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Abstract: Activation of the transcription factor liver X receptor (LXR), has shown to be
efficient at curbing aberrant lipid metabolism and inflammation. While small molecule
delivery via nanomedicine has promising applications for a number of chronic diseases,
there remain questions as to how nanopatrticle formulation might be tailored to suit different
tissue microenvironments and aid in drug delivery. In the current study, we compared the
drug delivery capability of three nanoparticle (NP) formulations encapsulating the LXR
activator, GW-3956. We observed little difference in the base characteristics of standard
PLGA-PEG NP when compared to two redox-active polymeric NP formulations (DD and
DB). Moreover, we also observed similar uptake of these NP into primary mouse
macrophages. After an initial acute uptake period and using the transcript and protein
expression of the cholesterol efflux protein ATP binding cassette A1 (ABCAL) as a readout,
we determined that while the induction of transcript expression was similar between NPs,
treatment with the redox-sensitive DB formulation resulted in a higher level of ABCAl
protein 24 h after the removal of the drug-containing NPs. Our results suggest that NP
formulations responsive to cellular cues may be an effective tool for targeted and disease-

specific drug release.
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1. Introduction

Liver X receptors (LXR), a family of nuclear receptors, are attractive targets for therapeutic
intervention in cardiovascular, metabolic and inflammatory diseases, owing to their
regulation of several metabolic pathways including bile acid, carbohydrate, and lipid
metabolism [1,2]. LXR activation protects against aspects of atherosclerosis via the
induction of reverse cholesterol transport in macrophages. This stimulates cholesterol efflux
by transcriptionally upregulating the efflux machinery, ATP-binding cassette (ABC)Al and
G1 [3]. Activation of LXR has also exhibited anti-inflammatory properties by trans-repressing
NF-kB and enhancing macrophage efferocytosis. In addition to macrophages, activation of
LXR has been shown to modulate inflammatory gene expression in many other cell types,
such as T and B lymphocytes, microglia, astrocytes, and dendritic cells [4,5]. Induction of
LXR signaling has been associated with decreased inflammation in mouse models of several
acute and chronic diseases such as Alzheimer's disease, lupus-like autoimmunity,
experimental stroke, infection with Mycobacterium tuberculosis and atherosclerosis [6-8]. In
this context, several synthetic LXR agonists have shown promise in the development of
therapeutics for atherosclerosis and inflammatory diseases by promoting cholesterol efflux
and inhibiting inflammation [9]. However, clinical translation of LXR-based therapeutic
strategies have been dampened by hypertriglyceridemia and hepatic steatosis, which are
caused by LXR-mediated induction of lipogenesis in the liver [10,11]. Therefore, innovative
strategies that reduce the adverse side effects of LXR activation while maintaining efficacy

are necessary for the development of LXR-based therapeutics [12-14].

Nanotechnology applications in medicine, nanomedicines, have shown the clinical impact
on different disease therapies via drug delivery, imaging, and diagnostics [15]. In general,
nanoparticle-based drug delivery platforms improve the pharmacokinetic profile of drugs,
decrease toxicity, and deliver drugs in a tissue and organ specific manner [16].Advances in
nano-biomaterials synthesis has enabled the development of nanoparticles (NP) that can
encapsulate single and/or multiple drugs with different physicochemical properties and
deliver them across multiple biological barriers in a targeted and controlled-release manner
[17]. While there has been significant progress made toward use of nanomedicines in human
cancers in recent years, nanotechnology applications are also well explored in
cardiovascular, inflammation and infectious diseases. Spatiotemporal delivery of pro-
inflammation resolution mediators such as Ac2-26 peptide, or anti-inflammatory cytokine IL-
10 to atherosclerotic plaques using polymeric NPs improved the bioavailability of the agents
and enhanced the therapeutic efficacy [18-20]. NP platforms were also used for modulating

the polarity of monocytes and macrophages toward a less inflammatory phenotype and
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promoting the resolution of inflammation, ultimately preventing plague destabilization and

markers of rupture [12,21].

