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Abstract: 

Introduction: Accurate differentiation of brain tissue types from T1-weighted magnetic 

resonance images (MRIs) is a critical requirement in many neuroscience and clinical 

applications. Accurate automated tissue segmentation is challenging due to the variabilities in 

the tissue intensity profiles caused by differences in scanner models and acquisition 

protocols, in addition to the varying age of the subjects and potential presence of pathology. 

In this paper, we present BISON (Brain tISue segmentatiON), a new pipeline for tissue 

segmentation. 

Methods: BISON performs tissue segmentation using a random forests classifier and a set of 

intensity and location priors obtained based on T1-weighted images. The proposed method 

has been developed and cross-validated based on multi-center and multi-scanner manual 

labels of 72 subjects aging from 5-96 years old, ensuring the generalizability of the results to 

new data from various age ranges. In addition, we assessed the test-retest reliability of 

BISON on 2 datasets; a. using 20 subjects that had scan/re-scan MRIs and manual 

segmentations available, and b. using a human phantom dataset including 90 scans from a 

single individual acquired across 10 years.  

Results: The results of the proposed method were compared against Atropos, a commonly 

used tissue classification method from ANTs. The proposed method yielded cross-validation 

Dice Kappa values of κGM = 0.88 ± 0.03, κWM = 0.85 ± 0.03, κCSF = 0.77 ± 0.11, outperforming 

ANTs Atropos (κGM = 0.79 ± 0.05, κWM = 0.84 ± 0.05, κCSF = 0.64 ± 0.22) as well as test-retest 

Dice Kappa values of κGM = 0.94 ± 0.006, κWM = 0.92 ± 0.006, κCSF = 0.77 ± 0.11 

outperforming both manual (κGM = 0.92 ± 0.01, κWM = 0.91 ± 0.01, κCSF = 0.74 ± 0.03) and 

ANTs Atropos (κGM = 0.87 ± 0.001, κWM = 0.92 ± 0.001, κCSF = 0.79 ± 0.05). The human 

phantom dataset validations showed high generalizability for both Atropos (κGM = 0.97 ± 0.01, 

κWM = 0.96 ± 0.01, κCSF = 0.93 ± 0.02) and BISON (κGM = 0.95 ± 0.01, κWM = 0.94 ± 0.01, κCSF = 

0.85 ± 0.03), while Atropos tended to consistently under-segment the cortical CSF. Finally, 

our assessment of BISON, Atropos, FAST from FSL, and SPM12 segmentations in presence 

of white matter hyperintensities (WMHs) showed that BISON outperforms the other three 

methods, correctly detecting WMHs as WM. 
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Conclusion: Our results show that BISON can provide accurate and robust segmentations in 

data from different age ranges and various scanner models, making it ideal for performing 

tissue classification in large multi-center and multi-scanner databases. 

Keywords: Magnetic resonance imaging, automated brain tissue classification, random 

forests classifier 

1. Introduction 

Accurate voxel-wise segmentation of different tissue types (i.e. gray matter (GM), white 

matter (WM), and cerebrospinal fluid (CSF)) in magnetic resonance images (MRIs) is 

important in many neuroimaging applications (González-Villà et al., 2016). Regional and 

overall volumetric differences and changes in different tissues can be used to assess disease 

severity and progression. Tissue classification is also a necessary step in many image 

processing pipelines and applications (Ad-Dab’bagh et al., 2006; De Boer et al., 2009; 

Mateos-Pérez et al., 2018; Sajja et al., 2006; Schmidt et al., 2012; Simões et al., 2013; 

Steenwijk et al., 2013), as well as for functional activation localization in functional MRI 

(fMRI) processing algorithms (Jo et al., 2010). Manual tissue classification is subject to rater 

variability and time consuming, and therefore impractical, especially in large datasets. 

