starting structure, we superimposed the AbnE

model and A4 onto maltotetraose-bound GacH (3K00)*, changing the backbone torsion angles of
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A4 to best align with maltotetraose. For A5 and A6, we added arabinose units to the non-reducing

end of the ligand. For A3, we removed an arabinose unit from the non-reducing end.

To simultaneously dock the glyco-ligands and explore their backbone conformations, we used the
new GlycanDock protocol in Rosetta.? In this protocol, the glyco-ligand undergoes small backbone
motions along with rigid-body moves to dock into a protein cavity. These perturbations are
alternated with side-chain repacking and energy minimization in torsion space for the residues at
the protein—glycan interface. For each target, we obtained 15,000 initial docked models without
any constraints to relieve clashes and to broadly sample the rigid-body conformational space. From
the models where the ligands moved less than 5 A RMSD from the starting structure, i.e., those
that stayed in the binding pocket of AbnE, we selected the one with the lowest interaction energy
as the starting model for the final simulation. For the final docking simulation, we added
constraints to hold the glyco-ligands within the putative binding pocket of AbnE and generated
another 15,000 models. The range of conformations explored by A6 in T126 is exemplified in
Figure 3A. We predicted medium quality models for T129 and acceptable-quality models for T127
and T128. During scoring, we recognized acceptable models for T126—T129, thus validating the

score function.

For T130, the crystal structure of A3 bound to the E201A mutant of the glycosidase AbnB was
already available (3D5Z). The active site of this enzyme is a long groove with a bridge connecting
the brinks under which the ligand can slide (see Figure 3B). The enzyme cleaves glycosidic
linkages indiscriminately*’ as the groove offers no steric obstruction at either end to hold the

substrate in place. Consequently, although a structure was available with A3, we could not a priori
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predict how the AS ligand would position itself. Extending the A3 in either direction provided us
with starting coordinates for three unique starting states. We generated 10,000 docked models each
from the three starting states using GlycanDock while constraining the A5 ligand to the active site
groove. Figure 3B shows the best predicted conformation of A5 (in green) superimposed on the
crystal structure of AbnBr2oia (light gray)-AS (dark gray) complex (6F1G). The structure is a
medium-quality model with 63% of the contacts being recovered with an Irmsd of 1.58 A and an

Lrmsd of 4.22 A.

Post-hoc analysis of GlycanDock sampling and scoring

Compared to the crystal structure (6F1G), the three AS structures we used as input for the T130
prediction round had a high fraction of native contacts (0.267, 0.367, and 0.633, respectively). We
examined the failure of Rosetta GlycanDock to produce a high-quality structure despite
having favorable starting states by investigating the Rosetta scoring function and an updated

sampling algorithm in the version of GlycanDock under development.

To test scoring, we refined the crystal structure to generate 50 models. All models had sub-
Angstrom RMSDs (purple triangles in Supplementary Figure S4) with interaction scores more
favorable than those of the submitted models; the lowest-scoring model had a score of -24.9 units
for the crystal refinement versus -13.9 units for the submitted models. This result suggests that,
had it been sampled, the Rosetta scoring function would have correctly identified a near-native

structure.
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Despite having favorable starting conformations and a score function that discriminates near-
native models, the previous version of GlycanDock failed to sample native-like states. The primary
reason was that the first step of the algorithm randomized glycan backbone torsions as well as the
rotation of the glycan about the protein, both of which disrupted favorable starting structures. As

a result, this initial perturbation is not as extensive in the updated version.

To diagnose our current limitations, we tested two aspects of sampling—the rigid-body orientation
sampling and the glycan backbone conformation sampling—individually at first and then,
simultaneously. To remove any bias from the protein backbone conformation in the crystal, we
used the protein backbone that we used for the prediction round. As a best-case scenario, we
aligned the crystal structure of the A5 glycan in the protein groove as observed in the crystal
structure. We generated 500 models by perturbing the glycan conformation
(0.5 A translation, 7.5° rotation, and backbone torsion perturbation between + 12.5°) and then
refining it. As expected, we successfully generated and discriminated near-native decoys even
when starting with structures with an average Lrmsd of 1.98 A (Supplementary Figure S4A). Next,
we examined rigid-body sampling by moving the A5 crystal structure away from the binding
pocket by assigning it de novo coordinates. Starting with this orientation and employing the same
protocol, we generated high-quality models with RMSDs similar to those observed in crystal
structure refinement (Supplementary Figure S4B). To examine glycan backbone sampling, we
aligned the three input A5 structures used for the prediction round in the protein groove as in the
crystal structure and generated 1000 docked models for each input. We were unable to obtain any
high-quality models; all models had Lrmsd greater than 2 A (Supplementary Figure S4C). Finally,