The majority of the NP platforms used in cardiovascular nanomedicines are based on
polymeric nanocarriers. In general, a therapeutic payload from the polymeric NPs can be
released via diffusion, erosion, and degradation [16]. Additionally, nanocarriers can be
designed to release payloads via the response to either endogenous or exogenous stimuli.
When compared to exogenous stimuli (magnetic field, radiation, ultrasound, etc.),
endogenous stimuli prove to be more interesting, as they can be specific to disease-related
pathological changes (pH differences between tumor microenvironment and normal cells,
differential redox state, etc.) [22-24]. In the presence of intracellular reducing agents, various
organic materials and molecules containing disulfide bonds can be bio-reduced to their thiols
counterparts. Using this strategy, biomaterials with disulfide backbones were developed for
reduction-responsive drug delivery nanocarriers and tested in tumor models [25,26].
However, although in the context of cancer biology this has been addressed, there have
been no other studies that have assessed the effects of intracellular reducing agents on
payload release and LXR activation in macrophages.

Therefore, in this study, we sought to perform a systematic evaluation of differential drug
release effects on LXR activation in primary murine bone marrow-derived macrophages
(BMDM). Effectively, we aimed to test whether basal levels of intracellular reducing agents
were able to modulate redox-responsive NPs. Towards this, we developed three different
NP platforms, traditional FDA approved polymeric NPs (Poly lactic acid-co-glycolic acid-
polyethylene glycol, PLGA-PEG), NPs for slow and controlled release, as well as two redox-
responsive disulfide backboned NPs named DB (dithiodibutyric acid backbone) and DD
(dodecanedioic acid backbone). To activate LXR, we encapsulated the synthetic LXR
agonist, GW-3965 (GW) into our NPs and tracked the transcript and protein levels of the
LXR target gene, ABCAL.

2. Materials and Methods

2.1 Materials

PLGA-COOH is purchased from lactel polymers, NH,-PEG-COOH was purchased from
Lysan Bio, Inc. PEG-COOH, HO-PEG-OH were purchased from BDH chemicals. 4,4'-
dithiodibutyric acid (DBA, 95% purchased from Sigma-Aldrich), Dodecanedioic acid (DDA,
>98% purchased from Fluka Chemika), 1,6-hexanediol (16HD, purchased from Sigma
Aldrich), 2-dihydroxyethyl disulfide (2HDS, technical grade, purchased from Sigma Aldrich),
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anhydrous dichloromethane (DCM, 99.8%, purchased from Anachemia), methanol (MeOH,
HPLC grade, 99.9%), N-hydroxysuccinimide (NHS, 98%), N-(3-dimethylaminopropyl)-N'-
ethylcarbodiimide hydrochloride (EDC, commercial grade), N,N-diisopropylethylamine
(DIEA, 99%), N,N-dimethylformamide (DMF, 99.9%), dimethylsulfoxide (99.5%),
4’'(dimethylamino)pyrimidine, (DMAP, 99%, purchased from Sigma Aldrich), N,N'-
dicyclohexycarbodiimide (DIC, 99%, purchased from Alfa Aesar), acetonitrile (can, >99.8%,

purchased from Sigma Aldrich), and chloroform-D (CDCI3, purchased from Sigma Aldrich).

2.2 Polymers synthesis

PLGA-PEG polymer was synthesized as previously described [12].