Tissue segmentation is generally performed based on T1-weighted MR images, which 

provide a high inter-tissue contrast. However, accurate tissue segmentation can be 

challenging due to the presence of imaging artefacts such as noise, partial volume effects, and 

magnetic field non-uniformities (Cabezas et al., 2011), differences in scanner models and 

image acquisition protocols, as well as intensity profiles and anatomical variabilities across 

subjects from different ages and with different pathologies. Many researchers have attempted 

to address this problem, using either atlas-based techniques (Aljabar et al., 2009; Cabezas et 

al., 2011; Collins and Evans, 1997; Collins and Pruessner, 2010; Klein and Tourville, 2012; 

Lötjönen et al., 2010; Shen and Davatzikos, 2001; Wu et al., 2007) where one (or multiple) 

atlas with tissue (or structure) labels is nonlinearly registered to the subject volume. Using the 

obtained transformation, the labels of the atlas are then transformed to the subject volume. 

Such methods tend to provide better segmentations for the subcortical regions, but are 

generally not very accurate in the cortex, where there is more subject variability. Another 

commonly used approach is intensity-based classification, where a machine learning 

technique is trained on voxel-wise intensity and location features (Cocosco et al., 2003; 
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Dadar et al., 2017a; Duda et al., 2001; Fischl et al., 2002; González-Villà et al., 2016; 

Makropoulos et al., 2014; Scherrer et al., 2009; Van Leemput et al., 1999). While these 

methods generally perform well on data with similar intensity profiles as their training 

libraries, they are susceptible to inaccuracies in cases where the input images have different 

intensity distributions (due to scanner or imaging protocol differences, age differences, or in 

cases of disease) from the images they have been trained on. 

One of the major challenges when performing tissue classification on aging subjects or 

individuals with neurodegenerative diseases is the presence of white matter hyperintensities 

(WMHs). WMHs are areas of increased signal on T2-weighed and FLAIR MRI sequences, 

which appear as hypointense on T1w images (Dadar et al., 2018b). These hypointense WMH 

regions can present with a similar intensity profile to the gray matter in T1w images and can 

be segmented as GM by tissue classification methods that are solely or highly dependent on 

image intensities. This is particularly important in neurodegenerative disease populations 

(e.g. Alzheimer’s disease and Parkinson’s disease), where WMHs are very common findings 

(van der Flier et al., 2018) and have been shown to interact with neurodegeneration and 

contribute to cognitive deficits (Dadar et al., 2018c, 2019) and therefore their 

misclassification as GM may systematically bias the findings of such studies. 

In this paper, we present BISON (Brain tISsue segmentatiON) pipeline, an intensity and 

location-based tissue segmentation method that has been trained and validated on 

Neuromorphometrics dataset, a manually segmented library of 92 subjects, aged from 5 to 96 

years old, from 4 different datasets. We further validated the performance of BISON on a 

subset of the Neuromorphometrics dataset that had test-retest scans available and a human 

phantom dataset, containing 90 scans acquired across 11 different sites to ensure the 

robustness and generalizability of the results. This multi-center and multi-scanner training 

and validation ensure the generalizability of the results to data from different scanners and 

age ranges. In addition, we make the segmentation pipeline along with the pre-trained 

classifier publicly available (http://nist.mni.mcgill.ca/?p=2148). 

2. Methods 

2.1. Data 

Data used in this paper was obtained from the Neuromorphometrics database of 

neuroanatomically labelled MRI brain scans 
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(http://www.neuromorphometrics.com/?page_id=23#demo) (Caviness Jr et al., 1999). The 

database includes 92 unique subjects from 4 different studies, namely, the Alzheimer's 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), the 20 Repeats dataset 

of 20 nondemented subjects scanned on two visits within 90 days and labelled by two raters, 

the Child and Adolescent NeuroDevelopment Initiative (CANDI) database 

(http://www.nitrc.org/projects/candi_share), and the Open Access Series of Imaging Studies 

(OASIS) database (http://www.oasis-brains.org/). Tale 1 shows a summary of the 

demographic information for each data set. 

Table 1. Demographic information for ADNI 30, 20 Repeats, CANDI 13, and OASIS 30 datasets. 

Dataset Min Age Max Age No. of Scans No. of Subjects Repeat Scans 

ADNI 30 62.4 87.9 30 29 1 

20 Repeats 19 34 40 20 20 

CANDI 13 5 15 13 13 0 

OASIS 30 18 96 30 30 0 

 

Human Phantom Dataset: A second dataset of 90 scans acquired from one subject (healthy 

male, aged 42-51 years) between years 2008 and 2017 across 11 different sites was used to 

further assess the generalizability of the segmentations to data from different scanners. 

