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Abstract

Genome-wide, polygenic risk scores (PRS) have emerged as a useful way to characterize genetic
liability using genotypic data. There is growing evidence that PRS may prove useful to identify those at
increased risk for developing certain diseases. The current utility of PRS in relation to alcohol use
disorders (AUD) remains an open question. Using data from both a population-based sample [the
FinnTwinl2 (FT12) study] and a high risk sample [the Collaborative Study on the Genetics of
Alcoholism (COGA)], we examined the association between PRSs derived from genome-wide
association studies (GWASSs) of 1) alcohol dependence/alcohol problems, 2) alcohol consumption, and 3)
risky behaviors with AUD and other substance use disorder (SUD) symptoms. Individuals in the top 20%,
10%, and 5% of PRSs had increasingly greater odds of having an AUD compared to the lower end of the
continuum in both COGA (80" % OR = 1.95; 90" % OR = 2.03; 95™ % OR = 2.13) and FT12 (80" % OR
=1.77; 90" % OR = 2.27; 95™ % OR = 2.39). Those in the top 5% reported greater levels of licit (alcohol
and nicotine) and illicit (cannabis) SUD symptoms. PRSs can predict elevated risk for SUD in
independent samples. However, clinical utility of these scores in their current form is modest. As these
scores become more predictive of SUD, they may become useful to practitioners. Improvement in

predictive ability will likely be dependent on increasing the size of well-phenotyped discovery samples.


https://doi.org/10.1101/748038
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/748038; this version posted August 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Introduction

Alcohol misuse is one of the leading contributors to preventable mortality and morbidity
worldwide . Identifying individuals at heightened risk for developing alcohol related problems remains
an important goal of medical practitioners. One important risk factor for alcohol misuse is one’s own
genetic liability. Twin and family studies indicate that genetic influences on alcohol use disorders (AUD)
account for approximately 50% of the variation in the population *. Genome-wide association studies

7, 8
%, and

(GWASs) have identified multiple variants associated with AUD °”, alcohol consumption
maximum alcohol intake’. Using information from these GWASs, we are now able to aggregate risk
across the genome by creating genome-wide polygenic scores (PRS) to predict risk in independent

5,6,8, 10
samples .

Beyond being useful for research purposes, researchers have begun to examine the clinical utility
of PRS to predict risk for medical outcomes. PRS for coronary artery disease (CAD), atrial fibrillation
(AF), type 2 diabetes (T2D), inflammatory bowel disease (IBS), and breast cancer (BC) have been found
to be as predictive of these diseases as well known monogenic mutations ''. Individuals in the top 5% of
the PRS distributions had ~3 fold likelihood of having CAD, AF, T2D, IBS, or BC compared to the
bottom 95%. For obesity, individuals in the top PRS decile were on average 13 kg heavier than those in
the bottom decile '>. These studies demonstrate the potential for identifying individuals at heightened risk
for various medical conditions using PRS. However, the clinical utility of PRSs for AUD in relation to
substance use phenotypes remains an open question.

In the current analysis, we tested PRS in two target samples, a population-based sample and a
clinically ascertained sample of families deeply affected by AUD, to evaluate the current state of alcohol-
related PRS for possible clinical utility. We use several discovery samples from large scale GWAS to
create three PRS: a meta-analysis of two GWASs on alcohol-related problems > ¢, a recent large-scale

GWAS of alcohol consumption *, and a GWAS for risky behaviors, including alcohol use . We chose to
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test PRS based on multiple alcohol-related GWAS because multiple lines of evidence indicate alcohol
consumption and dependence have only partially shared genetic etiology > * '* '°. Additionally, we
include a PRS for general risk behavior as there is robust evidence that the genetic risk for alcohol and
other substance use disorders is shared with other disorders and behaviors related to reduced inhibitory

1618 We test the

control. This constellation of behaviors is often referred to as the externalizing spectrum
association of these PRS with a variety of substance use outcomes (including alcohol, nicotine, and other
illicit substance use disorders), based on the robust finding that substance use disorders share an

underlying genetic architecture, with the majority of the heritability shared across substances '*'®.

