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Standard brain templates and growth charts provide an invaluable resource for
basic science research, with the eventual goal of contributing to the clinical care
of neuropsychiatric conditions. Here, we report on a protocol to generate MRI
brain templates in children and adolescents at one-year intervals from 6-to-18
years of age, with their corresponding growth charts, using a large-scale
neuroimaging data resource (948 brain images from China and United States).
To assure that the brain templates and growth charts are reliable and accurate,
we developed a refined pipeline consisting of template construction, image
registration, brain area labeling and growth chart modeling. The pipeline
comprises multiple modular workflows that can be used for multiple
applications. In our approach, population- and age-specific templates were first
constructed to avoid systemic bias in registration. Brain areas were then labeled
based on the appropriate templates, and their morphological metrics were
extracted for modeling associated growth curves. We implemented warp cost as
a function of age differences between individual brains and template brains. A
strong U-shaped cost function was revealed, indicating larger age differences are
associated with greater registration errors. This validates the necessity of
age-specific reference templates in pediatric brain imaging studies. Growth chart
analyses revealed preferential shape differences between Chinese and US
samples in lateral frontal and parietal areas, aspects of cortex which are most
variable across individuals with regard to structure and function as well as
associated behavioral performance. This growth distinction is largely driven by
neurodevelopmental differences between Chinese and US age-specific brain
templates. The pipeline together with the brain templates and charts are publicly

available and integrated into the Connectome Computation System.
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Introduction

Growth charts are an invaluable resource for enhancing public health. They are
essential for screening the developmental status of individuals and monitoring their
abnormal growth as an early detection tool'. Deviations from normative age-expected
values are used to trigger evaluations for underlying abnormal factors, which can
provide important developmental information to clinicians and parents. Extending this
approach to the evaluation of an individual’s neurodevelopmental status has been
impeded by the lack of reliable growth charts for the human brain. Magnetic
resonance imaging (MRI) is increasingly being employed to map human brain
development. Anatomical MRI (aMRI) can capture developmental changes of brain
morphology?3, which comprise full-brain geometrical transformations (e.g., cortical
thinning and surface expansion)*°. For example, changes in cortical thinning
trajectories have been linked with inter-individual differences in 1Q in children and
adolescents®. Such developmental effects in brain structure have also been shown to
be detectable across adulthood” and are supported by brain network studies using
diffusion-weighted (dMRI) and resting-state functional (rffMRI) imaging methods®?,
providing the framework for quantifying multimodal brain development at the
population level*®t, Although sparse, efforts to translate developmental trajectories
into growth charts have begun to be initiated for neuropsychiatric conditions!?-4,
which are believed to have abnormal neurodevelopmental origins®®26.

Despite the promise of developmental population neuroscience, a number of key
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issues must be addressed prior to establishing brain growth charts for clinical use.
First, reliability of MRI-based measurements must meet clinical standards on
measurements of individual differences!”*°. Core anatomic MRI measures (e.g.,
volume, cortical thickness, surface area) currently meet this standard®®, but most
dMRI and rfMRI measures do not due to multiple confounds and substantial random
error?t22, This suggests aMRI-derived measures could provide the bases for
developing reliable imaging markers of clinically useful growth charts. Their high
reliability makes it possible to attain highly valid charts, though of course, does not
guarantee this?3. Second, MRI samples of brain development cohorts for building
growth charts are currently limited. Large-scale brain development cohorts are
fundamental for charting growth?-26, but unfortunately obtaining longitudinal
assessments across multiple centers with the same protocols is rare?’-?. Previous
studies have demonstrated the necessity of creating growth charts for height, weight
and head circumference for specific populations or countries?®, which is likely even
more important for brain growth charts, given the neurodevelopmental diversity likely
arising from differences in ethnicity and culture. Finally, detection of differences
could be biased by using inappropriate analyses performed at the population level. For
example, neuroimaging studies have already documented biases from using generic
brain templates for multiple age ranges®*-%, indicating the need of a full range of
age-specific brain templates across school age (6-18 years). Despite the public health

importance of creating normative charts226-3° a protocol addressing these issues to
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generate brain templates and growth charts for school-age development is lacking.
This protocol was designed to begin to fill this gap. It consists of an integrative
pipeline for generating brain templates and growth charts of children and adolescents.
Volumetric measurements were quantified with aMRI of 674 school-age brains from
two accelerated longitudinal cohorts with the same experimental design obtained in
the United States (Enhanced Nathan Kline Institute Rockland Sample - eNKI
sample)*® and China (Chinese Color Nest Project - CCNP)4!, respectively. Standard
brain templates were constructed annually for each year of age and serve as a
field-wide resource for generating growth charts on morphological development of
brain tissues, lobes and networks. These brain templates and growth charts were
validated across two cultures to offer an initial normative reference for studies of

school-age brain development.

