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Standard brain templates and growth charts provide an invaluable resource for 

basic science research, with the eventual goal of contributing to the clinical care 

of neuropsychiatric conditions. Here, we report on a protocol to generate MRI 

brain templates in children and adolescents at one-year intervals from 6-to-18 

years of age, with their corresponding growth charts, using a large-scale 

neuroimaging data resource (948 brain images from China and United States). 

To assure that the brain templates and growth charts are reliable and accurate, 

we developed a refined pipeline consisting of template construction, image 

registration, brain area labeling and growth chart modeling. The pipeline 

comprises multiple modular workflows that can be used for multiple 

applications. In our approach, population- and age-specific templates were first 

constructed to avoid systemic bias in registration. Brain areas were then labeled 

based on the appropriate templates, and their morphological metrics were 

extracted for modeling associated growth curves. We implemented warp cost as 

a function of age differences between individual brains and template brains. A 

strong U-shaped cost function was revealed, indicating larger age differences are 

associated with greater registration errors. This validates the necessity of 

age-specific reference templates in pediatric brain imaging studies. Growth chart 

analyses revealed preferential shape differences between Chinese and US 

samples in lateral frontal and parietal areas, aspects of cortex which are most 

variable across individuals with regard to structure and function as well as 

associated behavioral performance. This growth distinction is largely driven by 

neurodevelopmental differences between Chinese and US age-specific brain 

templates. The pipeline together with the brain templates and charts are publicly 

available and integrated into the Connectome Computation System. 

 

Keywords: brain templates, brain growth charts, magnetic resonance imaging, 

neuropsychiatric disorders, big data 
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Introduction 

Growth charts are an invaluable resource for enhancing public health. They are 

essential for screening the developmental status of individuals and monitoring their 

abnormal growth as an early detection tool1. Deviations from normative age-expected 

values are used to trigger evaluations for underlying abnormal factors, which can 

provide important developmental information to clinicians and parents. Extending this 

approach to the evaluation of an individual’s neurodevelopmental status has been 

impeded by the lack of reliable growth charts for the human brain. Magnetic 

resonance imaging (MRI) is increasingly being employed to map human brain 

development. Anatomical MRI (aMRI) can capture developmental changes of brain 

morphology2,3, which comprise full-brain geometrical transformations (e.g., cortical 

thinning and surface expansion)4,5. For example, changes in cortical thinning 

trajectories have been linked with inter-individual differences in IQ in children and 

adolescents6. Such developmental effects in brain structure have also been shown to 

be detectable across adulthood7 and are supported by brain network studies using 

diffusion-weighted (dMRI) and resting-state functional (rfMRI) imaging methods8,9, 

providing the framework for quantifying multimodal brain development at the 

population level10,11. Although sparse, efforts to translate developmental trajectories 

into growth charts have begun to be initiated for neuropsychiatric conditions12-14, 

which are believed to have abnormal neurodevelopmental origins15,16. 

Despite the promise of developmental population neuroscience, a number of key 
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issues must be addressed prior to establishing brain growth charts for clinical use. 

First, reliability of MRI-based measurements must meet clinical standards on 

measurements of individual differences17-19. Core anatomic MRI measures (e.g., 

volume, cortical thickness, surface area) currently meet this standard20, but most 

dMRI and rfMRI measures do not due to multiple confounds and substantial random 

error21,22. This suggests aMRI-derived measures could provide the bases for 

developing reliable imaging markers of clinically useful growth charts. Their high 

reliability makes it possible to attain highly valid charts, though of course, does not 

guarantee this23. Second, MRI samples of brain development cohorts for building 

growth charts are currently limited. Large-scale brain development cohorts are 

fundamental for charting growth24-26, but unfortunately obtaining longitudinal 

assessments across multiple centers with the same protocols is rare27,28. Previous 

studies have demonstrated the necessity of creating growth charts for height, weight 

and head circumference for specific populations or countries29, which is likely even 

more important for brain growth charts, given the neurodevelopmental diversity likely 

arising from differences in ethnicity and culture. Finally, detection of differences 

could be biased by using inappropriate analyses performed at the population level. For 

example, neuroimaging studies have already documented biases from using generic 

brain templates for multiple age ranges30-35, indicating the need of a full range of 

age-specific brain templates across school age (6-18 years). Despite the public health 

importance of creating normative charts12,36-39, a protocol addressing these issues to 
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generate brain templates and growth charts for school-age development is lacking.  

This protocol was designed to begin to fill this gap. It consists of an integrative 

pipeline for generating brain templates and growth charts of children and adolescents. 

Volumetric measurements were quantified with aMRI of 674 school-age brains from 

two accelerated longitudinal cohorts with the same experimental design obtained in 

the United States (Enhanced Nathan Kline Institute Rockland Sample - eNKI 

sample)40 and China (Chinese Color Nest Project - CCNP)10,41, respectively. Standard 

brain templates were constructed annually for each year of age and serve as a 

field-wide resource for generating growth charts on morphological development of 

brain tissues, lobes and networks. These brain templates and growth charts were 

validated across two cultures to offer an initial normative reference for studies of 

school-age brain development. 

 

Development of the protocol 

Construction of reliable brain grow charts at the area-level relies heavily on the 

accurate localization of brain areas across individuals, i.e., MRI image registration. 

Registration is commonly used to automatically label individual images from atlases 

defined on standard brain templates. Previous studies33,34,42 have shown two factors 

that account for the most variance during template registration, ethnicity and age. 

