

1 Why are children so distractible?

2 Development of attentional capacities and phasic arousal 3 from childhood to adulthood.

4
5 Hoyer, R.S.^c, Elshafei, H., Hemmerlin, J., Bouet, R., Bidet-Caulet, A.

6
7 Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université
8 Claude Bernard Lyon 1, Université de Lyon, Lyon, France

9 ^c Corresponding author:

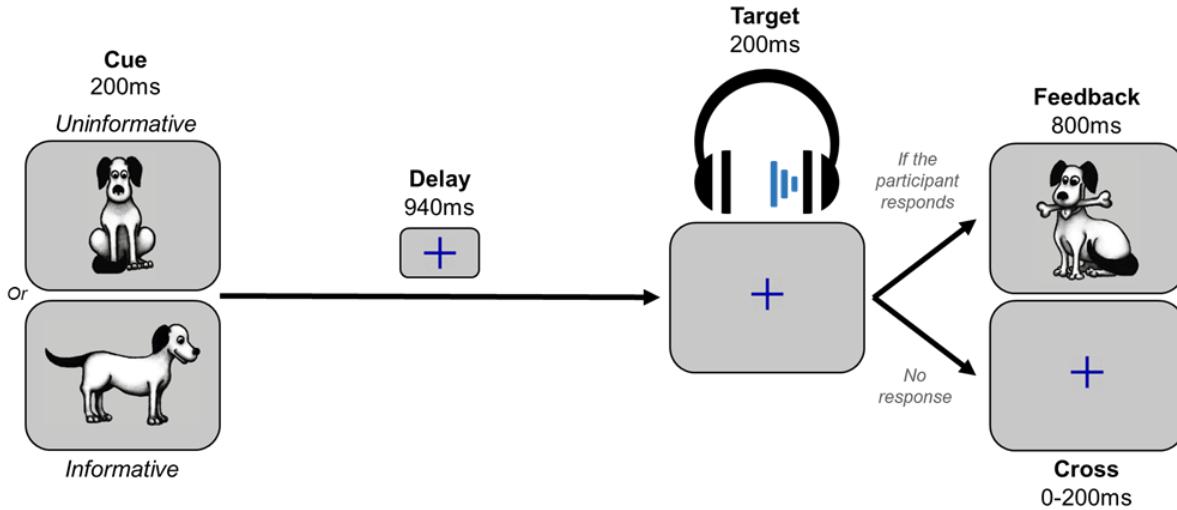
10 E-mail address: roxane.hoyer@gmail.com, mailing address: CRNL Equipe DYCOG, 95 Boulevard Pinel
11 69500 Bron, France, phone number: +33 (0)4 72 13 89 00, fax: +33 (0)4 72 13 89 01

13 Abstract

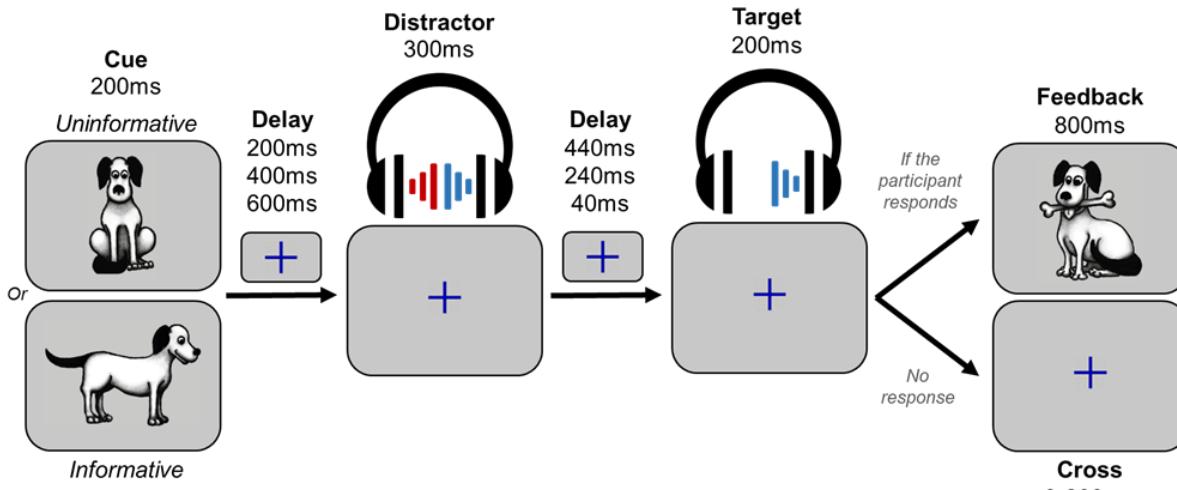
14 Distractibility is the propensity to behaviorally react to irrelevant information in a world flooded with
15 sensory stimulation. Children are more distractible the younger they are. The precise contribution of
16 attentional and motor components to distractibility and their developmental trajectories have not been
17 characterized yet. We used a new behavioral paradigm to identify the developmental dynamics of
18 components contributing to distractibility in a large cohort of participants (N=352; age range: 6-25). We
19 assessed the specific developmental trajectories of voluntary attention and distraction, as well as
20 impulsivity and motor control. Our results reveal that each of these components present distinct
21 maturational timelines. These findings show that in young children, increased distractibility is mostly the
22 result of reduced sustained attention capacities and enhanced distraction, while in teenagers, it is the
23 result of decreased motor control and increased impulsivity.

26 Introduction

27 Remember the time you were in school, listening to your teacher; a car honking in the street or a
28 classmate laugh might have caught your attention. These distractors interrupted your listening and note-
29 taking. This tendency to have one's attention captured is commonly referred to as distractibility. Healthy
30 adults can easily focus on the task at hand again, unless the task-irrelevant distractor is significant or
31 vitally important and requires changing behavior (e.g. a fire alarm). This capacity to be both task-efficient
32 and aware of the surroundings without being constantly distracted requires a balance between voluntary
33 and involuntary forms of attention. Voluntary attention enables performing an ongoing task efficiently
34 over time by selecting relevant information and inhibiting irrelevant stimuli; while involuntary attention is
35 captured by an unexpected salient stimulus^{1,2}, leading to a distraction state. Compared to adults,
36 children are more distractible³⁻⁶, which can result from an imbalance between voluntary and involuntary
37 attention. In ecological environments that are rich in distracting information, increased distractibility can
38 be caused by (i) a reduced capacity to voluntarily pay attention to relevant events, (ii) an enhanced
39 reaction to unexpected irrelevant distractors, or (iii) both. A better understanding of the causes of
40 increased distractibility is crucial to improve rehabilitation or training programs to boost attention.


41 Two main components of voluntary attention are usually investigated: attentional orienting and
42 sustained attention^{2,7-9}. Orienting of attention operates by enhancing the processing of relevant

43 information and inhibiting irrelevant events^{2,9,10}. Posner paradigms with endogenous informative or
44 uninformative cues^{11,12} have been used to measure the voluntary orienting of attention in anticipation of
45 a target in children. Results are conflicting: some show that the capacity to voluntarily orient attention is
46 mature before the age of six^{12,13} while others show that the benefit in reaction times (RT) to targets
47 following informative cues increases from 6 years old to adulthood¹¹⁻¹⁷. These findings suggest that the
48 voluntary orienting of attention may improve during childhood, but its precise developmental trajectory
49 remains unclear. Sustained attention is the ability to maintain the attentional focus over time on a given
50 task¹⁸⁻²¹. It relies on tonic arousal, also called vigilance^{22,23}. In children, sustained attention was mostly
51 measured using detection tasks of targets among non-target stimuli presented at a fast rate (e.g.
52 Continous Performance Test)²⁴. A reduction in RT variability, as well as in the number of false alarms
53 and missed responses, have been observed from 5 years old to early adulthood^{7,8,18,25}. These findings
54 suggest a continuous maturation of sustained attention throughout childhood and adolescence with
55 critical maturation steps at 6 and 13 years old. To our knowledge, no study has investigated the
56 developmental trajectory of sustained attention in a more ecological context including distracting events.


57 Only a few studies attempted to characterize the impact of distracting events in children^{5,26}.
58 Distraction was mostly investigated using audio-visual oddball paradigms, involving the discrimination
59 of targets preceded by task-irrelevant standard or novel sounds^{5,27-30}. Lower hit rate and longer reaction
60 times to targets preceded by novel sounds are considered a measure of distraction. These measures
61 were found to improve from childhood to adulthood^{29,31,32}, suggesting a reduction in distraction with age.
62 It was recently questioned, however, whether these oddball paradigms provide a reliable measure of
63 distraction, as after novel sounds, a behavioral cost (an increase in RT) was not always observed^{30,33-35},
64 and even enhanced performances were found^{30,37-39}. There is growing evidence that this facilitation
65 effect may be due to a phasic increase of arousal triggered by unexpected salient events^{30,37-40}. This
66 burst of arousal may be mediated by the norepinephrine system and result in a transient and non-
67 specific state of readiness to respond to any upcoming stimulus⁴¹⁻⁴³. Thus, the so-called distracting
68 sounds generate a combination of facilitation and distraction effects, which final impact on the
69 performance of an unrelated task depends on the task demands^{38,44-47}, the sound properties^{30,35,38}, the
70 sound-target delay^{35,40,48} and is probably contingent to brain maturation processes. Previous works have
71 shown that an increase in phasic arousal can also lead to increased false alarm rate^{41,49}. Impulsivity is
72 the tendency to act without forethought and to fail to appreciate circumstances related to the present
73 situation⁵⁰⁻⁵². An increased false alarm rate is typically observed in impulsive persons and could result
74 from an enhanced phasic arousal⁵³⁻⁵⁵ coupled – or not – with a lack in motor control^{7,56-59}. The
75 developmental trajectories of distraction, phasic arousal and impulsivity triggered by unexpected salient
76 event have not been disentangled yet.

