

1

2 Spatiotemporal Feature Selection Improves Prediction 3 Accuracy of Multi-Voxel Pattern Classification

4

5 Jeiran Choupan^{a, b, c, d*}, Yaniv Gal^e, Pamela K. Douglas^f, Mark S. Cohen^{g, h, i}, David C.
6 Reutens^a, Zhengyi Yang^{a, e, j}

7

8 ^a Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia

9 ^b Queensland Brain Institute, The University of Queensland, Brisbane, Australia

10 ^c Department of Psychology, USC Dornsife College of Letters, Arts and Sciences,
11 University of Southern California, USA

12 ^d Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute,
13 Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

14 ^e School of Information Technology and Electrical Engineering, The University of
15 Queensland, Brisbane, Australia

16 ^f Center for Cognitive Neuroscience, University of California, Los Angeles, California,
17 USA

18 ^g Neuropsychiatric Institute, University of California, Los Angeles, California, USA

19 ^h Departments of Psychiatry and Behavioral Sciences, Neurology, Radiological Sciences,
20 Biomedical Physics, Psychology, and Bioengineering, University of California, Los
21 Angeles, California, USA.

22 ⁱ California Nanosystems Institute UCLA School of Medicine, Los Angeles, California,
23 USA

24 ^j Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing,
25 China

26

27 Correspondence to:

28 Jeiran Choupan^{*},

29 E-mail: choupan@usc.edu

30 Phone: +1 (562)475-8535

31

32 **Keywords:** fMRI, Multi-Variate Pattern Classification, Spatiotemporal Feature
33 Selection, Multi-band EPI, Random Forest, Support Vector Machine

34

35 Highlights:

36

- 37 Spatiotemporal feature selection effect on MVPC was assessed in slow event-related
fMRI
- 38 Spatiotemporal feature selection improved brain decoding accuracy
- 39 From ~2-11 seconds after stimuli onset were the most informative part of each trial
- 40 Random forest outperformed support vector machines
- 41 Random forest benefited more from temporal changes compared with support vector
42 machine

43 **Abstract**

44 The importance of spatiotemporal feature selection in fMRI decoding studies has not
45 been studied exhaustively. Temporal embedding of features allows the incorporation of
46 brain activity dynamics into multivariate pattern classification, and may provide enriched
47 information about stimulus-specific response patterns and potentially improve prediction
48 accuracy. This study investigates the possibility of enhancing the classification
49 performance by exploring spatial and temporal (spatiotemporal) domain, to identify the
50 optimum combination of the spatiotemporal features based on the classification
51 performance. We investigated the importance of spatiotemporal feature selection using a
52 slow event-related design adapted from the classic Haxby et al. (2001) study. Data were
53 collected using a multiband fMRI sequence with temporal resolution of 0.568 seconds. A
54 wide range of spatiotemporal observations was created as various combinations of
55 spatiotemporal features. Using both random forest, and support vector machine,
56 classifiers, prediction accuracies for these combinations were then compared with the
57 single time-point spatial multivariate pattern approach that uses only a single temporal
58 observation. The results showed that on average spatiotemporal feature selection
59 improved prediction accuracy. Moreover, the random forest algorithm outperformed the
60 support vector machine and benefitted from temporal information to a greater extent. As
61 expected, the most influential temporal durations were found to be around the peak of the
62 hemodynamic response function, a few seconds after the stimuli onset until ~4 seconds
63 after the peak of the hemodynamic response function. The superiority of spatiotemporal
64 feature selection over single time-point spatial approaches invites future work to design
65 systematic and optimal approaches to the incorporation of spatiotemporal dependencies
66 into feature selection for decoding.

67
68

69 **1. Introduction**

70 In conventional univariate functional Magnetic Resonance Imaging (fMRI) analysis, the
71 objective is to find brain regions that show reproducible activation with the repetition of
72 specific experimental conditions (Friston et al., 1994). In contrast, in Multi-Variate
73 Pattern Classification (MVPC) approaches, the pattern of responses across multiple brain
74 voxels that together carry information about different experimental conditions is sought
75 (Haxby et al., 2001). In MVPC, the functional relationship between across-voxel patterns
76 of activation and the experimental conditions is modeled using discriminative pattern
77 recognition techniques; the experimental conditions are then predicted from the fMRI
78 signal (see (Haynes, 2015) review of MVPC).

79 A potential advantage of the MVPC approach over classical univariate analysis methods
80 is that a fixed HRF model does not need to be assumed or estimated. However, this
81 benefit from MVPC is yet to be realized fully because event-related decoding studies
82 generally extract features at fixed temporal delays, which are themselves determined
83 based on a canonical HRF, following the stimulus onset (e.g. Douglas et al. (2011)).

84 Even in the context of block designs, it may be critically important to take into account
85 fMRI temporal dynamics in addition to multivariate spatial information in MVPC. There
86 is strong temporal correlation in the fMRI time series, especially due to the delay and
87 smoothing from the HRF. Mourao-Miranda et al. (2007) studied the temporal dynamics
88 for MVPC by training and testing a classifier using all temporally contiguous acquisitions
89 in each block, effectively treating time as spatial information, to produce SpatioTemporal
90 (ST) signals. They found a localized peak of response in the amygdala only at a specific
91 time point in the block suggesting that temporal averaging of fMRI activity in a block
92 (i.e. assuming that hemodynamic responses to the same stimulus are a *stationary process*)
93 averaged out the effect of specific discriminating times in specific regions, and ignored
94 the temporal profiles caused by the hemodynamic response.

95 One study investigated the effect of entire-trial ST temporal embedding on MVPC
96 accuracy of slow event-related fMRI data (Fogelson et al., 2011). It was found that the
97 accuracy of classification using ST-embedded fMRI data (i.e. entire-trial ST embedding)
98 is higher than using individual, temporally distinct spatial-only observations (In the

99 current study the aforementioned technique is referred to as single TR observations). ST
100 embedding was also investigated for another type of stimulus classification in (Rao,
101 Garg, & Cecchi, 2011) applying the same methods discussed by Fogelson and colleagues
102 (Fogelson et al., 2011). Another study investigated the variability of temporal dynamic
103 classification performance across single TR observations within the slow event-related
104 trails (Kohler et al., 2013). Their timepoint-by-timepoint MVPC showed that the peak of
105 classification accuracy was around the peak of region-average HRF; in some regions
106 prior to and in some regions after the region-average HRF peak. However, it was not
107 clear whether all of the temporal dynamics of a voxel activity within a trial carry stimulus
108 specific information.

109 On the other hand, most of the multivariate pattern recognition based studies applied to
110 fMRI data, modeling the pairwise relationship between the brain activity at separate time
111 points and the experimental condition. Although considering the shape of HRF for
112 modeling brain activity, they assign the same stimulus label to the dynamic brain
113 response that is changing over time. The temporal dynamics of the BOLD signal to
114 stimuli of different classes, and within different brain regions are very likely different
115 (Chu et al., 2011; Kohler et al., 2013). Not considering such these differences may reduce
116 the sensitivity of the classifier and reduce the decoding accuracy.

117 ST feature selection of fMRI finds the time points that carry the highest condition
118 specific information for MVPC (Choupan et al., 2014). The effect of ST feature selection
119 initially was tested on a block-design experiment (Choupan et al., 2014). We (Choupan et
120 al., 2014) found that ST feature selection could improve prediction accuracy even on a
121 block-design experiment. To study ST feature selection thoroughly, however, a slow
122 event-related design is preferred because it provides a “cleaner” temporal pattern in
123 which the neural response is less affected by the temporal overlapping of consecutive
124 stimuli responses that occurs in block or rapid event-related design. Particularly when the
125 BOLD signal is allowed to return to baseline before the next stimulus is presented. In
126 comparison to block designs, by randomizing condition/stimuli order, slow event-related
127 experiments minimize effects of strategy expectation and cognitive set (which affect the
128 temporal dynamics) (Pilgrim, Fadili, Fletcher, & Tyler, 2002; Strayer & Kramer, 1994).
129 In addition, slow event-related designs reduce the neuronal habituation that has been

130 shown to alter the results of MVPC in block design experiments (Choupan et al., 2014;
131 Mourao-Miranda, Friston, & Brammer, 2007; Sapountzis, Schluppeck, Bowtell, &
132 Peirce, 2010).

133 Following the previous works, this study is based on the hypothesis that by embedding
134 the temporal dynamics provided by fMRI into the process of multivariate brain pattern
135 recognition, more information contained in the BOLD signal can be utilized compared
136 with single TR methods, leading to a potential improvement in the prediction
137 performance. In particular, we predicted that not all of the temporal dynamics of voxels
138 within the trial are informative for the MVPC, and that a shorter *sequence* of time points
139 might still possess the most discriminative activity across stimulus conditions, possibly
140 around the peak of the HRF (Akama, Brian Murphy, Shimizu, & Poesio, 2012;
141 Formisano, De Martino, & Valente, 2008; Kohler et al., 2013). Therefore, this study
142 presents an investigation of the MVPC performance of ST feature selection using
143 different sequences of ST combinations.

144 On a dataset acquired with a CMRR multi-band EPI pulse sequences at a high temporal
145 resolution of 0.568 seconds in a binary slow event-related design (inter-stimulus interval
146 of ~25 seconds), using stimuli from the classic Haxby et al. (2001) experiment, we
147 assessed the prediction accuracy of 990 ST combinations. Our findings show that on
148 average, ST feature selection led to improved classification performance. Furthermore,
149 the discriminative power increased when time points around the peak of the HRF were
150 included in the ST combination.

151

152 **2. Materials and Methods**

153 2.1. Participants

154 Four right-handed healthy adult volunteers (ages 28, 30, 31, and 32; two of them were
155 females) participated in this study. None had a medical history of psychiatric disorder, as
156 assessed by self-report. Written informed consent, approved by the University of
157 California, Los Angeles Institutional Review Board, was obtained from each participant
158 prior to the experiment. The heart rate and skin conductivity of participants were

159 recorded and monitored throughout the experiment.