Methods

Samples

The FinnTwinl2 Study (FTI12) is a population-based study of Finnish twins born 1983-1987
identified through Finland’s Central Population Registry. A total of 2,705 families (87% of all identified)
returned the initial family questionnaire late in the year in which twins reached age 11. Twins were
invited to participate in follow-up surveys when they were ages 14, 17, and approximately 22 (during
young adulthood). An intensively studies sample was selected as 1035 families, among whom 1854 twins
were interviewed at age 14. The interviewed twins were invited as young adults to complete the Semi-
Structured Assessment for the Genetics of Alcoholism (SSAGA) " interview (n = 1,347) and provide
DNA samples (see Kaprio 2013 for a full description). The current analysis uses data from the young
adult wave (mean age = 21.9; range 20-26), which included retrospective lifetime diagnoses.

The Collaborative Study on the Genetics of Alcoholism (COGA) is a sample of high-risk families
ascertained through adult probands in treatment for AUD and a smaller set of comparison families from
the same communities. In the first 10 years, probands along with all willing first-degree relatives were
assessed; recruitment was extended to include additional relatives. Data collection included the SSAGA
" neurophysiological and neuropsychological protocols, and collection of blood for DNA. In 2004,

COGA began a prospective study of adolescents and young adults, targeting assessment of youth aged
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12-22 from COGA families where at least one parent had been interviewed. These young participants
were re-assessed every two years. The sample is racially/ethnically diverse (60.6% non-Hispanic White,
24.9% Black, 11.1% Hispanic, and 3.4% other). Most (84%) have GWAS data. A full description of the
COGA sample is available elsewhere *'*. For the present study, we only focused on COGA participants
of empirically assigned (as verified from GWAS data) European ancestry (n = 7,599) because each of the
discovery GWAS samples were primarily of European ancestry. Ancestral mismatch between discovery

and target samples can lead to bias in the performance of polygenic scores **.

Measures

Alcohol Use Disorder (AUD). We used SSAGA interviews to construct lifetime symptom counts
of DSM-5 AUD * in each sample. Because individuals in COGA are potentially interviewed multiple
times, we used the highest symptom count ever reported by each subject. In FT12, lifetime symptom
counts were measured at the young adult interview. In addition to symptom counts, we created AUD
thresholds for those who met criteria for mild (2+ symptoms), moderate (4+ symptoms), or severe (6+
symptoms) AUD * without clustering. In both FT12 and COGA, individuals who had never initiated

alcohol use were coded as missing.

Other Substance Use Disorders (SUD). We constructed lifetime symptom counts of cannabis,
cocaine, and opioid use disorders based on DSM-5 criteria. We measured nicotine dependence symptoms
using the Fagerstrom Test for Nicotine Dependence (FTND), which assesses six symptoms and has
values ranging from 0 to 10 in both COGA and FT12. Because many illicit SUDs were not measured or
rare in the FT12 data, we limit analyses of illicit SUD to COGA. Like AUD, these symptom counts
represent the maximum reported for each respondent across the course of the study. Symptom counts for
each substance were limited to those who indicated ever using the corresponding substance. In the case of

FTND, this is limited to those who report smoking 100+ cigarettes in their lifetime.

Polygenic Scores (PRS). We created PRS derived from publicly available large-scale GWASs.

Information on genotyping and quality control is available in the supplemental information. We used the
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well-established process of clumping and thresholding *°. Single nucleotide polymorphisms (SNPs) from
discovery GWASs were clumped based on linkage disequilibrium (LD) in the 1000 genomes EUR panel
using PLINK *’, based on an R* = .25, with a 500 kb window. SNPs were weighted using the negative log
of the association p-values. We then created scores based on differing thresholds of GWAS p-values
(p<.0001, p<.001, p<.01, p<.05, p<.10, p<.20, p<.30, p<.40, p<.50). We converted PRS to Z-scores for

interpretation.

We used four primary discovery GWASs to create three different PRSs. The first was from a
recent GWAS of number of alcoholic drinks per week in approximately one million individuals provided
by the GWAS & Sequencing Consortium of Alcohol and Nicotine Use (GSCAN) *. We obtained GSCAN
summary statistics with all Finnish (which included FinnTwin12) and 23andMe (which are not publicly
available) cohorts removed (available N = 534,683). The PRS for alcohol problems were derived from a
meta-analysis of two GWASs: a GWAS on the problem subscale from the Alcohol Use Disorders
Identification Test (questions 4-10; AUDIT-P) in 121,604 individuals from the UK Biobank ° and the
Psychiatric Genomcs Consurtium’s (PGC) GWAS of alcohol dependence (N = 46,568) °. Both FT12 and
COGA were in the initial AD GWAS and we obtained summary statistics with each cohort removed
(meta-analysis results available in supplemental info). Finally, we derived a PRS for risky behaviors from
a GWAS of the first prinicipal component of four risky behaviors (drinks per week, ever smoking,
propensity for driving over the speed limit, and number of sexual partners) from 315,894 individuals in
the UK Biobank . While this PRS does include alcohol consumption and smoking, it captures the shared
variance between these substance use measures and the other two risky behaviors. These polygenic scores
covered the domains of alcohol consumption (GSCAN DPW), alcohol problems (PROB ALC), and

general externalizing (RISK PC).

