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Abstract 12 

Classically, visual processing is described as a cascade of local feedforward computations. Feedforward 13 

Convolutional Neural Networks (ffCNNs) have shown how powerful such models can be. Previously, 14 

using visual crowding as a well-controlled challenge, we showed that no classic model of vision, 15 

including ffCNNs, can explain human global shape processing (1). Here, we show that Capsule Neural 16 

Networks (CapsNets; 2), combining ffCNNs with a grouping and segmentation mechanism, solve this 17 

challenge. We also show that ffCNNs and standard recurrent networks do not, suggesting that the 18 

grouping and segmentation capabilities of CapsNets are crucial. Furthermore, we provide 19 

psychophysical evidence that grouping and segmentation is implemented recurrently in humans, and 20 

show that CapsNets reproduce these results well. We discuss why recurrence seems needed to 21 

implement grouping and segmentation efficiently. Together, we provide mutually reinforcing 22 

psychophysical and computational evidence that a recurrent grouping and segmentation process is 23 

essential to understand the visual system and create better models that harness global shape 24 

computations. 25 

  26 
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Author Summary 27 

Feedforward Convolutional Neural Networks (ffCNNs) have revolutionized computer vision and are 28 

deeply transforming neuroscience. However, ffCNNs only roughly mimic human vision. There is a 29 

rapidly expanding literature investigating differences between humans and ffCNNs. Several findings 30 

suggest that, unlike humans, ffCNNs rely mostly on local visual features. Furthermore, ffCNNs lack 31 

recurrent connections, which abound in the brain. Here, we use visual crowding, a well-known 32 

psychophysical phenomenon, to investigate recurrent computations in global shape processing. 33 

Previously, we showed that no model based on the classic feedforward framework of vision, including 34 

ffCNNs, can explain global effects in crowding. Here, we show that Capsule Networks (CapsNets), 35 

combining ffCNNs with recurrent grouping and segmentation, solve this challenge. Lateral and top-36 

down recurrent connections do not, suggesting that grouping and segmentation are crucial for 37 

human-like global computations. Based on these results, we hypothesize that one computational 38 

function of recurrence is to efficiently implement grouping and segmentation. We provide 39 

psychophysical evidence that, indeed, recurrent processes implement grouping and segmentation in 40 

humans. CapsNets reproduce these results too. Together, we provide mutually reinforcing 41 

computational and psychophysical evidence that a recurrent grouping and segmentation process is 42 

essential to understand the visual system and create better models that harness global shape 43 

computations. 44 

Introduction 45 

The visual system is often seen as a hierarchy of local feedforward computations (3), going back to 46 

the seminal work of Hubel and Wiesel (4). Low-level neurons detect basic features, such as edges. 47 

Higher-level neurons pool the outputs from the lower-level neurons to detect higher-level features 48 

such as corners, shapes, and ultimately objects. Feedforward Convolutional Neural Networks (ffCNNs) 49 

embody this classic framework of vision and have shown how powerful it can be (e.g., 5–8). However, 50 

despite their amazing success, ffCNNs only roughly mimic human vision. For example, they lack the 51 

abundant recurrent processing of humans (9, 10), perform differently than humans in crucial 52 

psychophysical tasks (1, 11), and can be easily misled (12–14). An important point of discussion 53 

concerns global visual processing. It was suggested that ffCNNs may focus mainly on local, texture-54 

like features, while humans harness global shape level computations (1, 14–18; but see 19). For 55 

example, it was shown that changing local features, such as the texture or the edges of an object, can 56 
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lead ffCNNs to misclassify it (14, 15). Humans, in contrast, can still easily classify the object based on 57 

its global shape. 58 

There are no widely accepted diagnostic tools to specifically characterize global computations in 59 

neural networks. Models are usually compared either on computer vision benchmarks, such as 60 

ImageNet (20) or with neural responses in the visual system (21, 22). One drawback with these 61 

approaches is that the datasets are hard to control. Psychophysical results can be used to fill this gap 62 

and create well-controlled challenges for visual models, tailored to target specific aspects of vision 63 

(23). Here, we use visual crowding to specifically target global shape computations in humans and 64 

machines.  65 

In crowding, objects that are easy to identify in isolation appear as jumbled and indistinct when clutter 66 

is added (1, 24–29). For example, a vernier target is presented, i.e., two vertical lines separated by a 67 

horizontal offset (Figure 1a). When the vernier is presented alone, observers easily discriminate the 68 

offset direction. When a flanking square surrounds the target, performance drops, i.e., there is strong 69 

crowding (30, 31). Surprisingly, adding more flanking squares reduces crowding strongly, depending 70 

on the configuration (Figure 1b; 29). Hence, the global configuration of visual elements across large 71 

regions of the visual field influences perception of the  small vernier target. This global uncrowding 72 

effect occurs for a wide range of stimuli in vision, including foveal and peripheral vision, audition, and 73 

haptics (32–38). The ubiquity of (un)crowding in perception is not surprising since elements are rarely 74 

seen in isolation. Hence, any perceptual system needs to cope with crowding, i.e., isolating important 75 

information from clutter.  76 

We have shown previously that these global effects of crowding cannot be explained by models based 77 

on the classic framework of vision, including ffCNNs (1, 18, 39). Here, we propose a new framework 78 

to understand these global computations. We show that Capsule Neural Networks (CapsNets; 2), 79 

augmenting ffCNNs with a recurrent grouping and segmentation process, can explain these complex 80 

global (un)crowding results in a natural manner. Two processing regimes can occur in CapsNets: a fast 81 

feedforward pass able to quickly process information, and a time-consuming recurrent regime to 82 

compute in-depth global grouping and segmentation. We will show that the human visual system 83 

indeed harnesses recurrent processing for efficient grouping and segmentation, and that CapsNets 84 

naturally explain these results. Together, our results suggest that a time-consuming recurrent 85 

grouping and segmentation process is crucial for global shape-level computations in both humans 86 

and artificial neural networks.  87 

 88 
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 89 

Figure 1: a. Crowding: Perception of visual elements deteriorates in clutter, an effect called crowding. In this example, a 90 

vernier (two vertical bars with a horizontal offset) becomes harder to perceive when a square flanker is added (fixate on 91 

the blue dots). b. Uncrowding: A vernier is presented in the visual periphery. The offset direction is easily reported (dashed 92 

red line; the y-axis shows the threshold, i.e., the minimal offset size at which observers can report the offset direction with 93 

