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Abstract:

Introduction: Accurate differentiation of brain tissue types from T1-weighted magnetic
resonance images (MRIs) is a critical requirement in many neuroscience and clinical
applications. Accurate automated tissue segmentation is challenging due to the variabilities in
the tissue intensity profiles caused by differences in scanner models and acquisition
protocols, in addition to the varying age of the subjects and potential presence of pathology.
In this paper, we present BISON (Brain tISue segmentatiON), a new pipeline for tissue

segmentation.

Methods: BISON performs tissue segmentation using a random forests classifier and a set of
intensity and location priors obtained based on T1-weighted images. The proposed method
has been developed and cross-validated based on multi-center and multi-scanner manual
labels of 72 subjects aging from 5-96 years old, ensuring the generalizability of the results to
new data from various age ranges. In addition, we assessed the test-retest reliability of
BISON on 2 datasets; a. using 20 subjects that had scan/re-scan MRIs and manual
segmentations available, and b. using a human phantom dataset including 90 scans from a

single individual acquired across 10 years.

Results: The results of the proposed method were compared against Atropos, a commonly
used tissue classification method from ANTs. The proposed method yielded cross-validation
Dice Kappa values of kgm = 0.88 + 0.03, kwm = 0.85 £ 0.03, xcsp=0.77 + 0.11, outperforming
ANTs Atropos (kgm=0.79 + 0.05, kwm = 0.84 + 0.05, kcsr=0.64 + 0.22) as well as test-retest
Dice Kappa values of xgm = 0.94 = 0.006, kwm = 0.92 = 0.006, wcsr = 0.77 = 0.11
outperforming both manual (kgm = 0.92 + 0.01, kwm = 0.91 £ 0.01, kcsr = 0.74 = 0.03) and
ANTs Atropos (kgm = 0.87 £ 0.001, xwm = 0.92 £ 0.001, kcsr = 0.79 £ 0.05). The human
phantom dataset validations showed high generalizability for both Atropos (kgm=0.97 = 0.01,
Kwm=0.96 £ 0.01, kcsF=0.93 + 0.02) and BISON (kgm=0.95 + 0.01, kwm=0.94 + 0.01, KcsF -
0.85 £ 0.03), while Atropos tended to consistently under-segment the cortical CSF. Finally,
our assessment of BISON, Atropos, FAST from FSL, and SPM12 segmentations in presence
of white matter hyperintensities (WMHs) showed that BISON outperforms the other three
methods, correctly detecting WMHs as WM.


https://doi.org/10.1101/747998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/747998; this version posted August 28, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Conclusion: Our results show that BISON can provide accurate and robust segmentations in
data from different age ranges and various scanner models, making it ideal for performing

tissue classification in large multi-center and multi-scanner databases.

Keywords: Magnetic resonance imaging, automated brain tissue classification, random

forests classifier
1. Introduction

Accurate voxel-wise segmentation of different tissue types (i.e. gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF)) in magnetic resonance images (MRIs) is
important in many neuroimaging applications (Gonzalez-Villa et al., 2016). Regional and
overall volumetric differences and changes in different tissues can be used to assess disease
severity and progression. Tissue classification is also a necessary step in many image
processing pipelines and applications (Ad-Dab’bagh et al., 2006; De Boer et al., 2009;
Mateos-Pérez et al., 2018; Sajja et al., 2006; Schmidt et al., 2012; Simdes et al., 2013;
Steenwijk et al., 2013), as well as for functional activation localization in functional MRI
(fMRI) processing algorithms (Jo et al., 2010). Manual tissue classification is subject to rater

variability and time consuming, and therefore impractical, especially in large datasets.