77 In sum, previous behavioral studies showed that voluntary orienting of attention, sustained attention,
78 distraction, phasic arousal and impulsivity follow different developmental trajectories that remain to be
79 specified. Despite the importance of distractibility, its developmental trajectory is currently unknown. The
80 aim of the present study is to specify the maturational timeline of the different components of
81 distractibility in people from 6 to 25 years old. We used an adaptation of a recently developed paradigm,
82 the Competitive Attention Task (CAT)⁴⁸. This paradigm combines the Posner task and the oddball
83 paradigm to provide simultaneous and dissociated measures of voluntary attention, distraction, phasic
84 arousal, impulsivity and motor control (Fig. 1). To assess voluntary attention orienting, the CAT includes
85 informative and uninformative visual cues respectively indicating - or not - the spatial location of a
86 forthcoming auditory target to detect. To measure distraction, the CAT comprises trials with a task-
87 irrelevant distracting sound preceding the target according to several delays (Dis1, Dis2 & Dis3). This
88 change in distractor timing onset allows to dissociate the effects of distraction and phasic arousal in
89 comparison to the condition with no distractor (NoDis). Moreover, similarly to other detection tasks, the
90 rates of different types of false alarms, late and missed responses provide measures of sustained
91 attention, impulsivity and motor control. The CAT measures allow to characterize the developmental
92 trajectories of voluntary attention and distraction, and to determine whether the increased distractibility
93 observed during childhood results from either (i) reduced capacities in voluntary attention, (ii) increased
94 reaction to distracting information, or (iii) both.

a. Trials without distractor (NoDis)

b. Trials with distractor (Dis1, Dis2 and Dis3)

95

96 **Fig. 1 | Protocol.** **a**, In uninformative trials, a facing-front dog was used as visual cue (200 ms duration), indicating that the target sound will be
97 played in either the left or right ear. In informative trials, a facing left or right dog visual cue (200 ms duration) indicated in which ear (left or right,
98 respectively) the target sound will be played (200 ms duration) after a delay (940 ms). If the participant gave a correct answer, a feedback (800ms
99 duration) was displayed. **b**, In trials with distractor the task was similar, but a binaural distracting sound (300 ms duration) - such as a phone ring -
100 was played during the delay between cue and target. The distracting sound could equiprobably onset at three different times: 200 ms, 300 ms, or
101 600 ms after the cue offset.

102

103

104

105 **Results**

106 352 subjects were included in this study and divided into 14 age groups shown in Table 1. Using
107 Bayesian contingency table tests, we found decisive evidence for a uniform distribution of the sample
108 population across all age ranges in block order ($BF_{10} = 2.1 \cdot 10^{-5}$), gender ($BF_{10} = 5.2 \cdot 10^{-7}$) and
109 handedness ($BF_{10} = 8.1 \cdot 10^{-21}$). We observed - in the 6 to 17 year olds - a decisive evidence for a uniform
110 distribution across age ranges in socio-economic status ($BF_{10} = 8.9 \cdot 10^{-20}$) and education level of the
111 parents ($BF_{10} = 1.5 \cdot 10^{-19}$).

112

113 **Table 1 | Characteristics of the population sample.** Detailed samples by age for gender, handedness, mean parent education level for children
114 and mean education level for adults, total ADHD scale scores and thresholds of auditory perception (\pm standard error of the mean, SEM).

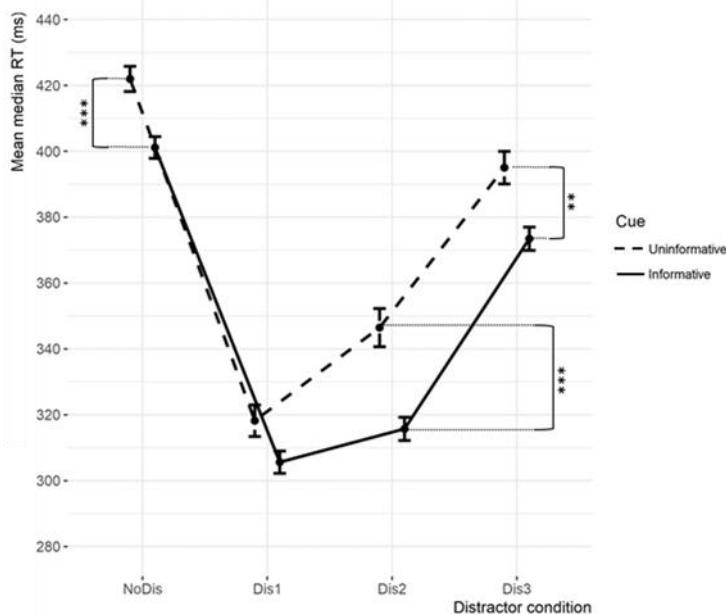
Age	Samples		Gender		Handedness		Mean education level = 5	ADHD score	Threshold of auditory perception (dBa)	
	Range	Included	Excluded	Male	Female	Right	Left		Max score Children = 54 Adults = 72	Right ear
6	24	5	54%	46%	88%	12%	3.3 \pm 0.2	17.8 \pm 1.7	26.8 \pm 2.3	26.0 \pm 3.0
7	22	12	55%	45%	91%	9%	3.5 \pm 0.2	17.0 \pm 2.0	26.9 \pm 2.2	29.4 \pm 2.4
8	24	6	54%	48%	88%	12%	2.7 \pm 0.2	18.5 \pm 1.2	24.8 \pm 2.5	26.3 \pm 2.5
9	28	5	54%	45%	75%	25%	3.6 \pm 0.2	17.9 \pm 1.6	25.2 \pm 2.3	25.5 \pm 2.5
10	36	1	47%	53%	92%	8%	3.0 \pm 0.2	16.4 \pm 1.4	25.1 \pm 1.9	21.9 \pm 1.5
11	25	2	40%	60%	92%	8%	3.4 \pm 0.2	12.8 \pm 1.8	29.1 \pm 2.9	29.1 \pm 2.3
12	28	3	54%	46%	89%	11%	3.3 \pm 0.2	9.1 \pm 1.7	33.1 \pm 2.1	32.3 \pm 1.9
13	25	3	52%	48%	92%	8%	2.9 \pm 0.3	10.2 \pm 1.8	32.2 \pm 2.0	31.3 \pm 1.8
14	25	7	44%	56%	92%	8%	3.8 \pm 0.2	7.8 \pm 1.2	29.4 \pm 2.4	28.2 \pm 2.1
15	24	4	58%	42%	92%	8%	3.0 \pm 0.2	9.5 \pm 1.5	28.2 \pm 2.7	27.0 \pm 2.4
16	22	2	50%	50%	95%	5%	3.7 \pm 0.2	9.9 \pm 1.4	31.4 \pm 2.7	31.5 \pm 2.9
17	26	7	38%	59%	88%	12%	2.7 \pm 0.2	8.1 \pm 1.7	32.9 \pm 2.5	31.3 \pm 2.2
18-19	23	2	39%	61%	83%	7%	1.4 \pm 0.2	34.5 \pm 3.4	22.5 \pm 2.5	20.0 \pm 1.6
20-25	20	1	50%	50%	80%	20%	4.0 \pm 0.3	30.6 \pm 3.0	19.7 \pm 1.5	19.7 \pm 1.4

115
116
117 We extracted 8 behavioral measures from participants' responses (see Extended Data Fig. 1):
118 median reaction times (RT), RT standard deviation (RT SD) as a measure of sustained attention, late
119 response % (LateRep) as a measure of attentional lapses, missed response % (MissRep) and distractor
120 response % (DisRep) as measures of distraction, cue response % (CueRep) and anticipated response
121 % (AntRep) as measures of impulsivity, and random response % (RandRep) as a measure of motor
122 control (see Extended Data Fig. 1).

123 For each type of behavioral measurement, we analyzed the influence of AGE, GENDER, CUE and
124 DISTRACTOR factors (unless specified otherwise in the Table 2) using linear mixed error-component
125 models or generalized linear mixed models.

126 In the following, the results of the Wald T-tests on the different models are presented. When a factor
127 was involved in a main effect and a higher order interaction, we only specified the post-hoc analysis
128 related to the interaction.

129
130 **Table 2 | Main statistical analyses according to behavioral response types.** Experimental conditions, factors and models used as a function of
131 the behavioral measurement. *Response type cumulating less than 1 % of response proportion across the total sample (only 2-way interactions
132 were considered). Detailed factor levels: CUE = informative vs. uninformative; CUELRN = left, right and neutral; Block = first, second and third.
133 Models: LME = Linear Mixed Error-component model; GLMM = Generalized Linear Mixed Model.


Response type	Condition(s) used for response type calculation	Fixed factor(s)		Random factor	Analysis	Distribution fitting	Missing data
		Between subjects	Within subjects				
median RT (log)	NoDis vs. Dis1 vs. Dis2 vs. Dis3	Age, Gender	Cue, Distractor	Distractor + Subject	LME	Gaussian	2.3 %
RT SD	NoDis	Age, Gender	Block	Subject	LME	Gaussian	0.0 %
Late responses	NoDis	Age, Gender	Cue	Subject	GLMM	Binomial	0.0 %
Missed responses	NoDis vs. Dis1 vs. Dis2 vs. Dis3	Age, Gender	Cue, Distractor	Subject	GLMM	Binomial	0.0 %
Cue responses *	NoDis & Dis1 & Dis2 & Dis3	Age, Gender	CuelRN	Subject	GLMM	Binomial	0.0 %
Distractor responses	Dis1 & Dis2 & Dis3	Age, Gender	CuelRN	Subject	GLMM	Binomial	0.0 %
Anticipated responses	NoDis vs. Dis1	Age, Gender	CuelRN, Distractor	Distractor + Subject	GLMM	Binomial	0.0 %
Random responses *	NoDis & Dis1 & Dis2 & Dis3	Age, Gender	CuelRN	Subject	GLMM	Binomial	0.0 %

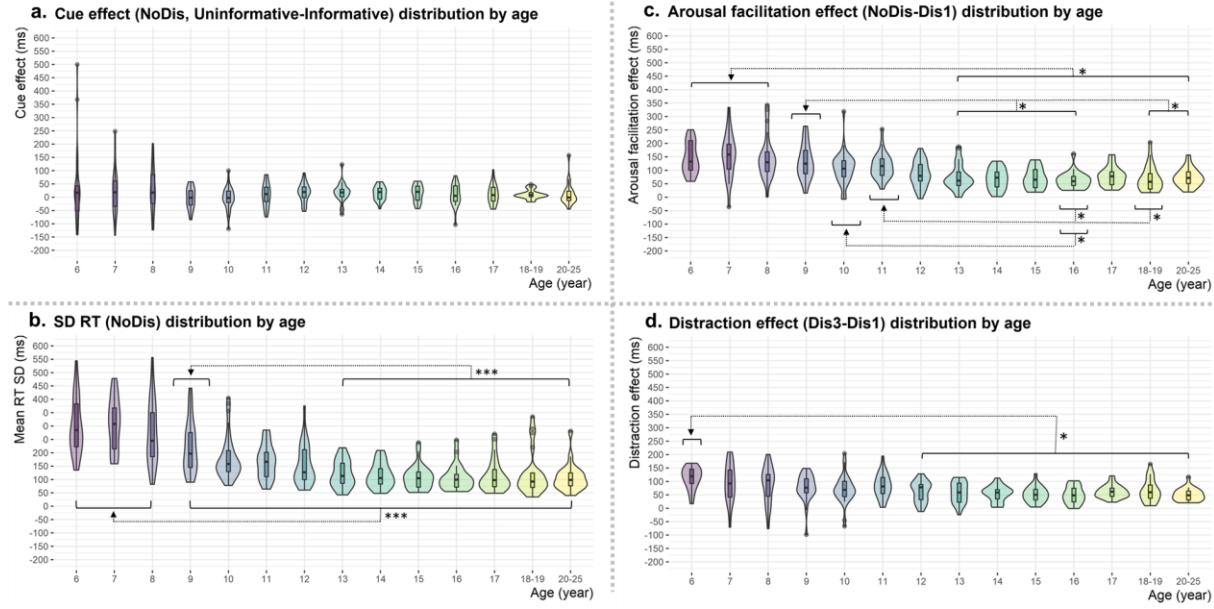
134
135 **Median RT.**

136 RT were modulated by GENDER ($\chi^2 (1) = 18.1$; $p < .001$): male (325.6 ± 1.6 ms) were faster than
137 female (350.8 ± 1.7 ms) participants.