160

161 2.2. Experimental design

162 The task paradigm was implemented in MATLAB (Mathworks, Inc.) using the
163 Psychophysics Toolbox, Version 3.0 (Brainard, 1997). Stimuli were projected onto a
164 screen behind the scanner bore which participants watched through a mirror installed on
165 the head coil. Participants engaged in six 11-minute fMRI scans. Each run consisted of
166 twenty slow event-related trials, yielding a total of 120 trials per participant. During each
167 fMRI run, participants viewed 10 pictures of human faces (five were females) and 10
168 pictures of houses. The pictures, which were borrowed from publicly available stimulus
169 set used in the Haxby and colleagues paper (Haxby et al., 2001), were displayed in
170 random order, different for each subject and trial. In each trial, participants viewed a
171 single stimulus picture for 500 ms, which was always followed by an inter-stimulus
172 interval of 25s (the stimulus onset times were jittered at each trial to avoid anticipatory
173 brain activations). In each run, three random trials were followed by their content
174 photographed from different angle. We asked the participants to perform a one-back
175 repetition detection task. The participants were provided with an MRI compatible button
176 box to indicate their responses. In the case of similar consecutive trials (identical re-
177 oriented pictures), participants were instructed to press the right button of the button box,
178 and the left button for the dissimilar pictures. The similar trials, which were employed
179 solely to ensure that subjects remained awake and engaged, were excluded from the
180 analysis. We chose a long Inter Stimulus Interval (ISI) of 25 seconds in considering the
181 standard double gamma HRF function characteristics (Friston et al., 1994) that requires
182 ~25 seconds for BOLD signal to get back to the baseline after observing a stimuli (Cohen
183 M. S., 1997).

184

185 2.3. Data acquisition

186 We acquired images were using the Siemens 3T Tim Trio scanner with a 32-channel head
187 coil at the Staglin Center for Cognitive Neuroscience at the University of California, Los
188 Angeles. The functional images were acquired with a CMRR multi-band EPI pulse

189 sequences C2P, 010b (Auerbach, Xu, Yacoub, Moeller, & Uğurbil, 2013; Moeller et al.,
190 2010; Setsompop et al., 2012; Sotiropoulos et al., 2013; Xu et al., 2013) with multiband
191 acceleration factor of four, and phase encoding direction acceleration factor of 3 (referred
192 to as integrated-Parallel Acquisition-Techniques or iPAT factor in Siemens terminology)
193 yielding a net acceleration of 12 (4×3). In addition, in-plane rotation was set to 180-
194 degree, TR = 0.568 s, TE = 0.3 s, flip angle = 40°, 40 slices, 3×3×3mm, FOV = 192×192
195 mm (axial acquisition) covered the whole brain. SBRef data was collected, but not
196 utilized for pre-processing. No field map data was collected. This setting resulted in 45
197 TRs per trial. A high-resolution structural T1-weighted MPRAGE was acquired for each
198 participant (176 sagittal slices, 0.97×0.97 mm in-plane voxel resolution, 1 mm slice
199 thickness, matrix size = 256×256, FOV = 250×250×176 mm, TR = 1.9 s, TE = 2.26 s,
200 flip angle = 9°).

201

202 2.4. Data pre-processing

203 We pre-processed the functional images using Statistical Parametric Mapping software
204 (SPM8; <http://www.fil.ion.ucl.ac.uk/spm>). Because we used multi-band acquisition, no
205 slice-timing correction was applied (Glasser et al., 2013). Each fMRI volume was first
206 realigned to its mean image using the 4th degree B-spline interpolation for head motion
207 correction. The anatomical volume was segmented to gray matter, white matter, and
208 cerebrospinal fluid. We registered the functional data from each run to the anatomical
209 volume, then spatially normalized the data into standard stereotaxic space with voxel size
210 of 2x2x2 mm³, using the Montreal Neurological Institute (MNI) template. Warping to
211 MNI was performed to assure that the input data for each subject has the same
212 size/dimension across subjects.

213 As recommended by Kohler (Kohler et al., 2013; Misaki, Luh, & Bandettini, 2013), we
214 applied no spatial smoothing.

215 At each separate fMRI run, we linearly-detrended the voxels time course to reduce the
216 effects of signal drifts during the course of fMRI experiment, then, we normalized the
217 detrended voxels time course across the entire run to zero mean and unit variance across
218 observations.

219 Field map data was not collected at the time of data collection, and field map
220 inhomogeneity distortion correction was not performed. Regardless, visual inspection
221 showed that the fMRI images were registered to structural image with minimal distortion.

222

223 2.5. Region of interest

224 Our selection of the regions-of-interest (ROIs) was based on prior knowledge. Previous
225 studies have shown that inferior temporal (IT) gyrus exhibits category-specific responses
226 during perception of faces (in FFA) or scenes (in PPA) (Kriegeskorte et al., 2008;
227 Ranganath, DeGutis, & D'Esposito, 2004). Therefore, our analysis was restricted to
228 bilateral IT defined as in the AAL atlas in the WFU_PickAtlas MATLAB software
229 toolbox (<http://fmri.wfubmc.edu/software/PickAtlas>). Functional images, and the ROI
230 mask, were defined in the MNI space, and the derived mask was applied to the
231 preprocessed functional images. In total there were 7547 voxels in IT, using
232 WFU_PickAtlas.

233 Training the classification algorithms on total number of voxels in IT in spatiotemporal
234 form was computationally intensive. Therefore, we decided to perform spatial feature
235 selection. Random Forest (RF) (Breiman, 2001) was utilized as a spatial feature selection
236 method to further reduce the size of the already masked data, discarding the voxels that
237 do not improve category specific classification. RF feature selection calculated the voxels
238 importance for the training data. Voxels importance was calculated based on the mean
239 error of bootstrap tree samples in the forest. During the bootstrapping procedure, the
240 voxel is randomly permuted in the Out Of Bag (OOB) cases. The aim of this permutation
241 is to eliminate the existing association between voxels and the stimuli, and then to test the
242 effect of this elimination on the RF model among trees built on these bootstrap samples.
243 A voxel is considered to be in a strong association with the stimuli if the mean error
244 decreases.

245 For each subject, the spatial feature selection was applied on IT voxels (containing 7547
246 features), on 100 trials as training samples. 1000 trees were utilized to train the RF
247 model. After training, voxels in the top 1% of maximum OOB importance were selected,

248 resulting 115 voxels for each subject. All subjects were registered to MNI space, which
249 results in same number of voxels after feature selection.

250

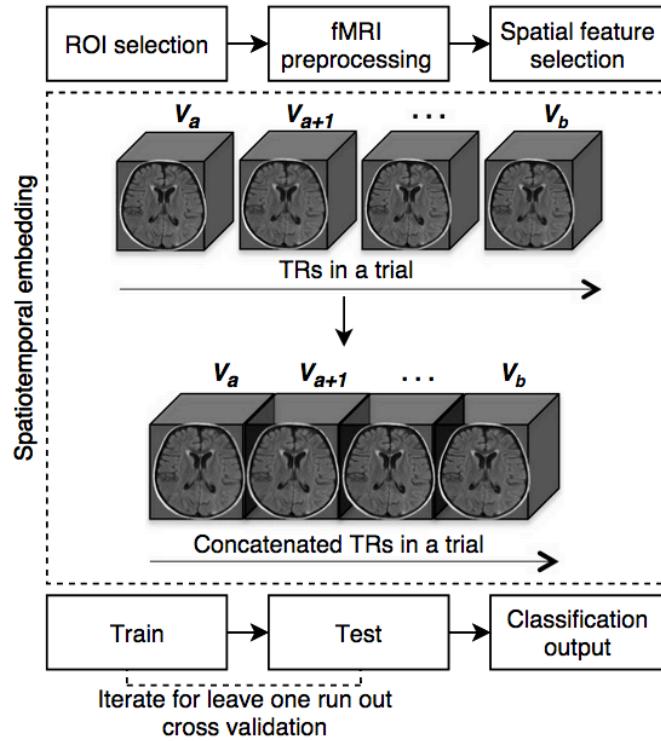
251 2.6. Spatiotemporal data representation

252 For each trial of fMRI, all possible ST combinations were defined from the data acquired
253 at all $N = 45$ TRs. In another word, for investigating the most informative temporal
254 features, the entire hemodynamic response temporal domain was searched for
255 voxels/features picked by RF feature selection. Assuming that the combination should
256 have at least 2 time points of voxels activity, and the combinations should be continues
257 and in ascending orders according to time, this representation led to obtaining in total
258 C_2^{45} , 990 ST combinations for each fMRI run. The ST observations for each trial were
259 defined as

260
$$ST_{a:b} = [\mathbf{V}_a, \mathbf{V}_{a+1}, \dots, \mathbf{V}_b] \quad (1)$$

261 where \mathbf{V}_i were the BOLD signals at volume $i \in \{1, 2, \dots, 45\}$, $a = 1, 2, \dots, N - 1$, $b =$
262 $2, 3, \dots, N$ and $a < b$. Therefore, each $ST_{a:b}$ was the result of concatenating voxels
263 activity in $\mathbf{V}_a \dots \mathbf{V}_b$. Utilizing such a concatenation routine, the temporal information was
264 embedded together with the spatial information, forming an ST observation. The
265 prediction accuracies of entire cases were explored to investigate the informative duration
266 of BOLD signal for classification relative to the stimulus onset. The concatenation
267 process in ST is illustrated in Figure 1.

268 In a previous slow event-related decoding study, which investigated the temporal domain
269 effect on MVPC (Kohler et al., 2013), the inter-stimulus interval was around 11 seconds.
270 Therefore, an extra examination was performed to validate the effect of ST embedding on
271 overall prediction accuracy of all subjects in this study, using only the first 11 seconds
272 after the stimulus onset.



273

274 **Figure 1. Graphical illustration of data processing.** The top row indicates the
275 preprocessing steps employed in this study. Spatiotemporal embedding is shown in the
276 dotted box, which involves concatenating the fMRI volumes, a through to b. Each 3D
277 cube is a symbolic fMRI volume. The bottom row illustrates the learning steps.

278

279 2.7. Single TR data representation

280 For comparison purposes, we used single TR spatial observation (utilizing the spatial
281 information acquired during one Time to Repeat or (TR)). The maximum accuracy of
282 single TR observation in slow event-related fMRI was reported to be around the peak of
283 HRF at ~5 seconds, but with a small jitter across regions (Kohler et al., 2013). The HRF
284 peak has also been found to be jittered across people (~ 4 to 7 seconds) (Handwerker,
285 Ollinger, & D'Esposito, 2004). Therefore, single TR classifications were performed for
286 all TRs in the above range (1 second before and 2 seconds after the HRF peak) and only
287 the highest performances were reported. This approach assured that our ST combinations
288 were compared with the highest performance of the single TR approach. It should be

289 noted that the high temporal resolution of the acquired fMRI data allowed us to perform
290 this rigorous investigation.