Tissue segmentation is generally performed based on TIl-weighted MR images, which
provide a high inter-tissue contrast. However, accurate tissue segmentation can be
challenging due to the presence of imaging artefacts such as noise, partial volume effects, and
magnetic field non-uniformities (Cabezas et al., 2011), differences in scanner models and
image acquisition protocols, as well as intensity profiles and anatomical variabilities across
subjects from different ages and with different pathologies. Many researchers have attempted
to address this problem, using either atlas-based techniques (Aljabar et al., 2009; Cabezas et
al., 2011; Collins and Evans, 1997; Collins and Pruessner, 2010; Klein and Tourville, 2012;
Lotjonen et al., 2010; Shen and Davatzikos, 2001; Wu et al., 2007) where one (or multiple)
atlas with tissue (or structure) labels is nonlinearly registered to the subject volume. Using the
obtained transformation, the labels of the atlas are then transformed to the subject volume.
Such methods tend to provide better segmentations for the subcortical regions, but are
generally not very accurate in the cortex, where there is more subject variability. Another
commonly used approach is intensity-based classification, where a machine learning

technique is trained on voxel-wise intensity and location features (Cocosco et al., 2003;


https://doi.org/10.1101/747998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/747998; this version posted August 28, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Dadar et al., 2017a; Duda et al.,, 2001; Fischl et al., 2002; Gonzalez-Villa et al., 2016;
Makropoulos et al., 2014; Scherrer et al., 2009; Van Leemput et al., 1999). While these
methods generally perform well on data with similar intensity profiles as their training
libraries, they are susceptible to inaccuracies in cases where the input images have different
intensity distributions (due to scanner or imaging protocol differences, age differences, or in

cases of disease) from the images they have been trained on.

One of the major challenges when performing tissue classification on aging subjects or
individuals with neurodegenerative diseases is the presence of white matter hyperintensities
(WMHs). WMHs are areas of increased signal on T2-weighed and FLAIR MRI sequences,
which appear as hypointense on T1w images (Dadar et al., 2018b). These hypointense WMH
regions can present with a similar intensity profile to the gray matter in T1w images and can
be segmented as GM by tissue classification methods that are solely or highly dependent on
image intensities. This is particularly important in neurodegenerative disease populations
(e.g. Alzheimer’s disease and Parkinson’s disease), where WMHs are very common findings
(van der Flier et al., 2018) and have been shown to interact with neurodegeneration and
contribute to cognitive deficits (Dadar et al., 2018c, 2019) and therefore their

misclassification as GM may systematically bias the findings of such studies.

In this paper, we present BISON (Brain tISsue segmentatiON) pipeline, an intensity and
location-based tissue segmentation method that has been trained and validated on
Neuromorphometrics dataset, a manually segmented library of 92 subjects, aged from 5 to 96
years old, from 4 different datasets. We further validated the performance of BISON on a
subset of the Neuromorphometrics dataset that had test-retest scans available and a human
phantom dataset, containing 90 scans acquired across 11 different sites to ensure the
robustness and generalizability of the results. This multi-center and multi-scanner training
and validation ensure the generalizability of the results to data from different scanners and
age ranges. In addition, we make the segmentation pipeline along with the pre-trained

classifier publicly available (http://nist.mni.mcgill.ca/?p=2148).

2. Methods
2.1. Data

Data used in this paper was obtained from the Neuromorphometrics database of

neuroanatomically labelled MRI brain scans
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(http://www.neuromorphometrics.com/?page id=23#demo) (Caviness Jr et al., 1999). The

database includes 92 unique subjects from 4 different studies, namely, the Alzheimer's

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), the 20 Repeats dataset

of 20 nondemented subjects scanned on two visits within 90 days and labelled by two raters,
the Child and Adolescent NeuroDevelopment Initiative (CANDI) database
(http://www .nitrc.org/projects/candi_share), and the Open Access Series of Imaging Studies
(OASIS) database (http://www.oasis-brains.org/). Tale 1 shows a summary of the

demographic information for each data set.

Table 1. Demographic information for ADNI 30, 20 Repeats, CANDI 13, and OASIS 30 datasets.