75% accuracy). When a square flanker surrounds the vernier, performance deteriorates - a classic crowding effect. When 94 

more squares are added, performance recovers (uncrowding). Critically, the uncrowding effect depends on the global 95 

stimulus configuration. For example, if some squares are replaced by stars, performance deteriorates again (3rd bar; 25). 96 

c. Routing by agreement in CapsNets: Information propagates between layers of capsules through a recurrent routing 97 

process aiming to maximize agreement between capsules. Each capsule is a group of neurons whose activity vector 98 

represents the pose (such as position, orientation, etc.) of the feature it detects. In this toy example, lower-level capsules 99 

detect simple shapes such as triangles and rectangles. In the next layer, capsules have learnt combinations of these shapes. 100 

Here, the triangle capsule detects a tilted triangle and the rectangle capsule detects a tilted rectangle. Each of these 101 

capsules predicts what is represented at the next layer. For example, the triangle capsule predicts an upside-down house 102 

or a tilted boat, while the rectangle capsule predicts a tilted house or a tilted boat. The recurrent routing by agreement 103 

process routes information between the layers so that agreement is maximized. In this case, capsules agree about the 104 

titled boat, but disagree about the house orientation. Hence, the routing by agreement suppresses activity in the house 105 

capsule and boosts activity in the boat capsule. d. Grouping and segmentation in CapsNets: This recurrent routing by 106 
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agreement process endows CapsNets with natural grouping and segmentation capabilities. Here, an ambiguous stimulus, 107 

which can be seen either as an upside-down house (top) or a house on a boat (bottom), is presented. The upside-down 108 

house interpretation leaves parts of the image unexplained and this causes disagreement. Hence, the routing by 109 

agreement will select the latter interpretations because it is the best explanation of the input and therefore maximizes 110 

agreement. Thereby, the house and boat are each grouped as an object and segmented into the corresponding higher-111 

level capsules. 112 

 113 

Results 114 

Experiment 1: Crowding and Uncrowding Naturally Occur in CapsNets 115 

In CapsNets, early convolutional layers extract basic visual features. Recurrent processing combines 116 

these features into groups and segments objects by a process called routing by agreement1. The en-117 

tire network is trained end-to-end through backpropagation. Capsules are groups of neurons repre-118 

senting visual features and are crucial for the routing by agreement process. Low-level capsules iter-119 

atively predict the activity of high-level capsules in a recurrent loop. If the predictions agree, the cor-120 

responding high-level capsule is activated. For example, if a capsule responds to a triangle above a 121 

rectangle detected by another capsule, they agree that the higher-level object should be a house and, 122 

therefore, the corresponding high-level capsule is activated (Figure 1c). This process allows CapsNets 123 

to group and segment objects (Figure 1d). 124 

We trained CapsNets with two convolutional layers followed by two capsule layers to recognize 125 

greyscale images of vernier targets and groups of identical shapes (see Methods). During training, 126 

either a vernier or a group of identical shapes was presented. The network had to simultaneously 127 

classify the shape type, the number of shapes in the group, and the vernier offset direction. 128 

Importantly, verniers and shapes were never presented together during training, i.e., there were no 129 

(un)crowding stimuli during training.  130 

When combining verniers and shapes after training, both crowding and uncrowding occurred (Figure 131 

2a): presenting the vernier target within a single flanker deteriorated vernier offset discrimination 132 

(crowding), and adding more identical flankers recovered performance (uncrowding). Adding config-133 

urations of alternating different flankers did not recover the network’s performance, similarly to hu-134 

man vision. Small changes in the network hyperparameters, loss terms or stimulus characteristics do 135 

not affect these results (supplementary material). As a control condition, we checked that when the 136 

                                                 
1 In most implementations of CapsNets, including ours and (2), the iterative routing by agreement process is not explicitly 
implemented as a “standard” recurrent neural network processing sequences of inputs online. Instead, there is an 
iterative algorithmic loop (see (2) for the algorithm), which is equivalent to recurrent processing. 
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vernier target is presented outside the flanker configuration, rather than inside, there was no perfor-137 

mance drop (supplementary material). Hence, the performance drop in crowded conditions was not 138 

merely to the simultaneous presence of the target and flanking shape in the stimulus.  139 

Reconstructing the input image based on the network’s output (see Methods) shows that (un)crowd-140 

ing occurs through grouping and segmentation (figure 2b). Crowding occurs when the target and 141 

flankers cannot be segmented and are therefore routed to the same capsule. In this case, they inter-142 

fere because a single capsule cannot represent well two objects simultaneously due to limited neural 143 

resources. This mechanism is similar to pooling: information about the target is pooled with infor-144 

mation about the flankers, leading to poorer representations. However, if the flankers are segmented 145 

away and represented in a different capsule, the target is released from the flankers’ deleterious ef-146 

fects and uncrowding occurs (Figure 2c). This segmentation can only happen if the network has learnt 147 

to group the flankers into a single higher-level object represented in a different capsule than the ver-148 

nier target. Segmentation is facilitated when more flankers are added because more low-level cap-149 

sules agree about the presence of the flanker group. 150 

Alternating configurations of different flankers, as in the third configuration of Figure 1b, usually do 151 

not lead to uncrowding (29). In some rare cases, the network produced uncrowding with such config-152 

urations (stimuli h, u ,v & J; Figure 2). Reconstructions show that in these cases the network simply 153 

could not differentiate between different shapes of the flankers (e.g. between circles and hexagons), 154 

which therefore formed a group for the network and were segmented away from the target (Figure 155 