2.3 Synthesis of DBA-16HD-PEG2

1.00g of DBA (4.2 mmol) was dissolved in 5 mL of DMF and then placed in an ice bath.
To this, 1.3 ml of DIC (2.2 equivalents) was added and then stirred for 30 min. Then, 0.610
g of 16HD (1.2 equivalents) was added following 1.0026 g addition of DMAP (2 equivalents).
The solution was stirred overnight. Crude solutions were concentrated under vacuum and
redissolved in DCM and washed with H»O to remove the byproducts of the reaction, dialyzed
in DCM and proceeded to the next step. Next, 100 mg of PEG2k (0.05 mmol) was added of
the crude solution and placed in an ice bath under stirring conditions. In a slow, dropwise
manner, 23 ul of DIC (0.15 mmol) was added to the solution and then it was stirred for 30
min. Then, 25 mg of DMAP (0.2 mmol) was added and then the solution was stirred
overnight. The crude product was placed in a 3.5 K dialysis tube and dialyzed in 2:8
methanol: DCM solution and had the supernatant change every 6 h for a total of 24 h. The
final product was characterized by GPC and *H NMR spectroscopy. *HNMR (CDCI3) I in
ppm: 4.01-4.08 (COO-CH2(CH2)4-CH2-O0C-), 3.64-3.59 (-OCH.CH:0-), 2.74-2.64 (-
OOCCH:CH2CH,-SS-CH2CH2CH.COO-), 2.36-2.43 (-OOCCH2CH.CH>-SS-
CH2CH;CH2COO-), 2.08-1.94 (-OOCCH.CH2CH2-SS-CH,CH2CH.COO-), 1.52-1.66 and
132-1.40 (COO-CH2(CH2)4-CH.-O0C-).

2.4Synthesis of DDA-2HDS-PEGuk

500 mg of DDA (2.17 mmol) in DMF and kept in an ice bath and 670 ul of DIC (2.2
equivalents) was added dropwise and stirred for 30 min. 132 pl of 2HDS was then added to
the solution and stirred for 3-4 h. To this reaction mixture 1.08 g of PEGak (0.27 mmol) was
added, followed by 0.53 g of DMAP (4.33 mmol) added to the solution and stirred for 48 h.
The crude product was dialyzed using 10 K MWCO dialysis membrane using 1:1 MeOH:
DCM, for 12 h while the supernatant was replaced every 3 h. The final product was
characterized by GPC and *H NMR spectroscopy. *HNMR (CDCI3) [ in ppm: 2HDS peaks:
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4.34-4.22, 2.94-2.84; PEG: 3.72-3.54, DDA peaks: 2.43-2.38, 2.31-2.25, 1.65-1.53, 1.33-
1.21.

2.5 GW-NPs synthesis and characterization

All GW-NPs were synthesized via a single step self-assembly process using the
nanoprecipitation method. Briefly, polymers were dissolved in acetone or acetonitrile (10
mg/ml) and mixed with GW in acetonitrile in 10:1 w/w ratio and added to water dropwise.
NPs were stirred at room temperature for 5-7 h and concentrated using 100 K MWCO pall
centrifugal filters. NPs were washed twice with water and diluted 10-20 times in H20 or 1%
PBS and characterized for their physicochemical properties. Hydrodynamic sizes and zeta
potentials measurements were done using Zeta view and Malvern zetasizer. For TEM
(transmission electron microscopy) imaging, freshly prepared NPs diluted 20 times and
deposited 300 mesh carbon-coated copper grids. After grids dried, TEM imaging was done
using FEI Tecnai G2 Spirit Twin electron microscope. The encapsulation efficiency of GW
was estimated using HPLC, eluted with ACN: H20 gradient. [12] Encapsulation efficiencies
were calculated as: [amount of GW in NPs/total amount of GW]*100. Stability of NPs were
tested by incubating them for 1 hour in 5%, 10%, and 20% of fetal bovine serum (FBS). The
NP size before and after incubation in serum was obtained with quasi-electric laser light
scattering using a ZetaPALS dynamic light-scattering detector (15 mW laser, incident beam

%4 676 nm; Brookhaven Instruments).

2.6 Mice

C57BL/6J mice were purchased from Jackson Laboratories (stock no. 000664) and
bred in house. Mice were housed in a ventilated cage system and maintained on a 12 h
light/12 h dark cycle with lights on at 0700 h with unlimited access to standard rodent chow
(Envigo #2018) and water. All animal experimental procedures were in accordance with the
guidelines and principles of the Canadian Council of Animal Care and were approved by the

Animal Care Committee at the University of Ottawa.