Ethnicity plays a critical role in shaping brain morphology43. For instance, significant 

volumetric differences were observed between Chinese and Caucasian adult brain 
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templates33,42, indicating a rounder global shape and shorter axial distance in Chinese 

adults. Dynamic neurodevelopmental factors affect brain maturation, suggesting such 

brain morphological differences should also be observable during childhood or 

adolescence. Therefore, creating a custom brain template from a homogenous 

population has been strongly recommended to improve registration performance44. 

However, the desirability of population- and age-specific brain templates for 

modeling growth charts has not been prioritized. 

In the single exception, group differences in registration errors relating to ethnic 

and developmental factors were tested34. However, the utility and generalizability of 

their templates was limited by the small sample size (n=138) from a single imaging 

site using relatively broad age intervals (2 years). Moreover, the relationship between 

registration errors and age in pediatric samples has yet to be examined and quantified.  

Thus, to improve the accuracy of brain growth charts, we established a protocol, 

i.e., a pipeline consisting of brain template construction, image registration, regional 

area labeling and growth chart modeling. In the pipeline, two population- and 

age-specific templates (Figure 1) were first constructed to avoid systemic bias in 

registration (Institute of Psychology, Chinese Academy of sciences (IPCAS) and 

Nathan Kline Institute (NKI) brain templates), then brain areas were automatically 

labeled based on the age- and ethnicity-matched templates, and finally their 

morphological metrics were extracted for modeling growth charts.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/747352doi: bioRxiv preprint 

https://doi.org/10.1101/747352
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 1 Axial slides of brain and tissue probability templates. IPCAS (up 4 rows) and NKI 

(bottom 4 rows) templates with one-year interval (except age 6 and age 7) are listed from top to 

bottom in sequence of templates of brain, gray matter probability, white matter probability and 

cerebrospinal fluid probability. 

 

Comparison with other methods 

Growth charts built with existing big datasets provide clear evidence that it is 

necessary to estimate brain morphological properties as well as their corresponding 

brain templates within specific age groups. This is especially true for pediatric 

neuroimaging studies of the school-age population, in which there are considerable 

changes in brain morphology. Both cross-sectional and longitudinal applications of 
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growth charts are facilitated by choosing proper templates, where the typical value is 

delivering valid atlas information, i.e., defining regional areas in individual brains.  

Previous studies have demonstrated that different ages and ethnicities increase 

the deformation costs associated with morphing anatomical regions between 

individual brains, which if done poorly, can result in mismatches in brain 

segmentation tissue profiles33,34. This is supported by our findings that even with an 

identical brain atlas, morphological metrics can differ substantially when registered 

to different brain templates. Ideally, these metrics should be identical. In practice, 

the method with lower registration errors or costs is preferred.  

 

Figure 2 Deformation cost as a function of age difference. GAMLSS fits on the deformation 

cost (normalized warp values) with age differences between individual validation brains and 

template brains. Blue indicates the use of IPCAS pediatric templates while red indicates the use of 

eNKI pediatric templates for the registration. 
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As demonstrated in Figure 2, we observed that registration costs were related to 

national origin and stage of development. This was particularly well illustrated by 

using age-specific brain templates for the longitudinal CCNP and eNKI samples to 

model growth charts of brain volume (Figure 3), which were similar (peaking at 

12-13 years of age but differing in specific details) to the inverted-U shaped curves 

observed in previous studies45,46. The eNKI sample exhibited larger brain volumes 

and more accelerated increases during childhood than the CCNP sample. 

Differences in such a fundamental morphological characteristic may lead to 

increases of registration errors related to age and ethnic differences (Figure 2). Using 

an independent validation sample (n=84, 7-12 years, Chinese), we compared the 

deformation costs of registering the individual brains to the IPCAS and NKI 

templates across different ages. As expected, the NKI brain templates resulted in 

greater image deformations than the IPCAS templates (red versus blue). Beyond this 

observation, registration deformations associated with age-matched brain templates 

were less than those of age-mismatched templates. As revealed in Figure 2, the 

smallest deformations occurred when sources and targets of brain registration were 

approximately age matched, with a little deviation to negative matching ages referring 

to the templates built with younger (both CCNP and eNKI) samples. 

The IPCAS pediatric templates were generated with much larger sample sizes 

and narrower intervals for longitudinal sampling than prior efforts. First, to the best 

of our knowledge, CCNP is the largest longitudinal MRI database of Chinese healthy 
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school-age children. The number of scans (n = 674) is nearly 5 times and 13 times 

larger than previous studies by Xie et al.34 (n = 138) and Luo et al.32(n = 53), 

respectively. Second, the pediatric MRI images were collected from typically 

developing children recruited from primary and middle/high schools at three 

imaging sites, which are widely distributed in China, making the sample more 

representative of the Chinese healthy pediatric population than samples recruited 

from clinical sites. 

 

Figure 3 Growth charts of brain tissue volume. Growth charts of Intracranial Volume (ICV), 

Gray Matter (GM), White Matter (WM) and Cerebral Spinal Fluid (CSF). The black line is derived 

from CCNP samples while the gray line is based on eNKI samples. 
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Figure 4 Template effects on growth charts of regional volume.  The location of parcel 336 is 

shown in the upper left panel. Upper right panel shows the charts estimated with registrations 

using ethnic- and age-appropriate templates, panels at second row show charts estimated with 

registrations using ethnic-inappropriate templates. eNKI2IPCAS indicates eNKI samples 

registered to the IPCAS template while CCNP2NKI indicates CCNP samples registered to the 

NKI template. CCNP and eNKI are samples registered to ethnic- and age-appropriate templates. 