2b). This further reinforces the notion that grouping and segmentation differentiate crowding from 156 

uncrowding: whenever the network reaches the conclusion that flankers form a group, segmentation 157 

is facilitated. When this happens, the vernier and flankers are represented in different capsules, lead-158 

ing to good performance. 159 

 160 
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 161 

Figure 2: a. CapsNets explain both crowding and uncrowding: The x-axis shows the various stimuli. We used 6 different 162 

flanker shape types and tested all configurations with 5 identical or alternating shapes (e.g., 5 squares, 5 circles, circle-163 

square-circle-square-circle, etc; see Methods). Performance is shown on the y-axis as the % correct for each stimulus 164 

minus the % correct with only the central single flanker. For example, in column a, vernier offset direction is easier to read 165 

out with 5 square flankers than with 1 square flanker, as expected. Error bars are the standard error over 10 network 166 

trainings (we used 10 networks to match the typical number of observers in human experiments; 29, 40). The blue bars 167 
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represent configurations for which uncrowding is expected (blue bars larger than 0.0 are in accordance with the human 168 

data) and orange bars represent configurations for which crowding is expected (orange bars smaller than or around 0.0 169 

are in accordance with the human data). b. Reconstructions: We reconstructed the input image based on the output 170 

capsules’ activities (see Methods). The reconstructions based on the two most activated capsules are shown. When the 171 

vernier is presented alone (top left), the reconstructions are good. When a single flanker is added (top right), the vernier 172 

reconstruction deteriorates (crowding) because the vernier is not well segmented from the flanker. When identical flank-173 

ers are added (bottom left), the vernier reconstruction recovers, i.e., it is well segmented from the flankers (uncrowding). 174 

With different flankers (bottom right), the vernier is not represented at all in the two winning capsules (crowding). Inter-175 

estingly, when the network produces “unexpected” uncrowding (i.e., the network shows uncrowding contrary to humans; 176 

bottom left), the reconstructions strongly resemble the case of “normal” uncrowding (compare middle and bottom left 177 

panels). In this case, the network was unable to notice the difference between circles and hexagons, and treated both 178 

stimuli in the same way. c. Segmentation and (un)crowding in CapsNets: If CapsNets can segment the vernier target away 179 

from the flankers during the recurrent routing by agreement process, uncrowding occurs. Segmentation is difficult when 180 

a single flanker surrounds the target because capsules disagree about what is shown at this location. In the case of con-181 

figurations that the network has learned to group, many primary capsules agree about the presence of a group of shapes, 182 

which can therefore easily be segmented away from the vernier target. 183 

 184 

In previous work, we have shown that pretrained ffCNNs (including an ffCNN biased towards global 185 

shape processing; 14) cannot explain uncrowding (18). Currently, CapsNets cannot be trained on 186 

large-scale tasks such as ImageNet because routing by agreement is computationally too expensive. 187 

Therefore, here, we took a different approach. As explained above, we trained our CapsNets to rec-188 

ognize groups of shapes and verniers and asked how they would generalize from shapes presented in 189 

isolation to crowded shapes. To make sure that CapsNets explain global (un)crowding thanks to their 190 

grouping and segmentation architecture and not merely due to this different training regime, we con-191 

ducted three further experiments. We investigated how performance changes when the capsule lay-192 

ers are replaced by other architectures, keeping the number of neurons constant. 193 

First, we replaced the capsules by a fully connected feedforward layer, yielding a classic ffCNN with 194 

three convolutional layers and a fully connected layer. We trained and tested this architecture exactly 195 

in the same way as the CapsNets, i.e., with the same stimuli, the same loss function, etc. The results 196 

clearly show that there is no uncrowding (Figure 3a): ffCNNs do not reproduce human-like global 197 

computations with this procedure.  198 

Second, we added lateral recurrent connections to the fully connected layer of the previous ffCNN, 199 

yielding a network with three convolutional layers followed by a fully connected recurrent layer. We 200 

used the same number of recurrent iterations as for the routing by agreement in the CapsNets. Again, 201 
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we trained and tested this architecture exactly like we trained and tested the CapsNets. There is no 202 

uncrowding with this architecture either (Figure 3b). 203 

Lastly, we added top-down connections feeding back from the final fully connected layer of the pre-204 

vious ffCNN to the layer below, yielding a network with three convolutional layers followed by a fully 205 

connected layer that fed back into the layer below (again with the same number of recurrent itera-206 

tions as iterations of routing by agreement in the CapsNets). Again, after training and testing this 207 

architecture in the same way as the other networks, we found no uncrowding (Figure 3c). The absence 208 

of uncrowding in feedforward ffCNNs and ffCNNs with added lateral or top-down connections sug-209 

gests that the architecture of CapsNets, and not our training regime, explains why (un)crowding is 210 

reproduced. Furthermore, recurrence by itself is not sufficient to produce (un)crowding. The grouping 211 

and segmentation performed by routing by agreement seems crucial. 212 
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 213 

Figure 3: Other network architectures do not explain uncrowding. To verify that the ability of CapsNets to explain uncrowd-214 

ing is due to their architecture and not merely to the way they are trained, we replaced the recurrent routing by agreement 215 

processing by three different alternative architectures: a feedforward fully connected layer (yielding a classic ffCNN, a), a 216 

fully connected layer with lateral recurrent connections (b) and a fully connected layer with top-down recurrent connec-217 

tions to the layer below (c). The plots on the left show the model’s performance in the same way as figure 2a (the x-axes 218 

represent (un)crowding stimuli, positive values on the y-axes show uncrowding). None of these architectures can produce 219 

uncrowding (compare with the CapsNet results in figure 2a). On the right, reconstructions are shown. For all of these 220 

networks, the vernier can be reconstructed with a single flanker but not when there are five flankers, showing that adding 221 

further flanker increases crowding, in contrast to humans where adding flankers rescues perception of the vernier (un-222 

crowding). 223 
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Experiment 2: The role of recurrent processing 224 