291

292 2.8. Pattern classification

293 Multivariate brain pattern recognition was performed using the Princeton MVPA toolbox
294 (<http://code.google.com/p/princeton-mvpabox/>). Support Vector Machine (SVM) is a
295 widely used classifier in the field of neuroimaging and MVPC applications (Bode &
296 Haynes, 2009; Kohler et al., 2013; Mourao-Miranda et al., 2007; Rao et al., 2011; Ritter,
297 Hebart, Wolbers, & Bingel, 2014; Waskom, Kumaran, Gordon, Rissman, & Wagner,
298 2014). Douglas et al. found that RF outperforms SVM in a binary classification of belief
299 vs. disbelief using fMRI data (Douglas, Harris, Yuille, & Cohen, 2011). Hence, in this
300 study the two classification algorithms RF and SVM were employed and compared. In
301 addition, the two classifiers allow the extraction of feature weight vectors, indicating
302 discrimination power. All analyses were performed using MATLAB software (V. 8.5
303 Mathworks, Inc.). MATLAB-based tools for RF (Jaaintilal, 2009) and linear SVM (Fan,
304 Chang, Hsieh, Wang, & Lin, 2008) were utilized. For SVM analyses the regularization
305 parameter that controls the trade-off between model fitting error and classification
306 accuracy, was set to 1 (Waskom et al., 2014). A leave one run out cross validation
307 (LOROCV) scheme was employed (Pereira, Mitchell, & Botvinick, 2009). In
308 experiments on both single TR and ST combinations, the fMRI data were divided into
309 training and test sets, training the classifier using five runs and testing on the sixth run.
310 This test was repeated 6 times, with each of the different runs serving once as a test set.
311 Finally the prediction accuracies were reported to quantify how accurately the classifiers
312 were able to distinguish between faces and houses.

313 SVM (Burges, 1998; Vapnik, 2000) was employed in similar temporal investigation
314 decoding studies (Kohler et al., 2013; Mourao-Miranda et al., 2007). The learning
315 process of SVM classifier finds the maximum-margin hyperplane that separates the
316 training data observations according to the class they belong (faces or houses in this
317 study). This hyperplane is orthogonal to the direction along which the training
318 observations of both classes differ most.

319 Linear SVM training outputs a set of weights, one for each feature, whom their linear
320 combination predicts the value of stimuli categories. This weight vector allows
321 investigation on the discriminating power of features across stimulus categories. The
322 directions of the weight vectors are perpendicular to the separating hyperplane. A feature
323 with a positive weight value means that the feature has higher activity (discrimination
324 power) for stimuli 1 than stimuli 2 in the training examples. The weight patterns were
325 reconstructed according to (Haufe et al., 2014) by applying the following algorithm:

326
$$\mathbf{A} = \Sigma_{\mathbf{X}} \mathbf{W} \Sigma_{\hat{\mathbf{s}}}^{-1} \quad (2)$$

327 where, \mathbf{A} is the reconstructed pattern, \mathbf{W} is the weight vector, $\Sigma_{\mathbf{X}}$ is the n-by-p covariance
328 matrix of the data (with n voxels and p samples), and $\Sigma_{\hat{\mathbf{s}}}$ is the source covariance,
329 defined as $\mathbf{W}^T \times \mathbf{X}$.

330 RF is an ensemble classifier that employs *decision trees* as base learners (Breiman,
331 2001). In this algorithm, training set observations is resampled (random redistribution,
332 with replacement) multiple times using bootstrap technique to produce multiple training
333 subsets. Decision trees are then created from each training subset, until all ensembles of
334 trees have been created. For predicting the label of an unseen testing observation at each
335 tree, the data is feed to the root of the tree, and goes down the tree following the splits
336 and falls into a terminal node. Each tree outputs the label in the terminal node. Final
337 predictions are assigned based on the majority voting on trees label decision. 1000 trees
338 were utilized for training the RF model, and the number of trees was selected based on
339 the stability of the OOB error rate to an asymptotic plateau.

340

341 2.9. Performance evaluation

342 Two criteria were employed to evaluate the performance of the classification at each
343 cross validation run: the overall prediction accuracy, and sensitivity to each stimulus, or
344 recall. Overall accuracy was calculated as the percentage of correctly classified trials at
345 each testing step. Sensitivity or true positive rate was measured as

346
$$Sensitivity = \frac{True\ Positive}{(True\ Positive+False\ Negative)} \quad (3)$$

347 that is the number of correctly predicted positive instances over all positive instances.
348 When measuring sensitivities, the category of interest was considered as positive instance.
349 When comparing different techniques, the mean of derived cross-validation runs was
350 reported. We obtained the same results when looking at specificity (or precision).
351 Therefore, we only reported sensitivity for readability.

352

353 2.10. Analysis of single TR combinations results

354 In total, the ST and single TR methods were utilized with SVM and RF classifiers to
355 perform the analyses: ST-SVM, ST-RF, Single TR-SVM, and Single TR-RF. The best
356 performance of the entire ST combinations was compared with the best single TR
357 approach around the peak of HRF to investigate if ST embedding can improve the
358 classification. Then, the prediction accuracy of all ST combinations were plotted and
359 mapped to explore the most discriminating temporal duration for decoding. For all above
360 cases RF and SVM were compared with each other. The temporal duration of top
361 performed ST combinations were plotted to investigate which classifier benefits more
362 from temporal embedding, the longer the ST combination of top performed classification
363 is, indicates that the classifier benefits more from the temporal information compared
364 with the other classifier.

365 All aforementioned analyses were performed on participants 1. As a result of deriving the
366 important temporal duration across all ST combinations in participant 1, the duration was
367 employed to analyze best performance across all participants to investigate if a shorter
368 inter-stimulus interval, which is similar to previous work (Kohler et al., 2013), could still
369 provide higher prediction accuracy compare with Single TR technique.

370

371 2.11. TR influence index

372 This study investigated the influence of data acquired at each TR over the course of
373 fMRI, relative to the stimulus onset, on the classification performance for each stimulus
374 category across all 990 ST combinations. Firstly, the most discriminating ST features (*i.e.*,
375 the BOLD signal acquired at a TR in a voxel) in each ST combination were determined

376 from the training results. When SVM was employed, on each stimulus side of the
377 hyperplane, the selected features were the top 1% ST features with the largest
378 reconstructed weight value. When RF was employed, the top 1% ST features with the
379 largest OOB importance were selected. Secondly, the presence of a given TR in all
380 selected ST features was counted as an indication of its influence on the classification
381 performance. Thirdly, the presence of a given TR was normalized by the total number of
382 times (P) that TR was presented in all 990 ST combinations. P is calculated as $P =$
383 $T(N - T + 1) - 1$, where T is the serial number of the given TR, ranging from 1 to 45,
384 and N is 45, the total number of TRs. This study calls this normalized value *TR influence*
385 *index*.

386 BOLD signals measured via fMRI are very slow. A TR with high influence in a ST
387 combination window affects its neighbors not to be selected, until that TR is out of the
388 ST window. Therefore, for better representation the results were overlaid with the
389 maximum TR influence for tri-seconds interval. This time interval almost mimics the
390 temporal resolution of conventional fMRI sequence.

391

392 **3. Results**

393 3.1. Brain decoding based on spatiotemporal features versus spatial-only single time
394 point technique

395 The ST embedding based techniques resulted in higher cross-validated prediction
396 accuracy in comparison to single TR techniques. This improvement was consistent across
397 separate stimuli categories for the two studied classification methods. Table 1 showed
398 that on average, across six runs RF (over cross-validate accuracy of ST and single TR
399 techniques were 81.66 and 69.16, respectively) outperformed SVM (over cross-validate
400 accuracy of ST and single TR techniques were 78.33 and 58.33, respectively) overall, and
401 in separate stimuli specific evaluation. When looking at the stimulus-specific results
402 (Figure 2B-C), ST techniques showed higher sensitivity (19-25% higher). In particular,
403 ST-RF sensitivity to independent stimuli were always 90% or higher. Single TR SVM,
404 which is among the most popular techniques (Kohler et al., 2013; Mourao-Miranda et al.,

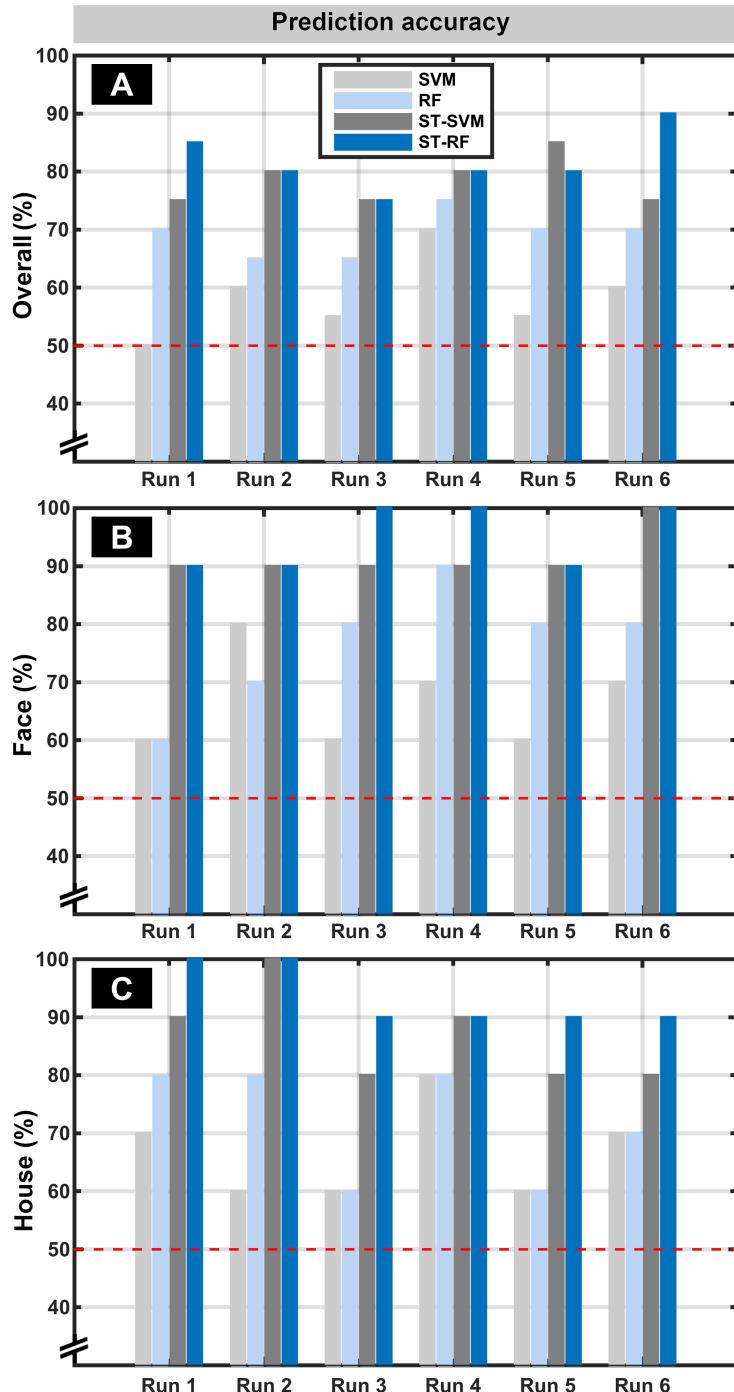
405 2007), performed slightly higher than chance. However, by using ST-SVM, sensitivity to
406 independent stimuli were 80% or higher.