2.7 Cell Culture

Bone marrow-derived macrophages were generated as previously described [27].
Briefly, mice were euthanized, tibias and femurs isolated, and the ends of each bone cut off.
The tibia and femur from each leg were placed into a sterile 0.5 ml microfuge tube that had
a hole punctured in the end with an 18-gauge needle, which was then placed inside of a 1.5
ml microfuge tube before the addition of 100 pl of DMEM (Wisent) to the 0.5 ml tube. Bone
marrow cells were collected by centrifuging at 4,000 rpm for 5 min, resuspended, filtered,
and plated in 80 ml of DMEM supplemented with 10% FBS (Wisent) and 1%
penicillin/streptomycin (Thermo Fisher) in a T175 flask, and incubated at 37°C in a
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humidified atmosphere at 5% CO2. After 4hr, cells were plated in 15 cm tissue culture dishes
in the presence of 20% L929 medium (as a source of macrophage colony stimulating factor)
and left to differentiate for 7-8 days. One day prior to the experiment, cells were lifted into
suspension in the existing L929-supplemented DMEM by gently scraping and seeded into

the appropriate plate for subsequent experiments.

2.8 GW Treatment

Cells were seeded at a density of 1.2 x 10° cells/well in 6 well plates and 0.6 x 10°
cells/well in 12 well plates in DMEM supplemented with 10% FBS and 1%
penicillin/streptomycin. After adherence, BMDM were treated with 5 pM GW in either free-
drug form or encapsulated in NPs for a period of 90 min. Cells were then washed twice with
PBS (Wisent) to remove drug and nanoparticle treatments, and complete DMEM was
reapplied for the duration of the experiment, with the exception of the chronic GW dose, in
which 5 yM GW was replenished for the entirety of the treatment period. All time points

indicate time post 90-min treatment.

2.9 Western Blotting

Cellular lysates were prepared, and Western blotting and quantification were performed
as previously described [27]. Anti-ABCA1 (1:1000; Novus) and anti-beta-actin (1:1000; Cell
Signaling) primary antibodies were used with an HRP-conjugated anti-rabbit IgG secondary
antibody (1:10000; Cell Signaling).

2.10 RNA Isolation, cDNA synthesis, and quantitative PCR

RNA was isolated using TriPure (Roche) according to the manufacturer’s instructions.
Total RNA was DNase-l treated (ABM) and first strand synthesis was performed using
OneScript Plus reverse transcriptase. cDNA was diluted 1:20 into ultrapure water, and
MRNA expression of B actin and Abca1 was determined using TagMan gene expression
assays (Thermo Fisher Scientific). Relative expression was calculated using the 22Ct

method, as previously described [28].

2.11 Flow Cytometry

BMDM were treated with 7.5 x10° NPs/well of Cy5.5-conjugated (EX/Em: 675/694) NPs
for 1.5 h in 6 well plates then washed twice with PBS. 5mM EDTA (Wisent) was added for 5
min at 37 °C to lift cells off the plate, after which they were transferred to a 96 well V-bottom
plate (Life Science). BMDM were centrifuged at 360 x g for 7 min then resuspended in PBAE
buffer [1% BSA (Thermo Fisher), 0.01% sodium azide, 1% EDTA) with DAPI (Invitrogen,
1:1000) in PBS]. Cells were then sorted using the BD LSRFortessa™ cell analyzer.
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2.12 Microscopy

BMDM were treated with Cy5.5-conjugated NPs for 1.5 h then washed twice with PBS.
1% paraformaldehyde in PBS was added to the cells for fixation for 15 min at room
temperature. The cells were then washed and simultaneously blocked and permeabilized
with a 1% BSA and 0.1% Triton X-100 PBS solution for 30 min at room temperature. Cell
were then stained with a LAMP1-eF450 (1:100; ExX/Em: 405 nm/450 nm; eBioscience)
primary antibody in PBS for 30 min. BMDM were washed again and immediately prior to
mounting were stained with 0.5 ml/million cells of PI-RNAse solution (EX/Em: 493 nm/636
nm; BD). BMDM were imaged on the Zeiss LSM800 AxioObserver Z1. Images were later

analyzed using ImageJ.

2.13 Statistical analyses

Unless otherwise stated, data represent mean + SEM. Statistical analysis was
performed using GraphPad Prism (v7.0) where a one-way ANOVA was used to determined
significant differences. A Tukey posthoc test was used to determine significant differences

(P<0.05) between treatments.