As mentioned, processing in CapsNets starts with a feedforward sweep followed by recurrent routing 225 

by agreement to refine grouping and segmentation. We hypothesize that humans may use recurrent 226 

processing to efficiently implement grouping and segmentation. To test this hypothesis, we psycho-227 

physically investigated the temporal dynamics of (un)crowding. We show that uncrowding is mediated 228 

by a time-consuming recurrent process in humans. When the target groups with the flankers, crowd-229 

ing occurs immediately. In contrast, when the target and flankers form separate groups, time-con-230 

suming recurrent computations are required to segment the flanker from the target. We successfully 231 

model these results with CapsNets.  232 

First, we performed a psychophysical crowding experiment with a vernier target flanked by either two 233 

lines or two cuboids (see Methods; Figure 4). The stimuli were displayed for varying durations from 234 

20 to 640ms and five observers reported the vernier offset direction. For short stimulus durations, 235 

crowding occurred for both flanker types, i.e., thresholds increased for both the lines and cuboids 236 

conditions compared to the vernier alone condition (lines: p = 0.0017, cuboids: p = 0.0013, 2-tailed 237 

one-sample t-tests). 238 

We quantified how performance changed with increasing stimulus duration by fitting a line 𝑦 =  𝑎𝑥 +239 

𝑏 to the data for each subject, and comparing the mean slope 𝑎 across subjects with 0 in one-sample 240 

2-tailed t-tests. The performance on the lines condition did not significantly change with increasing 241 

stimulus duration (p = 0.057). These results are in accordance with previous results which show that 242 

crowding varies very little with stimulus duration (41; but see 42, 43). With the flanking cuboids we 243 

found a different pattern of results: performance dramatically improves with stimulus duration (p = 244 

0.0007). This improvement cannot be explained by local mechanisms, such as lateral inhibition (30, 245 

44) or pooling (45–47) since the inner flanking vertical lines are the same in the lines and cuboids. 246 

Hence, according to a local approach we should expect no difference in thresholds between the two 247 

flanking conditions.  248 
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 249 

Figure 4: Temporal dynamics of uncrowding: Left: Human data. For cuboid flankers, strong crowding occurs up to 100ms 250 

of stimulus presentation, and then uncrowding gradually occurs for longer durations (i.e., performance improves; blue). 251 

The x-axis shows different stimulus durations and the y-axis shows the corresponding threhsolds (i.e., lower values indicate 252 

better performance). Error bars indicate standard error. Uncrowding does not occur with single line flankers, even for long 253 

stimulus durations (orange). We hypothesize that the cuboids are segmented from the vernier target through time-con-254 

suming recurrent processing (the line flankers are grouped with the target and cannot be segmented at all). Right: Model 255 

data. CapsNets can explain these results by varying the number of recurrent routing by agreement iterations. The x-axis 256 

shows different numbers of routing iterations during testing and the y-axis shows the corresponding error rates (i.e., lower 257 

values indicate better performance). Error bars indicate standard deviation across 30 trained networks (see Methods). 258 

Similarly to humans, both lines and cuboids lead to crowding with few routing by agreement iterations. Performance 259 

increases with routing iterations only for the cuboids. This suggests that recurrent processing helps to compute and seg-260 

ment the complex cuboids, but the lines are immediately strongly grouped with the vernier and can never be segmented. 261 

Hence, they do not benefit from the recurrent segmentation process.  262 

 263 

Crucially, uncrowding occurred for the cuboid flankers only when stimulus durations were sufficiently 264 

long (Figure 4). In contrast, the effect of the line flankers does not change over time. We propose that 265 

these results reflect the time-consuming recurrent computations needed to segment the cuboid 266 

flankers away from the target. Performance does not improve with the line flankers, because they are 267 

too strongly grouped with the vernier target, so recurrent processing cannot segment them away. 268 

We trained CapsNets with the same architecture as in experiment 1 to discriminate vernier offsets, 269 

and to recognize lines, cuboids and scrambled cuboids (see Methods; the scrambled cuboids were 270 

included only to prevent the network from classifying lines vs. cuboids simply based on the number 271 

of pixels in the image). As in experiment 1, during training, each training sample contained one of the 272 

shape types, and the network had to classify which shape type was present and to discriminate the 273 

vernier offset direction. We used 8 routing by agreement iterations during training. As in experiment 274 
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1, verniers and flankers were never presented together during training (i.e., there were no 275 

(un)crowding stimuli).  276 

After training, we tested the networks on (un)crowding stimuli, changing the number recurrent rout-277 

ing by agreement iterations from one (leading to a purely feedforward regime) to 8 iterations (a highly 278 

recurrent regime; Figure 3). We found that CapsNets naturally explain the human results. Using the 279 

same statistical analysis as for humans, we found that with more iterations, the cuboids are better 280 

segmented from the target, and performance improves (p = 0.003). On the other hand, the effect of 281 

the line flankers does not change over time (p = 0.64). These results were not affected by small 282 

changes in network hyperparameters or loss terms (supplementary material). We did not compare 283 

these results with the ffCNN and recurrent networks used in experiment 1, because these networks 284 

produced no uncrowding at all. 285 

These findings are explained by the recurrent routing by agreement process. With cuboids, capsules 286 

across an extended spatial region need to agree about the presence of a cuboid, which is then seg-287 

mented into its own capsule. This complex process requires several recurrent iterations of the routing 288 

by agreement process. On the other hand, the lines are immediately strongly grouped with the vernier, 289 

so further iterations of routing by agreement do not achieve successful segmentation and, hence, 290 

cannot improve performance. 291 

 292 

Discussion 293 

Our results provide strong evidence that time-consuming recurrent grouping and segmentation is 294 

crucial for shape-level computations in both humans and artificial neural networks. We used 295 