Development of the protocol

Construction of reliable brain grow charts at the area-level relies heavily on the
accurate localization of brain areas across individuals, i.e., MRI image registration.
Registration is commonly used to automatically label individual images from atlases
defined on standard brain templates. Previous studies332442 have shown two factors
that account for the most variance during template registration, ethnicity and age.
Ethnicity plays a critical role in shaping brain morphology“®. For instance, significant

volumetric differences were observed between Chinese and Caucasian adult brain
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templates®3#?, indicating a rounder global shape and shorter axial distance in Chinese
adults. Dynamic neurodevelopmental factors affect brain maturation, suggesting such
brain morphological differences should also be observable during childhood or
adolescence. Therefore, creating a custom brain template from a homogenous
population has been strongly recommended to improve registration performance*.
However, the desirability of population- and age-specific brain templates for
modeling growth charts has not been prioritized.

In the single exception, group differences in registration errors relating to ethnic
and developmental factors were tested34. However, the utility and generalizability of
their templates was limited by the small sample size (n=138) from a single imaging
site using relatively broad age intervals (2 years). Moreover, the relationship between
registration errors and age in pediatric samples has yet to be examined and quantified.

Thus, to improve the accuracy of brain growth charts, we established a protocol,
i.e., a pipeline consisting of brain template construction, image registration, regional
area labeling and growth chart modeling. In the pipeline, two population- and
age-specific templates (Figure 1) were first constructed to avoid systemic bias in
registration (Institute of Psychology, Chinese Academy of sciences (IPCAS) and
Nathan Kline Institute (NKI) brain templates), then brain areas were automatically
labeled based on the age- and ethnicity-matched templates, and finally their

morphological metrics were extracted for modeling growth charts.
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Figure 1 Axial slides of brain and tissue probablllty templates. IPCAS (up 4 rows) and NKI

(bottom 4 rows) templates with one-year interval (except age 6 and age 7) are listed from top to

bottom in sequence of templates of brain, gray matter probability, white matter probability and
cerebrospinal fluid probability.

Comparison with other methods

Growth charts built with existing big datasets provide clear evidence that it is
necessary to estimate brain morphological properties as well as their corresponding
brain templates within specific age groups. This is especially true for pediatric
neuroimaging studies of the school-age population, in which there are considerable

changes in brain morphology. Both cross-sectional and longitudinal applications of
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growth charts are facilitated by choosing proper templates, where the typical value is
delivering valid atlas information, i.e., defining regional areas in individual brains.
Previous studies have demonstrated that different ages and ethnicities increase
the deformation costs associated with morphing anatomical regions between
individual brains, which if done poorly, can result in mismatches in brain
segmentation tissue profiles3324, This is supported by our findings that even with an
identical brain atlas, morphological metrics can differ substantially when registered
to different brain templates. Ideally, these metrics should be identical. In practice,

the method with lower registration errors or costs is preferred.
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Figure 2 Deformation cost as a function of age difference. GAMLSS fits on the deformation
cost (normalized warp values) with age differences between individual validation brains and
template brains. Blue indicates the use of IPCAS pediatric templates while red indicates the use of
eNKI pediatric templates for the registration.
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As demonstrated in Figure 2, we observed that registration costs were related to
national origin and stage of development. This was particularly well illustrated by
using age-specific brain templates for the longitudinal CCNP and eNKI samples to
model growth charts of brain volume (Figure 3), which were similar (peaking at
12-13 years of age but differing in specific details) to the inverted-U shaped curves
observed in previous studies*#. The eNKI sample exhibited larger brain volumes
and more accelerated increases during childhood than the CCNP sample.
Differences in such a fundamental morphological characteristic may lead to
increases of registration errors related to age and ethnic differences (Figure 2). Using
an independent validation sample (n=84, 7-12 years, Chinese), we compared the
deformation costs of registering the individual brains to the IPCAS and NKI
templates across different ages. As expected, the NKI brain templates resulted in
greater image deformations than the IPCAS templates (red versus blue). Beyond this
observation, registration deformations associated with age-matched brain templates
were less than those of age-mismatched templates. As revealed in Figure 2, the
smallest deformations occurred when sources and targets of brain registration were
approximately age matched, with a little deviation to negative matching ages referring
to the templates built with younger (both CCNP and eNKI) samples.

The IPCAS pediatric templates were generated with much larger sample sizes
and narrower intervals for longitudinal sampling than prior efforts. First, to the best

of our knowledge, CCNP is the largest longitudinal MRI database of Chinese healthy
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school-age children. The number of scans (n = 674) is nearly 5 times and 13 times
larger than previous studies by Xie et al.3* (n = 138) and Luo et al.**(n = 53),
respectively. Second, the pediatric MRI images were collected from typically
developing children recruited from primary and middle/high schools at three
imaging sites, which are widely distributed in China, making the sample more
representative of the Chinese healthy pediatric population than samples recruited

from clinical sites.
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Figure 3 Growth charts of brain tissue volume. Growth charts of Intracranial Volume (ICV),
Gray Matter (GM), White Matter (WM) and Cerebral Spinal Fluid (CSF). The black line is derived
from CCNP samples while the gray line is based on eNKI samples.
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Figure 4 Template effects on growth charts of regional volume. The location of parcel 336 is
shown in the upper left panel. Upper right panel shows the charts estimated with registrations
using ethnic- and age-appropriate templates, panels at second row show charts estimated with

registrations using ethnic-inappropriate templates. eNKI2IPCAS indicates eNKI samples
registered to the IPCAS template while CCNP2NKI indicates CCNP samples registered to the

NKI template. CCNP and eNKI are samples registered to ethnic- and age-appropriate templates.