407 When looking at the best prediction outcome of different classifiers, we noticed that RF
408 outperformed SVM in most of the instances. The superiority was consistent across all
409 runs and categories, where RF results were almost always higher than SVM and ST-RF
410 results were always equal or higher than ST-SVM. It should be noted that here only the
411 highest achieved prediction accuracies and sensitivities were reported. Therefore, the
412 reported results in Figure 2 A, B and C are not from the same ST combination. It can be
413 seen that the overall accuracy is mainly lower than the highest accuracy achieved in
414 detecting either faces or houses.

415 Prediction accuracies of all possible ST combinations are demonstrated in Figure 3. In
416 this figure, all the 990 ST combinations are ordered next to each other in a way that the
417 early results are the ST combinations where the early time points are included in the ST
418 time window, and each immediate neighboring result is from the ST window expanded to
419 the next time point until it reaches to time point = 45. Note that by using ST embedding
420 technique, not all ST-RF combinations outperformed single TR-RF, and the classification
421 performance in many of the combinations are even lower than chance. While ST
422 embedding improves prediction accuracy in ST-RF compared to the Single TR-RF
423 (around canonical HRF peak), the improvement highly depends on the choice of ST
424 combination. For example, in ST-RF the accuracy was higher than Single TR-RF mainly
425 when early TRs in the first third of the time interval after the stimulus onset were
426 included. However, in the later combinations, which associated with combinations
427 containing the last third TRs in the trials, the performance of ST-RF was lower than
428 Single TR-RF. No consistent pattern was observed in the results of ST-SVM.

429 Figures 2 and 3 showed that across all runs Single TR-RF performs better than Single
430 TR-SVM. Single TR with RF classifiers was even as high as ST-SVM in most cases, but
431 not better than the best performing ST-SVMs.

432



433

434 **Figure 2. Best performance of each technique across six runs. (A)** Overall accuracy of
435 single TR Support Vector machine (SVM) and Random Forest (RF), together with
436 SpatioTemporal SVM (ST-SVM) and ST-RF. For single TR, the canonical
437 Hemodynamic Response Function (HRF) peak with 1 second before and 2 seconds after
438 the peak was considered and the highest performance was reported. For ST techniques,

439 the highest achieved prediction accuracy is illustrated. The red line indicates the chance
440 level accuracy (50%) for faces versus houses classification. Sensitivity in detecting faces
441 and houses are illustrated in **(B)** and **(C)**, respectively.

442

443 **Table 1. Average performance of each technique across six runs.** Average
444 performance of single TR Support Vector machine (SVM) and Random Forest (RF),
445 together with Spatio-Temporal SVM (ST-SVM) and ST-RF (rows) across six cross-
446 validation run. Columns from left to right present the overall performance, accuracy on
447 predicting Face stimuli, and House stimuli, respectively.

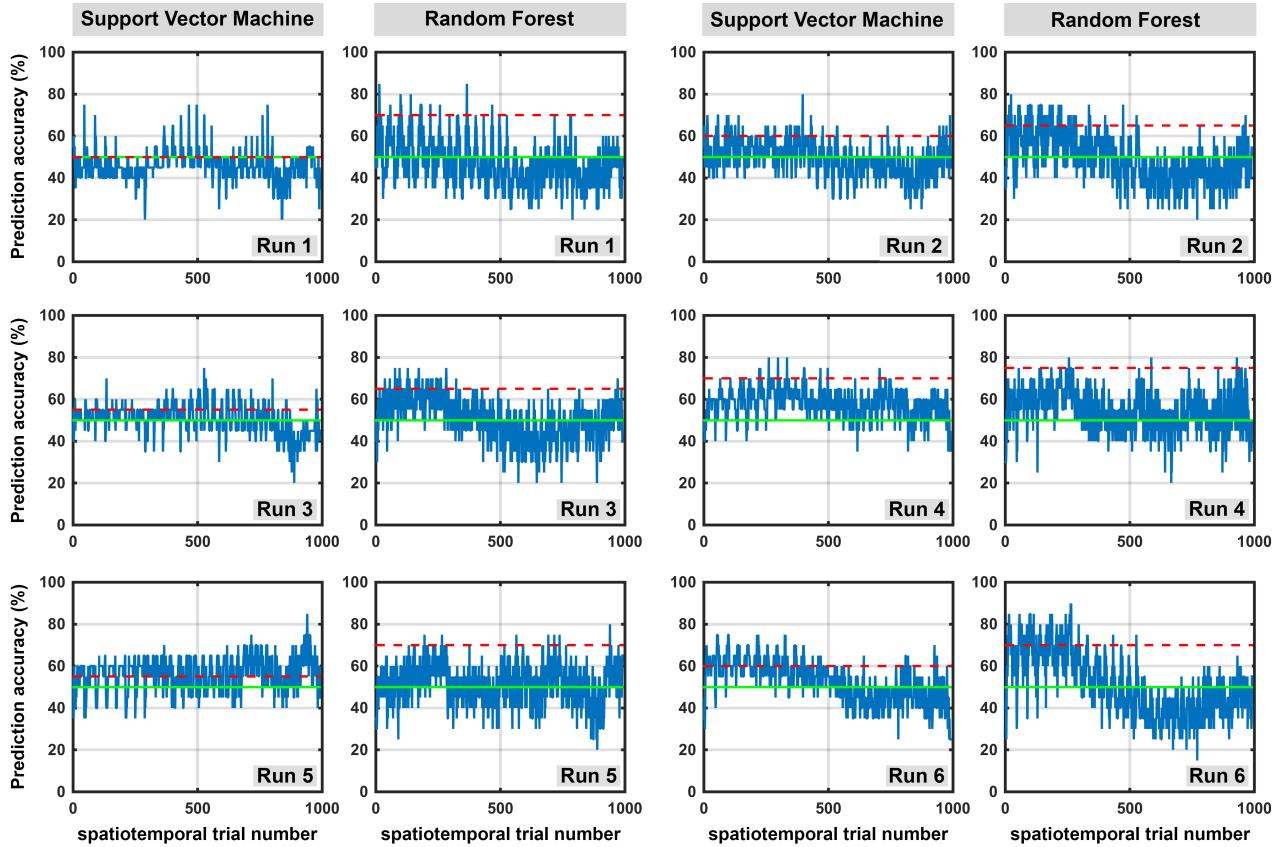
	Overall	Face	House
SVM	58.33	66.66	66.66
RF	69.16	76.66	71.66
ST-SVM	78.33	91.66	86.66
ST-RF	81.66	95	93.33

448

449

450 3.2. Investigating discriminative temporal duration

451 In order to explore the most informative temporal duration using ST, all ST trials were
452 mapped in Figures 4 and 5. The two figures reflect a heatmap of the result space, and
453 show where, in temporal duration, high informative spatiotemporal combinations are
454 centered. The color distribution represents the strong and weak prediction accuracies.
455 Using ST-RF, a trend in prediction accuracy was observed (Figure 4). The high accuracy
456 was mainly concentrated in the left side of the maps, which is associated with ST
457 combinations that started at the early time points from stimuli onset. A noticeable drop in
458 prediction accuracies was seen when the beginning of ST-RF was 6s or later. In some
459 runs or categories, most of 45 TRs were included in the ST leading to high accuracy, but
460 their accuracy never exceeded the ST combinations $ST_{5:20}$, including TRs from ~ 2
461 seconds to ~ 11 seconds.



462

463 **Figure 3. Overall prediction accuracy of all possible spatiotemporal combinations**
464 **across six runs.** Each box shows the prediction accuracy of 990 possible SpatioTemporal
465 (ST) combinations out of 45 TRs. The odd and even columns represent prediction
466 accuracies using Support Vector machine (SVM) and Random Forest (RF) classifiers,
467 respectively. Green line indicates the prediction chance (50%), and red line represents
468 performance of the single TR technique (around canonical HRF peak) of that run. The x-
469 axis shows the 990 ST combinations beginning with 1st TR (i.e. TRs: 1-2, 1-3, 1-4, ..., 1-
470 45) followed by all combinations starting with 2nd TR (i.e. TRs: 2-3, 2-4, 2-5, ..., 2-45)
471 and so forth. The 990th ST trial includes the 44th and 45th TRs.