2.2. MR Images 

Table 2 summarizes the acquisition parameters for each dataset included in 

Noromorphometrics as well as the range of the parameters in the Human Phantom dataset. 

Table 2 – Scanner information and MRI acquisition parameters for Neuromorphometrics and Human Phantom 

datasets. 

Dataset ADNI1 ADNI2/GO CANDI OASIS 20 Repeats Human Phantom 

Slice thickness 1.2 mm 1.2 mm 1.5 mm 1 mm 1 mm 0.97 – 1 mm 

No. of slices 160 196 128 128 160 160 - 256 

Field of view 192×192 cm2 256×256 cm2 256×256 cm2 256×256 cm2 256×256 cm2 
224×224 cm2 

256×256 cm2 

Scan Matrix 192×192 cm2 256×256 cm2 256×256 cm2 256×256 cm2 256×256 cm2 
224×224 cm2 

256×256 cm2 

Repetition time (TR) 3000 ms 7.2 ms 300 ms 9.7 ms 9.7 ms 2.4 ms 

Echo time (TE) 3.55 ms 3.0 ms 1 min 4.0 ms 4.0 ms 2.0 – 4.0 ms 

Pulse Sequence MPRAGE GR GRE MPRAGE MPRAGE MPRAGE 
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2.3. Manual Labels 

The manually segmented labels were created and edited by highly trained neuroanatomical 

technicians using Neuromorphometrics software  (Worth et al., 2001). This tool allows the 

use of intensity histograms, iso-intensity contours and the manual drawing and erasing of 

borders where necessary, allowing the user to efficiently delineate and label anatomy in 3 

dimensions. The segmentation protocol specifications of Neuromorphometrics dataset can be 

found in http://Neuromorphometrics.com/ParcellationProtocol_2010-04-05.PDF. 

 

2.4. Preprocessing 

All MRI images were preprocessed using MINC toolkit, publicly available at 

https://github.com/BIC-MNI/minc-tools through the following steps: (I) denoising (Coupe et 

al., 2008), (II) intensity non-uniformity correction (Sled et al., 1998), and (III) image 

intensity normalization into range (0-100) using a linear intensity histogram matching 

algorithm. All T1-weighted images were both linearly and non-linearly registered to the 

MNI-ICBM152 template (Collins and Evans, 1997; Dadar et al., 2018a) to enable the use of 

anatomical priors in the segmentation.  

To assess the test-retest reliability of the proposed method, the two T1-weighted scans for the 

subjects from the 20 Repeats dataset were co-registered using a 6-parameter rigid body 

registration. Using this transformation, the manual and automated segmentations of the 

second repeat were then co-registered to the first repeat for each subject. 

2.5. Tissue Segmentation 

For a given voxel with intensity value I from image T at location (x, y, z), the following set of 

intensity and location features are used to train a Random Forests classifier (Breiman, 2001) 

to perform tissue segmentation: 
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1. Voxel intensity of the preprocessed native T1-weighted image at the specific voxel 

location; i.e. T(x, y, z).  

2. The voxel intensity of the brain template for the specific voxel location; i.e. MNI(x, y, 

z). To achieve this, the MNI-ICBM152 average template was nonlinearly registered to 

the native T1-weighted image (using the linear + nonlinear transformations). 

3. Three features representing the tissue probability of the atlas for each tissue type at 

the specific voxel location; i.e. PGM(x, y, z), PWM(x, y, z), PCSF(x, y, z). To achieve this, 

the probabilistic gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 

maps corresponding to the MNI-ICBM152 template were nonlinearly registered to the 

native T1-weighted image. 

4. Three features representing the probability of the voxel belonging to each of the tissue 

types based on its intensity, obtained by creating probability density functions based 

on the intensity histograms of the tissues at all voxel locations (PDFGM, PDFWM, 

PDFCSF) from the manually labelled images in the training library; i.e. PDFGM(I), 

PDFCSF(I), and PDFCSF(I). I is the intensity value of image T after intensity 

normalization (0 < I < 100) at voxel location (x, y, z). The PDFs are calculated within 

the cross-validation loop, to avoid any possibility of leakage (or double-dipping) 

(Mateos-Pérez et al., 2018).  