3. Results

3.1. Synthesis and characterization of polymers and nanopatrticles

To compare the effects of GW release on LXR activation, we developed three different
NPs (Figure. 1) with differential drug release properties. To this end, we synthesized
polyester polymers with and without disulfide backbones. Di-block polymer PLGA-PEG was
synthesized according to published procedures [12]. Briefly, the terminal carboxyl group of
PLGA polymer was reacted with the amine moiety of PEG via a N-(3-dimethylaminopropyl)-
N'-ethylcarbodiimide /N-Hydroxysuccinimide (EDC/NHS) coupling reaction. Polyester
polymers named DB16HD and DDHP4, with disulfide bonds in their backbone were
synthesized via a polycondensation reaction between diacids and diol groups, and capped
with the PEG moieties. For this, 4,4'-dithiodibutyric acid was reacted with a slight excess of
1,6-hexanediol, using a N,N'-diisopropylcarbodiimide/4-dimethylaminopyridine (DIC/DMAP)
condensation reaction. The crude product was purified and reacted with carboxylic acid
groups on PEG to obtain the final product DB16HD (SI Figure 1).

In the case of DDHP4, we employed a similar strategy, but used 2-
dihydroxyethyldisulfide and dodecanedioic acid as a building blocks. All polymers were
characterized by proton nuclear magnetic resonance spectroscopy (*H-NMR) and gel

permeation chromatography (GPC). Next, we developed three different NPs containing GW
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via a single step self-assembly process using the nanoprecipitation method [12,29], to
produce slow releasing PLGA-GW, as well as redox-reactive DB-GW (synthesized using
DB16HD polymer) and DD-GW (synthesized using DDHP4 polymer) NPs. The appropriate
ratios of polymers and GW were dissolved in water-miscible organic solvent acetonitrile and
introduced to deionized water under constant stirring, forming a solid polymeric core

containing GW and a PEG shell.
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Figure 1: Schematic diagram of nanoparticles used in this study (inset), and

chemical structures of polymers and GW-3965.

Upon synthesis, NPs were purified and characterized for their size, surface charge, and
GW encapsulation efficiency. The hydrodynamic size measurement of NPs by both Dynamic
Light Scattering (DLS) and ZetaView particles tracking indicated that the size was
approximately 100-200 nm for all particles with narrow size distributions (Sl Figure 2 and
Figure 2A). All NPs were spherical in shape as shown by transmission electron microscopy
imaging (Figure 2B) and had slightly less size due to the lack of the solvent hydration layer.
All NPs also had a slightly negative surface charge with zeta potential values ranging from -
3 to -7 mVs (Figure 2C). The encapsulation efficiencies of GW were determined by HPLC
analysis of NPs, and were within the range of typical drug encapsulation, with 60-85%
encapsulation efficiency [12-14]. The redox active NPs DB-GW and DD-GW encapsulated
67% and 85% of the original GW feed, and PLGA-GW NPs encapsulated 80% of GW in the
NPs. We next explored the stability of NPs by incubating them in differing percentages of
fetal bovine serum (FBS) at 37°C, to mimic physiological conditions. All NPs were stable

within these mimicking conditions (Figure 2D).
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Figure 2: Nanoparticle characterization. A) Hydrodynamic size of three different
GW-NPs measured by ZetaView and zetasizer (n=3). B) Transmission electron
microscopy images of GW-NPs showing spherical structure, scale bar = 200 nm.
C) Surface charge potentials of GW-NPs measured using zetasizer (n=3). D)
Stability studies were performed by measuring the GW-NPs size, pre and 1 hour
post incubation in 5%, 10%, and 20% FBS (n=3).