 

For depicting brain developmental trajectories, results appear to be dramatically 

driven by the age-specific templates. For instance, we consider an area located in the 

right superior parietal gyrus (labeled as Parcel No.136 of the frontal-parietal network 

in Schaefer et al.47) (Figure 4). Its growth curve exhibited relatively distinct patterns 

between CCNP and eNKI samples when individual brains were registered to ethnic- 

and age-appropriate templates. However, growth patterns were inverted when 

individual brains were deformed to the mismatched ethnic-template. Specifically, 

the pattern of the growth charts was largely driven by the developmental changes of 

CCNP2IPCAS

eNKI2IPCAS

CCNP2IPCAS

eNKI2IPCAS

1000

800

600

400

200

0

V
o

lu
m

e
  

(μ
l)

6 8 10 12 14 16 18

Age (year)

CCNP2NKI

eNKI2NKI

CCNP2NKI

eNKI2NKI

1000

800

600

400

200

0

V
o

lu
m

e
  

(μ
l)

6 8 10 12 14 16 18

Age (year)

Parcel 336 CCNP2IPCAS

eNKI2NKI

CCNP2IPCAS

eNKI2NKI

6 8 10 12 14 16 18

Age (year)

1000

800

600

400

200

0

V
o

lu
m

e
  

(μ
l)

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/747352doi: bioRxiv preprint 

https://doi.org/10.1101/747352
http://creativecommons.org/licenses/by-nc-nd/4.0/


the employed brain templates. The observation that extraction of the areal metric 

largely depended on the target templates used for registration held generally across 

the whole brain.   

Use of ethnic- and age-specific brain templates have not been used in previous 

developmental studies. This is partially because small samples are insufficient to 

construct such templates and few developmental studies have focused on such areal 

scales (small parcels)47. In the present protocol, we showed that for growth chart 

modeling, use of improper brain templates would unexpectedly and substantially 

distort the estimations of underlying morphological development, making 

conclusions questionable. 

 

Applications of the method 

For a growing number of longitudinal neuroimaging cohort studies across the 

globe in recent years24-28,40,41, identification of typical developmental patterns is one of 

the primary research targets. The absence of a standard protocol impedes 

generalization between ethnic backgrounds, imaging settings and data processing 

procedures. This protocol was initially designed for generating validated and 

accurate growth charts but is not limited to only this application. Any MRI study that 

focuses on group-level information of individual brains would result in better 

precision by applying proper brain templates, especially for interracial and 

developmental research in which large morphological differences are expected 

across groups.  
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Limitation and future work 

Several limitations must be considered regarding the application of pediatric 

templates and the interpretation of growth charts. The proportion of males and 

females was balanced in most age groups except the 15-, 16- and 17-year-old age 

groups. Given previously reported sex differences in brain development46,48,49, 

constructing sex-specific templates in the future would be desirable. Many factors 

can affect the construction of pediatric growth charts, including the data 

preprocessing pipeline48, modeling methods10, and site effects50. Dynamic 

developmental trajectories might be confounded by image registration errors if 

inappropriate brain templates are employed. The construction of age-specific brain 

templates and developmental trajectories or growth charts should be performed in 

tandem. Finally, the age intervals used to define templates in the present studies 

were defined provisionally due to the lack of more detailed evidence on brain 

development. Nonetheless, the age-specific brain templates generated in the current 

study can facilitate the estimation of more precise changes in human brain 

morphology during development. Regional volume was employed in this protocol to 

demonstrate age and ethnicity effects on brain templates and growth charts. It is an 

interesting topic to investigate how such effects can be generalized to other metrics 

of human brain morphometry (see reference51 for a review). 

 

Overview of the procedure 
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We developed a pipeline to construct age-specific brain templates and brain 

growth charts together. Specifically, using a large neuroimaging dataset of Chinese 

pediatric brain images, we demonstrate for the first time that greater age mismatching 

of templates introduces larger registration deformations. Further, these age-specific 

templates can improve the accuracy of image registration between individual pediatric 

structural brain images, thereby facilitating more reliable and accurate human brain 

mapping studies in healthy and clinical pediatric populations. By modeling growth 

charts, we found that differences across western and eastern samples were decreased 

when examined at large-scale levels, including tissue classes of brain lobe volumes. 

At more fine-grained levels of spatial resolution, ethnic differences in cortical surface 

area indices became markers, particularly in association cortex, which exhibits greater 

flexibility, morphological variability and hemispheric asymmetry52.   

 

Experimental Design 

To chart brain growth models, we developed a standard pipeline consisting of 

customized brain template construction, robust imaging registration and growth chart 

estimation. Ethnicity and age are the two major variables addressed in this work. For 

the first two of these steps, we examined a 2 (ethnic levels, CCNP vs. eNKI) × 11 (age 

levels) within-subject design to test template effects in registration. The 11 age levels 

ranged from 6 to 17 years old; with ages 6 and 7 combined into one group due to 

increase sample size (the sample size per age group can be found in Materials). This 
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generated 22 ethnicity- and age- specific templates. Individual brain images from a 

validation dataset were then registered to these 22 templates, with 22 corresponding 

registration deformations calculated for each subject. Previous studies applied 

group-level comparisons in which registrations were divided into appropriate and 

inappropriate groups for estimating the template effects, with paired T tests or 

variance analysis performed to assess ethnicity differences in template registration31. 

We believe that between-group comparisons are insufficient for revealing age effects 

in registration cost, especially for age-ranges spanning from childhood to adolescence. 