139 We observed main effects of the AGE ($\chi^2 (13) = 460.0$; $p < .001$, Extended Data Fig. 2), the CUE
140 ($\chi^2 (1) = 56.1$; $p < .001$) and the DISTRACTOR ($\chi^2 (3) = 1326.5$; $p < .001$) factors on RT. We did not
141 observe a CUE by AGE interaction (Fig. 3a). This was confirmed by positive evidence against a
142 correlation of the voluntary attention orienting index with age (Kendall's Tau = 0.041, $BF_{10} = 0.1$).

143 A DISTRACTOR by CUE interaction was significant ($\chi^2 (3) = 26.6$; $p < .001$; Fig. 2). Post-hoc Honest
144 Significant Difference (HSD) tests showed that participants were faster to detect targets preceded by an
145 informative cue in the NoDis, Dis2 and Dis3 ($p < .001$) conditions, while no cue effect was found in the
146 Dis1 condition ($p = .694$).

148
149
150 **Fig. 2 | Median RT according to cue and distractor conditions.** Mean of median reaction time as a function of the cue category [informative or
151 uninformative] and of the distractor condition [NoDis, Dis1, Dis2, Dis3] ($p < .05$ *, $p < .01$ **, $p < .001$ ***; Error bars represent 1 SEM).


152
153 A DISTRACTOR by AGE interaction was significant ($\chi^2 (39) = 81.8$; $p < .001$). Two specific measures
154 of the distractor effects were considered for post-hoc analysis: the distractor occurrence (median RT >
155 0 in NoDis minus median RT > 0 in Dis1) and the distractor position (median RT > 0 in Dis3 minus
156 median RT > 0 in Dis1), to assess the effect of age on phasic arousal and distraction effects,
157 respectively. First, the Shapiro-Wilk test was applied to check the normality of the distribution and
158 indicated that the arousal and distraction measures were not normally distributed ($W = 0.94$; $p < .001$
159 and $W = 0.98$; $p < .001$, respectively). Then, planned non-parametric Kruskal-Wallis tests were
160 performed on arousal and distraction effects.

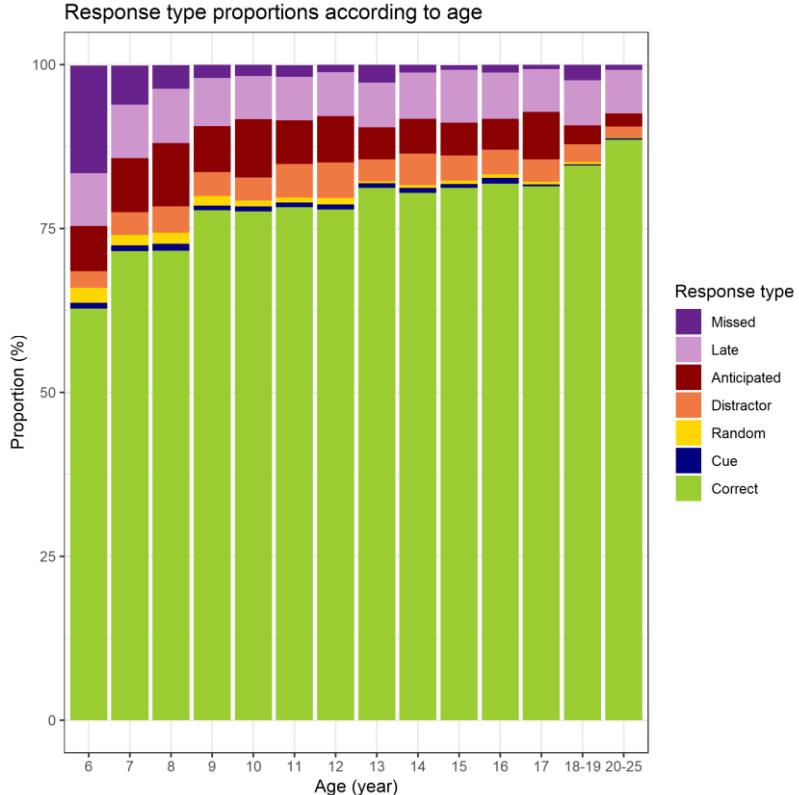
161 AGE ($\chi^2 (13) = 91.0$; $p < .001$; Fig. 3c) had a significant effect on the arousal facilitation effect: it was
162 larger in the 6, 7 and 8 year olds compared to the 13 to 25 year olds. Other significant effects are shown
163 in Fig 3c. This result was confirmed by decisive evidence for a negative correlation of the Arousal effect
164 index with age (Kendall's Tau = -0.141, $BF_{10} = 132.7$).

165 The distraction effect was also significantly modulated by the AGE factor ($\chi^2 (13) = 47.4$; $p < .001$;
166 Fig. 3d): children of 6 years of age showed higher scores than the 12 to 25 year olds. This was not
167 confirmed by Bayesian statistics: a positive evidence against a correlation of the Distraction effect index
168 with age (Kendall's Tau = -0.044, $BF_{10} = 0.1$) was found.

170 RT SD in the NoDis condition.

171 A significant main effect of AGE was found on RT SD ($\chi^2 (13) = 287.1$; $p < .001$; Fig. 3b). HSD post-
172 Hoc comparisons revealed that RT SD was larger in the 6 to 8 year olds compared to the 10 to 20-25
173 year olds; RT SD was also significantly higher in the 9 year olds compared to the 13 to 25 year olds.
174 The RT SD decreases between 8 and 13 years old.

176


177 **Fig. 3 | RT effects according to age.** **a.** Reaction time differences between NoDis uninformative and informative (cue effect) as a function of the
178 age range. **b.** Reaction time variability (RT standard deviation across blocks) as a function of age range. **c.** Reaction time differences between NoDis
179 and Dis1 (arousal effect) as a function of the age range. **d.** Reaction time differences between Dis3 and Dis1 (distraction effect) as a function of the
180 age range. ($p < .05$ *, $p < .01$ **, $p < .001$ ***). Within each boxplot (Tukey method), the horizontal line represents the median, the box delineates the
181 area between the first and third quartiles (interquartile range); juxtapose to each boxplot, the violin plot adds rotated kernel density plot on left and
182 right side.

183

184 **Response types.**

185 The distribution of the different types of responses changes with age, with an improvement in
186 accuracy with age (Fig. 4). The average correct response rate was $76.0 \pm 0.3\%$. No main effect of AGE,
187 nor interaction with AGE, was found for CueRep (total average: $0.7 \pm 0.1\%$) and LateRep (total average:
188 $11.0 \pm 0.2\%$). Significant effects of age on the other response types are detailed in the following.

189

190
191

Fig. 4 | Response type proportions according to age.

192

193 Missed responses.

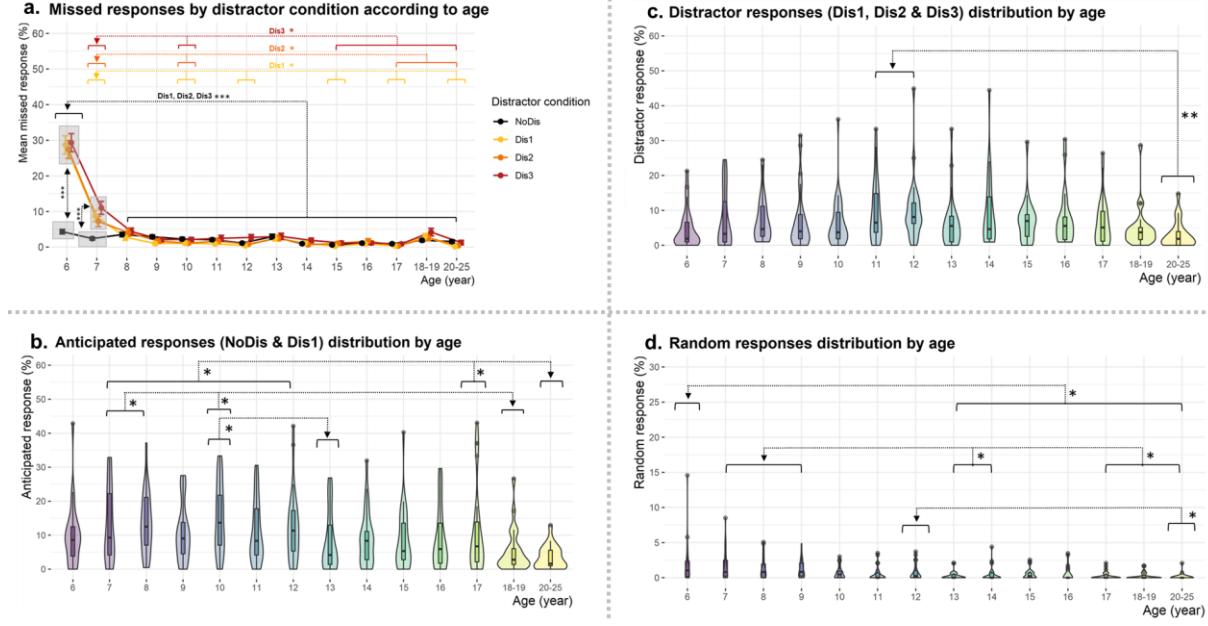
194 The rate of missed responses ($3.5 \pm 0.1\%$) was modulated by AGE ($\chi^2 (13) = 96.0$; $p < .001$) and
195 DISTRACTOR ($\chi^2 (3) = 133.8$; $p < .001$). An interaction between the DISTRACTOR and the AGE factors
196 was significant on MissRep rate ($\chi^2 (39) = 343.9$; $p < .001$, Fig. 5a). HSD post-hoc tests indicated
197 significant larger MissRep rate in the Dis conditions compared to the NoDis condition in the 6 and 7 year
198 olds, only. In the NoDis condition, HSD post-hoc comparisons indicated no significant difference in the
199 MissRep rate with age. In the distractor conditions, a higher percentage of MissRep was found in the 6
200 to 7 year old children. More precisely, the 6 year olds had a higher MissRep rate than the 8 to 20-25
201 year olds in all the distractor conditions, while the 7 year olds presented more MissRep than (i) the 10,
202 12, 15, 17 and 20-25 year olds in the Dis1 condition, (ii) the 10 and 17 to 20-25 year olds in the Dis2
203 condition, and finally (iii) the 10 and 15 to 25 year olds in the Dis3 condition. In summary, only the 6 and
204 7 year olds missed target sounds preceded by a distracting sounds.