For depicting brain developmental trajectories, results appear to be dramatically
driven by the age-specific templates. For instance, we consider an area located in the
right superior parietal gyrus (labeled as Parcel N0.136 of the frontal-parietal network
in Schaefer et al.*’) (Figure 4). Its growth curve exhibited relatively distinct patterns
between CCNP and eNKI samples when individual brains were registered to ethnic-
and age-appropriate templates. However, growth patterns were inverted when
individual brains were deformed to the mismatched ethnic-template. Specifically,

the pattern of the growth charts was largely driven by the developmental changes of
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the employed brain templates. The observation that extraction of the areal metric
largely depended on the target templates used for registration held generally across
the whole brain.,

Use of ethnic- and age-specific brain templates have not been used in previous
developmental studies. This is partially because small samples are insufficient to
construct such templates and few developmental studies have focused on such areal
scales (small parcels)*’. In the present protocol, we showed that for growth chart
modeling, use of improper brain templates would unexpectedly and substantially
distort the estimations of underlying morphological development, making

conclusions questionable.

Applications of the method

For a growing number of longitudinal neuroimaging cohort studies across the
globe in recent years?+284041 ‘identification of typical developmental patterns is one of
the primary research targets. The absence of a standard protocol impedes
generalization between ethnic backgrounds, imaging settings and data processing
procedures. This protocol was initially designed for generating validated and
accurate growth charts but is not limited to only this application. Any MRI study that
focuses on group-level information of individual brains would result in better
precision by applying proper brain templates, especially for interracial and
developmental research in which large morphological differences are expected

across groups.
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Limitation and future work

Several limitations must be considered regarding the application of pediatric
templates and the interpretation of growth charts. The proportion of males and
females was balanced in most age groups except the 15-, 16- and 17-year-old age
groups. Given previously reported sex differences in brain development#6:48:49,
constructing sex-specific templates in the future would be desirable. Many factors
can affect the construction of pediatric growth charts, including the data
preprocessing pipeline*8, modeling methods®, and site effects®®. Dynamic
developmental trajectories might be confounded by image registration errors if
inappropriate brain templates are employed. The construction of age-specific brain
templates and developmental trajectories or growth charts should be performed in
tandem. Finally, the age intervals used to define templates in the present studies
were defined provisionally due to the lack of more detailed evidence on brain
development. Nonetheless, the age-specific brain templates generated in the current
study can facilitate the estimation of more precise changes in human brain
morphology during development. Regional volume was employed in this protocol to
demonstrate age and ethnicity effects on brain templates and growth charts. It is an
interesting topic to investigate how such effects can be generalized to other metrics

of human brain morphometry (see reference for a review).

Overview of the procedure
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We developed a pipeline to construct age-specific brain templates and brain
growth charts together. Specifically, using a large neuroimaging dataset of Chinese
pediatric brain images, we demonstrate for the first time that greater age mismatching
of templates introduces larger registration deformations. Further, these age-specific
templates can improve the accuracy of image registration between individual pediatric
structural brain images, thereby facilitating more reliable and accurate human brain
mapping studies in healthy and clinical pediatric populations. By modeling growth
charts, we found that differences across western and eastern samples were decreased
when examined at large-scale levels, including tissue classes of brain lobe volumes.
At more fine-grained levels of spatial resolution, ethnic differences in cortical surface
area indices became markers, particularly in association cortex, which exhibits greater

flexibility, morphological variability and hemispheric asymmetry®2,

Experimental Design

To chart brain growth models, we developed a standard pipeline consisting of
customized brain template construction, robust imaging registration and growth chart
estimation. Ethnicity and age are the two major variables addressed in this work. For
the first two of these steps, we examined a 2 (ethnic levels, CCNP vs. eNKI) x 11 (age
levels) within-subject design to test template effects in registration. The 11 age levels
ranged from 6 to 17 years old; with ages 6 and 7 combined into one group due to

increase sample size (the sample size per age group can be found in Materials). This
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generated 22 ethnicity- and age- specific templates. Individual brain images from a
validation dataset were then registered to these 22 templates, with 22 corresponding
registration deformations calculated for each subject. Previous studies applied
group-level comparisons in which registrations were divided into appropriate and
inappropriate groups for estimating the template effects, with paired T tests or
variance analysis performed to assess ethnicity differences in template registration3Z.
We believe that between-group comparisons are insufficient for revealing age effects
in registration cost, especially for age-ranges spanning from childhood to adolescence.
Hence, we used continuous age differences instead of a categorical age group variable
to model developmental changes. Finally, two curves, corresponding to the ethnicity
factors (CCNP vs. eNKIl), with age difference as an independent variable and
deformation value as the dependent variable, were modeled to show ethnicity and age
effects.