Hence, we used continuous age differences instead of a categorical age group variable 

to model developmental changes. Finally, two curves, corresponding to the ethnicity 

factors (CCNP vs. eNKI), with age difference as an independent variable and 

deformation value as the dependent variable, were modeled to show ethnicity and age 

effects.  

For modeling the growth charts of brain morphological metrics, the ethnicity 

factor was considered as potentially a confounding variable. Due to the lack of 

ethnic-specific templates in the past, the MNI template has been usually utilized as the 

default. To test how an ethnicity-unspecific template affects morphological estimation, 

we performed a 2 × 2 mixed design with ethnicity as the between-group factor (CCNP 

vs. eNKI) and appropriateness as the within-group factor (brain images registered to 

ethnic-matched and ethnic-mismatched templates). Two registrations were performed 

for each participant. For a child from the CCNP sample, ethnicity-appropriate 
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registration refers to using an IPCAS age-appropriate template while 

ethnicity-inappropriate refers to using an NKI age-appropriate template, and similarly 

for participants in the eNKI sample. The 400-unit areal parcellation (in MNI space)47 

was extracted based on the above two registrations for each subject and their growth 

charts were modeled, generating four growth charts (gc) for each brain area: 1) 

CCNP-gc (CCNP samples registered to the IPCAS templates), 2) eNKI-gc (eNKI 

samples registered to the NKI template), 3) CCNP2NKI-gc (CCNP samples registered 

to the NKI template), 4) eNKI2IPCAS-gc (eNKI samples registered to the IPCAS 

template). We hypothesized that the former two charts would be more appropriate 

than the latter two charts. We calculated the similarities of the volume growth charts 

for each parcel and grouped local areas into seven large-scale networks47 (Figure 5).  

 
Figure 5 Similarities of brain growth charts between CCNP and eNKI samples. Upper left 

panel shows the 400 brain parcellation units, with parcels colored according to the Yeo2011 

seven-network organization. Upper right panel shows similarities of the brain growth charts 

between CCNP and eNKI samples as measured by normalized variances (NV). The second row 

depicts the corresponding NV bar charts. 
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Materials 

Equipment 

 

Software 

A computer with Linux or Unix environment or MAC OS pre-installed and with 

Bash shell scripting is required to run the algorithm. 

Neuroimaging processing software included:  

FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation)53 

ANTs (http://stnava.github.io/ANTs)54 

volBrain (http://volbrain.upv.es)55 

Statistical software R with the GAMLSS56 package installed for growth chart 

modeling. 

 

Template construction 

 

Participants 

MRI scans (n=774) were collected from 496 school-age (age range 6-18 years) 

typically developing children (TDC) of the Chinese Han population at three brain 

imaging sites. The final dataset passing quality control procedures consisted of the 

SWU413 sample41 (196 TDC scanned at the Faculty of Psychology, Southwest 

University in Chongqing), the SMU130 sample57 (130 TDC scanned at the First 

Hospital of Shanxi Medical University in Taiyuan) and the PKU131 sample58-60 (131 

TDC obtained from the Beijing site of ADHD200 sample shared via the International 
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Data-sharing Initiative). Specifically, the SWU413 dataset was acquired as a trial 

stage implementation of the developmental phase of the Chinese Color Nest Project 

(CCNP-SWU413)10, which is a five-year accelerated longitudinal study designed to 

delineate normative trajectories of brain development of Chinese children41. The age 

and sex distributions of overall MRI scans for the three samples are listed in Table 1. 

 For the enhanced NKI (eNKI) Rockland Sample40, a total of 561 scans were 

collected from 323 school-aged children. After the same quality control procedure 

applied for CCNP samples, a total of 190 scans from 133 TDC were included for our 

final analyses. Of note, CCNP and eNKI datasets both are accelerated longitudinal 

designs, were initially designed with matched age span and imaging resolution. 

Participants in the CCNP and eNKI sample who had a history of neurological or 

mental disorder, family history of such disorders, organic brain diseases, physical 

contraindication to MRI scanning, a total Child Behavior Checklist (CBCL) T-score 

higher than 70, or a Wechsler Intelligence Scale for Children IQ standard score lower 

than 80 were excluded.  

CCNP and eNKI projects obtained the Institutional Review Board approval from 

IPCAS and NKI respectively. Written informed assent and consent were obtained 

from both participants and their parents/guardians. The details of the other samples 

can be found in previous reports57-59. According to the matched age and imaging 

resolution as well as the identical experimental design (Table 2 and Figure 6), both 

CCNP-SWU413 and eNKI samples were employed for the growth chart modeling. 
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As few children were 6 (n=7) or 7 (n=22) years old, these two age groups were 

combined into a single group. 

 

Figure 6 Age and sex distributions of CCNP and eNKI samples. Red indicates females while 

blue indicates males. 

 

 

MRI scanning protocol 

All data were acquired with Siemens Trio 3.0T scanners at all four imaging sites 

(see Table 3 for details of the scanning protocols at the Beijing site, Table 4 for details 

at Chongqing, Taiyuan, and Rockland sites). The scanning procedures across these 

sites can be found in previous publications57-59 and the FCP website 

(http://fcon_1000.projects.nitrc.org/indi/adhd200). 
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Figure 7 Standardized pipeline of brain template and growth chart estimation. 