we tested both rigid-body and backbone sampling simultaneously by placing the three input A5
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structures used for the prediction outside the binding groove and then docking. We achieved
similar results as in the previous case (Supplementary Figure S4D). These results suggest
GlycanDock adequately samples rigid-body orientations but fails to do so for glycan backbone
conformation. Thus, the key to successfully dock glycans lies in sampling relevant glycan

backbone torsion.

Discussion

Previous rounds of CAPRI led to the development of niche protocols like SnugDock? to model
antibody—antigen binding and pHDock* to dynamically sample residue protonation states while
docking.® In rounds 37-45, we utilized these specialized methods while also encountering
challenges that require overhauls of the core methodology for general problems such as global
docking with flexibility, global docking of symmetric homomers, and oligosaccharide—protein
docking. We modeled backbone flexibility by incorporating a pre-generated ensemble of backbone
conformations during docking. With RosettaDock 4.0,8 we sampled over fifty conformations for
each partner to successfully model T122. Despite having an efficient backbone sampling
algorithm, we failed to model T131 and T132 due to the absence of conformations where the
interacting loops were in near-bound conformation. These failures highlight the need for ensemble

generation methods that sample loop conformations broadly.

As many of the targets were symmetric homomers with varying degrees of homology to existing
structures, we were able to thoroughly assess the Rosetta SymDock protocol. When homologs

were present, we could borrow the symmetric arrangement from the homolog as a template, as we
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did to successfully model targets 110, 111, 112, 118, and 119. However, even in those cases, the
proximity of the monomer backbone to the template monomer backbone determined the overall
quality of the models. For example, the monomer model of T111 had a 0.8 A RMSDc, from the
template and was our only prediction to be classified as high-quality. While one would expect that
the more closely related a template is, the better the model will be, we noticed a systematic pattern
of error in tightly-packed, higher order complexes. The method of induced fit successfully used
for T136 inspired the flexible-backbone refinement strategy of the new symmetric docking

protocol, Rosetta SymDock2.!!

For only the second time in CAPRI, we encountered oligosaccharide—protein complexes. Five
targets in round 41 gave us an opportunity to work with the recently-developed
RosettaCarbohydrate ~ framework,” especially the GlycanDock application therein.
Oligosaccharides have many more degrees of freedom than peptides, often featuring an additional
mobile backbone torsion angle, multiple mobile side chains, and sometimes flexible rings.
GlycanDock samples these mobile dihedrals while performing rigid-body transformations to place
the oligosaccharide in a binding pocket and simultaneously repacking the side chains of contacting
protein residues. We recognized deficiencies in the sampling of GlycanDock, and ongoing
developments focus on optimizing its conformation sampling capabilities for a variety of glyco-
ligands. Certain glycosidic linkages have been observed to populate limited regions of torsion
space and for these linkages, glycosidic torsion angle preferences and crystal structure-based
statistics have been calculated and collected.*®* For the arabinose—arabinose linkages present in
T130, linkage torsional statistics have not yet been collected, nor have the linkage-conformation

energies been calculated. These data, when incorporated into glycan docking algorithms, could
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narrow the search space in glycan conformation sampling.”* In addition, some groups that
participated in round 41 included a term in their scoring function to encourage individual arabinose
units to remain in a parallel stacking orientation with nearby aromatic residues in the active site.
This type of protein—carbohydrate interaction, known as a CH—r interaction, has been well
characterized in carbohydrate-binding proteins and is understood to play an important role in
carbohydrate binding and recognition.’®>! The Rosetta software suite does not currently employ a
scoring term to encourage this type of geometry-driven intermolecular interaction, and it might

help further discriminate native-like oligosaccharide—protein interactions.