205 Anticipated responses (NoDis & Dis1 conditions).

206 The rate of anticipated responses ($10.3 \pm 0.3\%$ on average) was modulated by the AGE ($\chi^2 (13) =$
207 52.9 ; $p < .001$; Fig 5b). Post-hoc HSD analysis showed that the 7 to 12 and the 17 year olds had more
208 AntRep than the 20-25 year-olds. Children from 7, 8 and 10 years old showed an increased AntRep rate
209 compared to the 18-19 year olds. Finally, the 10 year olds showed a higher AntRep rate than the 13
210 year old children.

211 We also observed a significant effect of GENDER on AntRep rate ($\chi^2 (1) = 10.3$; $p = .001$) indicating
212 larger AntRep rate in male ($11.7 \pm 0.4\%$) compared to female ($8.9 \pm 0.4\%$) participants.

213 We observed significant main effects of the CUE ($\chi^2 (1) = 18.7$; $p < .001$) and the DISTRACTOR (χ^2
214 (1) = 702.6 ; $p < .001$), as well as a significant DISTRACTOR by CUE interaction ($\chi^2 (1) = 15.3$; $p < .001$)
215 on AntRep. Independently of the cue nature, participants made more Antrep in the Dis1 (left: $21.2 \pm 0.9\%$
216 / right: $17.2 \pm 0.8\%$ / neutral: $18.3 \pm 0.8\%$) than in the NoDis (left: $2.2 \pm 0.2\%$ / right: $2.2 \pm 0.2\%$
217 / neutral: 1.4 ± 0.2 ; $p < .001$) condition. The AntRep rate was found larger with informative cues rather
218 than with uninformative ones in the NoDis condition (both left and right informative cues: $p < .001$); while
219 it was greater with left cues compared to right and neutral cues in the Dis1 condition (both: $p < .001$).
220


221 Distractor responses.

222 The rate of distractor responses ($7.0 \pm 0.2\%$ on average) was found modulated by the AGE ($\chi^2 (13)$
223 = 30.8 ; $p = .004$; Fig. 5c): the 11 ($9.7 \pm 0.8\%$; $p < .01$) and 12 ($10.0 \pm 0.8\%$; $p < .01$) year old children
224 made more DisRep than the 20-25 year olds ($3.2 \pm 0.5\%$).

225 We also observed a significant main CUELRN ($\chi^2 (13) = 48.5$; $p < .001$) effect: all participants made
226 more Disrep in the left cue condition ($8.8 \pm 0.3\%$) than in the right ($7.0 \pm 0.3\%$; $p < .001$) and the neutral
227 ($6.1 \pm 0.3\%$; $p < .001$) ones.

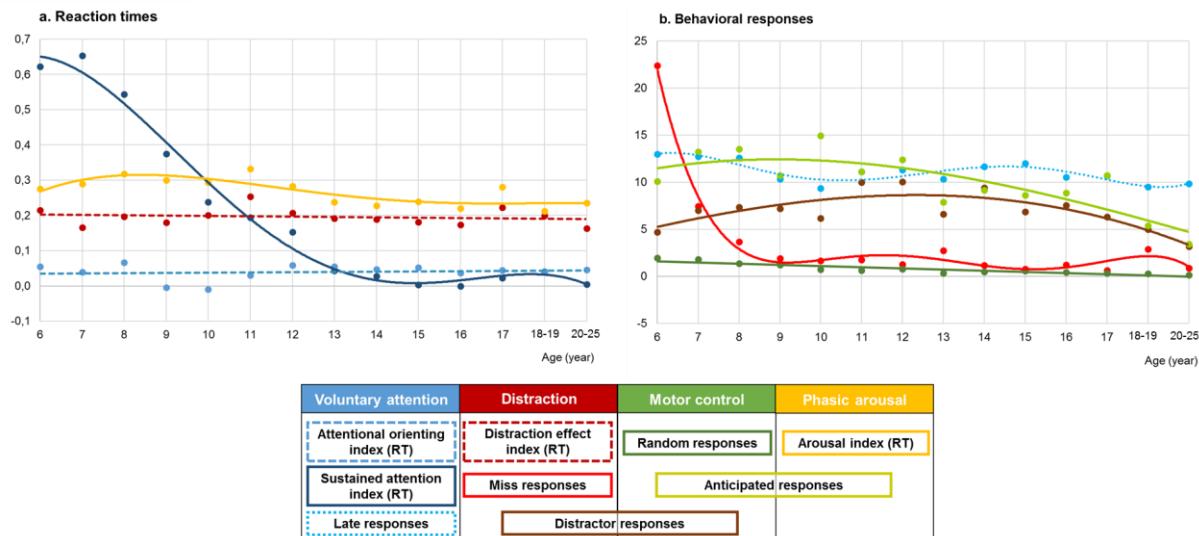
228 Random responses.

229 The rate of random responses ($0.8 \pm 0.1\%$ on average) was modulated by the AGE ($\chi^2 (13) = (77.2)$;
230 $p < .001$; Fig. 5d). The 6 year olds ($2.0 \pm 0.3\%$) made more RandRep than the 13 ($0.3 \pm 0.1\%$), 14 (0.5
231 $\pm 0.2\%$), 15 ($0.6 \pm 0.2\%$), 16 ($0.5 \pm 0.2\%$), 17 ($0.3 \pm 0.1\%$), 18–19 ($0.3 \pm 0.1\%$) and 20-25 ($0.1 \pm 0.1\%$) year
232 olds. The 7 ($1.8 \pm 0.3\%$), 8 ($1.4 \pm 0.2\%$) and 9 ($1.2 \pm 0.2\%$) year olds made more RandRep than both the
233 13 and 14 year olds, and the 17 to 25 year olds. Additionally, the 12 year olds ($0.8 \pm 0.1\%$) made more
234 RandRep than the 20-25 year olds.
235

238

239 **Fig. 5 | Behavioral responses according to age.** **a**, Mean missed responses percentage as a function of the distractor condition and the age range (error bars represent 1 SEM). **b**, Anticipated responses percentage (NoDis and Dis1) as function of the age range. **c**, Distractor responses percentage as a function of the age range. **d**, Random responses percentage as a function of the age range. ($p < .05^*$, $p < .01^{**}$, $p < .001^{***}$). For b, c and d: within each boxplot (Tukey method), the horizontal line represents the median, the box delineates the area between the first and third quartiles (interquartile range); juxtapose to each boxplot, the violin plot adds rotated kernel density plot on each side.

240


241

242

243

244

245 The percentage of correct responses increases with age. Incorrect responses are due to distracting
 246 sounds inducing a large number of missed responses in the youngest ones (age 6 and 7) and a great
 247 amount of responses to distractors in the 11 and 12 year olds. Moreover, the 6-9 year olds present a
 248 higher rate of random responses and the 7-12 year olds a greater rate of anticipated responses (see
 249 Fig. 6 for a graphical representation of the main results according to age).

250

251 **Fig. 6 | Graphical representation of the main results.** **a**, Reaction times indexes according to age. Curves correspond to polynomial fitting curves
 252 for the Sustained Attention (order 4) and Arousal (order 4) indexes, and to fitting lines for the Distraction and Attention Orienting indexes. Sustained
 253 attention index = mean RT SD for each age range normalized across age ranges; Attention orienting Index = $(\text{medianRT}_{\text{NoDisUnif}} - \text{medianRT}_{\text{NoDisInf}})$
 254 / $\text{medianRT}_{\text{All}}$; Arousal index = $(\text{medianRT}_{\text{NoDis}} - \text{medianRT}_{\text{Dist}})$ / $\text{medianRT}_{\text{All}}$; Distraction effect index = $(\text{medianRT}_{\text{Dis3}} - \text{medianRT}_{\text{Dis1}})$ / $\text{medianRT}_{\text{All}}$.
 255 **b**, Percentage of late responses (LateRep), miss responses (MissRep), responses to distractors (DisRep), anticipated responses (AntRep) and
 256 random responses (RandRep) according to age. Dots represent the mean percentage. Curves correspond to polynomial fitting curves for LateRep
 257 (order 5), MissRep (order 5) DisRep (order 3) and AntRep (order 3), and to a fitting line for RanRep. Measures reflecting (1) voluntary attention are
 258 in blue colors, (2) distraction are in red colors; (3) motor control are in green colors, and (4) arousal are in yellow color. Brown and light green colors
 259 represent processes overlaps. Dotted lines represent measures which have not been found modulated by age.

260

261 Discussion

262 We aimed to characterize the developmental trajectories of attentional and motor processes related to
263 distractibility using several behavioral measures (see a graphical summary in Fig. 6). Our findings
264 suggest that voluntary orienting of attention is mature at 6 years old while voluntary sustained attention
265 slowly develops until 13 years old. Distraction is increased before the age of 8, compared to older age
266 groups. Later in childhood and adolescence, there is increased impulsivity, which fades in adulthood.

267 Shorter reaction times to targets preceded by informative rather than uninformative cues is typically
268 used as a measure of voluntary attention orientation towards the cued side in the informative
269 condition^{2,9,60}. According to Bayesian correlation analysis performed in the current study, there is no
270 evidence for an effect of age on this cue effect in the absence of distracting sounds, corroborating
271 previous studies showing mature voluntary attention orienting at 6 years old, or even during the first
272 year of life^{11–17}.