Dataset Min Age Max Age No. of Scans No. of Subjects Repeat Scans
ADNI 30 62.4 87.9 30 29 1
20 Repeats 19 34 40 20 20
CANDI 13 5 15 13 13 0
OASIS 30 18 96 30 30 0

Human Phantom Dataset: A second dataset of 90 scans acquired from one subject (healthy
male, aged 42-51 years) between years 2008 and 2017 across 11 different sites was used to

further assess the generalizability of the segmentations to data from different scanners.
2.2. MR Images

Table 2 summarizes the acquisition parameters for each dataset included in

Noromorphometrics as well as the range of the parameters in the Human Phantom dataset.

Table 2 — Scanner information and MRI acquisition parameters for Neuromorphometrics and Human Phantom

datasets.
Dataset ADNI1 ADNI2/GO CANDI OASIS 20 Repeats Human Phantom
Slice thickness 1.2 mm 1.2 mm 1.5 mm 1 mm 1 mm 0.97 — 1 mm
No. of slices 160 196 128 128 160 160 - 256
2
Field of view 192x192 cm? | 256x256 cm? | 256x256 cm? | 256x256 cm® | 256%256 cm? 224224 em’
256256 cm
2
Scan Matrix 192x192 cm? | 256x256 cm? | 256x256 cm? | 256x256 cm? | 256%256 cm? 224224 e
256%256 cm
Repetition time (TR) 3000 ms 7.2 ms 300 ms 9.7 ms 9.7 ms 2.4 ms
Echo time (TE) 3.55 ms 3.0 ms 1 min 4.0 ms 4.0 ms 2.0 -4.0 ms
Pulse Sequence MPRAGE GR GRE MPRAGE MPRAGE MPRAGE
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2.3. Manual Labels

The manually segmented labels were created and edited by highly trained neuroanatomical
technicians using Neuromorphometrics software (Worth et al., 2001). This tool allows the
use of intensity histograms, iso-intensity contours and the manual drawing and erasing of
borders where necessary, allowing the user to efficiently delineate and label anatomy in 3
dimensions. The segmentation protocol specifications of Neuromorphometrics dataset can be

found in http://Neuromorphometrics.com/ParcellationProtocol 2010-04-05.PDF.

2.4. Preprocessing

All MRI images were preprocessed using MINC toolkit, publicly available at
https://github.com/BIC-MNI/minc-tools through the following steps: (I) denoising (Coupe et

al., 2008), (II) intensity non-uniformity correction (Sled et al., 1998), and (III) image
intensity normalization into range (0-100) using a linear intensity histogram matching
algorithm. All T1-weighted images were both linearly and non-linearly registered to the
MNI-ICBM152 template (Collins and Evans, 1997; Dadar et al., 2018a) to enable the use of

anatomical priors in the segmentation.

To assess the test-retest reliability of the proposed method, the two T1-weighted scans for the
subjects from the 20 Repeats dataset were co-registered using a 6-parameter rigid body
registration. Using this transformation, the manual and automated segmentations of the

second repeat were then co-registered to the first repeat for each subject.
2.5. Tissue Segmentation

For a given voxel with intensity value / from image T at location (x, y, z), the following set of
intensity and location features are used to train a Random Forests classifier (Breiman, 2001)

to perform tissue segmentation:


http://neuromorphometrics.com/ParcellationProtocol_2010-04-05.PDF
https://github.com/BIC-MNI/minc-tools
https://doi.org/10.1101/747998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/747998; this version posted August 28, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1. Voxel intensity of the preprocessed native T1-weighted image at the specific voxel

location; i.e. T(x, y, z).

2. The voxel intensity of the brain template for the specific voxel location; i.e. MNI(x, y,
z). To achieve this, the MNI-ICBM152 average template was nonlinearly registered to

the native T1-weighted image (using the linear + nonlinear transformations).

3. Three features representing the tissue probability of the atlas for each tissue type at
the specific voxel location; i.e. Pom(x, v, z), Pwm(x, v, z), Pcsr(x, y, z). To achieve this,
the probabilistic gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF)
maps corresponding to the MNI-ICBM 152 template were nonlinearly registered to the

native T1-weighted image.