For modeling the growth charts of brain morphological metrics, the ethnicity
factor was considered as potentially a confounding variable. Due to the lack of
ethnic-specific templates in the past, the MNI template has been usually utilized as the
default. To test how an ethnicity-unspecific template affects morphological estimation,
we performed a 2 x 2 mixed design with ethnicity as the between-group factor (CCNP
vs. eNKI) and appropriateness as the within-group factor (brain images registered to
ethnic-matched and ethnic-mismatched templates). Two registrations were performed

for each participant. For a child from the CCNP sample, ethnicity-appropriate
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registration refers to wusing an IPCAS age-appropriate template while
ethnicity-inappropriate refers to using an NKI age-appropriate template, and similarly
for participants in the eNKI sample. The 400-unit areal parcellation (in MNI space)*’
was extracted based on the above two registrations for each subject and their growth
charts were modeled, generating four growth charts (gc) for each brain area: 1)
CCNP-gc (CCNP samples registered to the IPCAS templates), 2) eNKI-gc (eNKI
samples registered to the NKI template), 3) CCNP2NKI-gc (CCNP samples registered
to the NKI template), 4) eNKI2IPCAS-gc (eNKI samples registered to the IPCAS
template). We hypothesized that the former two charts would be more appropriate
than the latter two charts. We calculated the similarities of the volume growth charts

for each parcel and grouped local areas into seven large-scale networks*’ (Figure 5).

005 0.1 015 02 025 03

Left Hemisphere Right Hemisphere

Figure 5 Similarities of brain growth charts between CCNP and eNKI samples. Upper left
panel shows the 400 brain parcellation units, with parcels colored according to the Ye02011
seven-network organization. Upper right panel shows similarities of the brain growth charts

between CCNP and eNKI samples as measured by normalized variances (NV). The second row

depicts the corresponding NV bar charts.
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Materials

Equipment

Software

A computer with Linux or Unix environment or MAC OS pre-installed and with
Bash shell scripting is required to run the algorithm.

Neuroimaging processing software included:

FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslinstallation)®

ANTs (http://stnava.github.io/ANTs)>*

volBrain (http://volbrain.upv.es)®

Statistical software R with the GAMLSS®® package installed for growth chart

modeling.

Template construction

Participants

MRI scans (n=774) were collected from 496 school-age (age range 6-18 years)
typically developing children (TDC) of the Chinese Han population at three brain
imaging sites. The final dataset passing quality control procedures consisted of the
SWUA413 sample*! (196 TDC scanned at the Faculty of Psychology, Southwest
University in Chongging), the SMU130 sample® (130 TDC scanned at the First
Hospital of Shanxi Medical University in Taiyuan) and the PKU131 sample®®-° (131

TDC obtained from the Beijing site of ADHD200 sample shared via the International
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Data-sharing Initiative). Specifically, the SWU413 dataset was acquired as a trial
stage implementation of the developmental phase of the Chinese Color Nest Project
(CCNP-SWU413)'° which is a five-year accelerated longitudinal study designed to
delineate normative trajectories of brain development of Chinese children*:. The age
and sex distributions of overall MRI scans for the three samples are listed in Table 1.

For the enhanced NKI (eNKI) Rockland Sample*?, a total of 561 scans were
collected from 323 school-aged children. After the same quality control procedure
applied for CCNP samples, a total of 190 scans from 133 TDC were included for our
final analyses. Of note, CCNP and eNKI datasets both are accelerated longitudinal
designs, were initially designed with matched age span and imaging resolution.
Participants in the CCNP and eNKI sample who had a history of neurological or
mental disorder, family history of such disorders, organic brain diseases, physical
contraindication to MRI scanning, a total Child Behavior Checklist (CBCL) T-score
higher than 70, or a Wechsler Intelligence Scale for Children 1Q standard score lower
than 80 were excluded.

CCNP and eNKI projects obtained the Institutional Review Board approval from
IPCAS and NKI respectively. Written informed assent and consent were obtained
from both participants and their parents/guardians. The details of the other samples
can be found in previous reports®’->°, According to the matched age and imaging
resolution as well as the identical experimental design (Table 2 and Figure 6), both

CCNP-SWU413 and eNKI samples were employed for the growth chart modeling.
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As few children were 6 (n=7) or 7 (n=22) years old, these two age groups were

combined into a single group.
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Figure 6 Age and sex distributions of CCNP and eNKI samples. Red indicates females while
blue indicates males.

MRI scanning protocol

All data were acquired with Siemens Trio 3.0T scanners at all four imaging sites
(see Table 3 for details of the scanning protocols at the Beijing site, Table 4 for details
at Chongging, Taiyuan, and Rockland sites). The scanning procedures across these
sites can be found in previous publications®° and the FCP website

(http://fcon 1000.projects.nitrc.org/indi/adhd200).
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Figure 7 Standardized pipeline of brain template and growth chart estimation.

Procedure
Brain template construction and growth chart modeling were completed using a
standardized pipeline (Figure 7). To incorporate atlas information, we also performed

a two-step protocol of image registration (steps 5-7). The procedure is as follows:

Quality check for T1 image and preprocessing: steps 1-2

Step 1. AIll individual high-resolution T1 images first underwent visual
inspection to exclude images with substantial head motion and structural
abnormalities. After initial quality control, the T1 images were entered into the
volBrain pipeline (http://volbrain.upv.es/)®®, which is an online program to remove
image noise, intensity normalization and skull stripping. More specifically, noise

artifacts, especially those showing spatially varying profiles, were suppressed using a
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highly effective filter with spatially adaptive nonlocal means (SANLM)8%82, Initial
image inhomogeneity correction was performed using N4 bias correction®3. Next,
the individual images were transformed to the MNI152 standard template space using
advanced normalization tools (ANTs) with a linear transformation® and further
processed by fine correction of image inhomogeneity to improve image quality®®. A
piecewise linear mapping of image intensity®® was performed to normalize the
intensities of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) to
mean intensities of 150, 250 and 50, respectively. This procedure was implemented
to eliminate the effect of site on MRI signals and to improve brain extraction and
skull stripping. Brain extraction was implemented using the nonlocal intracranial
cavity extraction (NICE) algorithm®’, which is an evolution of brain extraction based
on the nonlocal segmentation technique (BEaST)®8. NICE was built based on a
multi-atlas label fusion strategy and a library of segmentation priors (pediatric dataset:
age = 24.8 = 2.4 months; normal adult dataset: age = 24 - 75 years) required for
intracranial cavity labeling and has been demonstrated to outperform other skull
stripping methods.

The above brain extraction was visually inspected to detect misclassification of
tissues. If brain tissue was excluded from the segmentation, the brain mask was
manually edited to ensure the quality of the brain extraction. To further check image
quality, the signal-to-noise ratio (SNR), the contrast-to-noise ratio (CNR), the GM

SNR and the WM SNR were computed for each image as described in reference®.
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Specifically, the SNR was calculated as the mean signal within the brain tissue
divided by the standard deviation of the air signal. The GM SNR and the WM SNR
were calculated as the SNR within the GM and WM tissue, respectively. The CNR
was calculated as the mean GM intensity minus the mean WM intensity divided by the
standard deviation of the air intensity. Any image with any of these quantitative
metrics below the 1% percentile was discarded. All the above steps were implemented

as part of the Connectome Computation System (CCS) shared via GitHub™.

Step 2. To obtain probability tissue maps of individual brains, we segmented all
individual brain images into GM, WM and CSF using the FSL FAST algorithm
without settings of any prior probability maps’®. Partial volume maps derived from
FAST were used to estimate the proportion of a specific tissue within a voxel,
measuring the tissue’s probability to construct tissue probability templates.
Intracranial volume (ICV) was the number of all the voxels in the brain mask.

Example FAST command for tissue classification:

fast -n 3 -g -b -o {individual pve> -p <input brain image>

Brain template construction: steps 3-4

Step 3. The brain template construction pipeline in ANTs was employed to build
the pediatric brain templates. This pipeline requires no prior information for template
construction’? and has been applied to the pediatric sample previously™. It is capable

of extracting population-level representative images of the brain and other tissues
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such as the lungs’>7®. Specifically, an optimal unbiased template was derived using
the symmetric group-wise normalization (SyGN) algorithm in diffeomorphic space
with respect to both shape and appearance’. SyGN first averages individual brains to
obtain an initial brain template requiring no specific a priori information. A nonlinear
iterative procedure of deformation was then performed as follows: 1) the optimal
deformation was computed according to the initial mean template for each individual
image; 2) a template to maximize the similarity metric between the template and
individual images was performed using a gradient descent algorithm (only the
template appearance is updated while the template shape and mappings are fixed); 3)
the template shape was optimized; 4) the parameters derived from the above steps
were subsequently updated, and a new template was generated as the reference mean
image in step 1 for the next iteration. For a more stable template, we set the number of
iterations to 10 for all age groups, taking into account that the algorithm usually
converged after 3 to 5 iterations’?.

We reconstructed the brain and skull templates separately and combined them into head
templates for each age group. We chose cross-correlation as the similarity metric and Greedy
B-spline SyGN as the transformation model for the brain registration, with shrinkage factors,
smoothing factors and max iterations of 8x4x2x1, 3x2x1x0 and 100x70x50x%10,
respectively. To achieve comparable space without any shape changes, each brain
template was rigidly transformed into the MNI152 template space using ANTS.

Example ANTs command for template construction:

antsMultivariateTemplateConstruction2.sh -d 3 -o
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<output brain template> -i 10 -g0.25-c 4 -k 1 -wl-f 8x4x2x]1 -s 3x2x1x0
-g 100x70x50x10 -n 1 -r 1 -1 1 -m CC[2] -t BSplineSyN[0.1,26,0]

<input brain images>

(output brain template is the name of output file in this step,

defined by users.)

Step 4. The affine matrices (linear) and deformation transforms (nonlinear)
generated in step 3 were combined and applied to the individual tissue segmentation
images. Then tissue probability templates were constructed for each age group; head
templates were also reconstructed by combining brain templates and skull templates

for each age group.

Example ANTs commands for applying registration transforms:
Apply registration transform files generated in step 3 on individual brain

tissue probability files:

antsApplyTransforms -d 3 -i <individual pve> -o <tmp pve> -r

<template generated in step3> -t <Warpfile> -t <Affinefile>

(Warpfile refers to the nonlinear deformation file for each subject,

Affinefile refers to the linear affine transformation file for each
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subject, both files can be found in the template output directory set

in step 3, Warpfile is denoted as (subject)*1lWarp.nii.gz while

Affinefile denoted as (subject)*GenericAffine.mat)

AverageImages 3 <output AVG> 0 sub0l pve sub02 pve .. subN pve

(output AVG is the name of output file in this step, defined by users.