 

Procedure 

Brain template construction and growth chart modeling were completed using a 

standardized pipeline (Figure 7). To incorporate atlas information, we also performed 

a two-step protocol of image registration (steps 5-7). The procedure is as follows: 

 

Quality check for T1 image and preprocessing: steps 1-2 

Step 1. All individual high-resolution T1 images first underwent visual 

inspection to exclude images with substantial head motion and structural 

abnormalities. After initial quality control, the T1 images were entered into the 

volBrain pipeline (http://volbrain.upv.es/)55, which is an online program to remove 

image noise, intensity normalization and skull stripping. More specifically, noise 

artifacts, especially those showing spatially varying profiles, were suppressed using a 
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highly effective filter with spatially adaptive nonlocal means (SANLM)61,62. Initial 

image inhomogeneity correction was performed using N4 bias correction63. Next, 

the individual images were transformed to the MNI152 standard template space using 

advanced normalization tools (ANTs) with a linear transformation64 and further 

processed by fine correction of image inhomogeneity to improve image quality65. A 

piecewise linear mapping of image intensity66 was performed to normalize the 

intensities of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) to 

mean intensities of 150, 250 and 50, respectively. This procedure was implemented 

to eliminate the effect of site on MRI signals and to improve brain extraction and 

skull stripping. Brain extraction was implemented using the nonlocal intracranial 

cavity extraction (NICE) algorithm67, which is an evolution of brain extraction based 

on the nonlocal segmentation technique (BEaST)68. NICE was built based on a 

multi-atlas label fusion strategy and a library of segmentation priors (pediatric dataset: 

age = 24.8 ± 2.4 months; normal adult dataset: age = 24 - 75 years) required for 

intracranial cavity labeling and has been demonstrated to outperform other skull 

stripping methods. 

The above brain extraction was visually inspected to detect misclassification of 

tissues. If brain tissue was excluded from the segmentation, the brain mask was 

manually edited to ensure the quality of the brain extraction. To further check image 

quality, the signal-to-noise ratio (SNR), the contrast-to-noise ratio (CNR), the GM 

SNR and the WM SNR were computed for each image as described in reference69. 
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Specifically, the SNR was calculated as the mean signal within the brain tissue 

divided by the standard deviation of the air signal. The GM SNR and the WM SNR 

were calculated as the SNR within the GM and WM tissue, respectively. The CNR 

was calculated as the mean GM intensity minus the mean WM intensity divided by the 

standard deviation of the air intensity. Any image with any of these quantitative 

metrics below the 1st percentile was discarded. All the above steps were implemented 

as part of the Connectome Computation System (CCS) shared via GitHub70.  

 

Step 2. To obtain probability tissue maps of individual brains, we segmented all 

individual brain images into GM, WM and CSF using the FSL FAST algorithm 

without settings of any prior probability maps71. Partial volume maps derived from 

FAST were used to estimate the proportion of a specific tissue within a voxel, 

measuring the tissue’s probability to construct tissue probability templates. 

Intracranial volume (ICV) was the number of all the voxels in the brain mask. 

Example FAST command for tissue classification: 

fast -n 3 -g -b -o <individual_pve> -p <input brain image> 

 

Brain template construction: steps 3-4 

Step 3. The brain template construction pipeline in ANTs was employed to build 

the pediatric brain templates. This pipeline requires no prior information for template 

construction72 and has been applied to the pediatric sample previously73. It is capable 

of extracting population-level representative images of the brain and other tissues 
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such as the lungs72-75. Specifically, an optimal unbiased template was derived using 

the symmetric group-wise normalization (SyGN) algorithm in diffeomorphic space 

with respect to both shape and appearance72. SyGN first averages individual brains to 

obtain an initial brain template requiring no specific a priori information. A nonlinear 

iterative procedure of deformation was then performed as follows: 1) the optimal 

deformation was computed according to the initial mean template for each individual 

image; 2) a template to maximize the similarity metric between the template and 

individual images was performed using a gradient descent algorithm (only the 

template appearance is updated while the template shape and mappings are fixed); 3) 

the template shape was optimized; 4) the parameters derived from the above steps 

were subsequently updated, and a new template was generated as the reference mean 

image in step 1 for the next iteration. For a more stable template, we set the number of 

iterations to 10 for all age groups, taking into account that the algorithm usually 

converged after 3 to 5 iterations72. 

We reconstructed the brain and skull templates separately and combined them into head 

templates for each age group. We chose cross-correlation as the similarity metric and Greedy 

B-spline SyGN as the transformation model for the brain registration, with shrinkage factors, 

smoothing factors and max iterations of 8×4×2×1, 3×2×1×0 and 100×70×50×10, 

respectively. To achieve comparable space without any shape changes, each brain 

template was rigidly transformed into the MNI152 template space using ANTs. 

Example ANTs command for template construction: 

antsMultivariateTemplateConstruction2.sh -d 3 -o 
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<output_brain_template> -i 10 -g 0.25 -c 4 -k 1 -w 1 -f 8x4x2x1 -s 3x2x1x0 

-q 100x70x50x10 -n 1 -r 1 -l 1 -m CC[2] –t BSplineSyN[0.1,26,0] 

<input_brain_images> 

 

(output_brain_template is the name of output file in this step, 

defined by users.) 

 

Step 4. The affine matrices (linear) and deformation transforms (nonlinear) 

generated in step 3 were combined and applied to the individual tissue segmentation 

images. Then tissue probability templates were constructed for each age group; head 

templates were also reconstructed by combining brain templates and skull templates 

for each age group. 