4. Three features representing the probability of the voxel belonging to each of the tissue
types based on its intensity, obtained by creating probability density functions based
on the intensity histograms of the tissues at all voxel locations (PDFgy, PDFwu,
PDFcsr) from the manually labelled images in the training library; i.e. PDFcou(l),
PDFcse(I), and PDFcse(I). I is the intensity value of image 7 after intensity
normalization (0 < 7 < 100) at voxel location (x, y, z). The PDFs are calculated within
the cross-validation loop, to avoid any possibility of leakage (or double-dipping)
(Mateos-Pérez et al., 2018).

The Scikit-learn Python library implementation of the Random Forest classifier with 100
estimators was used (Pedregosa et al., 2011). Training and segmentations were performed in
the native space of the T1-weighted images, to avoid any blurring caused by resampling of

the images that might reduce the contrast at the tissue borders.

A set of 72 subjects from ADNI 30 (N=29), CANDI 13 (N=13), and OASIS 30 (N=30) were
used to train the random forests classifier. Ten-fold cross validation across subjects was used
to train and validate the performance of the classifier; i.e. no voxels from the subjects used
for validation were used in the training stage. To avoid any overfitting caused by using
multiple scans from the same subject, neither the repeat scan from the ADNI 30 subject or
any of the data from 20 Repeats dataset were used in the training library. This enabled us to

use the 20 Repeat dataset as a held-out validation dataset.
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Dice Kappa similarity index (Dice, 1945) and volumetric correlations were used to compare

the agreement between manual and automatic segmentations.
2.6. Comparison with ANTs Atropos

The results of the proposed method were also compared against ANTs Atropos, an [TK-based
open source multi-class brain segmentation technique distributed with (ANTs

http://www.picsl.upenn.edu/ANTs). Atropos performs tissue classification within a Bayesian

framework by modeling the class intensities based on either parametric or non-parametric
finite mixtures (Avants et al.,, 2011). Atropos incorporates the template-based tissue
probability maps as prior information in the form of Markov Random Fields (MRF). Based
on Atropos requirements, the preprocessed T1-weighted images were linearly registered to
the MNI-ICBM152 template. Using the nonlinear transformations, the MNI-ICBM152 tissue
probability maps were also registered to these images to be used as MRF tissue priors.
Atropos was then run with default parameters to segment 3 classes on all
Neuromorphometrics scans. Using the linear transformations, all the automated Atropos
segmentations were then transformed back to the native space of the T1-weighted images and
were compared against manual segmentations and BISON. To ensure that this resampling
does not unfairly misrepresent Atropos performance, the Dice Kappas for Atropos were also

calculated without this resampling step.
2.7. Data and Code Availability Statement

The full script for the BISON segmentation pipeline along with the random forest classifier
pre-trained on the Neuromorphometrics dataset is publicly available at

(http://nist.mni.mcgill.ca/?p=2148).

3. Results

3.1. Cross Validation Performance

The performance of BISON was first validated through 10-fold cross validation. All voxels
within the manually segmented masks (i.e. all voxels labeled as GM, WM, or CSF by the
raters) of the subjects were classified and used for validation. Figure 1 shows the boxplot of

the Dice Kappa for each tissue and each dataset, for BISON and Atropos.
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Fig. 1. Dice Kappa plots showing the agreement between manual and automated segmentations for GM, WM,
and CSF separately for ADNI, CANDI, and OASIS subjects. Circles show the median values. GM= Gray
Matter. WM= White Matter. CSF= CerebroSpinal Fluid.