273 In the absence of distracting sounds, difficulties in sustained attention can result in increased RT
274 variability and late response rate (index of attentional lapses). Increased intra-subject variability of RT
275 reflects voluntary attentional efficiency^{61–63}. We found that RT variability between trials with no
276 distracting sounds during the whole experiment (around 15 min) slowly decreases between 8 to 13 years
277 old corroborating an improvement in sustained attention during this period^{8,25,64}. This progressive
278 maturation of sustained attention between 8 and 13 years old may be related to the structural and
279 functional maturation of the frontal lobes^{65–67}, allowing a more efficient voluntary attentional
280 control^{25,65,68}. Interestingly, we did not find an increase in RT variability through the task as previously
281 observed in adults⁶⁹. This absence of modulation over time could be explained by the presence of
282 distracting sounds in 50% of the trials in the CAT, compared to typical paradigms used to measure
283 sustained attention such as the Continuous Performance Test^{7,8,70}. Distractors trigger a phasic arousal
284 burst⁴⁸, which increases alertness for a few seconds⁴¹. This could help maintaining an appropriate
285 general arousal level compensating the vigilance decline across the blocks. Even when selecting the
286 trials without distractors to analyze sustained attention, phasic arousal could still have an effect
287 especially when the trials without distractors were preceded by a late occurrence distractor trial⁴⁰. We
288 also found no evidence for an effect of age on the rate of late responses reflecting attentional lapses,
289 contrasting with previous studies highlighting a global decrease in spontaneous fluctuation of attention
290 between 8 to 13 years old⁶⁴. Phasic arousal could also partially compensate for decreased sustained
291 attention capacities by reducing RT variability enough to avoid attentional lapses. Therefore, the CAT
292 seems to provide a specific assessment of the efficacy of sustained attention in a context with
293 distractors.

294 Several measures of the CAT reflect distraction (i.e. a behavioral cost). Distracting sounds can result
295 in longer reaction times^{40,48,71,72}, or worse, to missed responses to the following target^{35,73} and
296 sometimes to responses to the distractor⁵⁶. The strength of the CAT lies in the different timings of the
297 distractor sounds before the target, allowing to dissociate the behavioral cost and benefit they induce.
298 In line with previous studies using the CAT in adults^{40,48,72,74}, we observed two distinct effects on RTs
299 triggered by the distracting sounds. First, distracting sounds played long before the target (Dis1 and
300 Dis2) induced a reduction of reaction times compared to a condition without distractor (NoDis): this
301 benefit in RT has been attributed to an increase in phasic arousal⁴⁰. Second, distracting sounds played
302 just before the target (Dis3) resulted in an increase in reaction times compared to conditions with a
303 distractor played earlier (Dis1 and Dis2): this cost in RT is considered a behavioral index of
304 distraction^{40,48,72,40,48,71}. Both phasic arousal and distraction effects were observed between 6 and 25
305 years old. The CAT thus allows to dissociate the effect of arousal (RT NoDis – Dis1) and distraction (RT
306 Dis3 – Dis1) on the RT in both adults and children. Importantly, the developmental trajectories of these
307 two measures were found to be different. Distraction is increased in the 6 years old, only, and
308 progressively decreases from age 7 to 12, although this effect is not seen when normalizing using the
309 median RT across all trials. Phasic arousal is stable between ages 6 and 9, decreases between ages 9
310 and 13 and reaches the adult developmental level at 13 years old.

311 Some studies using an auditory oddball paradigm have reported decreasing distraction (difference
312 in reaction time between distractor and standard trial) with increasing age^{3,29,32}; while reduced distraction
313 has also been observed in 9 to 10 year old children compared with adults⁷⁵. Other studies have not

314 reported age-associated differences in behavioral distraction⁷⁵⁻⁷⁷. The oddball paradigms used to
315 investigate the behavioral impact of distractors across development, were however, not designed to
316 dissociate the phasic arousal and distraction effects^{30,40,48}. Depending on the distractor-target interval in
317 the task design, response times display a continuum between gain and cost, induced by beneficial
318 arousal and detrimental distraction effects, respectively. The present results show that phasic arousal
319 and distraction follow distinct developmental trajectories. It seems thus crucial to take into account the
320 impact of phasic arousal when investigating the development of distraction in future studies.

321 The number of missed and incorrect responses in attentional tasks is a sensitive measure of
322 distraction since it was found to negatively correlate with school performance⁷⁸. In presence of
323 distracting sounds (irrespective of their timing), we observed a large increase of missed responses in
324 the 6 and 7 year old children only. This detrimental distraction effect strongly decreases from age 6 to
325 7, and moderately from age 7 to 8. At 8 years old, the missed response rate reaches the adult level
326 (similar with or without distracting sounds). An increase in missed response rate was previously seen in
327 children of 5 and 6 years old in a no-distractor context⁷. In contrast, the missed response rate was not
328 modulated by age in the CAT no-distractor trials, suggesting that the missed responses in 6 and 7 year
329 olds is caused by the deleterious effect of the distracting sound. Additionally, the 11 and 12 year old
330 children responded more to distractors than the 20 to 25 year olds. This increase in responses to the
331 distractor suggests a higher impulsivity at this age which progressively decreases from 13 to 19 years
332 old. A decrease in responses to irrelevant stimuli from 3 to 16 years old was previously observed⁵⁶⁻⁵⁹.
333 Taken together, these results suggest that resistance to interference improves during childhood until
334 late adolescence.

335 In the CAT, longer reaction times, target omission and responses to a distractor could result from
336 either (i) an increased involuntary attentional capture, (ii) a reduced voluntary attentional inhibition of
337 distracting sounds, or finally, (iii) an impossibility/difficulty to reorient the attentional focus back to the
338 task at hand. Until now, few studies have investigated these hypotheses. Some
339 electroencephalographic and behavioral works suggest that the increased behavioral distraction in
340 children results from a delayed reorientation of attention to the task at hand^{79,80}. However, inconsistent
341 results have been reported⁵ and further electro- or magnetoencephalographic studies during
342 development will help understanding the brain mechanisms underlying increased distractibility.

343 In summary, distraction is increased in the youngest children (age 6 and 7) reflected by a large
344 increase of missed responses and longer RTs after distractors. In the 11 and 12 year olds, distraction
345 manifested as increased impulsivity, reflected in an increase in responses to distracting sounds. The
346 combined use of reaction times, as well as missed and distractor response rates is necessary to assess
347 the developmental trajectory of distraction and phasic arousal triggered by distracting sounds; this will
348 help to fully understand the impact of distractors on behavior. Distraction is multifaceted and results in
349 both attention and motor manifestations.

350 In broader models of behavioral control, the executive system coordinates the interaction of memory,
351 attention and motor processes^{2,46,81,82}. Motor control and attention are tightly linked: motor inhibition is
352 driven by attentional selection, which is conditioned by past actions and their related memory traces.
353 Difficulties in motor inhibition can result in responses to task-irrelevant events such as the distracting
354 sounds or responses in anticipation of the targets, which can be considered as the behavioral expression
355 of impulsivity. Many models have suggested a relationship between enhanced arousal level, impulsivity
356 and motor control (e.g., Barratt & Patton, 1983; Eysenck & Eysenck, 1985). While the development of
357 phasic arousal is poorly documented, impulsivity and motor control were found enhanced and reduced
358 respectively in children^{7,56-59}.

359 While quite variable with age, the rate of anticipated responses is relatively stable between 7 and 12
360 year old and between 13 and 17 year old. It decreases first around 12-13 years old and around 17-18
361 years old. Increased impulsivity in children before the age of 12 has also been observed^{7,8,83}.
362 Participants made anticipated responses to the target only in presence of a distractor irrespective of
363 age, suggesting that processes triggered by distractors influence the behavioral expression of
364 anticipated responses. These anticipatory responses following distracting sounds could be driven by the
365 phasic increase in arousal triggered by distractors or by reduced voluntary inhibitory motor processes.

366 We also noticed a progressive decrease in random response rate between 10 and 12 years old. As
367 random response timing corresponds to a response which is believed to be independent from a stimulus,

368 this response would then be related to a measure of motor – rather than attentional – control. Our
369 findings suggest that motor control reaches its adult developmental stage around 13 years old. Beyond
370 the assessment of attention capacities, the CAT also provides measures of impulsivity and motor
371 control, which follow distinct developmental trajectories. Motor control and impulsivity display a
372 significant improvement starting at 10 and 11-12 years old, respectively. Motor control reaches an adult
373 developmental stage around 13 years old, while impulsivity is found mature at 18 years of age.

374 To our knowledge, this is the first study to provide precise developmental trajectories of several
375 attention capacities from childhood to adulthood. Voluntary orienting is functional at 6 years old, while
376 sustained attention gradually develops from 8 to 13 years old. Interestingly, distraction manifests as
377 omission of relevant stimuli in 6-7 year olds and as impulsivity in 11-12 year olds, when the reaction to
378 distracting events seems to reach its mature adult expression. The maturation of distraction and
379 voluntary attentional capacities is accompanied by a decrease in phasic arousal triggered by distractors
380 from 8 to 13 years old, a reduced impulsivity at 12 and 17 years old and an improvement in motor control
381 from 10 to 12 years old. These findings suggest that the attentional imbalance resulting in increased
382 distractibility is rather related to reduced voluntary sustained attention capacities and enhanced
383 distraction in children (6-8 years old), but to decreased motor control and increased impulsivity in
384 teenagers (10-17 years old). In light of the present findings, psycho-education and classroom learning
385 strategies would be improved by targeting attention processes in children and motor control capacities
386 in young teenagers. As few normed neuropsychological tools are currently available to assess
387 distractibility, these findings could help to better characterize attentional deficits and set up new
388 individualized care for patients.

389

390 Methods

391 Participants.

392 409 subjects were included. Typically developing children from the 1st to 12th grade were recruited
393 in public and private schools. Adults were recruited through flyers and email lists. Data from 57
394 participants were excluded from the analysis, either because of neurological disorders or substance use
395 (N=9), auditory problems (N=2), non-compliance with the instructions (N=9), correct trial percentage <
396 50% in NoDis condition (N=13) or technical issues (N=24). A total of 352 subjects (88% right-handed,
397 51% female, 6 to 25 years old) were included in the analysis. All subjects had normal hearing and normal
398 or corrected-to-normal vision. Participants were divided into 14 age groups (Table 1). This study was
399 approved by participating schools and was conducted according to the Helsinki Declaration, Convention
400 of the Council of Europe on Human Rights and Biomedicine, and the experimental paradigm was
401 approved by the French ethics committee Comité de Protection de Personnes for testing in adults and
402 children. For participants under age 18, signed informed consent was obtained from both parents, and
403 assent was given by the children. All adult participants (18-25 years old) gave written informed consent.

404 Groups were matched for gender and handedness. Age groups from 6 to 17 years old were matched
405 for economical status (SES, see Extended Data Fig. 3) and educational level (0 = no diploma, 1 =
406 vocational certificate obtained after the 9th grade, 2 = high school diploma; 3 = 12th grade / associate's
407 degree; 4 = bachelor degree; 5 = master degree and further). The 18 to 25 year old participants reported
408 their own SES and education level: around 80% were students at the university and 20% were
409 employees.

410

411 Stimuli and Task.

412 50 % of the trials (Fig. 1a) consisted of a visual cue (200-ms duration), followed after a 950-ms delay
413 by a 200-ms target sound. The cue was presented centrally on a screen with a grey background and
414 could either be a dog facing left or right, or a dog facing front. The target sound was the sound of a dog
415 barking monaurally presented at 15 dB SL (around 43 dBA) in headphones.