 

Example ANTs commands for applying registration transforms: 

Apply registration transform files generated in step 3 on individual brain 

tissue probability files: 

antsApplyTransforms -d 3 -i <individual_pve> -o <tmp_pve> -r 

<template_generated_in_step3> -t <Warpfile> -t <Affinefile> 

 

(Warpfile refers to the nonlinear deformation file for each subject, 

Affinefile refers to the linear affine transformation file for each 
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subject, both files can be found in the template output directory set 

in step 3, Warpfile is denoted as (subject)*1Warp.nii.gz while 

Affinefile denoted as (subject)*GenericAffine.mat) 

 

AverageImages 3 <output_AVG> 0 sub01_pve sub02_pve … subN_pve 

 

(output_AVG is the name of output file in this step, defined by users. 

SubN_pve refers to the output tissue probability files generated from 

step 2.) 

 

antsApplyTransforms -d 3 --float 1 --verbose 1 –i <output_AVG> -o 

<output_tissue_template> -t [<Afffile>,1] -t <Warpfile> -t <Warpfile> 

-t <Warpfile> -t <Warpfile> -r <output_brain_template> 

 

(output_tissue_template is the name of output file in this step, 

defined by users. Warpfile refers to the averaged deformation file for 

template, Affinefile refers to the averaged affine transformation file 

for template, both files can be found in the template output directory 

set in step 3, Warpfile is denoted as *template0Warp.nii.gz while 

Affinefile denoted as *template0GenericAffine.mat) 
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Two-step registration from individual images to MNI152 space: steps 5-7 

 

Step 5. All individual images were registered to the appropriate template using 

ANTs. To explore the extent to which registration errors affect tissue volume 

estimation, registration to mismatched templates were also performed for growth 

chart modeling, that is, images from the CCNP sample were registered to the age 

appropriate NKI brain template. 

Example ANTs command for registration: 

antsRegistrationSyN.sh -d 3 -f <fixed_Individua_Image> -m <AST> -o 

<reg2AST>  

(AST refers to Age Specific Template.) 

 

Step 6. Age-specific templates were registered to the MNI152 template using 

ANTs, the most commonly used standard space coordinate system for overlaying brain 

atlas and parcellation information. 

Example ANTs command for registration: 

antsRegistrationSyN.sh -d 3 -f <AST> -m MNI152.nii.gz -o <reg2MNI> 

(AST refers to Age Specific Template.) 

 

Step 7. Combining the registered transforms generated in steps 5 and 6, the 

individual brain images were warped to the MNI152 template for the convenience of 

delivering brain atlas information. This two-step registration is designed to avoid 

systematic bias induced by direct registration of individual brain images to 
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mismatched age- and Chinese-specific brain templates while maintaining the integrity 

of the brain atlas information as much as possible. 

 

To better demonstrate the application of age-specific templates and elucidate brain 

trajectories at more detailed structural levels, brain lobes and area-level parcels were 

delivered from standard MNI template into individual space at this step, followed by 

parcel volume extraction which were passed into growth chart modeling subsequently.  

Example ANTs command for combining transforms generated from steps 5 

and 6 (take brain lobe mask registration for instance): 

antsApplyTransforms -d 3 -n NearestNeighbor -i <lobe_mask>  -o 

<ASToutput> -r <AST>  -t [<reg2MNI_affine>,1]  -t <reg2MNI_Inwarp> 

(This command registers the mask file defined on MNI152 template to 

Age Specific Template. reg2MNI_affine refers to the affine files 

generated in step 6, reg2MNI_Inwarp refers to the inverse warp files 

generated in step 6, if the fixing image in step 6 was set to MNI152 

template and moving image set to AST, then the warp file should be applied 

here instead of inverse warp files.) 

antsApplyTransforms -d 3 -n NearestNeighbor -i <ASToutput>  -o 

<Individual_lobe_mask> -r <Individual_image>  -t [<reg2AST_affine>,1]  

-t <reg2AST_Inwarp> 

(This command registers the mask file generated from the above command 
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to individual image. reg2AST_affine refers to the affine files generated 

in step 5, reg2AST_Inwarp refers to the inverse warp files generated in 

step 5, if the fixing image in step 5 was set to Age Specific template 

and moving image set to individual image, then the warp file should be 

applied here instead of inverse warp files.) 

 

Growth chart modeling  

Step 8. The dynamic developmental process was modeled with growth charts of  

different brain tissues to highlight the need for age-specific brain templates. We 

extracted ICV and its three tissue components (GM, WM, CSF) using FAST in FSL71. 

To obtain corresponding quantification at the lobar level (frontal, temporal, parietal 

and occipital) and regional levels, we registered the lobe and area parcels from the 

MNI152 template to the current age-specific templates and then to the individual 

space; lobe and regional level GM volumes were extracted by multiplying GM 

probabilities and total volumes within individual lobe parcels. 

Quantile regression was employed to build brain growth charts76. We chose the 

LMS method of centile estimation to construct the growth curves of brain sizes and 

volumes. Specifically, this method summarizes the age-related nonlinear distribution 

of the measurement of interest by 3 curves, representing the median (M), coefficient 

of variation (S), and skewness (L) of the distribution. These curves can be fitted as 

cubic splines by nonlinear regression, where the smoothing extent required can be 
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expressed in terms of smoothing parameters or equivalent degrees of freedom. The 

above analysis was performed using GAMLSS implemented in R (version 3.4.3)56. 

Two models have been conducted to explore developmental trajectories. In one 

model, volume data of all subjects was utilized for growth charts modeling, while in 

the other, growth curves were modeled separately for boys and girls. This analytic 

strategy has been employed by the World Health Organization (WHO) and Centers for 

Disease Control and Prevention (CDC) to delineate growth charts of height and 

weight for children77-79. 