Overall, BISON achieved significantly higher Dice Kappa values for GM and CSF (paired t-
test, p<0.0001), and marginally significant values for WM (paired t-test, p=0.05). The overall
average Dice Kappa value for BISON was kgm = 0.88 £ 0.03, kwm = 0.85 + 0.03, kcsp=0.77 £+
0.11 and xgm = 0.85 £ 0.02, kwm = 0.83 £ 0.03, xcsr=0.86 £ 0.02 for the ADNI subjects, kKom =
0.90 £ 0.01, kwm = 0.85 = 0.03, kcsr = 0.59 £ 0.07 for the CANDI subjects, and kom = 0.90 £
0.01, kwm = 0.88 £ 0.02, kcsr = 0.74 = 0.08 for the OASIS subjects. In comparison, ANTs
Atropos obtained overall mean Dice Kappas of kgm = 0.79 £ 0.05, xwm = 0.84 + 0.05, xcsF =
0.64 + 0.22 and xgm = 0.81 = 0.04 , kwm = 0.82 = 0.04, kcsr = 0.85 = 0.02 for the ADNI
subjects, kgm=0.76 £ 0.07, kwm = 0.80 £ 0.07, kcsr=0.38 £ 0.14 for the CANDI subjects, and
KoM = 0.80 £ 0.04, xwm = 0.88 £ 0.04, xcsk=0.55+ 0.17 for the OASIS subjects. Recalculating
the Dice Kappas in the MNI-ICBM152 space (without resampling back to the native Tlw
space) did not change Atropos results (overall mean Dice Kappa: kgm = 0.79 £+ 0.05, xwm =

0.84 £ 0.05, kcsr=0.64 + 0.22).

The overall correlation between manual and automatic volumes was rogm = 0.95, pom
<0.0001, rwm = 0.89, pwm <0.0001, and rcsr = 0.97, pcsr <0.0001 for the proposed method,
and rem = 0.87, pam <0.0001, rwm = 0.89, pwm <0.0001, and rcsr = 0.70, pcsr <0.0001 for
ANTs Atropos. Figure 2 shows the volumetric correspondence between the manual and

automatic volumes.
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Fig 2. Automatic versus manual volumes for GM, WM, and CSF in ADNI, CANDI, and OASIS for the RF
classifier and ANTs Atropos. GM= Gray Matter. WM= White Matter. CSF= CerebroSpinal Fluid.

Figure 3 compares the manual and automated segmentation results for one subject from each

dataset.

Subject from ADNI Subject from CANDI Subject from OASIS

Tilw Image Manual Labels Atropos BISON T1w Image Manual Labels Tiw Image Manual Labels Atropos

Atropos BISON
s Pl

BISON

Fig. 3. Axial slices comparing manual segmentations and automatic segmentations from ADNI, CANDI, and
OASIS datasets.
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3.2. Test-Retest Performance

Figure 4 shows the test-retest boxplots of the Dice kappa values for each tissue for both for

the manually segmented labels and the automatically segmented results.
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Fig. 4. Dice Kappa plots showing the comparisons with the manual segmentations as well as the test-retest
agreement for manual and automated segmentations for GM, WM, and CSF separately for 20 Repeat subjects.

GM= Gray Matter. WM= White Matter. CSF= CerebroSpinal Fluid.

When comparing to manual labels of the test-retest (R1 and R2) data, the average Dice Kappa
value for BISON was kgm=0.86 + 0.02, kwm=0.82 £ 0.02, kcsr=0.58 £ 0.09 for the first scan
(R1), and kgm=0.86 = 0.01, kwm = 0.83 £ 0.02, kcsr=0.58 £ 0.08 for the second scan (R2). In
comparison, Atropos obtained mean Dice Kappas of kom = 0.77 + 0.03, xwm = 0.87 + 0.01,
Kcsk = 0.38 £ 0.12 for the first scan, and kgm = 0.78 £ 0.03, kwm = 0.87 + 0.02, kcsk = 0.37 £+
0.12 for the second scan. All the differences are statistically significant (paired t-test,

p<0.0001).

Consistency (or reproducibility) was estimated by comparing the segmentations of test data to
the retest data. For the manual segmentations, this gives the inter-rater reliability. The
average test-retest Dice Kappa values were kgm=0.92 £ 0.01, kwm =0.91 + 0.01, xcsr=0.74 £
0.03 for the manual segmentations; Kgm = 0.94 = 0.006, kwwm = 0.92 + 0.006, kcsr=0.77 £0.11
for the proposed method; and xgm = 0.87 £ 0.001, xwm = 0.92 + 0.001, kcsr=0.79 = 0.10 for
ANTs Atropos. The differences between Atropos and BISON were statistically significant for
GM (paired t-test, p<0.0001), but not for WM and CSF. Figure 5 shows the manual and

automated segmentation results for both repeats for one subject. Overall, Atropos tends to
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over-segment CSF, and has failed to detect the putamen and thalamus in some slices, where

the contrast between GM and WM is relatively low (e.g. row 3).