416 In the other 50 % of the trials, the trial structure was identical, but a binaural distracting sound (300-
417 ms duration) was played during the delay (Fig. 1b) at 35 dB SL (around 61 dBA). A total of 18 different
418 distracting sounds were used (phone ring, clock-alarm, etc.) in each participant. The distracting sound

419 could be equiprobably played at three different times during the delay: 200 ms (Dis1), 400 ms (Dis2)
420 and 600 ms (Dis3) after cue offset.

421 The proportion of cue and target categories were distributed equiprobably between trials with and
422 without distracting sound. The informative condition represented 75 % of the trials: in that case the dog
423 was facing left or right, indicating the ear of the target sound presentation (37.5 % left and 37.5 % right).
424 The uninformative condition represented 25 % of the trials: the facing-front dog was followed by the
425 target sound in the left (12.5 %) or right (12.5 %) ear.

426 To compare behavioral responses to acoustically matched sounds, the same distracting sounds were
427 played for each distractor condition (Dis1, Dis2 or Dis3) in the informative condition. Each distracting
428 sound was played 4 times during the whole experiment, but no more than twice during each single block
429 to limit habituation.

430 Subjects were instructed to perform a detection task by pressing a key as fast as possible when they
431 heard the target sound. They were asked to focus their attention to the cued side in the case of
432 informative cue. Participants were informed that informative cues were 100 % predictive and that a
433 distracting sound could be sometimes played. In the absence of the visual cue, a blue fixation cross was
434 presented at the center of the screen. Subjects were instructed to keep their eyes fixating on the cross.

435 When participants answered within 3300 ms after the target onset, a dog holding a bone (800-ms
436 duration) was presented 500 ms after the response followed by the fixation cross for a randomized
437 period of 1700ms to 1900ms. If the participant did not respond in time, the fixation cross was displayed
438 on the screen for an additional randomized delay of 100 ms to 300 ms.

439

440 **Procedure.**

441 Participants were tested in small groups of 2 to 4. Adults were tested in the lab or at the university,
442 and children were tested at school, all in a quiet room. Participants were seated in front of a laptop
443 (approximately 50 cm from the screen) delivering pictures and sounds, as well as recording behavioral
444 responses using Presentation software (Neurobehavioral Systems, Albany, CA, USA). Auditory stimuli
445 were played in headphones.

446 First, the auditory threshold was determined for the target sound, in each ear, for each participant
447 using the Bekesy tracking method. This resulted in an average target threshold across subjects of $28 \pm$
448 0.6 dBA (see Table 1 for details by age range). Then, participants performed a short training of the task
449 followed by three 4-min blocks of 48 pseudo-randomize trials each. The order of the 3 blocks was
450 randomized through participants using a Latin square. The experimenter gave verbal instructions to the
451 children before the test. An experimental session lasted around 30 minutes. At the end of every
452 experimental session, the experimenter explained the aim of the study to participants and took time to
453 answer questions.

454 Adults and parents of children enrolled in the study filled out a short questionnaire about their SES
455 characteristics and respectively completed the Adult Self-Report Scale (ASRS)⁸⁴ and the Attention-
456 Deficit Hyperactivity Disorder Rating Scale IV (ADHD RS)⁸⁵ questionnaires, both assessing symptoms
457 of ADHD in adults and children according to the diagnostic criteria of the Diagnostic and Statistical
458 Manual of Mental Disorders⁸⁶. Adults also filled in the State-Trait Anxiety Inventory (STAI)Y-A and B⁸⁷
459 to evaluate anxiety as a state and trait. At the end, every participant answered a short post-experiment
460 questionnaire about their motivation level, their focus state and stress level during the CAT.

461

462 **Measurement parameters.**

463 We used a custom MATLAB program to extract and preprocess behavioral data.

464 First, we visually inspected the reaction time distribution relative to target onset for each age (see
465 Extended Data Fig. 4). For each participant, the longest reaction time for a correct response (RT upper
466 limit) was calculated from all $RT > 0$ ms using the John Tukey's method of leveraging the Interquartile
467 Range. The shortest reaction time for a correct response (RT lower limit) was calculated for each age
468 range (see Supplementary Information). Correct response rate corresponds to the percentage of
469 responses with a reaction time (relative to target onset) superior or equal to RT lower limit and inferior
470 or equal to RT upper limit.

471 The following 8 behavioral measures were analyzed further (see Extended Data Fig. 1):

- 472 - Median RT of positive RTs.
- 473 - Sustained attention (RT SD): mean standard deviation of RT > 0 in the NoDis condition for each
- 474 block separately.
- 475 - Late response % (LateRep): the percentage of responses performed in the NoDis condition during
- 476 the period starting from the RT upper-limit to 3300 ms.
- 477 - Missed response % (MissRep): the percentage of trials without any response made during the entire
- 478 trial duration up to 3300 ms post-target.
- 479 - Cue response % (CueRep): the percentage of responses performed during the 150-450ms period
- 480 post-cue onset.
- 481 - Distractor response % (DisRep): the percentage of responses performed during the 150-450 ms
- 482 period post-distractor onset.
- 483 - Anticipated response % (AntRep): the percentage of responses performed:
 - 484 ○ in NoDis and Dis1: from 300 ms pre-target to the RT lower limit post-target;
 - 485 ○ in Dis2: from 150 ms pre-target to the RT lower limit post-target;
 - 486 ○ in Dis3: from 100 ms post-target to the RT lower limit post-target.
- 487 - Random responses % (RandRep): the percentage of responses performed in the remaining periods
- 488 of the trials, i.e., within the 150 ms post-cue onset and:
 - 489 ○ in NoDis: during the 450 to 850 ms period post-cue onset;
 - 490 ○ in Dis1: during the 450 to 550 ms period post-cue onset;
 - 491 ○ in Dis2: during the 450 to 750 ms period post-cue onset;
 - 492 ○ in Dis3: during the 450 to 950 ms period post-cue onset.

494 **Statistical analyses.**

495 In order to estimate a degree of logical support or belief, Bayesian statistics were used. To estimate
496 physical tendencies using complex models such as linear mixed error-component models (LME) or
497 generalized linear mixed models (GLMM) were necessary, a frequentist approach was chosen.

498 Socio-economic data analysis.

499 To confirm that our sample population was uniformly distributed across age ranges in block order,
500 handedness, and gender, we performed Bayesian contingency table tests. For children from 6 to 17
501 years old only, similar analysis was performed on SES and education level of the parents. We reported
502 Bayes Factor (BF_{10}) as a relative measure of evidence. To interpret the strength of evidence in favor of
503 the null model (uniform distribution), we considered a BF between 0.33 and 1 as weak evidence, a BF
504 between 0.1 and 0.33 as positive evidence, a BF between 0.01 and 0.1 as strong evidence and a BF
505 lower than 0.01 as a decisive evidence. Similarly, to interpret the strength of evidence against the null
506 model, we considered a BF between 1 and 3 as weak evidence, a BF between 3 and 10 as positive
507 evidence, a BF between 10 and 100 as strong evidence and a BF higher than 100 as a decisive
508 evidence⁸⁸.

509 Bayesian statistics were performed using JASP® software (JASP Team (2018), JASP (Version 0.9)
510 [Computer software]).

511 Statistical analysis of hearing threshold and attention scores are presented in Supplementary
512 Information.

514 Behavioral data analysis.

515 *Frequentist statistical approach.*

516 A summary of the frequentist statistical analyses performed on behavioral data of the CAT can be
517 found in Table 2.

518 When data provided an estimation of the intrinsic subject variability (several measurements by
519 subject), we used linear LME. LME are the best way to deal with such datasets, as they allow for
520 correction of systematic variability. We accounted for the heterogeneity of performances between-
521 subjects and experimental conditions by defining them as effects with a random intercept, thus
522 instructing the model to correct for any systematic differences between the subjects (between-individual
523 variability) and condition (between-condition variability).

524 For binary data (LateRep, MissRep, CueRep, DisRep, AntRep, RandRep) we used GLMM. GLMM
525 combines the characteristics of generalized linear models and LME; the regression model of GLMM is
526 similar to LME except that it can handle a binomial distribution.

527 To confirm the need for mixed nested models for both LME and GLMM, we used a likelihood ratio
528 analysis to test the model fit before and after sequential addition of random effects and covariates. We
529 used the Akaike Information Criterion and the Bayesian Information Criterion as estimators of the quality
530 of the statistical models generated for each behavioral type of measurement. We used the Wald T-test
531 Chi-square (type II) to estimate the weight of the statistical parameters of the models and we only
532 considered the explanatory variables. The fixed effect represents the mean effect across all subjects
533 after correction of between-subjects and distractor conditions variability.

534 Frequentist models and statistics were performed in R® 3.4.1 using the lme4⁸⁹ and car⁹⁰ packages.
535 We only considered results of main analyses significant at $p < .01$.

536 When we found significant main effect or interaction - and did not plan ahead for specific post-hoc
537 analysis - HSD post-hoc tests were systematically performed using the emmeans package (emmeans
538 version 1.3.2). P-values were considered as significant at $p < .05$ and were adjusted for the number of
539 performed comparisons.

540 In the Results section, we systematically reported the SEM as the estimator of the distribution
541 dispersion of the measures of interest.

542 *Models.*

543 On each type of behavioral measure (RT, RT SD, LateRep, MissRep, CueRep, DisRep, AntRep,
544 RandRep), we analyzed the influence of four possible fixed effects (unless specified otherwise in the
545 next section):

546 1) between-subject factor AGE: 14 levels (see Table 1);
547 2) between-subject factor GENDER: 2 levels (male and female);
548 3) within-subject factor CUE / CUELRN: 2 levels (CUE: informative vs. uninformative) for measures
549 recorded after the target onset (Hit, LateRep and MissRep) and 3 levels (CUELRN: left, right and neutral)
550 for the measures recorded before the target onset (CueRep, RandRep, DisRep and AntRep);
551 4) within-subject factor DISTRACTOR: 4 levels (NoDis, Dis1, Dis2 and Dis3), except for DisRep: 3 levels
552 (Dis1, Dis2 and Dis3);

553 *Median Reaction Times.*

554 Participants with less than 50 % of the total trials with a positive RT in Dis1, Dis2 and/or Dis3 were
555 excluded from median RT analysis. Based on visual inspection of median RT distribution in distractor
556 conditions, one outlier was also identified and removed from this analysis. Revised samples for median
557 RT analysis are: 6 year olds: $n = 17$; 7 year olds: $n = 20$. The percentage of missing data over the total
558 sample of included subjects in analyses is shown in Table 2.