472

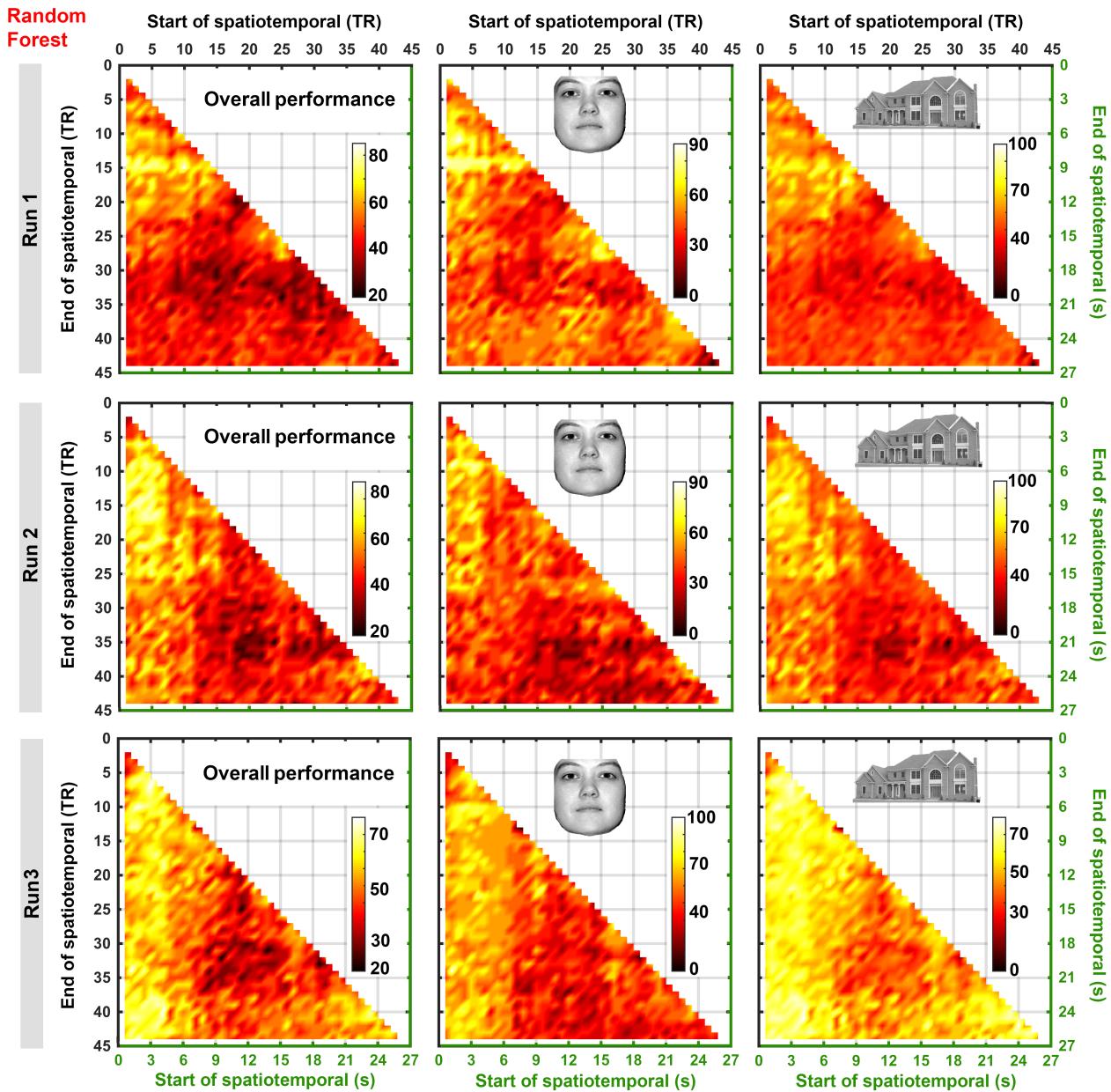
473 Across all runs and categories, the prediction accuracy of ST combinations with end
474 points smaller than TR 5, e.g. $ST_{1:4}$ or $ST_{2:3}$, were around chance. These ST combinations
475 can be seen in the top left corner of the maps in Figure 4. As soon as the ST combination
476 started to include the preceding TRs, increased prediction accuracy was observed. In
477 quite a few instances, an increase in prediction accuracy was observed in the ST

478 combinations including late TRs, which are around 20 seconds after stimulus onset. This
479 increase can be visualized as the hyperintensity patch in the right bottom corner of the
480 maps. The importance of individual TRs was further investigated, as illustrated in Figure
481 6 and 7.

482 As opposed to ST-RF, in ST-SVM there was no consistent pattern in the performance
483 across runs and categories. In addition, no specific interval with highest accuracy was
484 found. For example, in ST-SVM run 5, excluding the beginning time intervals leads to a
485 noticeable drop in overall performance (i.e. dark region in the top left corner of the map).
486 However, the same time interval led to the highest prediction accuracy in run 6. The
487 aforementioned trials correspond to the interval that starts from the stimuli onset and ends
488 around the peak of HRF (~5 seconds after stimuli onset).

489 Comparing Figures 4 and 5, in ST-SVM the highest performance was either equal to or
490 lower than ST-RF. When looking at only the first 10 seconds from the onset (from onset
491 to post HRF peak), ST-RF was superior to ST-SVM. Similar to ST-RF, an increase in
492 prediction accuracy was observed in the later temporal trials in some cases (e.g. after ~22
493 seconds, as shown in the right bottom corner of maps).

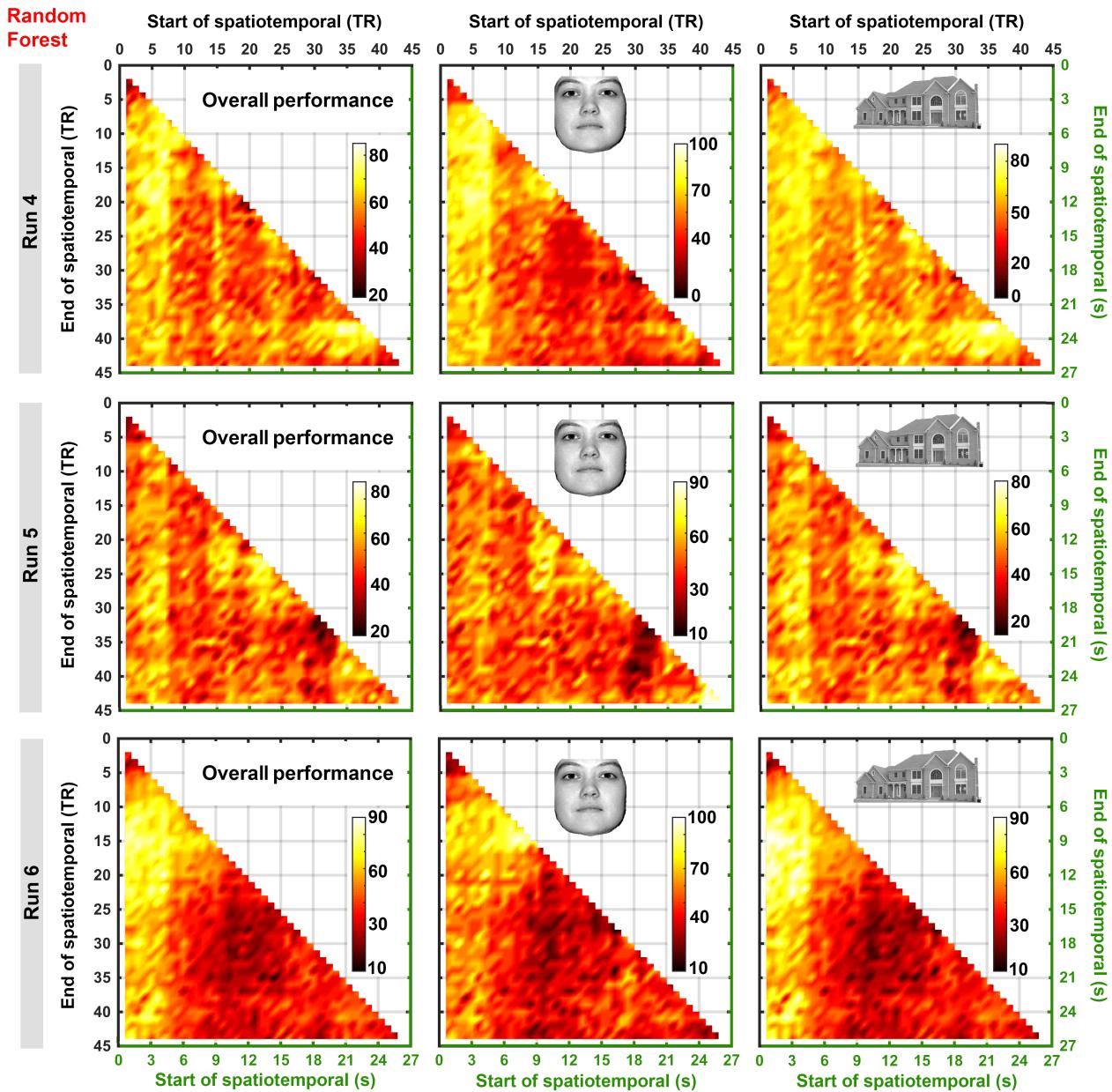
494 The results were dominant dependent on the selected ST combination, especially within
495 stimuli categories. For example, in run 2, the prediction accuracy of face stimuli was as
496 high as 90% or as low as 10% depending on the selected ST combination.



497

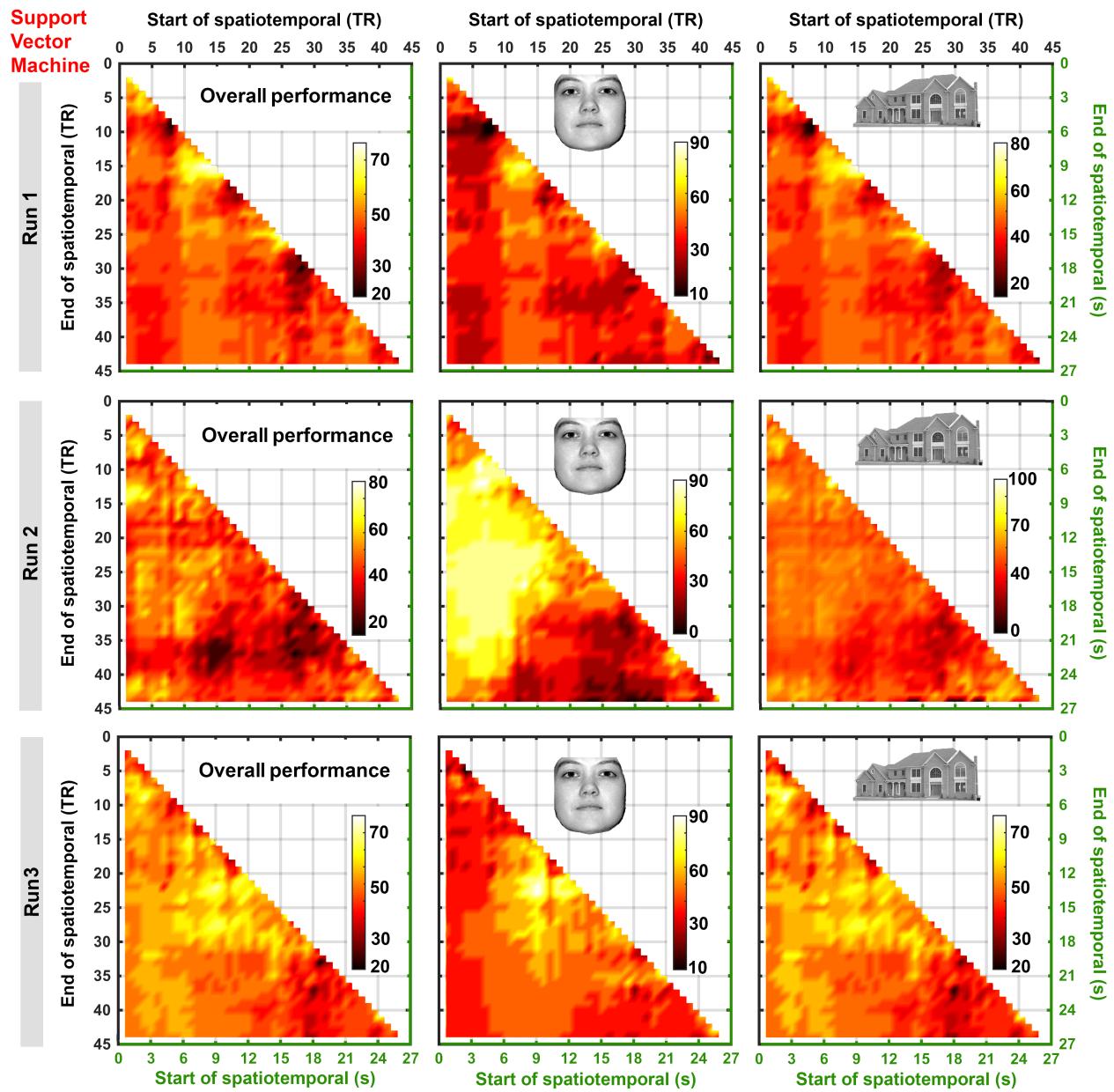
498 **Figure 4. Prediction accuracy of all possible spatiotemporal combinations across six**
499 **runs using Random Forest classifier.** First column of each hot map shows the overall
500 prediction accuracy of 990 possible SpatioTemporal (ST). Second and third columns of
501 each hot map show the sensitivity in predicting face and houses, respectively. X- and Y-
502 axes indicate the start and end time of the ST, respectively. The precise time (in seconds)
503 of each ST combination is shown in green axes. For example, point [2,18] in these maps
504 is the ST combination that starts from TR of 2 (on X axis) and ends at 18 (on Y axis).
505 The columns represent overall prediction accuracies and sensitivity to faces and houses,

506 respectively. Different color map ranges were used for each map, to assist visual
507 inspection of most informative intervals.