20 Repeats Subject — MRI 1 20 Repeats Subject — MRI 2

Tlw Image  Manual Labels Manual Labels Atropos BISON

Atropos BISON T1w Image

Fig. 5. Axial slices comparing test-retest manual and automatic segmentations for a subject from 20 Repeats

dataset.

3.3. Generalizability

In order to assess the consistency of the segmentations on data from different scanners, we
segmented 90 T1w MRI scans obtained across 10 years from one subject. Figure 6 shows the
volumes (normalized by the total intracranial volume) estimated based on Atropos and
BISON segmentations, across 10 years. Both methods have very consistent results across
different scans, with variabilities (normalized standard deviation) of 0.3%, 0.3%, 0.1% for

GM, WM, and CSF for Atropos, and 0.3%, 0.2%, 0.3% for BISON, respectively. Based on
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Atropos results, GM volume decreases significantly (0.05% per year), while WM (0.03% per
year) and CSF (0.02% per year) volumes significantly increase. BISON estimates of the
tissue volumes show more modest changes in the volumes, with a slight but non-significant
decrease for GM (0.01% per year) and WM (0.01% per year), and a non-significant increase
in the CSF (0.02% per year) volume.

T T
CSF-Atropos - r= 055, p< 0.001
CSF-BISON - r=0.16 , p=0.14
GM-Atropos - r= -0.45, p< 0.001
GM-BISON - r= -0.06, p= 0.55
WM-Atropos - r= 0.31 , p= 0.002
WM-BISON - r=-0.09 , p=0.39
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Fig 6. Human Phantom GM, WM, and CSF volumes obtained from 90 scans. r, p in the figure legends show the
correlation between time from baseline and the volumes. GM= Gray Matter. WM= White Matter. CSF=

CerebroSpinal Fluid.

Figure 7 shows the Dice Kappa values for each pair of segmentations for Atropos and
BISON. The average Dice Kappa for all pairs was kgm=0.97 = 0.01, kwm =0.96 £ 0.01, xcsF =
0.93 £ 0.02 for Atropos, and kgm = 0.95 £ 0.01, xwm = 0.94 £ 0.01, xcsr = 0.85 £ 0.03 for

BISON, showing excellent consistency between different segmentations.

GM wm

20 40 60 80 20 40 60 80 20 40 60 80
BISON BISON BISON

Fig. 7. Dice Kappa values for GM, WM, and CSF, showing the agreement between each pair of scans in the
Human Phantom dataset. Upper and lower triangles show Atropos and BISON results respectively. GM= Gray
Matter. WM= White Matter. CSF= CerebroSpinal Fluid.

Figure 8 shows the segmentations by Atropos and BISON for one timepoint. Overall,

Atropos tends to consistently under-segment the CSF in the sulci, missing a large portion of
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the CSF in the cortical regions (rows 5 and 6 in Figure 8, also reflected in the lower CSF

volumes in Figure 6).

T1w Image Atropos BISON

Atropos BISON T1w Image

Fig. 8. Axial slices comparing Atropos and BISON segmentations for one timepoint from the Human Phantom

dataset.

3.4. Tissue Segmentation in Presence of Vascular Pathology

To compare the performance of BISON with other commonly used tissue classification
pipelines in presence of vascular pathology, we assessed the subjects with high loads of
WMHs in the Neuromorphmetrics dataset. 16 subjects with moderate to severe levels of
WMHs were identified based on visual assessment. T1w images of these subjects were also
segmented by SPM12 (Penny et al., 2011), and FAST from FSL (Zhang et al., 2001), in

addition to Atropos and BISON. Visual qualitative assessment of the segmentation results
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showed that while BISON was able to successfully detect most of the WMHs as WM,
Atropos and FAST segmented them as GM. SPM12 segmented most of the WMHs as WM,
however, the presence of WMHs led to gross under-segmentation of the GM (and a
corresponding over-segmentation of WM). Figure 9 shows axial slices covering the brain of
one subject with WMHs. The WMH regions are shown with red arrows. Table 3 shows the
Kappa values for GM, WM, and CSF for this subject as well as the average values for all 16

subjects for each method.