Commands for modeling Growth Charts (R): 

library(gamlss) library(gamlss.dist) 

GCdata <- read.table("DATAset",header = TRUE) 

GCmodel <- lms(TissueVolume, age, data=GCdata, method.pb="GAIC", 

k=5) 

Age_predict <- seq(6,18,0.25) 

centiles(GCmodel, GCdata$age, cent=c(5,25,50,75,95), 

legend=FALSE, ylab="GCmodel", xlab="Age", pch="o", 

lwd.centiles=c(2.5,2.5,4,2.5,2.5)) 

（DATAset refers to the tissue developmental data generated in the previous step, which 

comprises one variable named ‘TissueVolume’ referring to the volume of brain tissue or parcels while 

another variable named ‘age’ referring to subject age.） 
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Timing  

Step 1 takes 10-20 minutes per subject. Step 2 takes approximately 5 minutes 

using a computer with a Xeon E5 2GHz CPU. Template construction in step 3 takes 

considerable time, depending on sample size and number of iterations. For instance, 

the 11-year-old template built from 108 images with 10 iterations took 17 hours 7 

minutes using ANTs. Step 4 should take about 5-10 minutes depending on sample 

size. In steps 5-7, the most time-consuming operation is ANTs registration (about 

50 minutes to register to the age-specific template per subject). (Total time was 

about 20 hours for the 11-year-old group.) All data processing was performed on a 

cluster server with 24 nodes and 300 CPU cores at IPCAS, which processed the 

registration computation in parallel. 

 

Validation of Template Use  

Two new pediatric neuroimaging datasets from Weifang Medical University80 and 

Zhejiang University81,82, including 84 structural MRI scans, were employed to 

validate the necessity of constructing age- and ethnicity-matched MRI templates 

using brain deformation cost function (see age, sex and scanning protocols in 

Tables 5 and 6). 

 

Procedure 
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The brain templates were validated by a standardized pipeline, the details are as 

follows: 

 

Validation-Step 1. The validation data were subjected to the same preprocessing 

pipeline as the template data described in last section, step 1. 

 

Validation-Step 2. Each individual T1-weighted (T1w) brain image, following 

denoising and skull stripping, was fed into ANTs for further registration to each brain 

template. For each individual, 11 registrations were performed with our Chinese 

age-specific pediatric (IPCAS) MRI templates, and 11 registrations with the NKI 

pediatric MRI templates.  

 

Validation-Step 3. We calculated the warping distance at each voxel for deformation 

registration and then averaged the values across all brain voxels to represent the extent of 

individual deformation. The individual warp values were transferred into Z scores for 

inter-subject group analysis. For each age-specific template, a template age was also obtained 

by averaging all subjects’ ages within the group, which later subtract the age of the subject of 

each scan in the validation group to represent the age difference between the target template 

and the source individual brain image. An age difference of zero indicates a perfect match 

between the age of the template and the age of the individual, while a negative age difference 

indicates that the individual is older than the template age, and a positive value 
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indicates that the individual is younger than the template age. As the age span in the 

validation group ranged from 7 to 12 years, the resulting age differences ranged from 

-5 to 10 years. Generalized Additive Models for Location Scale and Shape 

(GAMLSS) were finally applied to model changes in the registration warp curve with 

age differences. We expected to observe an age effect for registration deformation, 

that is, more age mismatch between the target template and the source individual 

would result in more registration deformations and registration costs, i.e., less 

efficient registration. 

 

Comparison of Brain Growth Charts (CCNP vs. eNKI) 

To quantitatively estimate the diversity of growth charts attributed to ethnicity, 

the normalized variance (NV) was calculated across 400 brain parcel units in MNI 

space47 contrasting CCNP and eNKI samples, with the NV values calculated as 

follows: 

NV =
d(V

CCNP
-V

eNKI
)

(V
CCNP

+V
eNKI

) / 2
,  

where V is a vector referring to the parcel unit volume at every age point 

estimated in the last step; the standard deviation of the differences between the two 

samples was calculated to characterize the degree of chart shape dispersion across 

different ages. To exclude potential confounding, it was normalized by the mean 

parcel volume. Large NV values indicate diversity while small values indicate the 

growth curves share similar shapes (Figure 8).  
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Figure 8 Two parcel units exhibited the most similar and different developmental patterns. 

Upper panel shows the locations of the two parcels with largest and smallest NV value, and lower 

panel shows the corresponding curves of the two parcels. 

 
Anticipated Results 

This protocol produced standard brain and tissue probability templates, and 

growth charts for brain tissue and areas. The axial slices of age-specific templates are 

illustrated in Figure 1. The upper four rows were built from the CCNP sample while 

the lower four rows were constructed from the eNKI sample. Ages are displayed 

across columns, from ages 6-7 to 17. Clear differences in tissue spatial profiles across 

childhood and adolescence are observable, and ethnic differences in brain shape can 

be appreciated. 

Growth charts including global metrics like intracranial volume (ICV), GM 
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volume, WM volume and CSF are also displayed in Figure 3 for CCNP and eNKI 

samples with all subjects combined and separately for males and females in sFigure 1.  

At a more refined scale, growth charts of regional brain volumes were compared. 