The Scikit-learn Python library implementation of the Random Forest classifier with 100 

estimators was used (Pedregosa et al., 2011). Training and segmentations were performed in 

the native space of the T1-weighted images, to avoid any blurring caused by resampling of 

the images that might reduce the contrast at the tissue borders.  

A set of 72 subjects from ADNI 30 (N=29), CANDI 13 (N=13), and OASIS 30 (N=30) were 

used to train the random forests classifier. Ten-fold cross validation across subjects was used 

to train and validate the performance of the classifier; i.e. no voxels from the subjects used 

for validation were used in the training stage. To avoid any overfitting caused by using 

multiple scans from the same subject, neither the repeat scan from the ADNI 30 subject or 

any of the data from 20 Repeats dataset were used in the training library. This enabled us to 

use the 20 Repeat dataset as a held-out validation dataset.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/747998doi: bioRxiv preprint 

https://doi.org/10.1101/747998
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dice Kappa similarity index (Dice, 1945) and volumetric correlations were used to compare 

the agreement between manual and automatic segmentations. 

2.6. Comparison with ANTs Atropos 

The results of the proposed method were also compared against ANTs Atropos, an ITK-based 

open source multi-class brain segmentation technique distributed with (ANTs 

http://www.picsl.upenn.edu/ANTs). Atropos performs tissue classification within a Bayesian 

framework by modeling the class intensities based on either parametric or non-parametric 

finite mixtures (Avants et al., 2011). Atropos incorporates the template-based tissue 

probability maps as prior information in the form of Markov Random Fields (MRF). Based 

on Atropos requirements, the preprocessed T1-weighted images were linearly registered to 

the MNI-ICBM152 template. Using the nonlinear transformations, the MNI-ICBM152 tissue 

probability maps were also registered to these images to be used as MRF tissue priors. 

Atropos was then run with default parameters to segment 3 classes on all 

Neuromorphometrics scans. Using the linear transformations, all the automated Atropos 

segmentations were then transformed back to the native space of the T1-weighted images and 

were compared against manual segmentations and BISON. To ensure that this resampling 

does not unfairly misrepresent Atropos performance, the Dice Kappas for Atropos were also 

calculated without this resampling step. 

2.7.  Data and Code Availability Statement 

The full script for the BISON segmentation pipeline along with the random forest classifier 

pre-trained on the Neuromorphometrics dataset is publicly available at 

(http://nist.mni.mcgill.ca/?p=2148). 

3. Results 

3.1. Cross Validation Performance 

The performance of BISON was first validated through 10-fold cross validation. All voxels 

within the manually segmented masks (i.e. all voxels labeled as GM, WM, or CSF by the 

raters) of the subjects were classified and used for validation. Figure 1 shows the boxplot of 

the Dice Kappa for each tissue and each dataset, for BISON and Atropos.  
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Fig. 1. Dice Kappa plots showing the agreement between manual and automated segmentations for GM, WM, 

and CSF separately for ADNI, CANDI, and OASIS subjects. Circles show the median values. GM= Gray 

Matter. WM= White Matter. CSF= CerebroSpinal Fluid. 

Overall, BISON achieved significantly higher Dice Kappa values for GM and CSF (paired t-

test, p<0.0001), and marginally significant values for WM (paired t-test, p=0.05). The overall 

average Dice Kappa value for BISON was κGM = 0.88 ± 0.03, κWM = 0.85 ± 0.03, κCSF = 0.77 ± 

0.11 and κGM = 0.85 ± 0.02, κWM = 0.83 ± 0.03, κCSF = 0.86 ± 0.02 for the ADNI subjects, κGM = 

0.90 ± 0.01, κWM = 0.85 ± 0.03, κCSF = 0.59 ± 0.07 for the CANDI subjects, and κGM = 0.90 ± 