T1w Image Manual Labels Atropos Labels BISON Labels FAST Labels  SPM12 Labels

Fig. 9. Axial slices covering the brain comparing manual segmentations and automatic segmentations from
Atropos, BISON, FAST, and SPM12 for a subject with WMHs. WMH regions are indicated by red arrows.
WMH= White Matter Hyperintensities.
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Table 3. Dice Kappa Values for GM, WM, and CSF for Atropos, BISON, FAST, and SPM12 for one subject
with WMHs (Figure 9) as well as mean + standard deviation of 16 subjects with WMHs. GM= Gray Matter.
WM= White Matter. CSF= Cerebrospinal Fluid.

Tissue Type Atropos BISON FAST SPM12
GM 0.70 0.87 0.69 0.65
Example WM 0.76 0.86 0.81 0.77
CSF 0.55 0.70 0.47 0.55
GM 0.79+£0.04 | 0.860.02 | 0.74=0.08 | 0.80=0.07
Average WM 0.82+£0.04 | 0.84+0.02 | 0.82+0.08 | 0.84 +0.06
CSF 0.79+£0.09 | 0.84+0.04 | 0.66+0.16 | 0.76 £ 0.13

4. Discussion

In this paper, we presented a robust pipeline for tissue segmentation and validated its
performance in a multi-cohort and multi-scanner scanner dataset of subjects with different
age ranges. The proposed method uses a set of intensity and spatial probability features as
well as a Random Forest classifier to perform tissue classification. We quantitatively
compared the performance of the proposed technique against ANTs Atropos in
Neuromorphometrics and Human Phantom datasets, both of which include multi-center and
multi-scanner images. We also compared the performance of BISON in presence of WMHs
with Atropos, SPM12, and FAST from FSL; three frequently used publicly available tissue

classification methods.

Training and validation of the proposed method on multi-center and multi-scanner data
ensures its generalizability to new data, since automated methods that are trained based on
single scanner datasets generally tend to over-specialize on the characteristics of that specific
dataset (e.g. scanner model, acquisition sequence, population under study) and perform worse
when applied to data from other scanners or populations (Dadar et al., 2017b). This is even
more true when the automated methods are trained and validated only against synthetically
generated images. Our previous experience has shown that including multi-scanner datasets
in the training library can increase the generalizability of the segmentation method (Dadar et

al., 2017a).

ANTs Atropos Dice Kappa values were lower than the original results reported in the paper

(kom = 0.95, kwm = 0.96, and kcsr = 0.94), however, those results were developed and
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validated based on synthetic data and automatically generated labels (BrainWeb 20-subject
dataset: https://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal 20.html) of normal
young brains generated by an MRI simulator (Aubert-Broche et al., 2006), which is a much
less challenging problem, and also not affected by inter-rater and intra-rater variability caused
by manual segmentations (Avants et al., 2011). To ensure that the lower performance was not
caused by any differences in our application of Atropos, we applied Atropos to the BrainWeb

dataset as well as the example provided by ANTs and were able to obtain similar results.

Atropos tended to segment CSF more generously in subjects that had lower CSF volumes
(Figures 2, 3), and under-segment them in subjects with large levels of CSF. The volumetric
comparisons (Figure 2) showed that Atropos generally tends to over-segment CSF and under-
segment GM in CANDI (children from 5 to 15 years old with low CSF volumes) and OASIS
datasets, whereas the volumes obtained by the proposed method have a linear relationship

with the manual volumes.