SubN pve refers to the output tissue probability files generated from

step 2.)

antsApplyTransforms -d 3 --float 1 --verbose 1 -i <output AVG> -o

<output tissue template> -t [<Afffile>,1] -t <Warpfile> -t <Warpfile>

-t <Warpfile> -t <Warpfile> -r <output brain template>

(output tissue template is the name of output file in this step,

defined by users. Warpfile refers to the averaged deformation file for

template, Affinefile refers to the averaged affine transformation file

for template, both files can be found in the template output directory

set in step 3, Warpfile 1is denoted as *templateOWarp.nii.gz while

Affinefile denoted as *templateOGenericAffine.mat)
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Two-step reqgistration from individual images to MNI152 space: steps 5-7

Step 5. All individual images were registered to the appropriate template using
ANTs. To explore the extent to which registration errors affect tissue volume
estimation, registration to mismatched templates were also performed for growth
chart modeling, that is, images from the CCNP sample were registered to the age
appropriate NKI brain template.

Example ANTs command for registration:

antsRegistrationSyN.sh -d 3 -f <fixed Individua Image> -m <AST> -0
<reg2AST>

(AST refers to Age Specific Template.)

Step 6. Age-specific templates were registered to the MNI152 template using
ANTSs, the most commonly used standard space coordinate system for overlaying brain
atlas and parcellation information.

Example ANTs command for registration:

antsRegistrationSyN.sh -d 3 -f <AST> -m MNI152.nii.gz -o <reg2MNI>

(AST refers to Age Specific Template.)

Step 7. Combining the registered transforms generated in steps 5 and 6, the
individual brain images were warped to the MNI152 template for the convenience of
delivering brain atlas information. This two-step registration is designed to avoid

systematic bias induced by direct registration of individual brain images to
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mismatched age- and Chinese-specific brain templates while maintaining the integrity

of the brain atlas information as much as possible.

To better demonstrate the application of age-specific templates and elucidate brain
trajectories at more detailed structural levels, brain lobes and area-level parcels were
delivered from standard MNI template into individual space at this step, followed by
parcel volume extraction which were passed into growth chart modeling subsequently.

Example ANTs command for combining transforms generated from steps 5

and 6 (take brain lobe mask registration for instance):

antsApplyTransforms -d 3 -n NearestNeighbor -i <lobe mask> -o
<ASToutput> -r <AST> -t [<reg2MNI affine>,1] -t <reg2MNI Inwarp>

(This command registers the mask file defined on MNI152 template to
Age Specific Template. reg2MNI affine refers to the affine files
generated in step 6, reg2MNI Inwarp refers to the inverse warp files
generated in step 6, 1f the fixing image in step 6 was set to MNI152
template and moving image set to AST, then the warp file should be applied
here instead of inverse warp files.)

antsApplyTransforms -d 3 -n NearestNeighbor -i <ASToutput> -o
<Individual lobe mask> -r <Individual image> -t [<reg2AST affine>,1]
-t <reg2AST Inwarp>

(This command registers the mask file generated from the above command
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to individual image. reg2AST affine refers to the affine files generated

in step 5, reg2AST Inwarp refers to the inverse warp files generated in

step 5, if the fixing image in step 5 was set to Age Specific template

and moving image set to individual image, then the warp file should be

applied here instead of inverse warp files.)

Growth chart modeling

Step 8. The dynamic developmental process was modeled with growth charts of
different brain tissues to highlight the need for age-specific brain templates. We
extracted ICV and its three tissue components (GM, WM, CSF) using FAST in FSL".
To obtain corresponding quantification at the lobar level (frontal, temporal, parietal
and occipital) and regional levels, we registered the lobe and area parcels from the
MNI152 template to the current age-specific templates and then to the individual
space; lobe and regional level GM volumes were extracted by multiplying GM

probabilities and total volumes within individual lobe parcels.

Quantile regression was employed to build brain growth charts’®. We chose the
LMS method of centile estimation to construct the growth curves of brain sizes and
volumes. Specifically, this method summarizes the age-related nonlinear distribution
of the measurement of interest by 3 curves, representing the median (M), coefficient
of variation (S), and skewness (L) of the distribution. These curves can be fitted as

cubic splines by nonlinear regression, where the smoothing extent required can be
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expressed in terms of smoothing parameters or equivalent degrees of freedom. The
above analysis was performed using GAMLSS implemented in R (version 3.4.3)%.
Two models have been conducted to explore developmental trajectories. In one
model, volume data of all subjects was utilized for growth charts modeling, while in
the other, growth curves were modeled separately for boys and girls. This analytic
strategy has been employed by the World Health Organization (WHO) and Centers for
Disease Control and Prevention (CDC) to delineate growth charts of height and

weight for children””-7°,

Commands for modeling Growth Charts (R):

library(gamlss) library(gamlss.dist)
GCdata <- read.table ("DATAset",header = TRUE)

GCmodel <- 1Ilms(TissueVolume, age, data=GCdata, method.pb="GAIC",

Age predict <- seq(6,18,0.25)

centiles (GCmodel, GCdata$age, cent=c(5,25,50,75,95),
legend=FALSE, ylab="GCmodel", xlab="Age", pch="o",

lwd.centiles=c(2.5,2.5,4,2.5,2.5))