3.2 Cellular uptake experiments

In order to compare the effects of LXR activation by different NPs in a cellular system,
we first studied if primary murine macrophages took up NPs at a similar rate. To this end,
we developed NPs tagged with Cy5.5 dye by chemically conjugating Cy5.5 to the polymer.
The Cy5.5-PLGA, Cy5.5-DB and Cy5.5-DD NPs were then analyzed by ZetaView to obtain
NPs particle concentration in the solution. Cells were treated with Cy5.5-NPs in similar
particle concentrations for 90 min, fixed and analyzed by flow cytometry to identify cells that
had accumulated NPs. Our results indicated that the three NP formulations were taken up
by macrophages at a similar rate (data not shown). Cells were also imaged by confocal
microscopy with co-staining for LAMP1, a lysosomal marker. Consistent with the flow
cytometry analyses, imaging determined that the uptake between the various NPs was
similar (Figure 3).
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Untréated : ] Cy5.5-PLGA

Figure 3. Nanoparticle formulations are effectively up-taken by macrophages and
form punctate foci. WT BMDM were treated with 1.0x10° Cy5.5-tagged
nanopatrticles (red) for 1.5 h, then fixed and stained with an anti-LAMP1 antibody
as a lysosomal marker (green) and propidium iodide as a DNA stain (blue). Images

representative of at least 5 fields of view from n=3. Scale bar represents 5 um.

3.3 In vitro functional assays

To evaluate how GW release rates affected LXR activation, we focused on the LXR
target gene Abcal, which has been well studied as a robust indicator of LXR-induced
transcript expression [12]. In our study, we measured the effects of GW-NPs on macrophage
Abcal mRNA transcript expression using quantitative reverse transcription PCR (RT-gPCR)
and ABCAL1 protein expression using Western blot. Given the possible heterogeneity and
variability in macrophages from mouse to mouse, we isolated BMDM from C57BL/6J mice

and performed independent LXR activation studies.

To evaluate the effects of controlled release, we treated macrophages with three
different NPs containing the same amount of GW for 90 min to allow for cellular uptake.
Afterward, cells were washed and replaced with fresh medium and incubated for up to 24 h,
before measuring mRNA and protein expression levels of ABCAL. As controls, we also

treated macrophages with free GW for 90 min, which was then either removed (similar to all
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NP treatments) or replenished for a continuous treatment. Independent of treatment, there
was approximately the same level of Abcal transcript 2 h following the removal of the NPs
and free GW (Figure 4A). However, by 6 h and peaking at 24 h, cells that were left exposed
to free GW had higher amounts of Abcal transcript (Figure 4B and C).
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Figure 4. LXR target mRNA expression is unchanged by GW-NP addition. WT
BMDM were treated with nanoparticles encapsulating 5 pM GW-3965 for 1.5 h.
Abcal mRNA transcript expression was measured in samples A) 2 h, B) 6 h, or C)
24 h post-GW-NP treatment by RT-qPCR. Data represent mean + SEM where ***
p<0.001, ** p<0.01, and *p<0.05 are differences compared with vehicle control
determined by one-way ANOVA (n = 10-13).

While all three NPs enhanced Abcal transcript expression compared to control, there
were no differences between the NP-containing GW and the initial 90 min uptake of free GW
at either 6 or 24 h. Despite this lack of change between NP formulations at the transcript
level, ABCAL protein amount was significantly higher in the DB-GW compared to the PLGA-
GW and DD-GW conditions, which were both significantly higher than control but equal to
free GW for 90 min (Figure 5).

Abca1 Ll B B

B actin
10

Relative A bca1
protein expression (AU)
T
*
*
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*
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Figure 5. ABCA1 protein expression is upregulated with DB-GW nanoparticle
treatment. WT BMDM were treated with nanoparticles encapsulating 5 uM GW-
3965 for 1.5 h. ABCAL protein was measured 24 h post-treatment and normalized
to B actin. Data represent mean + SEM where ** p<0.001 and * p<0.05 are
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differences compared with vehicle control, while ### p<0.001 and # p<0.05 is

compared to acute GW-3965 dose determined by one-way ANOVA (n = 5).