(un)crowding as a psychophysical probe to investigate how the brain flexibly forms object 296 

representations. These results specifically target global, shape-level and time-consuming recurrent 297 

computations and constitute a well-controlled and difficult challenge for neural networks.  298 

It is well known that humans can solve a number of visual tasks very quickly, presumably in a single 299 

feedforward pass of neural activity (48). ffCNNs are good models of this kind of visual processing (21, 300 

22, 49). However, many studies have shown that neural activities are not determined by the 301 

feedforward sweep alone, and recurrent activity affords a distinct processing regime to perform more 302 

in-depth time-consuming computations (9, 10, 50–53). Similarly, CapsNets naturally include both a 303 

fast feedforward and a time-consuming recurrent regime. When a single routing by agreement 304 

iteration is used, CapsNets are rapid feedforward networks that can accomplish many tasks, such as 305 
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vernier discrimination or recognizing simple shape types (e.g. circles vs. squares). With more routing 306 

iterations, a recurrent processing regime arises and complex global shape effects emerge, such as 307 

segmenting the cuboids in experiment 2. We showed how the transition from feedforward to 308 

recurrent processing in CapsNets explains psychophysical results about temporal dynamics of 309 

(un)crowding.  310 

Recurrent activity offers several advantages. First, although feedforward networks can in principle 311 

implement any function (54), recurrent networks can implement certain functions more efficiently. 312 

Flexible grouping and segmentation is exactly the kind of function that may benefit from recurrent 313 

computations (see also Seijdel et al., under review). For example, to determine which local elements 314 

should be grouped into a global object, it helps to compute this global object first. This information 315 

can then be fed back to influence how each local element is processed. For example, to model 316 

(un)crowding, it helps to compute the global configuration of flankers first to determine how to 317 

process the vernier. Should it be grouped with the flankers (crowding) or not (uncrowding)? In 318 

CapsNets, the first feedforward sweep of activity provides an initial guess about which global objects 319 

are present (e.g., large cuboids). At this stage, as shown in experiment 2, information about the 320 

vernier interferes with information about the cuboids (crowding). Then, recurrent processing routes 321 

information relative to cuboids and the vernier to different capsules (uncrowding). Without 322 

recurrence, in contrast, it is difficult to rescue the vernier information once it has been crowded.  323 

Second, although any network architecture can implement any computation in principle (given 324 

enough neurons), they differ in the way they generalize to previously unseen stimuli. Hence, recurrent 325 

grouping and segmentation architectures influence what is learned from training data. Here, we have 326 

shown that only CapsNets, but not ffCNN or ffCNNs augmented with recurrent lateral or top-down 327 

connections, produce uncrowding when trained identically to recognize groups of shapes and verniers. 328 

In general, ffCNNs tend to generalize poorly (review: 55). Using different architectures to improve 329 

how current systems generalize is a promising avenue of research. In this respect, we have shown 330 

that CapsNets generalize more similarly to humans than ffCNNs and standard recurrent networks in 331 

the context of global (un)crowding. 332 

One limitation in our experiments is that we explicitly taught the CapsNets which configurations to 333 

group together by selecting which groups of shapes were present during training (e.g., only groups of 334 

identical shapes in experiment 1). Effectively, this gave the network adequate priors to produce un-335 

crowding with the appropriate configurations (i.e., only identical, but not different flankers). Hence, 336 

our results show that, given adequate priors, CapsNets explain uncrowding. We  have shown that 337 
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ffCNNs and lateral or top-down recurrent connections do not produce uncrowding, even when they 338 

are trained identically on groups of identical shapes and showed learning on the training data com-339 

parable to the CapsNets (furthermore, we showed previously that pretrained ffCNNs who are often 340 

used as general models of vision do not show uncrowding either; 18). This shows that merely training 341 

networks on groups of identical shapes is not sufficient to explain uncrowding. It is the recurrent seg-342 

mentation in CapsNets that is crucial. Humans do not start from zero and therefore do not need to 343 

be trained in order to perform crowding tasks. The human brain is shaped through evolution and 344 

learning to group elements in a useful way to solve the tasks it faces. As mentioned, (un)crowding can 345 

be seen as a probe into this grouping strategy. Hence, we expect that training CapsNets on more 346 

naturalistic tasks such as ImageNet may lead to grouping strategies similar to humans and may there-347 

fore naturally equip the networks with priors that explain (un)crowding results. At the moment, how-348 

ever, CapsNets have not been trained on such difficult tasks because the routing by agreement algo-349 

rithm is computationally too expensive. 350 

Recurrent networks are harder to train than feedforward systems, which explains the dominance of 351 

the latter during these early days of deep learning. However, despite this hurdle, recurrent networks 352 

are emerging to address the limitations of ffCNNs as models of the visual system (10, 50, 52, 53, 56, 353 

57). Although there is consensus that recurrence is important for brain computations, it is currently 354 

unclear which functions exactly are implemented recurrently, and how they are implemented. Our 355 

results suggest that one important role of recurrence is shape-level computations through grouping 356 

and segmentation. We had previously suggested another recurrent segmentation network, hard-357 

wired to explain uncrowding (58). However, CapsNets, bringing together recurrent grouping and seg-358 

mentation with the power of deep learning, are much more flexible and can be trained to solve any 359 

task. Linsley et al. (53) proposed another recurrent deep neural network for grouping and segmenta-360 

tion, and there are other possibilities too (59, 60). We do not suggest that CapsNets are the only 361 

implementation of grouping and segmentation. We only suggest that grouping and segmentation is 362 

important and further work is needed to show how the brain implements it. 363 

In conclusion, our results provide mutually reinforcing modelling and psychophysical evidence that 364 

time-consuming, recurrent grouping and segmentation plays a crucial role for global shape 365 

computations in humans and machines.  366 

 367 
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Methods 368 

The code to reproduce all our results will be available with the journal version of this contribution. 369 

All models were implemented in Python 3.6, using the high-level estimator API of Tensorflow 1.10.0. 370 