508

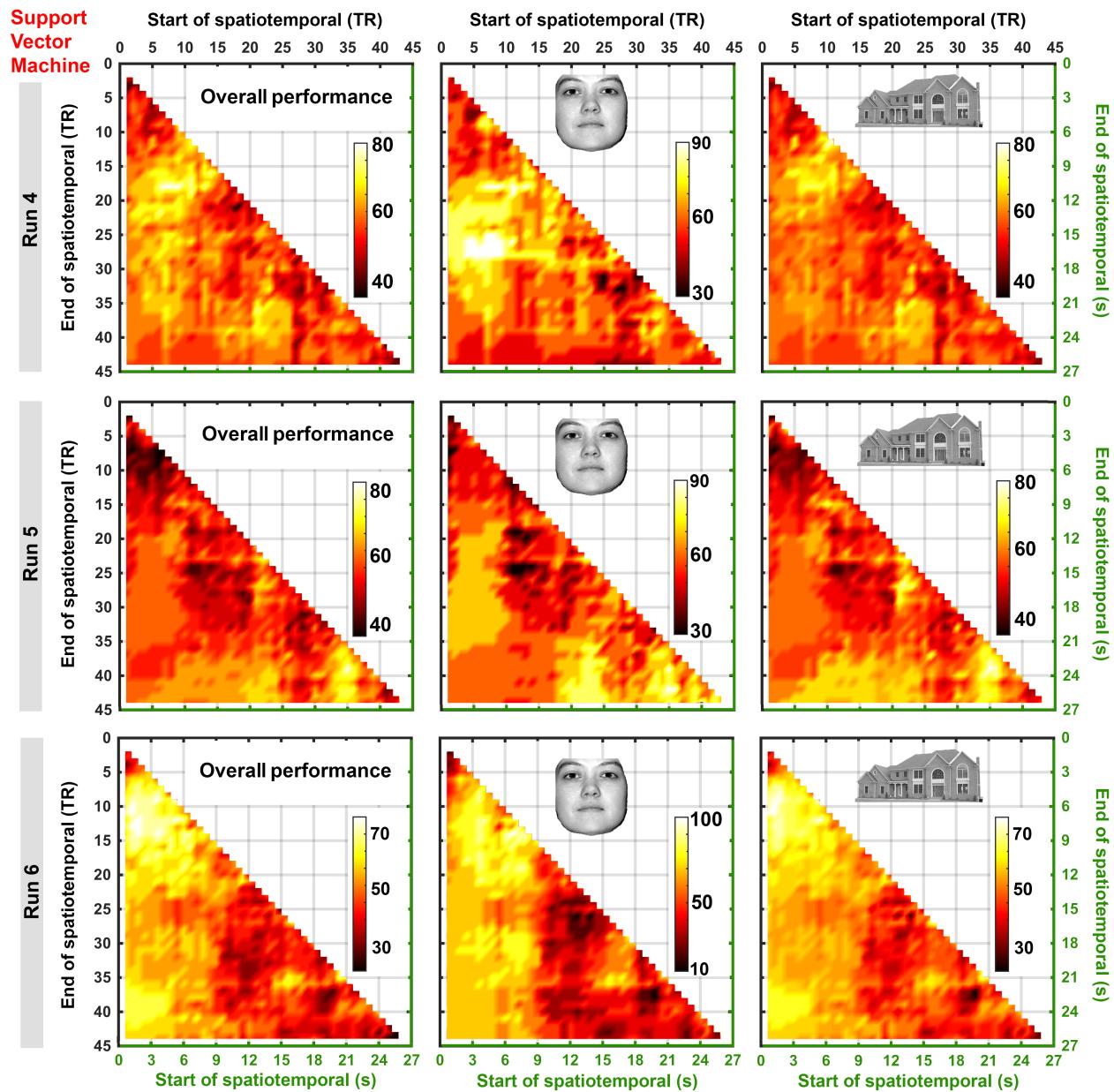
509 **Figure 4. (Continue)**



510

511 **Figure 5. Prediction accuracy of all possible spatiotemporal combinations across six**
512 **runs using Support Vector Machine classifier.** First column of each hot map shows the
513 overall prediction accuracy of 990 possible SpatioTemporal (ST). Second and third
514 columns of each hot map show the sensitivity in predicting face and houses, respectively.
515 X- and Y-axes indicate the starting and ending time of the ST, respectively. The precise
516 time (in seconds) of each ST combination is shown in green axes. For example, point
517 [2,18] in these maps is the ST combination that starts from TR of 2 (on X axis) and ends
518 at 18 (on Y axis). The columns represent overall prediction accuracies, sensitivity to

519 faces and houses, respectively. Different color map ranges were used for each map, to
520 assist visual inspection of most informative intervals.