0.01, κWM = 0.88 ± 0.02, κCSF = 0.74 ± 0.08 for the OASIS subjects. In comparison, ANTs 

Atropos obtained overall mean Dice Kappas of κGM = 0.79 ± 0.05, κWM = 0.84 ± 0.05, κCSF = 

0.64 ± 0.22 and κGM = 0.81 ± 0.04 , κWM = 0.82 ± 0.04, κCSF = 0.85 ± 0.02 for the ADNI 

subjects, κGM = 0.76 ± 0.07, κWM = 0.80 ± 0.07, κCSF = 0.38 ± 0.14 for the CANDI subjects, and 

κGM = 0.80 ± 0.04, κWM = 0.88 ± 0.04, κCSF = 0.55± 0.17 for the OASIS subjects. Recalculating 

the Dice Kappas in the MNI-ICBM152 space (without resampling back to the native T1w 

space) did not change Atropos results (overall mean Dice Kappa: κGM = 0.79 ± 0.05, κWM = 

0.84 ± 0.05, κCSF = 0.64 ± 0.22). 

The overall correlation between manual and automatic volumes was rGM = 0.95, pGM 

<0.0001, rWM = 0.89, pWM <0.0001, and rCSF = 0.97, pCSF <0.0001 for the proposed method, 

and rGM = 0.87, pGM <0.0001, rWM = 0.89, pWM <0.0001, and rCSF = 0.70, pCSF <0.0001 for 

ANTs Atropos. Figure 2 shows the volumetric correspondence between the manual and 

automatic volumes. 
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Fig 2. Automatic versus manual volumes for GM, WM, and CSF in ADNI, CANDI, and OASIS for the RF 

classifier and ANTs Atropos. GM= Gray Matter. WM= White Matter. CSF= CerebroSpinal Fluid. 

Figure 3 compares the manual and automated segmentation results for one subject from each 

dataset. 

Subject from ADNI                              Subject from CANDI                      Subject from OASIS 

   T1w Image   Manual Labels     Atropos           BISON          T1w Image   Manual Labels     Atropos          BISON          T1w Image    Manual Labels     Atropos           BISON               

 

Fig. 3. Axial slices comparing manual segmentations and automatic segmentations from ADNI, CANDI, and 

OASIS datasets. 
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3.2. Test-Retest Performance 

Figure 4 shows the test-retest boxplots of the Dice kappa values for each tissue for both for 

the manually segmented labels and the automatically segmented results.  

 

Fig. 4. Dice Kappa plots showing the comparisons with the manual segmentations as well as the test-retest 

agreement for manual and automated segmentations for GM, WM, and CSF separately for 20 Repeat subjects. 

GM= Gray Matter. WM= White Matter. CSF= CerebroSpinal Fluid. 

When comparing to manual labels of the test-retest (R1 and R2) data, the average Dice Kappa 

value for BISON was κGM = 0.86 ± 0.02, κWM = 0.82 ± 0.02, κCSF = 0.58 ± 0.09 for the first scan 

(R1), and κGM = 0.86 ± 0.01, κWM = 0.83 ± 0.02, κCSF = 0.58 ± 0.08 for the second scan (R2). In 

comparison, Atropos obtained mean Dice Kappas of κGM = 0.77 ± 0.03, κWM = 0.87 ± 0.01, 

κCSF = 0.38 ± 0.12 for the first scan, and κGM = 0.78 ± 0.03, κWM = 0.87 ± 0.02, κCSF = 0.37 ± 

0.12 for the second scan. All the differences are statistically significant (paired t-test, 

p<0.0001). 

Consistency (or reproducibility) was estimated by comparing the segmentations of test data to 

the retest data.  For the manual segmentations, this gives the inter-rater reliability. The 

average test-retest Dice Kappa values were κGM = 0.92 ± 0.01, κWM = 0.91 ± 0.01, κCSF = 0.74 ± 

0.03 for the manual segmentations; κGM = 0.94 ± 0.006, κWM = 0.92 ± 0.006, κCSF = 0.77 ± 0.11 

for the proposed method; and κGM = 0.87 ± 0.001, κWM = 0.92 ± 0.001, κCSF = 0.79 ± 0.10 for 

ANTs Atropos. The differences between Atropos and BISON were statistically significant for 

GM (paired t-test, p<0.0001), but not for WM and CSF. Figure 5 shows the manual and 

automated segmentation results for both repeats for one subject. Overall, Atropos tends to 
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over-segment CSF, and has failed to detect the putamen and thalamus in some slices, where 

the contrast between GM and WM is relatively low (e.g. row 3). 