Analytic Strategy

We identified the most predictive PRS across p-value threshold from each of the discovery

GWASs in both COGA and FT12 using the change in R above a baseline model with sex, age of last
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observation, the first ten ancestral principal components (PCs), genotyping array, and data collection site
(these latter two were only included in COGA analyses). We used linear/generalized-linear mixed-effects
models with random intercepts to adjust for clustering at the family level and a pseudo-R* for mixed
models **. After identifying the most predictive PRS, we estimated the joint effect of all PRS on AUD
symptoms to examine whether each PRS explained unique variance. We next divided PRSs at various
thresholds (80", 90™, and 95" percentiles) to determine the increase in likelihood of AUD (using
symptom severity thresholds of AUD) associated with being in the top end of split relative to the bottom
portion of the split. Because increased risk ratios do not necessarily reflect clinical utility *, we also
calculated area under the curve (AUC) of the joint model containing all continuous PRS to estimate
sensitivity/specificity (in supplemental information). Finally, we compared mean values of other

substance use outcomes for the top 5% in each PRS to those in the bottom 95%.

Results

Table 1 presents the descriptive statistics for each of the samples. Each sample has slightly more
female than male participants. COGA has a broader age range and higher mean age. As COGA was
primarily ascertained for families with multiple AUD members, the mean number of AUD symptoms
(mean = 3.44) is significantly higher than in the population-based FT12 sample (mean = 1.63).
Additionally, COGA participants had higher mean levels of FTND symptoms (mean = 4.17) than FT12
participants (mean = 2.57). For other SUD symptoms in COGA, though symptom counts for cannabis,
cocaine, and opioid use disorders are zero-inflated; there are a substantial number of participants who

report non-zero levels of symptoms (see Table 1).

Predictive Power of PRS

Figure 1 presents the AR” using each PRS to predict AUD symptom count, in each sample, for

each discovery GWAS p-value threshold. Within each sample, we chose the most predictive PRS for each
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discovery GWAS in COGA (RISK PC = p <.10, GSCAN DPW = p <.05, PROB ALC = p <.50) and
FT12 (RISK PC = p <.10, GSCAN DPW = p <.20, PROB ALC = p <.50). In COGA, the PRS for
GSCAN DPW was the most predictive of AUD symptoms (AR*= 1.80%). The RISK PC PRS was most
predictive of AUD symptom count in FT12 (AR” = 2.10%). These PRS were followed by PRS for risky
behaviors in COGA (AR* = 1.25%) and drinks per week in FT12 (AR* = 1.17%), and PRS for alcohol

problems (COGA = 1.18%; FT12 = 0.40%).

Increase in Risk across the Polygenic Continuum

In order to estimate whether individuals at the extreme end of the PRS distribution were at
elevated risk of AUD, we compared risk of AUD between those above and below a given threshold in the
distribution. First, we determined whether each of these PRS contributed to AUD symptoms in a model
containing all three, jointly. Figure 2 presents the parameter estimates for the independent and conditional
effect of each PRS in both COGA and FT12. In the conditional model for COGA, each of the PRSs
remains significantly associated with AUD symptoms, though the associations are attenuated (conditional
model AR” = 2.65%). In FT12, only the PRS for RISK PC remains significant in the joint model
(conditional model AR* = 2.45%). We averaged the three PRS into one composite PRS score of genetic

risk in COGA and used the RISK PC PRS in FT12 to carry forward in the following analyses.