559 Before applying the LME, raw RT were log-transformed at the single trial scale to enable the
560 prediction of relative changes in RT between factors.

561 For post-hoc analysis of the DISTRACTOR*AGE interaction on median RT, we planned to analyze
562 two specific measures of the distractor effect: the distractor occurrence (median RT > 0 in NoDis minus
563 median RT > 0 in Dis1) and the distractor position (median RT > 0 in Dis3 minus median RT > 0 in Dis1).
564 Based on previous results^{40,48}, these differences can be respectively considered as a measure of the
565 facilitation effect triggered by distracting sounds and a good approximation of the detrimental distraction
566 effect. We first performed Shapiro tests to estimate the normality of the distractor occurrence and
567 position measures. Planned non-parametric Kruskal-Wallis tests with the AGE as between-subject
568 factor were applied to these measures when the data were not normally distributed. When the Kruskal-
569 Wallis test revealed a significant effect of the AGE, we performed non-parametric paired Nemenyi post-
570 hoc tests to identify developmental stages across age ranges.

571
572
573

574 *Other measures.*

575 RT SD was analyzed with the fixed factors AGE and GENDER as between-subject factor and BLOCK
576 (3 levels) as within subject factor.

577 Response types were process as binomial data without transformation to enable prediction of
578 absolute changes in response types between factors.

579 LateRep were analyzed in the NoDis condition, only, since few participants committed LateRep in
580 distractor conditions (total average: $3.5 \pm 0.1\%$).

581 Because of the important differences in the duration of the AntRep windows between distractor
582 conditions (see Extended Data Fig. 4), the GLMM was performed on the NoDis and Dis1 conditions,
583 only.

584 As all participants made in average less than 1 % of CueRep and RandRep, their modelization were
585 limited to two-way interactions.

586
587 *Planned Bayesian regressions.*

588 Planned Bayesian Kendall regressions with age were performed on specific RT indexes of attention:

- 589 1. Voluntary attention orienting: $(\text{medianRT}_{\text{NoDisUninf}} - \text{medianRT}_{\text{NoDisInf}}) / \text{medianRT}_{\text{All}}$;
- 590 2. Arousal effect: $(\text{medianRT}_{\text{NoDis}} - \text{medianRT}_{\text{Dis1}}) / \text{medianRT}_{\text{All}}$;
- 591 3. Distraction effect: Voluntary attention orienting: $(\text{medianRT}_{\text{Dis3}} - \text{medianRT}_{\text{Dis1}}) / \text{medianRT}_{\text{All}}$.

592
593

594 Data availability

595 The data that support the findings of this study are available from the corresponding author on
596 request.

597
598

599 References

- 600 1. Näätänen, R. Processing negativity: An evoked-potential reflection. *Psychol. Bull.* **92**, 605–640
601 (1982).
- 602 2. Posner, M. I. Orienting of attention. *Q. J. Exp. Psychol.* **32**, 3–25 (1980).
- 603 3. Gumenyuk, V. *et al.* Brain activity index of distractibility in normal school-age children. *Neurosci.*
604 *Lett.* **314**, 147–150 (2001).
- 605 4. Tipper, S. P., Bourque, T. A., Anderson, S. H. & Brehaut, J. C. Mechanisms of attention: a
606 developmental study. *J. Exp. Child Psychol.* **48**, 353–378 (1989).
- 607 5. Wetzel, N. & Schröger, E. On the development of auditory distraction: A review: Development of
608 auditory distraction. *PsyCh J.* **3**, 72–91 (2014).
- 609 6. Wetzel, N., Schröger, E. & Widmann, A. Distraction by Novel and Pitch-Deviant Sounds in Children.
610 *Front. Psychol.* **7**, (2016).
- 611 7. Kanaka, N. *et al.* Measurement of development of cognitive and attention functions in children using
612 continuous performance test. *Psychiatry Clin. Neurosci.* **62**, 135–141 (2008).
- 613 8. Lin, C. C., Hsiao, C. K. & Chen, W. J. Development of sustained attention assessed using the
614 continuous performance test among children 6–15 years of age. *J. Abnorm. Child Psychol.* **27**, 403–
615 412 (1999).
- 616 9. Posner, M. I. Attentional Networks and Consciousness. *Front. Psychol.* **3**, (2012).
- 617 10. H. van Zomeren, A. & Brouwer, W. Clinical Neuropsychology of Attention. (1994).
- 618 11. Perchet, C. & Garcia-Larrea, L. Learning to react: anticipatory mechanisms in children and adults
619 during a visuospatial attention task. *Clin. Neurophysiol.* **116**, 1906–1917 (2005).
- 620 12. Schul, R., Townsend, J. & Stiles, J. The development of attentional orienting during the school-age
621 years. *Dev. Sci.* **6**, 262–272 (2003).

622 13. Reis Lellis, V. R. *et al.* Voluntary and automatic orienting of attention during childhood development. *Psychol. Neurosci.* **6**, 15–21 (2013).

623 14. Plude, D. J., Enns, J. T. & Brodeur, D. The development of selective attention: A life-span overview. *Acta Psychol. (Amst.)* **86**, 227–272 (1994).

624 15. Vollebregt, M. A. *et al.* Lateralized modulation of posterior alpha oscillations in children. *NeuroImage* **123**, 245–252 (2015).

625 16. Posner, M. I., Rothbart, M. K., Sheese, B. E. & Voelker, P. Developing Attention: Behavioral and Brain Mechanisms. *Adv. Neurosci. Hindawi* **2014**, 405094 (2014).

626 17. Rueda, M. R. *et al.* Development of attentional networks in childhood. *Neuropsychologia* **42**, 1029–1040 (2004).

627 18. Betts, J., McKay, J., Maruff, P. & Anderson, V. The development of sustained attention in children: the effect of age and task load. *Child Neuropsychol. J. Norm. Abnorm. Dev. Child. Adolesc.* **12**, 205–221 (2006).

628 19. Oken, B. S., Salinsky, M. C. & Elsas, S. M. Vigilance, alertness, or sustained attention: physiological basis and measurement. *Clin. Neurophysiol.* **117**, 1885–1901 (2006).

629 20. Parasuraman, R., Nestor, P. G. & Greenwood, P. Sustained-attention capacity in young and older adults. *Psychol. Aging* **4**, 339–345 (1989).

630 21. Sarter, M., Givens, B. & Bruno, J. P. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. *Brain Res. Brain Res. Rev.* **35**, 146–160 (2001).

631 22. Levy, F. The development of sustained attention (vigilance) and inhibition in children: some normative data. *J. Child Psychol. Psychiatry* **21**, 77–84 (1980).

632 23. Rueda, M. R. & Posner, M. I. Development of attention networks. in *The Oxford handbook of developmental psychology (Vol 1): Body and mind* 683–705 (Oxford University Press, 2013).

633 24. Conners, C. K. & Sitarenios, G. Conners' Continuous Performance Test (CPT). in *Encyclopedia of Clinical Neuropsychology* (eds. Kreutzer, J. S., DeLuca, J. & Caplan, B.) 681–683 (Springer New York, 2011).

634 25. Thillay, A. *et al.* Sustained attention and prediction: distinct brain maturation trajectories during adolescence. *Front. Hum. Neurosci.* **9**, (2015).

635 26. Casey, B. J. & Durston, S. From behavior to cognition to the brain and back: what have we learned from functional imaging studies of attention deficit hyperactivity disorder? *Am. J. Psychiatry* **163**, 957–960 (2006).

636 27. Escera, C., Alho, K., Schröger, E. & Winkler, I. Involuntary attention and distractibility as evaluated with event-related brain potentials. *Audiol. Neurotol.* **5**, 151–166 (2000).

637 28. Schröger, E. & Wolff, C. Attentional orienting and reorienting is indicated by human event-related brain potentials. *Neuroreport* **9**, 3355–3358 (1998).

638 29. Wetzel, N. & Schröger, E. Cognitive control of involuntary attention and distraction in children and adolescents. *Brain Res.* **1155**, 134–146 (2007).

639 30. Wetzel, N., Widmann, A. & Schröger, E. Distraction and facilitation—two faces of the same coin? *J. Exp. Psychol. Hum. Percept. Perform.* **38**, 664–674 (2012).

640 31. Olesen, P. J., Macoveanu, J., Tegnér, J. & Klingberg, T. Brain activity related to working memory and distraction in children and adults. *Cereb. Cortex N. Y. N* **1991 17**, 1047–1054 (2007).

641 32. Wetzel, N., Widmann, A., Berti, S. & Schröger, E. The development of involuntary and voluntary attention from childhood to adulthood: A combined behavioral and event-related potential study. *Clin. Neurophysiol.* **117**, 2191–2203 (2006).

642 33. Li, B., Parmentier, F. B. R. & Zhang, M. Behavioral distraction by auditory deviance is mediated by the sound's informational value. Evidence from an auditory discrimination task. *Exp. Psychol.* **60**, 260–268 (2013).

643 34. Ljungberg, J. K. & Parmentier, F. The Impact of Intonation and Valence on Objective and Subjective Attention Capture by Auditory Alarms. *Hum. Factors J. Hum. Factors Ergon. Soc.* **54**, 826–837 (2012).

644 35. Parmentier, F. B. R. & Andrés, P. The Involuntary Capture of Attention by Sound: Novelty and Postnovelty Distraction in Young and Older Adults. *Exp. Psychol.* **57**, 68–76 (2010).

674 36. Parmentier, F. B. R., Elsley, J. V., Andrés, P. & Barceló, F. Why are auditory novels distracting?
675 Contrasting the roles of novelty, violation of expectation and stimulus change. *Cognition* **119**, 374–
676 380 (2011).

677 37. Wetzel, N., Schröger, E. & Widmann, A. The dissociation between the P3a event-related potential
678 and behavioral distraction: P3a and behavioral distraction. *Psychophysiology* **50**, 920–930 (2013).

679 38. SanMiguel, I., Linden, D. & Escera, C. Attention capture by novel sounds: Distraction versus
680 facilitation. *Eur. J. Cogn. Psychol.* **22**, 481–515 (2010).

681 39. SanMiguel, I., Morgan, H., Klein, C., Linden, D. & Escera, C. On the functional significance of
682 Novelty-P3: Facilitation by unexpected novel sounds. *Biol. Psychol.* **83**, 143–152 (2010).

683 40. Masson, R. & Bidet-Caulet, A. Fronto-central P3a to distracting sounds: An index of their arousing
684 properties. *NeuroImage* **185**, 164–180 (2019).

685 41. Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function:
686 adaptive gain and optimal performance. *Annu. Rev. Neurosci.* **28**, 403–450 (2005).

687 42. Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from
688 environment to theory of mind. *Neuron* **58**, 306–324 (2008).