                         20 Repeats Subject – MRI 1                                     20 Repeats Subject – MRI 2 

     T1w Image      Manual Labels        Atropos              BISON              T1w Image     Manual Labels        Atropos               BISON 

 

Fig. 5. Axial slices comparing test-retest manual and automatic segmentations for a subject from 20 Repeats 

dataset. 

3.3. Generalizability  

In order to assess the consistency of the segmentations on data from different scanners, we 

segmented 90 T1w MRI scans obtained across 10 years from one subject. Figure 6 shows the 

volumes (normalized by the total intracranial volume) estimated based on Atropos and 

BISON segmentations, across 10 years. Both methods have very consistent results across 

different scans, with variabilities (normalized standard deviation) of 0.3%, 0.3%, 0.1% for 

GM, WM, and CSF for Atropos, and 0.3%, 0.2%, 0.3% for BISON, respectively. Based on 
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Atropos results, GM volume decreases significantly (0.05% per year), while WM (0.03% per 

year) and CSF (0.02% per year) volumes significantly increase. BISON estimates of the 

tissue volumes show more modest changes in the volumes, with a slight but non-significant 

decrease for GM (0.01% per year) and WM (0.01% per year), and a non-significant increase 

in the CSF (0.02% per year) volume.  

 

Fig 6. Human Phantom GM, WM, and CSF volumes obtained from 90 scans. r, p in the figure legends show the 

correlation between time from baseline and the volumes. GM= Gray Matter. WM= White Matter. CSF= 

CerebroSpinal Fluid. 

Figure 7 shows the Dice Kappa values for each pair of segmentations for Atropos and 

BISON. The average Dice Kappa for all pairs was κGM = 0.97 ± 0.01, κWM = 0.96 ± 0.01, κCSF = 

0.93 ± 0.02 for Atropos, and κGM = 0.95 ± 0.01, κWM = 0.94 ± 0.01, κCSF = 0.85 ± 0.03 for 

BISON, showing excellent consistency between different segmentations.  

 

Fig. 7. Dice Kappa values for GM, WM, and CSF, showing the agreement between each pair of scans in the 

Human Phantom dataset. Upper and lower triangles show Atropos and BISON results respectively. GM= Gray 

Matter. WM= White Matter. CSF= CerebroSpinal Fluid. 

Figure 8 shows the segmentations by Atropos and BISON for one timepoint. Overall, 

Atropos tends to consistently under-segment the CSF in the sulci, missing a large portion of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/747998doi: bioRxiv preprint 

https://doi.org/10.1101/747998
http://creativecommons.org/licenses/by-nc-nd/4.0/


the CSF in the cortical regions (rows 5 and 6 in Figure 8, also reflected in the lower CSF 

volumes in Figure 6). 

                             T1w Image            Atropos                  BISON             T1w Image               Atropos                BISON 

 

Fig. 8. Axial slices comparing Atropos and BISON segmentations for one timepoint from the Human Phantom 

dataset. 

3.4. Tissue Segmentation in Presence of Vascular Pathology 

To compare the performance of BISON with other commonly used tissue classification 

pipelines in presence of vascular pathology, we assessed the subjects with high loads of 

WMHs in the Neuromorphmetrics dataset. 16 subjects with moderate to severe levels of 

WMHs were identified based on visual assessment. T1w images of these subjects were also 

segmented by SPM12 (Penny et al., 2011), and FAST from FSL (Zhang et al., 2001), in 

addition to Atropos and BISON. Visual qualitative assessment of the segmentation results 
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showed that while BISON was able to successfully detect most of the WMHs as WM, 

Atropos and FAST segmented them as GM. SPM12 segmented most of the WMHs as WM, 

however, the presence of WMHs led to gross under-segmentation of the GM (and a 

corresponding over-segmentation of WM). Figure 9 shows axial slices covering the brain of 

one subject with WMHs. The WMH regions are shown with red arrows. Table 3 shows the 

Kappa values for GM, WM, and CSF for this subject as well as the average values for all 16 

subjects for each method.   