521

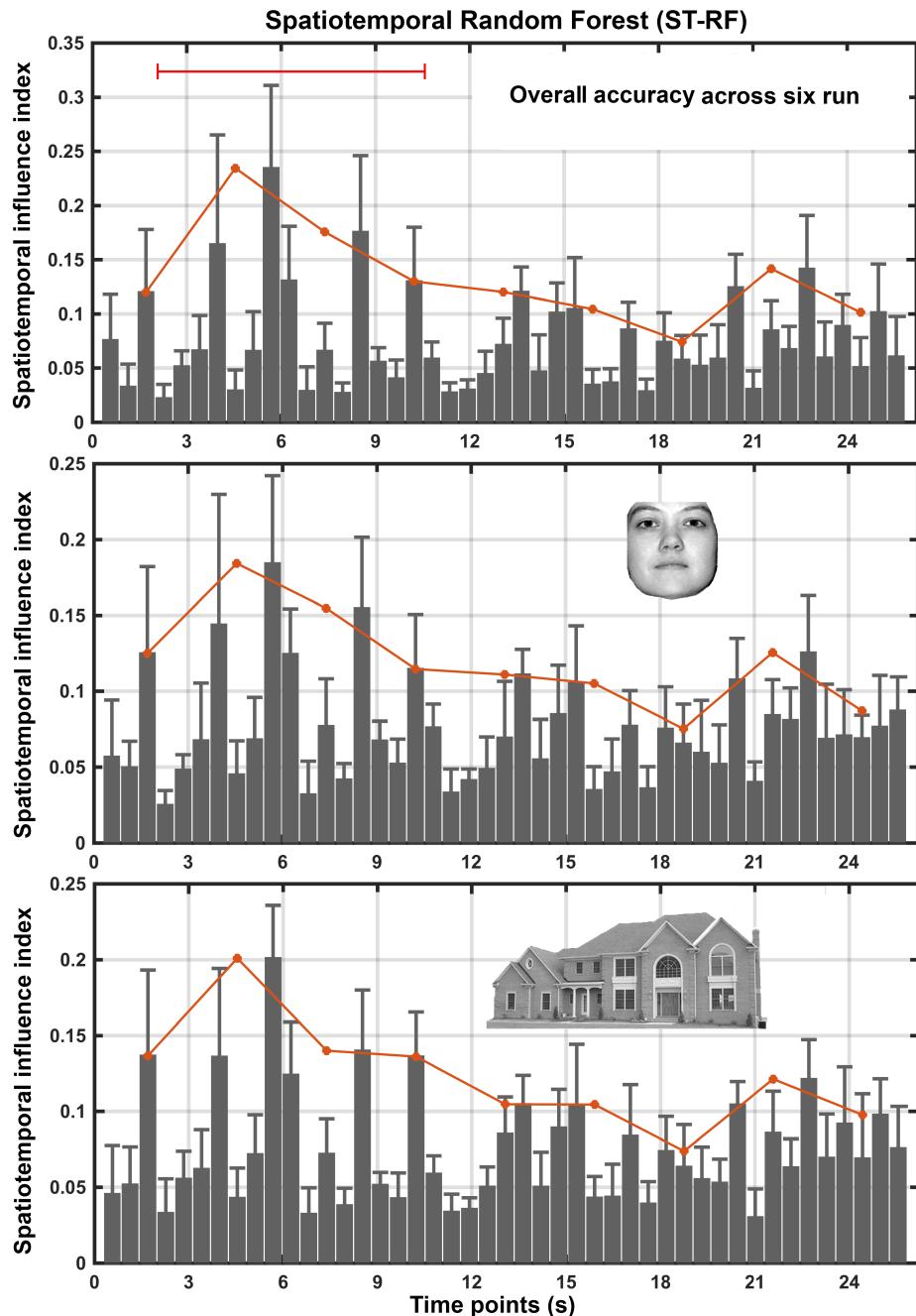
522 **Figure 5. (Continue)**

523

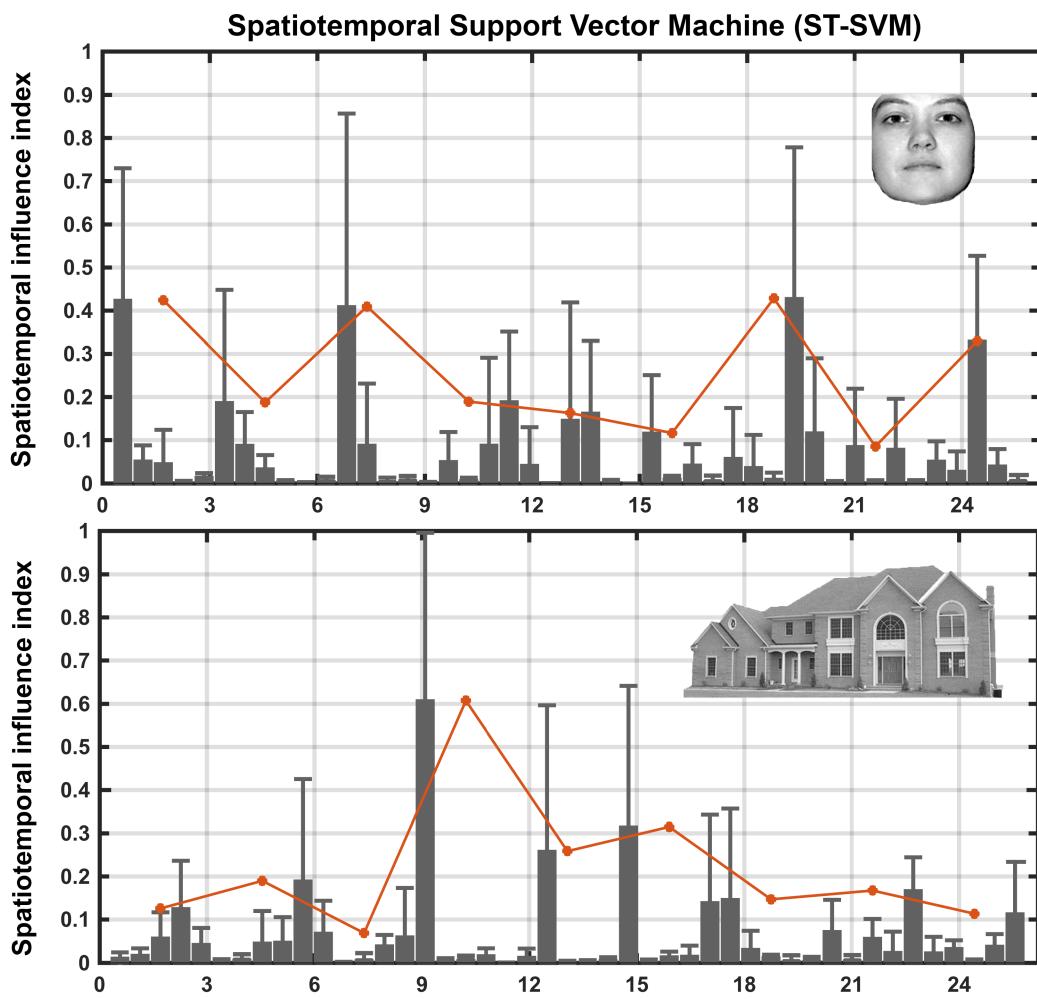
524 3.3. TR influence index results

525 The tri-second maximum TR influence indices were higher in the first quarter of TRs
526 compared to the later TRs (Figure 6). A pattern observed in the tri-second maximum

527 temporal influence across the studied categories using the RF classifier. The interval with
528 highest tri-second maximum influence index contains the peak of the HRF, and the most
529 influential was the 10th TR that is around the peak of HRF, 5.68 seconds. Another peak in
530 the tri-second maximum TR influence index was observed around the 40th TR (~22
531 seconds from the stimulus onset), which was consistent across all categories.



533 **Figure 6. Influence of each time point using Random Forest (RF).** Bars indicate the
534 mean and standard deviation of TR influence index across six runs. TR influence index
535 represents the number of times where each time point was chosen as the most informative
536 time point of the ST combination, normalized over the total number of times that the time
537 point was utilized (see Method section). The whole time block was divided into nine sub-
538 temporal regions. The highest spatiotemporal influence index for every three seconds was
539 overlaid on the bar chart (red line). X-axis represents time in seconds. (A) Illustrates the
540 temporal influence for overall prediction. Temporal influence in detecting faces and
541 houses are illustrated in (B) and (C), respectively.



543 **Figure 7. Spatiotemporal influence of each time point using Support Vector**
544 **Machine (SVM).** Bars indicate the mean and standard deviation of spatiotemporal
545 influence index across six runs. Spatiotemporal influence index represents the number of

546 times were each time points was chosen as the most informative time point of the ST
547 combination, normalized over the total number of times that the time point was utilized
548 (see Methods section). X-axis represents time in seconds. Red line indicates the highest
549 spatiotemporal influence index for every three seconds. Temporal influence in detecting
550 faces and houses are illustrated in the top and bottom panels, respectively.

551 In contrast to the tri-second maximum TR influence of ST-RF, there was no specific
552 trend in the tri-second maximum temporal influence across the two categories using ST-
553 SVM. It should be noted that the classification performance for ST-SVM was relatively
554 poor comparing to ST-RF. For the face category, the first TR (0.568 seconds after the
555 stimulus onset) has been selected with a high mean influence level compared to the other
556 TRs across six runs. In the same category, the second best tri-second maximum TR is at
557 the 34th TR (19 seconds after the stimulus onset). The most tri-second maximum
558 influential TR in house category happened after the HRF peak in the 16th TR.

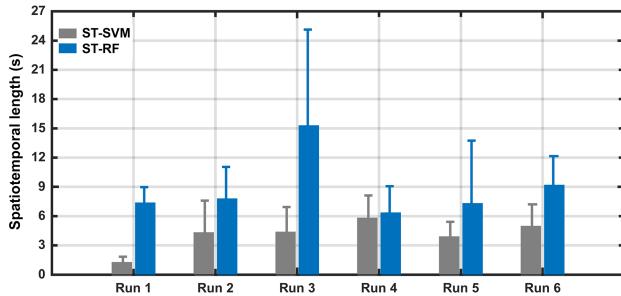
559

560 3.4. Temporal length in best SpatioTemporal combinations

561 The top ten accurate ST combinations were from the beginning half intervals (i.e. ~ the
562 20th TR) (with the exception of run 5). The ST-RF with highest overall prediction
563 accuracy always contained the peak of HRF across the six runs (the 10th TR). Using ST-
564 SVM, in run 5, an unexpected temporal region appeared to be most informative (around
565 40th TR). Similarly, using ST-RF in runs 3 and 5 the later temporal domain seemed to be
566 informative.

567 The most accurate ST-SVMs are no longer than 19 TR and are mainly short in duration
568 across runs (Figure 9). The lengths of ST-RF across the top 1% trials (top ten ST
569 combinations) were longer than ST-SVM on average across cross-validation runs. The
570 measured duration was ~9s for RF and ~5s for SVM.

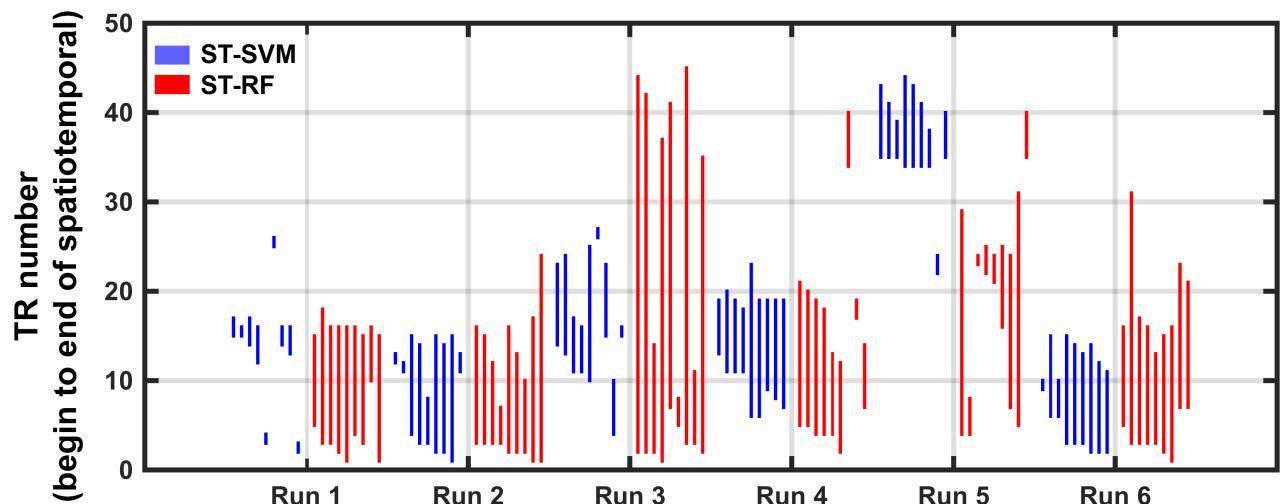
571



572 **Figure 8. Temporal length of the top ten SpatioTemporal (ST) combinations.** Bars
573 indicate the mean and standard deviation of temporal length for ST combinations with
574 highest overall prediction accuracy (top ten ST combinations of each run are considered).

575

576



577 **Figure 9. Temporal duration in the top ten SpatioTemporal (ST) trials across six**
578 **runs.** Blue and red lines show the time duration of the ST combination with the top 10
579 highest prediction accuracy for overall category using SVM and RF, respectively. Each
580 line indicates the start and end point of the ST combination.

581

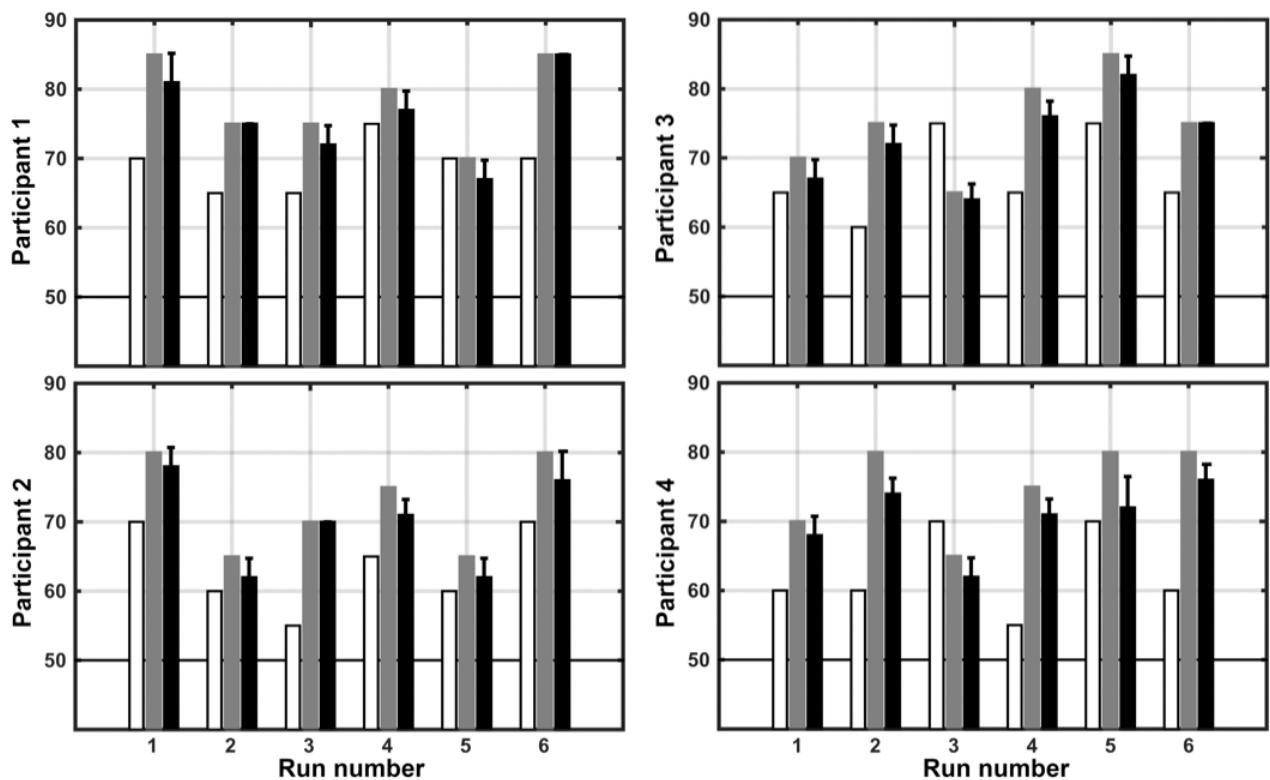
582 3.5. Replicability of the SpatioTemporal results