Computations were run on a GPU (NVIDIA GeForce GTX 1070). We used the same basic network 371 

architecture in all experiments (Figure 5a). We implemented early feature extraction by using three 372 

convolutional layers without padding, each followed by an ELU non-linearity. We used dropout (61) 373 

after the first and second convolutional layers. The outputs of the last convolution were reshaped into 374 

m primary capsule types outputting n-dimensional activation vectors. The number of output capsule 375 

types was equal to the number of different shapes used as input. The network was trained end-to-376 

end through backpropagation. For training, we used an Adam optimizer with a batch size of 48 and a 377 

learning rate of 0.0004. To this learning rate, we applied cosine decays with warm restarts (62). 378 

This choice of network architecture was motivated by the following rationale (Figure 5b). After 379 

training, ideally, primary capsules detect the individual shapes present in the input image, and output 380 

capsules group and segment these shapes through recurrent routing by agreement. The network can 381 

only group shapes together if it was taught during training that these shapes should form a group. To 382 

match this rationale, we set the primary capsules’ receptive field sizes to roughly the size of one shape, 383 

and we set the number of output capsules equal to the number of shape types.  384 

Inputs were grayscale images (Figure 5c&d). We added random Gaussian noise with mean 𝜇 = 0 and 385 

standard deviation randomly drawn from a uniform distribution 𝜎 ~ 𝒰(0.00,0.02). The contrast was 386 

varied either by first adding a random value between  -0.1 and 0.1 to all pixel values and then 387 

multiplying them with a random value drawn from a uniform distribution 𝒰(0.6, 1.2), or vice versa. 388 

The pixel values were then clipped between 0 and 1. 389 
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 390 

Figure 5: a. Network architecture: We used capsule networks with three convolutional layers whose last outputs was 391 

reshaped into the primary capsule layer with m primary capsule types and n primary capsule dimensions. In this example, 392 

the number of primary and output capsules types is seven to match the seven shape types we used in experiment 1 (see 393 

caption c), but the number depended on the experiment. The primary and output capsule layers communicate via routing-394 

by-agreement. b. Ideal representations: After training, the primary capsules detect single shapes of different types at 395 

different locations. In this example, there are squares, circles and verniers. By routing the outputs of the primary capsules 396 

to the corresponding output capsules, the output capsules group these shapes in groups of one, three or five, based on 397 

the number of shapes detected by the primary capsules. If the left stimulus with three squares is presented, the primary 398 

square capsules detect squares at three different locations. Through routing by agreement, the output squares capsule 399 

groups these three squares. If the middle stimulus with five circles is presented, the primary circle capsules detect circles 400 

at five different locations. Through routing by agreement, the output circles capsule represents a group of five circles after 401 

routing. Lastly, if a vernier is presented (right stimulus), it is detected by primary capsules and is represented in the vernier 402 

output capsule. c. Training stimuli for experiment 1: All shapes were shown randomly in groups of one, three or five, except 403 

verniers who were always presented alone. d. Testing stimuli for experiment 1: Example stimuli for the four test conditions: 404 

In the vernier-alone condition (left), we expected the network to perform well on the vernier discrimination task. In 405 

crowding conditions (middle-left), we expected a deterioration of the vernier discrimination as in classical crowding. In 406 

uncrowding conditions with many identical flankers (middle-right), we expected a recovery of the vernier discrimination. 407 
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In no-uncrowding conditions with different flanker types (right), we expected crowding. After training, the network has 408 

learnt about groups of identical shapes and verniers, but has never encountered these (un)crowding stimuli.  409 

 410 

Experiment 1:  411 

Modelling 412 

Human data for experiment 1 is based on (26). We trained CapsNets with the above architecture to 413 

solve a vernier offset discrimination task and classify groups of identical shapes. The training dataset 414 

included vernier stimuli and six different shape types (Figure 4c). Shapes were presented in groups of 415 

one, three or five shapes of the same type. The group was centered in the middle of the image, with 416 

a jitter of 2 pixels along the x-axis and 6 pixels along the y-axis. 417 

The loss function included a term for shape type classification, a term for vernier offset discrimination, 418 

a term for the number of shapes in the image, and a term for reconstructing the input based on the 419 

network output (see equations 1-5). Each loss term was scaled so that none of the terms dominated 420 

the others. For the shape type classification loss, we implemented the same margin loss as in (2). This 421 

loss enables the detection of multiple objects in the same image. For the vernier offset loss, we used 422 

a small decoder to determine vernier offset directions based on the activity of the vernier output 423 

capsule. The decoder was composed of a single dense hidden layer followed by a ReLU-nonlinearity 424 

and a dense readout layer of two nodes corresponding to the labels left and right. The vernier offset 425 

loss was computed as the softmax cross entropy between the decoder output and the one-hot-en-426 

coded vernier offset labels. The loss term for the number of shapes in the image was implemented 427 

similarly, but the output layer comprised three nodes representing the labels one, three or five shape 428 

repetitions. For the reconstruction loss, we trained a decoder with two fully-connected hidden layers 429 

(h1: 512 units, h2: 1024 units) each followed by ELU nonlinearities to reconstruct the input image. 430 

The reconstruction loss was then calculated as the squared difference between the pixel values of the 431 

input image and the reconstructed image. The total loss is given by the following formulas: 432 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝛼𝑠ℎ𝑎𝑝𝑒 𝑡𝑦𝑝𝑒 𝐿𝑠ℎ𝑎𝑝𝑒 𝑡𝑦𝑝𝑒 + 𝛼𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑜𝑓𝑓𝑠𝑒𝑡433 

+ 𝛼𝑠ℎ𝑎𝑝𝑒 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝐿𝑠ℎ𝑎𝑝𝑒 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 + 𝛼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛      (1) 434 

𝐿𝑠ℎ𝑎𝑝𝑒 𝑡𝑦𝑝𝑒 =   ∑ 𝑇𝑘 max(0,  (𝑚+ − ‖𝑣𝑘‖)2) + 𝜆(1 − 𝑇𝑘) max(0,  (‖𝑣𝑘‖ − 𝑚−)2)      (2)