     T1w Image         Manual Labels        Atropos Labels     BISON Labels        FAST Labels      SPM12 Labels  

 

Fig. 9. Axial slices covering the brain comparing manual segmentations and automatic segmentations from 

Atropos, BISON, FAST, and SPM12 for a subject with WMHs. WMH regions are indicated by red arrows. 

WMH= White Matter Hyperintensities. 
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Table 3. Dice Kappa Values for GM, WM, and CSF for Atropos, BISON, FAST, and SPM12 for one subject 

with WMHs (Figure 9) as well as mean ± standard deviation of 16 subjects with WMHs. GM= Gray Matter. 

WM= White Matter. CSF= Cerebrospinal Fluid. 

 Tissue Type Atropos BISON FAST SPM12 

Example 

GM 0.70 0.87 0.69 0.65 

WM 0.76 0.86 0.81 0.77 

CSF 0.55 0.70 0.47 0.55 

Average 

GM 0.79 ± 0.04 0.86 ± 0.02 0.74 ± 0.08 0.80 ± 0.07 

WM 0.82 ± 0.04 0.84 ± 0.02 0.82 ± 0.08 0.84 ± 0.06 

CSF 0.79 ± 0.09 0.84 ± 0.04 0.66 ± 0.16 0.76 ± 0.13 

 

4. Discussion  

In this paper, we presented a robust pipeline for tissue segmentation and validated its 

performance in a multi-cohort and multi-scanner scanner dataset of subjects with different 

age ranges. The proposed method uses a set of intensity and spatial probability features as 

well as a Random Forest classifier to perform tissue classification. We quantitatively 

compared the performance of the proposed technique against ANTs Atropos in 

Neuromorphometrics and Human Phantom datasets, both of which include multi-center and 

multi-scanner images. We also compared the performance of BISON in presence of WMHs 

with Atropos, SPM12, and FAST from FSL; three frequently used publicly available tissue 

classification methods. 

Training and validation of the proposed method on multi-center and multi-scanner data 

ensures its generalizability to new data, since automated methods that are trained based on 

single scanner datasets generally tend to over-specialize on the characteristics of that specific 

dataset (e.g. scanner model, acquisition sequence, population under study) and perform worse 

when applied to data from other scanners or populations (Dadar et al., 2017b). This is even 

more true when the automated methods are trained and validated only against synthetically 

generated images. Our previous experience has shown that including multi-scanner datasets 

in the training library can increase the generalizability of the segmentation method (Dadar et 

al., 2017a). 

ANTs Atropos Dice Kappa values were lower than the original results reported in the paper 

(κGM = 0.95, κWM = 0.96, and κCSF = 0.94), however, those results were developed and 
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validated based on synthetic data and automatically generated labels (BrainWeb 20-subject 

dataset:  https://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal_20.html) of normal 

young brains generated by an MRI simulator (Aubert-Broche et al., 2006), which is a much 

less challenging problem, and also not affected by inter-rater and intra-rater variability caused 

by manual segmentations (Avants et al., 2011). To ensure that the lower performance was not 

caused by any differences in our application of Atropos, we applied Atropos to the BrainWeb 

dataset as well as the example provided by ANTs and were able to obtain similar results.  

Atropos tended to segment CSF more generously in subjects that had lower CSF volumes 

(Figures 2, 3), and under-segment them in subjects with large levels of CSF. The volumetric 

comparisons (Figure 2) showed that Atropos generally tends to over-segment CSF and under-

segment GM in CANDI (children from 5 to 15 years old with low CSF volumes) and OASIS 

datasets, whereas the volumes obtained by the proposed method have a linear relationship 

with the manual volumes. 