With fourteen successful predictions and two additional scoring successes, our performance in the
rounds evaluated thus far was commensurate with other leading groups in the rounds we
participated. Of our nine docking failures, we believe, retrospectively, that we had the sampling
techniques available in Rosetta to better model targets 113, 126, 131, and 132. On the other hand,
targets 114, 116, 117, 123, and 124 required blind prediction tools that do not yet exist and as a
result, they did not elicit a successful model from any predictor. Broadly, the challenges that caused
the most failures were docking with large conformational changes and multi-body docking
(especially higher order heteromers). These community-wide failures highlight the massive gaps
that still need to be addressed to fulfill the overarching goal of reliably modeling entire

interactomes.>> 4
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Figure Legends

Fig 1: (A) T110: Our best model (** rating) of the fibre head domain of raptor adenovirus 1
(yellow) superimposed on the crystal structure (gray). Predicting and modeling the beta-hairpin in
the native structure (red) was crucial to prediction success. The Lrmsd of 2.35 A was the best
among all groups. (B) T111: Our high-quality model (***) of the fibre head domain of lizard
adenovirus 2 (orange) superimposed on the crystal structure of a close homolog (gray), snake
adenovirus 1 fibre head. (C) T118: Our best model (**) of fructose 1,6-bisphosphatase (color)
superimposed on the crystal structure of a close homolog (gray). (D) T119: Our best model (*) of
alcohol dehydrogenase dimer (yellow) superimposed on the crystal structure (gray). The model is
missing cross-beta interactions between the subunits at the interface (red). (E) T136: Our model
(**) of LdcA decamer where the five subunits on top are displayed in different colors. For each
subunit, the wing domains are highlighted in brighter hues. The Lrmsd of 2.44 A was the best

among all groups.

Fig 2: (A) T120: Our best model (*) of group I dockerin (blue)-cohesin (green) complex
superimposed on the crystal structure (gray). A bulge in the cohesion (red) was not modeled
correctly leading to a small error in the rigid body orientation of the dockerin. (B) T122: Our best
model (*) of the complex of the two chains of IL-23, viz. IL-23A (green) and IL-12B (blue) with
IL-23R (yellow) superimposed on the crystal structure (grey). The lightning rod interaction via the
conserved Trp-156 (red) to IL-23R domain 1 (D1) was correctly predicted. IL-23R model had
large errors in the relative orientation of the three domains. (C) T133: A 14%-ranked model (**)

of ImP®s3 (blue) bound to EP** (green) superimposed on the crystal structure of the complex (gray).
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The ImPs3 loop (red) is modeled inaccurately (yellow). This alters the rigid body orientation of
ImPs3 by pushing it ‘down’. The hotspot resides across the interface in the wild-type (orange), viz.

Y54-Y55 Im2 and F86 on E2 still interact in the model of the designed complex.

Fig 3: (A) T126: Range of ligand conformations sampled by 1,5-a-L-arabinohexose
(green/yellow/pink) in the binding groove of AbnE (gray). (B) T130: The best predicted
conformation of 1,5-a-L-arabinopentose (green) on AbnBr2oia (gray), with fna = 63%. The crystal

structure (dark gray) is shown for comparison.
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Table I: Summary of targets successfully modeled. The table lists the round, target number, name of the complex, the nature of the challenge,
the methods used to model the complex, and the evaluation metrics for the best model that we submitted. The metrics are fnat: the fraction of
native contacts recovered, Lrmsd: root-mean-square-deviation of the backbone atoms from the native ligand after superimposing the receptor,
Irmsd: root-mean-square-deviation of the backbone atoms of the interface after superposition to the bound interface, and quality: high-quality
(***), medium-quality (**), acceptable (*), or incorrect (-) as evaluated by the CAPRI organizers.