𝑘

 435 

𝐿𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐶𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑙𝑎𝑏𝑒𝑙𝑠, 𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡)                  (3) 436 

𝐿𝑠ℎ𝑎𝑝𝑒 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠437 

= 𝐶𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑠ℎ𝑎𝑝𝑒 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑙𝑎𝑏𝑒𝑙𝑠, 𝑠ℎ𝑎𝑝𝑒 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡)    (4) 438 
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𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 =  ∑(𝑖𝑛𝑝𝑢𝑡(𝑖, 𝑗) − 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗))2                                

𝑖,𝑗

                 (5) 439 

Where the 𝛼 are real numbers scaling each loss term, 𝑇𝑘 = 1 if shape class k is present, ‖𝑣𝑘‖ is the 440 

norm of output capsule 𝑘, and 𝑚+, 𝑚− and 𝜆 are parameters of the margin loss with the same values 441 

as described in (2). 442 

After training, we tested vernier discrimination performance on (un)crowding stimuli (figure 4d), and 443 

obtained input reconstructions. We trained 10 different networks and averaged their performance. 444 

Before this experiment, the network had never seen crowding nor uncrowding stimuli, but it knew 445 

about groups of shapes and about the vernier discrimination task. Therefore, the network could not 446 

trivially learn when to (un)crowd by overfitting on the training dataset. This situation is similar for 447 

humans: they know about shapes and verniers, but their visual system has never been trained on 448 

(un)crowding stimuli. 449 

To check that CapsNets explain uncrowding because of the grouping and segmentation capabilities 450 

offered by routing by agreement and not merely because of the way they are trained, we replaced 451 

the capsule layers by other architectures (a feedforward fully connected layer, a fully connected layer 452 

with lateral recurrent connections and a fully connected layer with top-down recurrent connections 453 

to the layer below; see Results). All these networks had the same number of neurons as our CapsNets, 454 

and we used the same number of recurrent iterations as the number of routing by agreement used 455 

for the CapsNets. The networks were trained and tested in exactly the same way, with the same losses 456 

and datasets. The only difference is that CapsNets represent different classes in different capsules, so 457 

we could decode information directly from specific capsules (for example, we could decode vernier 458 

offsets specifically from the vernier capsule, or reconstruct squares specifically from the squares cap-459 

sule). The other networks do not offer this possibility, because different classes are not represented 460 

in different known groups of neurons. Therefore, we decoded vernier offsets, reconstructions, the 461 

number of shapes and the shape type from the entire last layer of the network rather than from 462 

specific capsules. This difference did not limit the networks’ performance, since these architectures 463 

performed well during training. Hence, the fact that they do not produce uncrowding is not explained 464 

by training limitations, but rather by the fact that they generalize to novel inputs differently than Cap-465 

sNets. 466 

 467 

Experiment 2:  468 

Psychophysical experiment: 469 
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Observers 470 

For experiment 2, we collected human psychophysical data. Participants were paid students of the 471 

Ecole Polytechnique Fédérale de Lausanne (EPFL). All had normal or corrected-to-normal vision, with 472 

a visual acuity of 1.0 (corresponding to 20/20) or better in at least one eye, measured with the Frei-473 

burg Visual Acuity Test. Observers were told that they could quit the experiment at any time they 474 

wished. Five observers (two females) performed the experiment. 475 

Apparatus and stimuli 476 

Stimuli were presented on a HP-1332A XY-display equipped with a P11 phosphor and controlled by a 477 

PC via a custom-made 16-bit DA interface. Background luminance of the screen was below 1 cd/m2. 478 

Luminance of stimuli was 80 cd/m2. Luminance measurements were performed using a Minolta Lu-479 

minance meter LS-100. The experimental room was dimly illuminated (0.5 lx). Viewing distance was 480 

75 cm. 481 

We determined vernier offset discrimination thresholds for different flanker configurations. The ver-482 

nier target consisted of two lines that were randomly offset either to the left or right. Observers indi-483 

cated the offset direction. Stimulus consisted of two vertical 40’ (arcmin) long lines separated by a 484 

vertical gap of 4’ and presented at an eccentricity of 5° to the right of a fixation cross (6’ diameter). 485 

Eccentricity refers to the center of the target location. Flanker configurations were centered on the 486 

vernier stimulus and were symmetrical in the horizontal dimension. Observers were presented two 487 

flanker configurations. In the lines configuration, the vernier was flanked by two vertical lines (84’) at 488 

40’ from the vernier. In the cuboids configuration, perspective cuboids were presented to the left and 489 

to the right of the vernier (width = 58’, angle of oblique lines = 135◦, length = 23.33’). Cuboids con-490 

tained the lines from the Lines condition as their centermost edge. 491 

Procedure 492 

Observers were instructed to fixate a fixation cross during the trial. After each response, the screen 493 

remained blank for a maximum period of 3 s during which the observer was required to make a re-494 

sponse on vernier offset discrimination by pressing one of two push buttons. The screen was blank 495 

for 500 ms between response and the next trial. 496 

An adaptive staircase procedure (PEST; 63) was used to determine the vernier offset for which ob-497 

servers reached 75% correct responses. Thresholds were determined after fitting a cumulative Gauss-498 

ian to the data using probit and likelihood analyses. In order to avoid extremely large vernier offsets, 499 
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we restricted the PEST procedure to not exceed 33.3’ i.e. twice the starting value of 16.66’. Each con-500 

dition was presented in separate blocks of 80 trials. All conditions were measured twice (i.e., 160 501 

trials) and randomized individually for each observer. To compensate for possible learning effects, the 502 

order of conditions was reversed after each condition had been measured once. Auditory feedback 503 

was provided after incorrect or omitted responses. 504 

Modelling: 505 

To model the results of experiment 2, we trained our CapsNets to solve a vernier offset discrimination 506 