The similarity of trajectories between CCNP and eNKI samples was estimated for 

each area and depicted in Figure 5. Large differences were mostly observed in the 

association cortex while the primary cortex exhibited similar developmental 

trajectories. To better define the distribution of NVs among hierarchical brain 

networks, the bar graphs of regional NVs is also shown in Figure 5, with colors 

indicating the 7 large scale brain networks and left and right hemispheres shown 

separately. Overall, the left hemisphere demonstrated greater diversity, specifically in 

the default and dorsal attention networks, although the right hemisphere 

frontal-parietal network varied the most between ethnicities. The regional trajectories 

of maximum and minimum NVs in the left hemisphere are shown in Figure 8, with an 

absolute opposite pattern clearly revealed for the area with the largest NV value. The 

trajectories of areas with small NV values were almost identical across childhood and 

adolescence. Compared with the variety in mesoscopic brain areas, developmental 

trajectories at the level of brain lobes exhibited more similar patterns (sFigure 2). 
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Table 1 Age and sex composition in the three Chinese samples  

Age range 
Chonqing site Shanxi site Beijing site 

male total 

male total male total male total 

6.0-6.9 4 6 1 1 0 0 5 7 

7.0-7.9 9 19 2 3 0 0 11 22 

8.0-8.9 16 33 1 6 5 13 22 52 

9.0-9.9 25 44 0 4 10 25 35 73 

10.0-10.9 30 66 5 11 10 19 45 96 

11.0-11.9 37 60 11 22 15 26 63 108 

12.0-12.9 23 42 7 24 11 15 41 81 

13.0-13.9 17 38 8 21 16 22 41 81 

14.0-14.9 19 31 8 18 8 10 35 59 

15.0-15.9 5 22 1 12 0 1 6 35 

16.0-16.9 7 30 2 6 0 0 9 36 

17.0-17.9 6 22 2 2 0 0 8 24 

total 198  413 48 130 75 131 321 674 

children 121 228 20 47 40 83 181 358 

adolescents 77 185 28 83 35 48 140 316 
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Table 2 Age and sex composition in CCNP and eNKI samples 

Age range 
CCNP Samples eNKI Sample 

male total male total 

6.0-6.9 4 6 2 4 

7.0-7.9 9 19 0 3 

8.0-8.9 16 33 7 20 

9.0-9.9 25 44 2 13 

10.0-10.9 30 66 11 19 

11.0-11.9 37 60 15 21 

12.0-12.9 23 42 11 18 

13.0-13.9 17 38 10 20 

14.0-14.9 19 31 10 18 

15.0-15.9 5 22 13 24 

16.0-16.9 7 30 8 15 

17.0-17.9 6 22 9 15 

total 198 413 98 190 

children 121 228 37 80 

adolescents 77 185 61 110 
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Table 2 MRI scanning parameters at Beijing sites 

 Beijing Scanner 

Manufacturer Siemens 

Magnet 3.0 Tesla 

System TrioTim 

MP-RAGE  

TR 2000 1950 2530 1770 845 2530  2530 

TE 3.67 2.6 3.37 3.92 2.89 3.45 3.39 

TI 1100 900 1100 1100 600 1100  1100 

FA 12° 10° 7° 12° 8° 7° 7° 

FOV 240x240 240x256 256x256 256x256 261x261 256 256 

Slices 192 128 128 176 144 176 128 

Voxel size (mm) 0.9 × 0.9 

× 1.0 

1.0 × 1.0 

× 1.3 

1.0 × 1.0 

× 1.33 

0.5 × 0.5 

× 1.0 

1.0 × 1.0 

× 1.3 

1.0 × 1.0 

× 1.0 

1.3 × 1.0 

× 1.3 
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Table 4 MRI scanning parameters at three imaging sites 

 Taiyuan Scanner 
Chongqing 

Scanner 
NKI Scanner 

Manufacturer Siemens Siemens Siemens 

Magnet 3.0 Tesla 3.0 Tesla 3.0 Tesla 

System TrioTim MR B17 TrioTim MR B17 TrioTim MR B17 

MP-RAGE    

TR 2300 ms 2600 ms 1900 ms 

TE 2.95 ms 3.02 ms 2.52 ms 

TI 900 ms 900 ms 900 ms 

FA 9° 8° 9° 

FOV 240 mm 256 mm 250 mm 

Slice 160 176 176 

Voxel size 0.9× 0.9×1.2mm 1.0 × 1.0 × 1.0 mm 1.0 × 1.0 × 1.0 mm 

 

TR = Repetition time, TE = Echo Time, TI = Inversion Time  

FA = Flip Angle, FoV = Field of View 
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Table 5 Gender composition in validation samples with one-year increment 

age range 

Weifang Site Zhejiang Site 

male total 

male total male total 

7.0-7.9 2 8   2 8 

8.0-8.9 3 3 0 1 3 4 

9.0-9.9 2 7 5 14 7 21 

10.0-10.9 6 12 17 27 23 39 

11.0-11.9 3 4 6 8 9 12 

total 16 34 28 50 44 84 
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Table 6 MRI scanning parameters of validation samples 

 Weifang Site Zhejiang Site 

Manufacturer Siemens Philips 

Magnet 3.0 Tesla 3.0 Tesla 

System TrioTim MR B17 Achieva 

TR 2530 ms 30 ms 

TE 3.37 ms 5 ms 

TI 1100 ms  

FA 7° 15° 

FOV 256 mm 230 mm 

Slice 128 150 

Voxel size 1.0 × 1.0 × 1.33 mm 0.41 × 0.41 × 1.0mm 

 

TR = Repetition time, TE = Echo Time, TI = Inversion Time 

FA = Flip Angle, FoV = Field of View 
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