689 43. Eckstein, M. K., Guerra-Carrillo, B., Miller Singley, A. T. & Bunge, S. A. Beyond eye gaze: What
690 else can eyetracking reveal about cognition and cognitive development? *Dev. Cogn. Neurosci.* **25**,
691 69–91 (2017).

692 44. Bruya, B. & Tang, Y.-Y. Is Attention Really Effort? Revisiting Daniel Kahneman's Influential 1973
693 Book Attention and Effort. *Front. Psychol.* **9**, (2018).

694 45. Eysenck, M. *Attention and Arousal: Cognition and Performance*. (Springer-Verlag, 1982).

695 46. Kahneman, D. *Attention and effort*. (Prentice-Hall, 1973).

696 47. Yerkes, R. M. & Dodson, J. D. The Relation of Strength of Stimulus to Rapidity of Habit Formation.
697 *J. Comp. Neurol. Psychol.* **18**, 459–482 (1908).

698 48. Bidet-Caulet, A., Bottemanne, L., Fonteneau, C., Giard, M.-H. & Bertrand, O. Brain Dynamics of
699 Distractibility: Interaction Between Top-Down and Bottom-Up Mechanisms of Auditory Attention.
700 *Brain Topogr.* **28**, 423–436 (2015).

701 49. Duncan, M. J. *et al.* Effects of increasing and decreasing physiological arousal on anticipation timing
702 performance during competition and practice. *Eur. J. Sport Sci.* **16**, 27–35 (2016).

703 50. Stanford, M. S. *et al.* Fifty years of the Barratt Impulsiveness Scale: An update and review. *Personal.
704 Individ. Differ.* **47**, 385–395 (2009).

705 51. Barratt, E. S. Impulsiveness subtraits: Arousal and information processing. in *Motivation, emotion,
706 and personality*. 137–146 (J. T. Spence & C. E. Izard, 1985).

707 52. Barratt, E. S. & Patton, J. H. Impulsivity: Cognitive, behavioral, and psychophysiological
708 correlates. in *M. Zuckerman (Ed.), Biological bases of sensation seeking, impulsivity and anxiety*.
709 77–122 (1983).

710 53. Houston, R. J. & Stanford, M. S. Mid-latency evoked potentials in self-reported impulsive
711 aggression. *Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol.* **40**, 1–15 (2001).

712 54. Zhang, S. *et al.* Barratt Impulsivity and Neural Regulation of Physiological Arousal. *PLoS ONE* **10**,
713 (2015).

714 55. Eysenck, H. J. & Eysenck, M. W. *Personality and individual differences: A Natural Science
715 Approach*. (1985).

716 56. van den Wildenberg, W. P. & Crone, E. A. Development of response inhibition and decision-making
717 across childhood: A cognitive neuroscience perspective. *Focus Child Psychol. Res.* 23–42 (2005).

718 57. Booth, J. R. *et al.* Neural development of selective attention and response inhibition. *NeuroImage*
719 **20**, 737–751 (2003).

720 58. Ridderinkhof, K. R., Band, G. P. H. & Logan, G. D. A study of adaptive behavior: Effects of age and
721 irrelevant information on the ability to inhibit one's actions. *Acta Psychol. (Amst.)* **101**, 315–337
722 (1999).

723 59. Wright, I., Waterman, M., Prescott, H. & Murdoch-Eaton, D. A new Stroop-like measure of inhibitory
724 function development: typical developmental trends. *J. Child Psychol. Psychiatry* **44**, 561–575
725 (2003).

726 60. Hillyard, S. A., Hink, R. F., Schwent, V. L. & Picton, T. W. Electrical signs of selective attention in
727 the human brain. *Science* **182**, 177–180 (1973).

728 61. Antonini, T. N., Narad, M. E., Langberg, J. M. & Epstein, J. N. Behavioral correlates of reaction time
729 variability in children with and without ADHD. *Neuropsychology* **27**, 201–209 (2013).

730 62. Epstein, J. N. *et al.* Evidence for higher reaction time variability for children with ADHD on a range
731 of cognitive tasks including reward and event rate manipulations. *Neuropsychology* **25**, 427–441
732 (2011).

733 63. Marchetta, N. D. J., Hurks, P. P. M., De Sonneville, L. M. J., Krabbendam, L. & Jolles, J. Sustained
734 and focused attention deficits in adult ADHD. *J. Atten. Disord.* **11**, 664–676 (2008).

735 64. Petton, M. *et al.* BLAST : a short computerized test to measure the ability to stay on task. Normative
736 behavioral data and detailed cortical dynamics. *bioRxiv* 498691 (2018). doi:10.1101/498691

737 65. Blakemore, S.-J. & Choudhury, S. Development of the adolescent brain: implications for executive
738 function and social cognition. *J. Child Psychol. Psychiatry* **47**, 296–312 (2006).

739 66. Gogtay, N. *et al.* Dynamic mapping of human cortical development during childhood through early
740 adulthood. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 8174–8179 (2004).

741 67. Toga, A. W., Thompson, P. M. & Sowell, E. R. Mapping brain maturation. *Trends Neurosci.* **29**,
742 148–159 (2006).

743 68. Fuster, J. M. Frontal lobe and cognitive development. *J. Neurocytol.* **31**, 373–385 (2002).

744 69. Flehmig, H. C., Steinborn, M., Langner, R., Scholz, A. & Westhoff, K. Assessing intraindividual
745 variability in sustained attention: Reliability, relation to speed and accuracy, and practice effects.
746 *Psychol. Sci.* **49**, 132–149 (2007).

747 70. Conners, C. K., Epstein, J. N., Angold, A. & Klaric, J. Continuous performance test performance in
748 a normative epidemiological sample. *J. Abnorm. Child Psychol.* **31**, 555–562 (2003).

749 71. ElShafei, H. A., Fornoni, L., Bertrand, O. & Bidet-Caulet, A. Not Just A Number: Age-Related
750 Modulations of Oscillatory Patterns Underlying Top-Down and Bottom-Up Attention. *bioRxiv* 496117
751 (2018). doi:10.1101/496117

752 72. ElShafei, H. A., Fornoni, L., Masson, R., Bertrand, O. & Bidet-Caulet, A. What's in Your Gamma?
753 Activation of the Ventral Fronto-Parietal Attentional Network in Response to Distracting Sounds.
754 *Cereb. Cortex N. Y. N* **1991** (2019). doi:10.1093/cercor/bhz119

755 73. Parmentier, F. B. R. Towards a cognitive model of distraction by auditory novelty: the role of
756 involuntary attention capture and semantic processing. *Cognition* **109**, 345–362 (2008).

757 74. ElShafei, H. A., Bouet, R., Bertrand, O. & Bidet-Caulet, A. Two Sides of the Same Coin: Distinct
758 Sub-Bands in the α Rhythm Reflect Facilitation and Suppression Mechanisms during Auditory
759 Anticipatory Attention. *eNeuro* **5**, (2018).

760 75. Ruhnau, P. *et al.* Processing of complex distracting sounds in school-aged children and adults:
761 evidence from EEG and MEG data. *Front. Psychol.* **4**, (2013).

762 76. Horváth, J., Czigler, I., Birkás, E., Winkler, I. & Gervai, J. Age-related differences in distraction and
763 reorientation in an auditory task. *Neurobiol. Aging* **30**, 1157–1172 (2009).

764 77. Wetzel, N., Widmann, A. & Schröger, E. The cognitive control of distraction by novelty in children
765 aged 7–8 and adults. *Psychophysiology* **46**, 607–616 (2009).

766 78. Zimmermann, P. & Fimm, B. A test battery for attentional performance. in *Applied Neuropsychology
767 of Attention. Theory, Diagnosis and Rehabilitation.* 110–151 (Leclercq, M and Zimmermann, P,
768 2002).

769 79. Wetzel, N., Scharf, F. & Widmann, A. Can't Ignore-Distraction by Task-Irrelevant Sounds in Early
770 and Middle Childhood. *Child Dev.* (2018). doi:10.1111/cdev.13109

771 80. Ruhnau, P., Wetzel, N., Widmann, A. & Schröger, E. The modulation of auditory novelty processing
772 by working memory load in school age children and adults: a combined behavioral and event-related
773 potential study. *Bmc Neurosci.* **11**, 126 (2010).

774 81. Baddeley, A. D. & Hitch, G. Working Memory. in *Psychology of Learning and Motivation* (ed. Bower,
775 G. H.) **8**, 47–89 (Academic Press, 1974).

776 82. Diamond, A. Executive functions. *Annu. Rev. Psychol.* **64**, 135–168 (2013).

777 83. Thomas, J. R., Gallagher, J. D. & Purvis, G. J. Reaction Time and Anticipation Time: Effects of
778 Development. *Res. Q. Exerc. Sport* **52**, 359–367 (1981).

779 84. Kessler, R. C. *et al.* The World Health Organization Adult ADHD Self-Report Scale (ASRS): a short
780 screening scale for use in the general population. *Psychol. Med.* **35**, 245–256 (2005).
781 85. DuPaul, G. J., Power, T. J., Anastopoulos, A. D. & Reid, R. *ADHD Rating Scale—IV: Checklists,
782 norms, and clinical interpretation*. (Guilford Press, 1998).
783 86. *Diagnostic and statistical manual of mental disorders: DSM-5TM, 5th ed.* (American Psychiatric
784 Publishing, Inc., 2013).
785 87. Spielberger, C. D., Gorsuch, R. L. & Lushene, R. E. Manual for the State-Trait Anxiety Inventory.
786 (1970).
787 88. Lee, M. D. & Wagenmakers, E.-J. *Bayesian cognitive modeling: A practical course*. (Cambridge
788 University Press, 2013).
789 89. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. *J.
790 Stat. Softw.* **67**, 1–48 (2015).
791 90. Fox, J. & Weisberg, S. *An R Companion to Applied Regression*. (SAGE Publications, 2018).
792
793

794 Acknowledgements

795 We thank P.R. Bauer and R. Masson for their careful reading of this manuscript. We wish to thank
796 all our partner in the education field, especially E. Subra, for their help in recruiting subjects. Eventually,
797 we would like to thank all the participants and their parents for their time.

798 This work was performed within the framework of the LABEX CORTEX (ANR-11-LABX-0042) and
799 the LABEX CeLyA (ANR-10-LABX-0060) of Université de Lyon, within the program “Investissements
800 d’Avenir” (ANR-16-IDEX-0005) operated by the French ANR.
801
802

803 Author contributions

804 R.S.H. and A.B.C. designed and conducted the study, performed data analysis and wrote the
805 manuscript. J.H. contributed to data collection. H.E. and R.B. contributed to program development and
806 statistical analysis. H.E. contributed to proofreading of the manuscript.
807
808

809 Competing interests

810 The authors declare no competing interests.