4. Discussion

Nanotechnology-based drug delivery platforms have revolutionized the landscape of drug
development by increasing the blood circulation half-lives of drugs, decreasing their
cytotoxicity, and delivering them to organ and tissues in a site-specific manner [16]. In
addition, recent advances in biomaterials development led to endogenous and exogenous
stimuli-responsive drug delivery platforms to enhance therapeutic efficacy [30]. In terms of
endogenous stimuli, differences in pH and concentrations of reducing agents in the different
microenvironments of the body are well studied and are currently being explored for
therapeutic potential in clinical trials for cancer treatment [30]. However, stimuli-response
drug delivery is less characterized in inflammation and cardiovascular disease applications.
This may be due to the lack of available NP platforms with payloads that are well-
characterized in cardiovascular and inflammation disease settings. The goal of this study
was to explore if the differential release of drug through NP degradation due to endogenous
stimuli would affect the drug target genes in macrophages, one of the primary cell types in
atherosclerotic plaque. To this end, we developed and studied three different NP platforms
containing LXR agonist GW-3965 and their effects in mouse macrophages.

Gadde et al, previously showed that PLGA-PEG nanoparticles containing GW attenuated
the LPS induced inflammation in macrophages by downregulating ABCA1 expression [12].
In this study we used normal macrophages and all three GW-NPs upregulated the transcript
expression of LXR target genes in macrophages and were in agreement with previous
reports [12,14]. At the time points tested, there was no difference in Abcal mRNA
expression between the formulations (Figure 4 and Sl Figure 2). However, in the case of
DB-GW NPs, ABCAL protein expression was higher than the other NP treatments (Figure
5). Discrepancies in mMRNA and protein expression of ABCAL in macrophages has been
observed previously [31], potentially due to extensive post-transcriptional regulation ABCA1
translation by a host of miRNAs [32]. While we did not investigate the possibility of differential
mMiRNA expression in response to NP treatments, this could be a factor in the differences

between mMRNA and protein expression.

In addition, NP drug release can be influenced by a number of characteristics including
polymer molecular weight, NP size and surface charge, cellular uptake pathways,

intracellular components and, most importantly, cell types. In vivo and in vitro
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characterization of redox-responsive NPs have been primarily reported in tumor cells and
tumor microenvironments, wherein cellular antioxidants, made up primarily of reduced
glutathione (GSH), are found in much higher concentration than in extracellular fluids.
However, we reasoned that GSH concentrations were not elevated in BMDM when
compared to tumor cells, explaining the similar LXR target gene activation between slow
releasing (PLGA) and redox responsive (DB and DD) NPs. However, in the context of
atherosclerosis, oxidized LDL has been shown to increased intracellular GSH levels in
macrophages in the atherosclerotic plaques [33]. It would be interesting in the future to test
these conditions, as it may be possible that redox-reactive NPs would be beneficial for drug
release. Also, there is the potential that the polymers themselves have elicited a ROS-
generating response, diminishing cellular GSH:GSSG, and subsequently the rate of polymer
degradation. Indeed, engineered NPs that use SiO,, Fe304, or CoO have been shown to

stimulate ROS production in macrophages by diverse mechanisms [34].

Cholesterol regulation modulators, specifically reverse cholesterol transport enhancers have
several therapeutic applications in atherosclerosis and heart disease settings. Recently,
PLA-PEG NPs containing the anti-diabetic drug rosiglitazone (RSG) was shown to diminish
inflammatory signaling in RAW264.7 macrophages [35]. Given the adverse whole-body
effects of RSG administration [36], nanoparticle encapsulation presents an attractive
targeting option to maximize tissue-specific benefits. Similar to RSG, whole-body pan-LXR
activation has been shown to induce hepatic and adipose lipogenic gene expression,
ultimately increasing plasma triglycerides and promoting steatosis of the liver [37].
Therefore, macrophage-specific nanoparticle targeting has been an area of active research

in recent years.

5. Conclusions

Our results demonstrate that these two redox-responsive NP formulations were effectively
taken up in vitro by macrophages and activated transcription of the LXR target gene, Abcal.
Further research is warranted to assess NP response to greater cellular redox potential, as
well as conditions mimicking cellular stress, in order to determine their effectiveness as

therapeutic vehicles for diseases such as atherosclerosis.
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Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1,
Figure S1: Schematic diagram of DB and DD chemical structures and synthesis, Figure S2:

Particle size and surface charge of empty NPs, Figure S3: Abcal mRNA time course reveals
no change in expression.
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