Next, we divided these PRSs at the 80”‘, 90”‘, and 95" percentile in each sample and estimated the
odds ratio (OR) for AUD in the top portion of the distribution relative to the bottom portion of the
distribution (e.g. splitting at the 80™ percentile compares the top 20% to the bottom 80%). Table 2
provides the estimates for all of those models. Across each threshold for AUD severity in COGA, we
observed a similar pattern where restricting to the more extreme end of the polygenic distribution resulted
in greater odds of meeting criteria for AUD. For example, there was increasing risk for a severe AUD
when dividing 80™ percentile (OR = 1.948; 95% CI = 1.665, 2.278), 90" percentile (OR = 2.027; 95% CI
= 1.655, 2.482), and 95" percentile (OR = 2.126; 95% CI = 1.617, 2.796). In FT12, there was a similar

pattern for mild and severe AUD, but not moderate AUD. However, given the small number of cases in
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the extreme end for severe AUD, these estimates should be interpreted cautiously. Finally, we assessed
the sensitivity/specificity of these PRS by calculating the AUC. AUC from the full model (including both
continuous PRS and covariates) for each level of AUD severity ranged from 0.67 to 0.74 in COGA and
from 0.65 to 0.75 in FT12. Comparing the AUC for the models with and without PRSs, including the PRS

only increased the AUC slightly (see supplemental information).

Examining the Substance Use Phenome of the Extreme End of the Polygenic Risk Continuum

We compared the likelihood of substance-related outcomes in individuals in the top 5% of each
of the PRS in COGA and FT12 (adjusted for covariates). Figure 3 presents the mean lifetime symptoms
endorsed for a variety of substance use disorders (alcohol, cannabis, cocaine, nicotine, and opioid) for
individuals in the top 5% for each PRS relative to the bottom 95% of each PRS. In COGA, individuals in
the top 5% of the PROB ALC, RISK PC, and/or GSCAN DPW PRS had significantly higher levels of
alcohol (0.25 — 0.33 SD) and nicotine symptoms (0.13 — 0.18 SD) than those in the bottom 95% of the
PRS distribution. Those in the top 5% of the RISK PC PRS also endorsed a higher number of cannabis
use disorder symptoms (0.14 SD). In FT12, those in the top 5% did not differ significantly for AUD or

FTND symptoms.

Overall, individuals in the top 5% of any PRS report greater levels of any substance, though being
in the top 5% of the RISK PC PRS is associated with the most other substances. These PRS are modestly
correlated with one another in both COGA (rgssk pc+ pros ac = -30; ¥Gscan ppwrisk pc= -37; FGScAn DPW* PROB
arc = .32) and FT12 (rrisk pcrpros arc = -20; roscan ppwsrisk pc= -45; 6scan ppws prop acc = -27). These PRS
each seem to capture unique information related to the genetics of substance use problems (and other

risky behaviors).

Discussion

Researchers have begun to evaluate the clinical utility of PRS for a variety of medical phenotypes

' 12 In this analysis, we examined the current utility of several PRSs for identifying those at risk for a
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variety of SUDs, with a focus on AUD in both a clinically ascertained and population based sample. We
were interested in 1) which scores based on available GWASs provide the best prediction for alcohol use
disorder and whether these scores predicted unique variance in AUD in a joint model; 2) what the risk of
AUD was for those at the upper end of the risk continuum compared to the bottom; and 3) the levels of
substance use disorder symptoms for individuals at the top 5% of the polygenic score continuum

compared to remaining 95%.

In terms of which polygenic scores were the most predictive, we considered three scores: one
based on problematic alcohol use (PROB ALC), one based on alcohol consumption (GSCAN DPW), and
one based on general risky behaviors (RISK PC), as twin and family studies have shown alcohol and
other risk behaviors to be genetically correlated traits * '*'®. In the population sample (FT12), the RISK
PC PRS was the most predictive. These results support the idea that focusing on the shared genetic

etiology towards risk taking, sometimes referred to as externalizing '*'®

, may prove useful for identifying
those at risk for SUD *°. In our more clinically based (COGA) sample, the PRS for alcohol consumption
(GSCAN DPW) explained the largest portion of the variance. When we included all of the PRS in one
model, all three PRS were associated with AUD symptoms in COGA while only the RISK PC PRS was
associated with AUD symptoms in FT12. We ran a series of sensitivity analyses to test whether

differences across the samples reflected age differences rather than differences in ascertainment.

Restricting COGA to participants under 30 did not fundamentally change the results.

