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Abstract ���

Background: Genomic Prediction (GP) is the procedure whereby molecular information is used ���

to predict complex phenotypes. Although GP can significantly enhance predictive accuracy, it ���

can be expensive and difficult to implement. To help in designing optimum experiments, ���

including genome wide association studies and genomic selection experiments, we have ���

developed SeqBreed, a generic and flexible python3 forward simulator. ���

Results: SeqBreed accommodates sex and mitochondrion chromosomes as well as ���

autopolyploidy. It can simulate any number of complex phenotypes determined by any number ���

of causal loci. SeqBreed implements several GP methods, including single step GBLUP. We ���

demonstrate its functionality with Drosophila Genome Reference Panel (DGRP) sequence data ���

and with tetraploid potato genotypes. ���

Conclusions: SeqBreed is a flexible and easy to use tool appropriate for optimizing GP or ���

genome wide association studies. It incorporates some of the most popular GP methods and ���

includes several visualization tools. Code is open and can be freely modified. Software, ���

documentation and examples are available at https://github.com/miguelperezenciso/SeqBreed. ���

 - - - ���

Background ���

Genomic prediction (GP) is the procedure whereby molecular information is used to predict ���

complex phenotypes. The discovery of high-throughput single nucleotide polymorphisms (SNP) ���

genotyping in a cost-effective manner has made GP to become a standard tool in the analysis and ���

improvement of complex traits [1]. GP has revolutionized breeding programs in plants and ���

animals, and GP methods are nowadays widely employed in human genetics or ecology. ���

Nevertheless, GP is expensive and can be difficult to implement in practical scenarios, due in ���

part to the difficulty of optimizing genotyping strategies and to the uncertainty on the genetic ���

basis of complex traits. It is highly advisable then to evaluate its potential advantages and ���

expected performance in advance. Unfortunately, GP accuracy depends on a number of factors ���

that are impossible to assess analytically; in these situations, simulation is the most reliable ���

option. Here we present a versatile python3 forward simulation tool, SeqBreed, to evaluate GP ���

performance in generic scenarios and any genetic architecture (i.e., number of loci, genic action ���

and number of traits).  ���

 ���
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SeqBreed is inspired by previous pSBVB fortran software [2], but the whole code has been ���

rewritten in python3 and many new options have been added. Python can be much slower than ���

compiled languages, but is much easier and friendlier to use, allowing direct interaction with the ���

user to, e.g., make plots or control selection and breeding. Besides, many libraries in python such ���

as ‘numpy’ XX or ‘pandas’ XX are wrappers on compiled languages such that careful ���

programming significantly alleviates native python slowness. SeqBreed is then much more ���

versatile than pSBVB and incorporates many new options, such as Genome Wide Association ���

Studies (GWAS) or Principal Component Analysis (PCA). Most importantly, it allows automatic ���

implementation of standard genomic selection procedures. SeqBreed usage details and main ���

features are described in the following paragraphs and in the accompanying GitHub site ���

https://github.com/miguelperezenciso/SeqBreed. ���

 ���

Implementation ���

SeqBreed is programmed in python3 using an object-oriented paradigm. The main classes are: ���

• Population: This class contains the main attributes for running selection experiments and ���

is a container for Individual objects. It includes methods to add new individuals generated ���

by mating two parents or randomly shuffling founder genomes in order to increase the ���

number of base population animals (see [3]). It also prints basic population data and do ���

summary plots. ���

• Individual: It allows generation, manipulation and printing of individual genotypes and ���

phenotypes. Internally, an individual’s genome is represented by contiguous non ���

recombining blocks rather than by the list of all SNP alleles, which allows dramatic ���

savings in memory and increases in efficiency (see Figure 1 in Pérez-Enciso et al. [3]). ���

• Genome: All genome characteristics are stored and can be accessed by methods in this ���

class. It specifies ploidy, number and class of chromosomes, recombination rates or SNP ���

positions  ���

• GFounder: SeqBreed requires as minimum input the genotypes of the so-called ‘founder ���

population’, which makes the parents of the rest of individuals to be generated. This class ���

stores these genotypes and automatically retrieves main genome features such as SNP ���

positions, number of chromosomes, etc. Initial genotypes can be filtered by minimum ���

allele frequency (MAF). ���
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• QTNs: Determines genetic architecture for every phenotype. It has methods to determine ���

environmental variance given desired heritability, and to plot QTN variance components. ���

So far, SeqBreed allows for dominance and additive actions, but not epistasis. ���

• Chip: This class is basically a container for a list of SNPs included in a genotyping array. ���

It allows easy specification of different genomic selection strategies. ���

 ���

SeqBreed minimally requires a genotype file from base population in vcf [4] or plink-like format ���

[5]. A file with causative SNPs (QTNs) and their effects for each trait can be provided or ���

simulated. Sex and mitochondria chromosomes can be accommodated as well as auto polyploidy ���

of any level. Local and / or sex-specific recombination rates can be specified in a map file. ���

Otherwise a ratio 1cM = 1 Mb is assumed. SeqBreed automatically adjusts environmental ���

variance to retrieve desired heritabilities for each trait.  ���

 ���

The generic SeqBreed flowchart can be visualized in Figure 1 whereas examples of SeqBreed ���

usage are in the GitHub’s jupyter notebook ���

https://github.com/miguelperezenciso/SeqBreed/blob/master/SeqBreed_tutorial.ipynb and in the ���

python script https://github.com/miguelperezenciso/SeqBreed/blob/master/main.py. A typical ���

SeqBreed run consists of at least the following steps: ���

 ���

1- Upload founder sequence genotypes and a GFounder object is created. A file with all ����

SNP positions in sequence is generated. ����

2- Initialize Genome class. Optionally, sex or mitochondrial chromosomes are specified as ����

well as local recombination maps. ����

3- Genetic architectures for every trait are specified via a QTNs object. Environmental ����

variances are also inferred. ����

4- A Population object is generated, optionally via gene-dropping along a predetermined ����

pedigree. ����

 ����

Once Population is initialized, SeqBreed allows a number of operations to be performed, such as ����

implementing several selection procedures, detailed below. At any stage, PCA plots or GWAS ����

can be performed. Several statistics can be extracted using the methods in each class. Selection ����
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can be automatically configured and run, as documented in the GitHub examples ����

(https://github.com/miguelperezenciso/SeqBreed). From a methodologically point of view, most ����

GP implementations are based on penalized linear methods (e.g., de los Campos et al., 2013). ����

SeqBreed has built-in some of the GP most popular options, such as BLUP [7], GBLUP [8] and ����

single-step [9]; mass selection is also implemented. SeqBreed allows other custom GP methods ����

to be easily incorporated. This would require writing a specific python function or exporting ����

molecular data from SeqBreed, running a genetic evaluation externally and importing estimated ����

breeding values. Any number of complex phenotypes can be simulated, allowing a very flexible ����

modeling of phenotypes in diploids or auto-polyploids. The program can be run along a ����

predetermined pedigree or a combination of options (several examples are provided in the ����

GitHub site). Generating new individuals interactively is also possible. To speed up ����

computations and to avoid unnecessary memory usage, only recombination breaks and ancestor ����

haplotype ids are stored for each individual [10].  ����

 ����

It is usually difficult to find real sequence data to generate a reasonably sized founder population. ����

An interesting feature of SeqBreed is the possibility of generating ‘dummy’ founder individuals ����

by randomly combining recombinant haplotypes. This can be done in two ways, either ����

generating a random pedigree and simulating a new founder individual by gene-dropping along ����

this pedigree, or directly simulating a number of recombining breakpoints and assigning random ����

founder genotypes to each block between recombination breakpoints   ����

(https://github.com/miguelperezenciso/SeqBreed/blob/master/README.md#breeding-����

population). ����

�����

Examples ����

The basic functioning of SeqBreed is illustrated by the main.py script, available at ����

https://github.com/miguelperezenciso/SeqBreed/blob/master/main.py. This script, or its ����

equivalent jupyter notebook (SeqBreed_tutorial.ipynb), show the basic commands to run ����

SeqBreed and its dependencies. ����

 ����

A useful and novel feature of SeqBreed, as compared to our previous software pSBVB, is the ����

capability of graphical outputs. Figure 2 illustrates some of the plots that can be performed ����
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automatically. Figure 2A shows the results of QTNs.plot() function, which plots the individual ����

QTN variance as a function of allele frequency (MAF), the histogram of QTN variances or the ����

cumulative variance when QTNs are sorted by MAF. This is performed for each phenotype and ����

for both additive and dominant variances. Additionally, PCA plots using all sequence or custom ����

defined SNP sets (Figure 2B) or GWAS plots showing p-values or False Discovery Rate (FDR) ����

values (Figure 2C) are also available. Raw data can also be exported. ����

  ����

Further, we illustrate the software with sequence data from the Drosophila Genome Reference ����

Panel (DGRP, [11]), parsed and filtered as detailed in [12], and genotype data from tetraploid ����

potato [13], parsed as described in [2]. Data and scripts are in ����

https://github.com/miguelperezenciso/SeqBreed/tree/master/DGRP and in ����

https://github.com/miguelperezenciso/SeqBreed/tree/master/POTATO for DGRP and potato ����

examples, respectively. DGRP scripts allow us to illustrate the specific recombination map of ����

Drosophila, where males do not recombine, as shown in the ‘dgrp.map’ file. The example ����

provided in GitHub consists of a small experiment to compare genomic and mass selection. Plots ����

in the jupyter notebook are implemented to track phenotypic changes by generation. Potato data ����

is used to illustrate how to generate a F2 cross between extreme lines and to perform a GWAS ����

experiment in polyploids. GWAS results using PCA corrected phenotypes are also shown. ����

 ����

Conclusions and Future Developments ����

Other programs can be used for similar purposes as SeqBreed, including our own pSBVB [2], or ����

AlphaSim [14] and its successor AlphaSimR (https://alphagenes.roslin.ed.ac.uk/wp/software-����

2/alphasimr/), PedigreeSim [15], simuPOP [16] or QMSim [18]. SeqBreed, however, offers a ����

unique combination of useful features for GP studies of complex traits, such as built-in ����

implementation of several GP methods, possibility of simulating polyploid genomes, and several ����

options to specify QTNs or SNP arrays. It also allows generating new individuals interactively ����

and doing graphical plots. It is easy to use, easy to install and software options are illustrated ����

with several examples in the GitHub site. Given the interactive nature of python and its graphical ����

features, SeqBreed is especially suited for education purposes. In contrast, SeqBreed will not be ����

as efficient for large scale simulations as some fortran counterparts such as AlphaSim or pSBVB. ����

  ����
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Note that SeqBreed is conceived to evaluate GP or GWAS performances over a short time span, ����

i.e., new mutations are not generated. To investigate realistic scenarios, the recommended input ����

is real sequence data. SeqBreed is not designed to investigate the long term effects of ����

demography or selection on DNA variability, where Slim [17] or similar tools are more ����

appropriate. ����

 ����

For the future, we plan to include additional features to generalize available genetic architectures ����

(e.g., imprinting, epistasis), to make integration with machine learning tools (scikit, keras) easier, ����

to develop an educational tool with html-based interface, and improving output and plotting ����

features.  ����

 ����

Availability and requirements ����

     Project name: SeqBreed ����

     Project home page: https://github.com/miguelperezenciso/SeqBreed ����

     Operating systems: Tested in linux and mac. It should also run in windows python. ����

     Programming language: Python. ����

     License: GNU GPLv3 ����

     Any restrictions to use by non-academics: None. ����

 ����

List of abbreviations ����

BLUP: Best Linear Unbiased Prediction ����

FDR: False Discovery Rate ����

GBLUP: Genomic BLUP ����

GP: Genomic Prediction ����

GWAS: Genome Wide Association Study ����

MAF: Minimum Allele Frequency ����

SNP: Single Nucleotide Polymorphism ����

QTN: Quantitative Trait Nucleotide polymorphism ����

 ����
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Figure legends ����

Fig. 1: Outline of SeqBreed typical pipeline. Inputs are shown in magenta boxes, violet boxes ����

are internal data, main operations are indicated in dark blue, and the output plots are in red (QTN ����

variances, GWAS and PCA are shown); G and y refer to genotypes and phenotypes, ����

respectively. The bottom loop represents selection, where new offspring is generated based on ����

merit of selected parents. SeqBreed implements random drift, mass selection (Y), BLUP, GBLU ����

and single-step GBLUP (SS-GBLUP). In the latter two cases, a list of SNPs in the genotyping ����

array must be determined. A new cycle starts when these new offspring are added to current ����

population. Plots can be performed at several stages. ����

 ����

Fig 2: Some plots produced by SeqBreed. A) Contribution of each QTN to total variance. Top, ����

individual QTN variances as a function of minimum allele frequency (MAF); middle, histogram ����

of QTN variances; bottom, cumulative variance when QTNs are sorted by MAF. In blue, ����

additive variances; in red, dominance variances. The figure shows a fully additive phenotype so ����

dominance variance is zero. B) Principal Component Analysis plot; individuals of different ����

generations are in different color. C)  Genome wide association study showing False Discovery ����

Rate values (-log10 scale). SNPs from each successive chromosome are represented in alternate ����

colors. ����
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