task and classify verniers, cuboids, scrambled cuboids and lines. The training dataset included vernier 507 

stimuli and one of three different shape types (lines, cuboids, scrambled cuboids). The scrambled 508 

cuboids were included to make the task harder, and to prevent the network from classifying cuboids 509 

simply based on the number of pixels in the image. The line stimuli were randomly presented in a 510 

group of 2, 4, 6 or 8. Both, cuboids and shuffled cuboids were always presented in groups of two 511 

facing one another. The distance between these shapes was varied randomly between one and six 512 

pixels. The loss function was very similar to experiment 1, but without the loss term for shape repeti-513 

tions, since there were no repetitions (each term is the same as in eqs. 1-5): 514 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑠ℎ𝑎𝑝𝑒 𝑡𝑦𝑝𝑒 𝐿𝑠ℎ𝑎𝑝𝑒 𝑡𝑦𝑝𝑒 + 𝛼𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑜𝑓𝑓𝑠𝑒𝑡𝐿𝑣𝑒𝑟𝑛𝑖𝑒𝑟 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝛼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (6) 515 

After training, we tested the network’s vernier discrimination performance on (un)crowding stimuli 516 

(verniers surrounded by either lines, cuboids or scrambled cuboids), while varying the number of 517 

recurrent routing by agreement iterations. We trained the same network 50 times and averaged per-518 

formance over these trained networks, excluding 21 networks for which vernier discrimination per-519 

formance with both line and cuboid flankers was at ceiling (>=95%) or floor (<=55%). This exclusion 520 

criterion is used for cleaner results and does not impact the crucial result showing that uncrowding 521 

occurs with increasing routing iterations only with cuboid, but not with line flankers. The effect still 522 

occurs when all 50 networks are included in the analysis, but the fact that certain networks are at 523 

floor or ceiling is misleading. Before this experiment, the network had never seen (un)crowding stim-524 

uli, but it knew about cuboids, scrambled cuboids and about the vernier discrimination task. There-525 

fore, the network could not trivially learn when to (un)crowd by overfitting on the training dataset. 526 
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Supplementary Material 664 

Experiment 1 665 

Results are robust against stimuli and hyperparameters changes 666 

To avoid cherrypicking our hyperparameters, we ran several networks with different hyperparameter 667 

sets, and show that our results are robust with respect to these changes. 668 

The results of experiment 1 remain qualitatively similar for different image sizes and network 669 

hyperparameters. Below is a selection of results using different sets of hyperparameters. In all these 670 

cases, both crowding and uncrowding occur, similarly to the results shown in Figure 2. 671 

 672 

 673 
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Supplementary Figure 1: Results for 16x72 pixel images. Both crowding and uncrowding occur similarly to the results in 674 

figure 2. Plotting conventions are the same as in figure 2. Main hyperparameters are summarized at the bottom. With 675 

these small images, we often encountered ceiling effects. We trained 20 networks and dropped those that were at 676 

ceiling (i.e., we dropped networks that were at 100% performance for all conditions). 677 

 678 

 679 

Supplementary Figure 2: 20x72 pixel images. Both crowding and uncrowding occur similarly to the results in figure 2. 680 

Plotting conventions are the same as in figure 2. Main hyperparameters are summarized at the bottom. Stimuli not 681 

shown for panels b&c, for clarity. 682 
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 683 

Supplementary Figure 3: 30x72 pixel images. Both crowding and uncrowding occur similarly to the results in figure 2. 684 

Plotting conventions are the same as in figure 2. Main hyperparameters are summarized at the bottom. 685 

 686 

Performance deterioration is due to crowding 687 

As a control to check that performance dropped because of crowding and not merely because of the 688 

simultaneous presentation of a vernier target and another shape, we measured performance when 689 

the vernier was presented outside, rather than inside, flanking shapes. Performance does not drop in 690 
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this case, compared to when the vernier is presented alone. This suggests that performance drops 691 

because of crowding in the networks. 692 

 693 

Supplementary Figure 4: Performance deterioration is due to crowding. The x-axis shows different conditions shown on 694 

the right, the y-axis shows vernier offset discrimination percent correct. Vernier accuracy does not decrease when the 695 

vernier is presented outside flanking shapes compared to the vernier alone condition. 696 

 697 

Experiment 2 698 

Results are robust against stimuli and hyperparameters changes 699 

To avoid cherrypicking our hyperparameters, we ran several networks with different hyperparameter 700 

sets, and show that our results are robust with respect to these changes. 701 

The results of experiment 2 remain qualitatively similar for different network hyperparameters. Below 702 

is a selection of results using different sets of hyperparameters. In both these cases, performance on 703 

the cuboids condition, but not the lines condition, drastically improves with the number of recurrent 704 

routing by agreement iterations (network a: lines: p = 0.041 vs. cuboids p = .0.0005, network b: lines: 705 

0.11 vs. cuboids p=0.006). In network a, the lines show a marginally significant improvement, but the 706 

p-value is 100 times smaller than for the cuboids. 707 
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 708 

Supplementary Figure 5: Experiment 2 results are reproduced with different network hyperparameters. The x-axis shows 709 
different numbers of routing iterations during testing and the y-axis shows the corresponding error rates (i.e., lower values 710 
indicate better performance). Error bars indicate standard deviation across N trained networks (see Methods).  711 
Performance increases drastically with recurrent routing iterations only for the cuboids condition, and not for the lines 712 
condition. A difference with the results shown in figure 3 is that performance with cuboids flankers is worse than 713 
performance with line flankers at early iterations. This may be explained by the far greater amount of pixels in cuboids 714 
than lines, increasing the interference between the cuboids and the vernier until the cuboids are segmented away. As the 715 
results exhibited in Figure 3 show, this effect can be mitigated through adequate hyperparameter choice. However, in this 716 
experiment, we focused on demonstrating that only the cuboids benefit from additional routing iterations, and this result 717 
is very stable across hyperparameter changes. 718 
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