(DATAset refers to the tissue developmental data generated in the previous step, which
comprises one variable named ‘TissueVolume’ referring to the volume of brain tissue or parcels while

another variable named ‘age’ referring to subject age.)
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Timing

Step 1 takes 10-20 minutes per subject. Step 2 takes approximately 5 minutes
using a computer with a Xeon E5 2GHz CPU. Template construction in step 3 takes
considerable time, depending on sample size and number of iterations. For instance,
the 11-year-old template built from 108 images with 10 iterations took 17 hours 7
minutes using ANTSs. Step 4 should take about 5-10 minutes depending on sample
size. In steps 5-7, the most time-consuming operation is ANTS registration (about
50 minutes to register to the age-specific template per subject). (Total time was
about 20 hours for the 11-year-old group.) All data processing was performed on a
cluster server with 24 nodes and 300 CPU cores at IPCAS, which processed the

registration computation in parallel.

Validation of Template Use

Two new pediatric neuroimaging datasets from Weifang Medical University® and
Zhejiang University®-82, including 84 structural MRI scans, were employed to
validate the necessity of constructing age- and ethnicity-matched MRI templates
using brain deformation cost function (see age, sex and scanning protocols in

Tables 5 and 6).

Procedure
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The brain templates were validated by a standardized pipeline, the details are as

follows:

Validation-Step 1. The validation data were subjected to the same preprocessing

pipeline as the template data described in last section, step 1.

Validation-Step 2. Each individual T1-weighted (T1w) brain image, following
denoising and skull stripping, was fed into ANTSs for further registration to each brain
template. For each individual, 11 registrations were performed with our Chinese
age-specific pediatric (IPCAS) MRI templates, and 11 registrations with the NKI

pediatric MRI templates.

Validation-Step 3. We calculated the warping distance at each voxel for deformation
registration and then averaged the values across all brain voxels to represent the extent of
individual deformation. The individual warp values were transferred into Z scores for
inter-subject group analysis. For each age-specific template, a template age was also obtained
by averaging all subjects’ ages within the group, which later subtract the age of the subject of
each scan in the validation group to represent the age difference between the target template
and the source individual brain image. An age difference of zero indicates a perfect match
between the age of the template and the age of the individual, while a negative age difference

indicates that the individual is older than the template age, and a positive value
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indicates that the individual is younger than the template age. As the age span in the
validation group ranged from 7 to 12 years, the resulting age differences ranged from
-5 to 10 years. Generalized Additive Models for Location Scale and Shape
(GAMLSS) were finally applied to model changes in the registration warp curve with
age differences. We expected to observe an age effect for registration deformation,
that is, more age mismatch between the target template and the source individual
would result in more registration deformations and registration costs, i.e., less

efficient registration.

Comparison of Brain Growth Charts (CCNP vs. eNKI)

To quantitatively estimate the diversity of growth charts attributed to ethnicity,
the normalized variance (NV) was calculated across 400 brain parcel units in MNI
space*’ contrasting CCNP and eNKI samples, with the NV values calculated as

follows:

A
(4

+
CCNP I/eNKI

VCCNP B VeNKI)

NV = ,
)12

where V is a vector referring to the parcel unit volume at every age point
estimated in the last step; the standard deviation of the differences between the two
samples was calculated to characterize the degree of chart shape dispersion across
different ages. To exclude potential confounding, it was normalized by the mean
parcel volume. Large NV values indicate diversity while small values indicate the

growth curves share similar shapes (Figure 8).


https://doi.org/10.1101/747352
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/747352; this version posted August 28, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Parcel 168 Parcel 219

NV =0.31 NV =0
4000 1 1 1 1 1 4000 Il Il Il 1 1
CCNP2IPCAS CCNP2IPCAS
. —eNKI2NKI —eNKI2NKI
~— 3000 o i
3 3 3000- o . -
N—r N—r »: o o
o o B
£ 2000~ = ] .
=) =] 5 O@O@;’ : o)
o O 2000 &S e T
> 1000 > : 3 9 B eg
0 T T T T T 1OOC T T T T T
6 8 10 12 14 16 18 6 8 10 12 14 16 18
Age (year) Age (year)

Figure 8 Two parcel units exhibited the most similar and different developmental patterns.
Upper panel shows the locations of the two parcels with largest and smallest NV value, and lower
panel shows the corresponding curves of the two parcels.

Anticipated Results

This protocol produced standard brain and tissue probability templates, and
growth charts for brain tissue and areas. The axial slices of age-specific templates are
illustrated in Figure 1. The upper four rows were built from the CCNP sample while
the lower four rows were constructed from the eNKI sample. Ages are displayed
across columns, from ages 6-7 to 17. Clear differences in tissue spatial profiles across
childhood and adolescence are observable, and ethnic differences in brain shape can

be appreciated.

Growth charts including global metrics like intracranial volume (ICV), GM
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volume, WM volume and CSF are also displayed in Figure 3 for CCNP and eNKI
samples with all subjects combined and separately for males and females in sFigure 1.