When we divided the PRS at different thresholds, the odds of having an AUD steadily increased
from the 80% threshold to the 95% threshold in both COGA and FT12. However, even though the point
estimates steadily increased, the confidence intervals around these estimates were relatively large and
they did not differ significantly. Additionally, there were only a small number of individuals in the severe
category in FT12 and we urge caution in interpreting these estimates. Supplemental analyses evaluating
the AUC for each continuous PRS in a joint model revealed the combined effect of all three PRSs only

marginally improved the AUC over models with just covariates. Finally, the top 5% of the continuum for
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each PRS reported elevated rates of other SUD symptoms (cannabis, cocaine, and nicotine use disorders)
compared to the bottom 95%. The RISK PC PRS was the most predictive of these higher mean levels of
SUD symptoms, suggesting that risk for externalizing may be particularly useful in identifying

individuals at risk for SUDs.

These initial findings suggest the use of genetic data may eventually have utility in a clinical
setting for SUDs, but not in their current form. Being able to identify those at heightened risk for SUDs
may allow for more targeted early intervention and prevention. Before clinical utility is possible, larger
discovery GWAS across substance use phenotypes with PRS that explain greater portions of the variance
will be necessary. As GWAS sample sizes for SUDs increase, we will likely see improved prediction *'.
Additionally, using multivariate techniques to model the shared genetic architecture across existing SUD
GWAS to include both aspects of externalizing and internalizing (e.g. depression, anxiety) may also
improve prediction ** *. Inclusion of genetic data in a clinical setting will also require that psychiatrists
and clinicians receive greater training in genetics and/or that they partner with genetic counselors, so they
are both better able to understand what increased genetic risk means and be able convey that information

35 In addition to clinical utility, we must ensure that regulations and

accurately to their patients
protections surrounding the use of genetic information in clinical settings can adequately protect the rights

of individuals who are identified to be “at risk.”

This research has several important limitations. First, all analyses were limited to individuals of
European ancestry because the discovery GWASs available were conducted in individuals of primarily
European ancestry. It will be important to ascertain sizable samples of subjects with non-European
ancestries to properly estimate the predictive utility of PRS in non-European samples. This is especially
important for racial-ethnic minorities so that health disparities are not further perpetuated *°. Second, our
use of lifetime diagnoses may obscure the impact of changing genetic influences on the development of
AUD across the life course " **. Future work should draw on longitudinal data to examine the ways in

which the predictive utility of PRS changes with the age of the target sample. Finally, these analyses
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examined the marginal influence of PRS, independent of environment. Processes of gene-environment
interaction (GXE) are well documented in alcohol misuse using twin and family data ****. Incorporating
environmental information along with PRS in a methodologically rigorous manner will be an important

next step in developing clinically predictive algorithms.

Genome-wide polygenic scores are beginning to have utility in identifying individuals at risk of
certain diseases, especially those related to well defined physical health conditions, such as cardiovascular

12 We examined the current state of PRS for predicting substance use, with a focus on AUD.

disease '
Each of the PRS analyzed here predicted AUD. However, the overall maximum variance explained was
still small (~2%). Individuals at the top of the PRS continuum had elevated rates of multiple substance
use problems, but these differences across the PRS continuum are unlikely to be of broad clinical use in
their current state. As GWAS discovery samples become larger and we are better able to model the

complex relationship between genotype and phenotype, polygenic scores may eventually be useful in a

clinical setting.
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Table 1: Descriptive Statistics for FT12 and COGA samples.

Sample N Mean/% Median % 0 SD Min Max
Female 7,599 52.84% - - - - -
Age 7,599 36.94 - - 1477 12 91
DSM-5 AUD symptoms 7,300 3.44 2 28.79% 3.63 0 11

COGA DSM-5CUD symptoms 5,051 2.37 1 48.19% 3.13 0 11
DSM-5 CoUD symptoms 2,404 3.18 0 50.17% 4.13 0 11
DSM-5 OUD symptoms 1,663 2.05 0 62.96% 3.51 0 11
FTND count 3,701 4.12 4 14.02% 2.74 0 10
Female 1,251 5440% - - - - -
Age 1,247 21.94 - - 0.77 21 26

FT12
DSM-5 AUD symptoms 1,215 1.63 1 3457% 1.84 0 11
FTND count 631 2.57 2 21.55% 2.13 0 10

AUD = Alcohol Use Disorder; CUD = Cannabis Use Disorder; CoUD = Cocaine Use Disorder; OUD = Opioid Use Disorder;

FTND = Fagerstrom Test for Nicotine Dependence (limited to those who report ever smoking 100 cigarettes)