Best Model Evaluation
Round Target. Complex Name Challenge Method(s) Used f Lrmsd Irmsd Qualit
Interface # P & nat (A) (A) v
110 Fibre head domain of | Symmetric dockingbased on | ¢ 10\ ocal refinement | 067 | 235 | 173 *x
raptor adenovirus 1 homolog
111 Fibre head domain of |~ Symmetric docking basedon | = ¢ 1 4 1o cal refinement | 075 | 098 | 073 *rx
lizard adenovirus 2 homolog
112 Fibre head domain of | Symmetric dockingbasedon | ¢ '\ 4 1o cal refinement | 0.38 | 581 | 2.90 *
37 goose adenovirus 4 homolog
118.1 Fructose bisphosphatase Symmetrlzggqc;lgg based on SymDock local refinement 0.41 1.72 1.07 *E
pH-dependent symmetric SymbDock local refinement, "
119 Alcohol dehydrogenase docking based on homolog pHDock 0.61 9.92 2.99
120 Group 1 dockerin= Local docking based on RosettaDock with ensembles | 0.25 | 4.96 | 3.80 *
cohesin complex homomer
39 122 IL-23—-receptor complex Multl—bodgoiiic:;ng, global RosettaDock with ensembles | 0.22 | 16.86 0.70 *
40 1251 NKR-P1—-LLT1 complex Multi-body docklng,. symmetric ClusPro, RosettaDock with 0.40 1.97 0.97 x
global docking ensembles, SymDock
1,5-a-L-arabinopentose . . . *
127 bound to AbnE Oligosaccharide docking GlycanDock 0.11 6.78 2.99
128 1,5-cct-arabinotetrose Oligosaccharide docking GlycanDock 0.15 7.79 2.94 *
a1 bound to AbnE
1,5-a-L-arabinotriose . . . x
129 bound to AbnE Oligosaccharide docking GlycanDock 0.48 2.78 1.84
1,5-a-L-arabinopentose . . . x
130 bound to AbnBexoya Oligosaccharide docking GlycanDock 0.63 4.22 1.58
43 133 Designed colicin E2-Im2 | Loop modeling, docking based KIC, RosettaDock with 0.45 558 4.6 "
complex on homolog ensembles
45 136.1 Lysine decarboxylase Symmetric docking based on Constrained relax, 058 | 270 | 168 *x
homolog, complex size SymDock local refinement
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Table Il: Summary of targets modeled incorrectly. ‘Best in CAPRI’ corresponds to the model evaluation of the best model submitted by all CAPRI
predictors (not scorers). The description of the other headers is the same as in Table I.

Best Model Evaluation
Target. Lrmsd | Irmsd Best in
R C lex N Chall Meth f o o
ound Interface # omplex Name allenge ethod(s) Used nat A) A) CAPRI
113 CDItoxin-immunity Flexible loop, global docking | CUsPre RosettaDockwith 1 4o | 1g33 | 1943 *
complex ensembles
114 Ljungan virus protein Low-quality monomer, symm. SymDock with ensembles 0.01 | 47.75 10.83 -
37 global docking
116 Bifunctional histidine Variable domain linker, SymDock with ensembles | 0.09 | 36.02 | 11.86 -
kinase symmetric global docking
117.2 Pins—Insc Partial m.onomer unfoldlng, RosettaDock with ensembles, 0.00 80.39 36.13 i
complex multi-body docking SymDock
123 PorMu.term—nb130 Loop flexibility, global docking | RosettaAntibody, Snugbock, | o, o) 10 o5 | 506 *
39 complex ClusPro
1242 | PorMcsem—nb02 complex | Loop flexibility, global docking RosettaAngﬁj‘Z‘;‘r’;S””gDOCk' 0.00 | 2742 | 14.15 .
1,5-a-L-arabinohexose
a ’ H H H k%
41 126 bound to AbnE Oligosaccharide docking GlycanDock 0.00 | 11.24 4.27
CEACAM1- - . CCD + fragments, "
” 131 HopQ1 complex Loop flexibility, global docking RosettaDock with ensembles 0.04 | 39.28 11.61
CEACAM1- CCD + fragments
a e . ’ k%
132 HopQ2 complex Loop flexibility, global docking RosettaDock with ensembles 0.00 | 34.79 10.42

@ During the scoring round, we refined and scored models of other predictors to obtain acceptable structures.
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