At a more refined scale, growth charts of regional brain volumes were compared.
The similarity of trajectories between CCNP and eNKI samples was estimated for
each area and depicted in Figure 5. Large differences were mostly observed in the
association cortex while the primary cortex exhibited similar developmental
trajectories. To better define the distribution of NVs among hierarchical brain
networks, the bar graphs of regional NVs is also shown in Figure 5, with colors
indicating the 7 large scale brain networks and left and right hemispheres shown
separately. Overall, the left hemisphere demonstrated greater diversity, specifically in
the default and dorsal attention networks, although the right hemisphere
frontal-parietal network varied the most between ethnicities. The regional trajectories
of maximum and minimum NVs in the left hemisphere are shown in Figure 8, with an
absolute opposite pattern clearly revealed for the area with the largest NV value. The
trajectories of areas with small NV values were almost identical across childhood and
adolescence. Compared with the variety in mesoscopic brain areas, developmental

trajectories at the level of brain lobes exhibited more similar patterns (sFigure 2).
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Table 1 Age and sex composition in the three Chinese samples

Chonqing site Shanxi site Beijing site
Age range male | total

male total male | total | male | total

6.0-6.9 4 6 1 1 0 0 5 7

7.0-7.9 9 19 2 3 0 0 11 22
8.0-8.9 16 33 1 6 5 13 22 52
9.0-9.9 25 44 0 4 10 25 35 73
10.0-10.9 30 66 5 11 10 19 45 96
11.0-11.9 37 60 11 22 15 26 63 108
12.0-12.9 23 42 7 24 11 15 41 81
13.0-13.9 17 38 8 21 16 22 41 81
14.0-14.9 19 31 8 18 8 10 35 59
15.0-15.9 5 22 1 12 0 1 6 35
16.0-16.9 7 30 2 6 0 0 9 36
17.0-17.9 6 22 2 2 0 0 8 24
total 198 413 48 130 75 131 321 674
children 121 228 20 47 40 83 181 358
adolescents 77 185 28 83 35 48 140 316



https://doi.org/10.1101/747352
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/747352; this version posted August 28, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 2 Age and sex composition in CCNP and eNKI samples

CCNP Samples | eNKI Sample
Age range
male total male | total
6.0-6.9 4 6 2 4
7.0-7.9 9 19 0 3
8.0-8.9 16 33 7 20
9.0-9.9 25 44 2 13
10.0-10.9 30 66 11 19
11.0-11.9 37 60 15 21
12.0-12.9 23 42 11 18
13.0-13.9 17 38 10 20
14.0-14.9 19 31 10 18
15.0-15.9 5 22 13 24
16.0-16.9 7 30 8 15
17.0-17.9 6 22 9 15
total 198 413 98 190
children 121 228 37 80
adolescents 77 185 61 110
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Table 2 MRI scanning parameters at Beijing sites

Beijing Scanner
Manufacturer Siemens
Magnet 3.0 Tesla
System TrioTim
MP-RAGE
TR 2000 1950 2530 1770 845 2530 2530
TE 3.67 2.6 3.37 3.92 2.89 3.45 3.39
TI 1100 900 1100 1100 600 1100 1100
FA 12° 10° 7° 12° 8° 7° 7°
FOV 240x240 | 240x256 | 256x256 | 256x256 | 261x261 256 256
Slices 192 128 128 176 144 176 128
Voxel size (mm) { 09x%x09|10x10|10x10|05%x05|1.0%x10|10x1.0|13x1.0
x 1.0 x1.3 x 1.33 x 1.0 x 1.3 x 1.0 x 1.3
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Table 4 MRI scanning parameters at three imaging sites

Taiyuan Scanner Cgc(;):r?r?;:g NKI Scanner
Manufacturer Siemens Siemens Siemens
Magnet 3.0 Tesla 3.0 Tesla 3.0 Tesla
System TrioTim MR B17 TrioTim MR B17 TrioTim MR B17
MP-RAGE
TR 2300 ms 2600 ms 1900 ms
TE 2.95 ms 3.02 ms 2.52 ms
TI 900 ms 900 ms 900 ms
FA 9° 8° 9°
FOV 240 mm 256 mm 250 mm
Slice 160 176 176
Voxel size 0.9%x0.9x1.2mm | 1.0x10x1.0mm | 1.0 x 1.0 x 1.0 mm

TR = Repetition time, TE = Echo Time, TI = Inversion Time
FA = Flip Angle, FoV = Field of View
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Table 5 Gender composition in validation samples with one-year increment

Weifang Site Zhejiang Site
age range male total
male total male total
7.0-7.9 2 8 2 8
8.0-8.9 3 3 0 1 3 4
9.0-9.9 2 7 5 14 7 21
10.0-10.9 6 12 17 27 23 39
11.0-11.9 3 4 6 8 9 12
total 16 34 28 50 44 84
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Table 6 MRI scanning parameters of validation samples

Weifang Site Zhejiang Site
Manufacturer Siemens Philips
Magnet 3.0 Tesla 3.0 Tesla
System TrioTim MR B17 Achieva
TR 2530 ms 30 ms
TE 3.37ms 5ms
TI 1100 ms
FA 7° 15°
FOV 256 mm 230 mm
Slice 128 150
Voxel size 1.0x1.0x1.33 mm 0.41 x 0.41 x 1.0mm

TR = Repetition time, TE = Echo Time, TI = Inversion Time
FA = Flip Angle, FoV = Field of View
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