The N reflects those who report lifetime ever use of that substance. All symptoms counts limited to individuals who had initiated use of that
substance. The % 0 represents the percentage of participants who have initiated use and have no reported symptoms.
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Table 2: Odds Ratios for Those at Extreme End of the PRS Continuum

Sample  Phenotype Prevalence Split N Cases OR 95 % CI Low 95 % CI High
Mild AUD 57.06% 80% 999 1.94 1.68 2.24
COGA Mild AUD 57.06% 90% 522 1.97 1.62 2.39
Mild AUD 57.06% 95% 276 223 1.69 2.95
Moderate AUD 37.44% 80% 743 1.97 1.71 227
COGA Moderate AUD 37.44% 90% 401 2.04 1.69 2.46
Moderate AUD 37.44% 95% 218 2.25 1.73 2.92
Severe AUD 25.89% 80% 547 1.95 1.67 2.28
COGA Severe AUD 25.89% 90% 300 2.03 1.66 2.48
Severe AUD 25.89% 95% 165 2.13 1.62 2.80
Mild AUD 41.98% 80% 122 1.77 1.22 2.56
FT12 Mild AUD 41.98% 90% 68 2.27 1.39 3.72
Mild AUD 41.98% 95% 36 2.39 1.21 4.72
Moderate AUD 13.91% 80% 45 1.80 1.09 2.98
FT12 Moderate AUD 13.91% 90% 22 1.52 0.79 2.92
Moderate AUD 13.91% 95% 12 1.59 0.66 3.80
Severe AUD 3.79% 80% 15 2.16 1.06 4.40
FT12 Severe AUD 3.79% 90% 9 2.45 1.05 5.71
Severe AUD 3.79% 95% 6 3.24 1.11 9.53

All models control for sex, age at last interview, and first 10 principal components. Models for COGA also included data collection site and
genotyping array. N Cases = number of individuals who meet criteria for a given level of AUD and are in the top portion of the split.
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Figure Captions:

Figure 1: Predictive Power of PRS across Samples

Predictive power of PRS measured using pseudo-R” for linear mixed effects models **. Bars represent
change in variance explained over models with age, sex, and first 10 ancestral principal components,
genotyping array, and data collection site (only COGA for the latter two). Most predictive score outlined

in blue. * p < .05, corrected for FDR of 5%

Figure 2: Parameter Estimates for PRS in Independent and Joint Models

Parameter estimates from linear mixed models for AUD symptoms regressed on GSCAN DPW, PROB
ALC, and RISK PC PRS in COGA and FT12. Independent = model with only corresponding PRS.
Conditional = model with all PRS included. Adjusted for age, sex, first 10 ancestral principal

components, genotyping array, and data collection site (only COGA for the latter two).

Figure 3: Top 5% of PRS Continuum

Mean levels of SUD symptoms for alcohol, cannabis, cocaine, nicotine, and opioid use disorders for top
5% of each PRS compared to the bottom 50%. Black bar represents mean of bottom 50%. 95%

confidence intervals estimated using 1000 bootstrap resampling.


https://doi.org/10.1101/748038
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/748038; this version posted August 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure 1

GSCAN DPW PROB ALC RISK PC

* * * * * * * * * * * * * * * * * * * * * * * * * *

*

2.5

2.0

1.5

>
COGA

©
W

S

Variance Explained (%)
Do
o W

Ju—
W

>
FT12

o
n

*  *x  %x * %
Q N N O N SN
FITLLESS

Q
PRS P-value Thresholds

o
o

* * *

N
&

*  *x *x  %
S E O O 0
SELELS

%
%,
2,1,

2

* L I S T
XD E QNN R
ST T¥IITE


https://doi.org/10.1101/748038
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/748038; this version posted August 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure 2
COGA COGA FT12 FT12
Independent Conditional Independent Conditional
0.201
0.151

Y | S | s S SURER e
Qv Qv RS & O ©
3 Y& 3 & 3 RS 3 Y&
<~ QQ’ S <~ Q<b N <~ Q‘b N\ < Q‘b S
O, ¥ ¥ F & T F & T
& A & ¢ & A & ¢


https://doi.org/10.1101/748038
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/748038; this version posted August 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure 3

Alcohol Cannabis Cocaine Nicotine Opioid

0.4

0.2 — A i

COGA
|
|

0.0 3 p— —

0.50

Mean Levels (Z-Scores)

FT12
|
|

-0.25

-0.50



https://doi.org/10.1101/748038
http://creativecommons.org/licenses/by-nc-nd/4.0/