Our experiments with the Human Phantom dataset showed excellent consistency across
different scans for both Atropos and BISON, with variabilities (normalized standard
deviation) of 0.3%, 0.3%, 0.1% for GM, WM, and CSF for Atropos, and 0.3%, 0.2%, 0.3%
for BISON, respectively. Part of this variability comes from the fact that these scans were
acquired across 10 years, while the subject aged from 42 to 51 years old, and therefore may
reflect actual change in tissue volumes. Based on Atropos results, GM volume decreased
significantly (0.05% per year), while WM (0.03% per year) and CSF (0.02% per year)
volumes significantly increase. This increase in WM volume is unlikely to be caused by any
physical changes and might be due to the fact that Atropos tended to under-segment CSF.
BISON estimates of the tissue volumes showed more modest changes in the volumes, with a
slight decrease for GM (0.01% per year) and WM (0.01% per year), and an increase in the
CSF (0.02% per year) volume.

An important concern when using a segmentation tool in aging and diseased populations is
the presence of vascular pathology. WMHs of presumed vascular origins are very common
findings in such cohorts (Wardlaw et al., 2015), and can be present in as high as 75% of the
cases with dementia (van der Flier et al., 2018). Since they contribute to cognitive deficits
and neurodegeneration, incorrectly segmenting them as GM can introduce a systematic error
into studies in such populations. Our assessment of the tissue segmentations in 16 subjects

with moderate to severe levels of WMHs showed that unlike Atropos, FAST from FSL, and
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SPM12, BISON provides accurate segmentations in presence of WMHs, making it a more

reliable choice in populations that are likely to present with high loads of WMHs.

While generally validated on smaller datasets (N<20) of healthy young individuals, other
automated tissue classification methods in the literature report similar or lower Dice Kappa
values when compared with manual labels from real scans, e.g. 0.77-0.78 by Cocosco et al.
(Cocosco et al., 2003), 0.83-0.84 by Van Leemput et al. (Van Leemput et al., 1999), 0.85 for
GM and 0.86 for WM by Bazin et al. (Bazin and Pham, 2007), 0.80 for GM and 0.88 by
Awate et al. (Awate et al., 2006), 0.4-0.8 by Ferreira da Silva (Ferreira da Silva, 2007), 0.78-
0.84 for GM and 0.84-0.89 for WM by Tohka et al. (Tohka et al., 2010), 0.78 for GM, 0.85
for WM, and 0.22 for CSF by Greenspan et al. (Greenspan et al., 2006). This lower
performance on real scans (compared to the synthetic data on which most methods are
generally trained) is likely due to the added complexities caused by the heterogeneity in the
real data; such as scanner or acquisition protocol differences, population differences,
presence of pathology, and the inter-rater and intra-rater variabilities in the manually
generated labels. In our experiments with the 20-Repeats dataset, the average test-retest Dice
Kappa values were kgm = 0.92 = 0.01, kwwm = 0.91 + 0.01, kcsr = 0.74 = 0.03 for the manual
segmentations, representing the level of variability in the manual segmentations that will
inevitably lead to lower reported performances when automatic methods are compared

against manual labels.

Since Neuromorphometrics dataset only includes T1-weighted images, the proposed method
was trained and validated to segment tissue classes using only T1-weighted images.
However, the pipeline has been developed to be able to handle (and the open-source software
handles) any combination of other input sequences such as T2-weighted, PD-weighted and
FLAIR images in addition to the T1-weighted images and can be retrained to segment other
structures as well if a library manual labels is provided. The option of using additional
FLAIR or T2-weighted images can be particularly useful in improving accuracies in presence

of pathologies such as WMHs, tumors, stroke, etc.

Accurate and robust tissue classification from T1-weighted MR images is critical to many
image processing and clinical applications. Due to the high variability of the tissue intensity
profiles across different populations, image acquisition parameters, scanner models, manual
segmentation protocols as well as rater variability, a tissue segmentation method that can

provide robust classifications in different datasets is highly advantageous. Our results suggest


https://doi.org/10.1101/747998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/747998; this version posted August 28, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

that the proposed pipeline can provide accurate and robust tissue segmentations in multi-
center and multi-scanner data, making it particularly useful for in analysing large multi-center

MRI databases.
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