Our experiments with the Human Phantom dataset showed excellent consistency across 

different scans for both Atropos and BISON, with variabilities (normalized standard 

deviation) of 0.3%, 0.3%, 0.1% for GM, WM, and CSF for Atropos, and 0.3%, 0.2%, 0.3% 

for BISON, respectively. Part of this variability comes from the fact that these scans were 

acquired across 10 years, while the subject aged from 42 to 51 years old, and therefore may 

reflect actual change in tissue volumes. Based on Atropos results, GM volume decreased 

significantly (0.05% per year), while WM (0.03% per year) and CSF (0.02% per year) 

volumes significantly increase. This increase in WM volume is unlikely to be caused by any 

physical changes and might be due to the fact that Atropos tended to under-segment CSF. 

BISON estimates of the tissue volumes showed more modest changes in the volumes, with a 

slight decrease for GM (0.01% per year) and WM (0.01% per year), and an increase in the 

CSF (0.02% per year) volume. 

An important concern when using a segmentation tool in aging and diseased populations is 

the presence of vascular pathology. WMHs of presumed vascular origins are very common 

findings in such cohorts (Wardlaw et al., 2015), and can be present in as high as 75% of the 

cases with dementia (van der Flier et al., 2018). Since they contribute to cognitive deficits 

and neurodegeneration, incorrectly segmenting them as GM can introduce a systematic error 

into studies in such populations. Our assessment of the tissue segmentations in 16 subjects 

with moderate to severe levels of WMHs showed that unlike Atropos, FAST from FSL, and 
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SPM12, BISON provides accurate segmentations in presence of WMHs, making it a more 

reliable choice in populations that are likely to present with high loads of WMHs. 

While generally validated on smaller datasets (N<20) of healthy young individuals, other 

automated tissue classification methods in the literature report similar or lower Dice Kappa 

values when compared with manual labels from real scans, e.g. 0.77-0.78 by Cocosco et al. 

(Cocosco et al., 2003), 0.83-0.84 by Van Leemput et al. (Van Leemput et al., 1999), 0.85 for 

GM and 0.86 for WM by Bazin et al. (Bazin and Pham, 2007), 0.80 for GM and 0.88 by 

Awate et al. (Awate et al., 2006), 0.4-0.8 by Ferreira da Silva (Ferreira da Silva, 2007), 0.78-

0.84 for GM and 0.84-0.89 for WM by Tohka et al. (Tohka et al., 2010), 0.78 for GM, 0.85 

for WM, and 0.22 for CSF by Greenspan et al. (Greenspan et al., 2006). This lower 

performance on real scans (compared to the synthetic data on which most methods are 

generally trained) is likely due to the added complexities caused by the heterogeneity in the 

real data; such as scanner or acquisition protocol differences, population differences, 

presence of pathology, and the inter-rater and intra-rater variabilities in the manually 

generated labels. In our experiments with the 20-Repeats dataset, the average test-retest Dice 

Kappa values were κGM = 0.92 ± 0.01, κWM = 0.91 ± 0.01, κCSF = 0.74 ± 0.03 for the manual 

segmentations, representing the level of variability in the manual segmentations that will 

inevitably lead to lower reported performances when automatic methods are compared 

against manual labels.   

Since Neuromorphometrics dataset only includes T1-weighted images, the proposed method 

was trained and validated to segment tissue classes using only T1-weighted images. 

However, the pipeline has been developed to be able to handle (and the open-source software 

handles) any combination of other input sequences such as T2-weighted, PD-weighted and 

FLAIR images in addition to the T1-weighted images and can be retrained to segment other 

structures as well if a library manual labels is provided. The option of using additional 

FLAIR or T2-weighted images can be particularly useful in improving accuracies in presence 

of pathologies such as WMHs, tumors, stroke, etc. 

Accurate and robust tissue classification from T1-weighted MR images is critical to many 

image processing and clinical applications. Due to the high variability of the tissue intensity 

profiles across different populations, image acquisition parameters, scanner models, manual 

segmentation protocols as well as rater variability, a tissue segmentation method that can 

provide robust classifications in different datasets is highly advantageous. Our results suggest 
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that the proposed pipeline can provide accurate and robust tissue segmentations in multi-

center and multi-scanner data, making it particularly useful for in analysing large multi-center 

MRI databases. 
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