583 Consistent with our previous investigation in participant 1, ST resulted in higher
584 prediction accuracy in almost all runs across other participants, compared with single TR
585 technique. The average values of top five prediction accuracies from ST combinations
586 were close to the highest performance, with a small standard deviation (Figure 10). Table

587 2 showed that the average classification accuracy of ST-RF technique was consistently
588 higher than single TR-RF in four participants across cross-validation runs.

589 Note that in some cases both single TR and ST settings resulted in poor classification
590 accuracies (e.g. run 2 and 5 of participant 2). Monitoring the skin conductivity (not
591 included here) showed different level of conductance in the aforementioned runs,
592 suggested that the poor performances were most likely due to the decreased engagement
593 of the participant. Note that in some cases the ST combination resulted in a dominant
594 improvement in the prediction accuracy, which was not observed in participant 1. For
595 example, in run 4 of participant 4, ST resulted in 20% improvement of prediction
596 accuracy, compared with 55% prediction accuracy in single TR.

597 Using RF classifier, the highest overall performance of participant 1, when the first 11
598 seconds after the stimuli onset was utilized (Figure 10), was similar to when all 25
599 seconds were used in Figure 2, except for runs 2 and 5. This finding indicates that there is
600 temporal information in between 11 seconds until 25 seconds from the stimulus onset that
601 assist on increasing the MVPC performance.



602

603 **Figure 10. Highest classification accuracy of single TR versus SpatioTemporal (ST)**
604 **technique across 4 participants.** Overall accuracy of single TR classification is
605 compared with ST technique using random forest (RF) classifier (RF-ST). White bar
606 demonstrates the overall performance of the single TR classification. Grey bar
607 demonstrates the highest classification accuracy using RF-ST technique considering only
608 at the first 11 seconds from the stimuli onset. Black bar shows the mean and standard
609 deviation of top five prediction accuracies within the aforementioned temporal domain.

610

611 **Table 2. Average classification accuracy of highest single TR, SpatioTemporal (ST)**
612 **technique in 4 participants across cross-validation runs.** Average overall accuracy of
613 top single TR classification, top five ST technique, using random forest (RF) classifier
614 (rows) across four participants (in columns).

	Participant 1	Participant 2	Participant 3	Participant 4
Single TR	69.16	63.33	67.5	62.5
ST	78.33	72.5	75	75

615

616

617 **4. Discussion**

618 The effect of ST feature selection on brain decoding was investigated in this study and
619 the obtained prediction accuracies were compared with those obtained using the single
620 TR approach. When considering the single TR scenario, the best decoding performance
621 was achieved using single time point data around the HRF peak. Using ST feature
622 selection, the best sensitivity to each stimulus was 90% or higher that was higher on
623 average than single TR across all cross-validation runs (see ST-RF results in Figure 2B–
624 C). A multi-band EPI pulse sequences was utilized, providing high temporal resolution,
625 which enables rigorous exploration of the temporal domain.

626

627 **4.1. ST features versus single TRs**

628 Results of this study showed that on average, ST feature selection led to higher prediction
629 accuracy compared to the single TR observation. The effect of including the whole ISI
630 (25 seconds) was investigated on the performance of MVPC and the results show that the

631 ten best performing ST combinations do not include the whole ISI (Figures 8 and 9).
632 Furthermore, the highest prediction accuracies were gained with ST combinations that
633 include time points around the peak of the HRF (ST combinations containing from ~2–11
634 seconds after the stimuli onset). The discriminative power that was gained from ST
635 combinations within this range was even higher than those combinations containing the
636 entire trial of 25 seconds (used in (Fogelson et al., 2011)). The same conclusion was
637 made when the influence of each time point on the ST combinations was assessed.

638 In some ST combinations that did not have stimuli specific BOLD activities, the
639 performances of the classifiers were lower than chance. On these cases the classification
640 optimizer fails to diverge, which results to a failure in classification in a systematically
641 biased way. Particularly, when the training data is extremely noisy (in this case, un-
642 informative temporal features) the classification may fit the model to noise and cause a
643 bias.

644 Findings in this section complied with the strategy used in a recent study where MVPC
645 was employed to decode individual finger movements (Shen et al., 2014). The feature
646 vector was constructed using two successive volumes in the image series for a trial
647 corresponding to the duration close to the peak of the HRF in the studied ROI. Later, the
648 two successive volumes were concatenated to construct spatial-temporal feature vectors
649 (Shen et al., 2014).

650

651 4.2. Comparison between SVM and RF

652 Based on the findings in this study, compared to the SVM, RF performs better in MVPC
653 using ST feature selection. RF led to higher prediction accuracy compared to the SVM
654 and showed more consistency across stimuli and runs. No consistent pattern was
655 observed across SVM results from ST combinations. In addition, ST combinations with
656 the highest prediction accuracy from the RF classifier were always longer than those
657 from the SVM (Figure 8-9), suggesting that RF benefits more from temporal information
658 encoded in ST embedding than does the SVM. In general, RF led to higher prediction
659 accuracies across stimuli and runs compared with the SVM, regardless of utilization of
660 ST feature selection.

661 While SVM algorithms are computationally stable, generalize well, and have been
662 applied successfully to fMRI data (LaConte, Strother, Cherkassky, Anderson, & Hu,
663 2005), for MVPC with ST feature selection, RF outperformed SVM. The superiority of
664 RF was also reported by Douglas et al. (Douglas et al., 2011) for the conventional case of
665 MVPC analyses. One possible reason for this dominance could be that RF has greater
666 power for handling high-dimensional data compared with SVM. RF holds a unique
667 advantage by employing multiple feature subsets, which is well suited for high-
668 dimensional data. This robustness of RF is largely due to the relative insensitivity of
669 misclassification cost to the bias and variance of the probability estimates in each tree
670 (Hastie, Tibshirani, & Friedman, 2009). In principle, SVMs should be highly resistant to
671 over-fitting but in practice this depends on the careful choice of regularization parameter
672 and the kernel parameters. However, over-fitting can also occur quite easily when tuning
673 the hyper-parameters (Hastie et al., 2009).

674 4.3. HRF peak jittering and temporally averaged BOLD signals

675 The results of this study were compared with the highest prediction accuracy that was
676 obtained using the single TR around the peak of the HRF. A temporal range was
677 considered around the peak of the HRF, rather than the canonical peak. Time point by
678 time point, MVPC showed that the peak of classification accuracy is around the peak of
679 the region-average HRF (Kohler et al., 2013); in some regions prior to and in some
680 regions after the region-average HRF peak. By performing the comparison against the
681 highest prediction accuracy around the peak (based on the findings of Kohler et al.
682 (Kohler et al., 2013)), ST-based results are compared against those from the state-of-the-
683 art approaches. It would be interesting to investigate the hypotheses in this experiment
684 applied to other brain regions.

685

686 4.4. High decoding accuracy at the end of ISI

687 The provided classification weight vectors from ST-based input data identifies when
688 class-discriminating information arises, indicated by the TR influence index (Figure 6).
689 Using RF, the tri-second average TR influence index in the first part of the trials in the IT
690 conformed to the temporal pattern in the canonical double gamma HRF. In addition to the

691 time around the peak of HRF, high temporal influence was observed around 23 seconds
692 after stimuli onset. The time at which this observation occurred is around the time when
693 negative undershoot is almost passed according to the canonical double gamma HRF
694 (Friston et al., 1994). The participant's task in this study was to perform a one back
695 repetition detection task from trial to trial. For each trial the participant attempts to retain
696 in their memory details of the stimuli introduced in that trial, and then waits for the next
697 trial in which they perform the one back repetition detection task. Category expectation
698 was found to be affecting the baseline and stimulus evoked activity in IT (Puri,
699 Wojciulik, & Ranganath, 2009). Expectation was reported to be related to a degree of
700 certainty about an upcoming stimulus (Cisek & Kalaska, 2010), meaning that if a certain
701 stimulus category has a high probability of appearance, preparatory processes of
702 expectation can facilitate its detection and the associated responses (Cisek & Kalaska,
703 2010). It was reported that the baseline activity level in subcortical regions in IT (FFA
704 and PPA) was higher during expectation of the preferred (e.g. face for FFA) versus non-
705 preferred category (Egner, Monti, & Summerfield, 2010; Herwig, Abler, Walter, & Erk,
706 2007; Puri et al., 2009). Therefore, a high chance of correspondence exists between the
707 high discrimination power in the 23rd second of the trial, and the expectation mechanism
708 in IT. Observing such an effect in the TR influence highly depends on the experimental
709 design, brain region, the task, and the inter stimulus interval. Note that the influence of
710 the TRs suspected to be related to expectation was much lower than the TRs around the
711 peak of the HRF. The latter finding invites further investigations on the effect of category
712 expectation using MVPC.

713

714 4.5. Improved performance across participants

715 In this study, a rigorous investigation was performed on the effect of ST feature selection
716 on the MVPC performance for one of the participants. Later, the analysis conclusion was
717 validated on the rest of the participants. Participant 1 was chosen as the subject for a
718 detailed comparison as the MVPC performance in single TR for participant 1 was overall
719 higher than other subjects of this study. For the other participants, only the first 11
720 seconds of each trial were utilized to investigate the effect of ST feature selection. This

721 time interval was also employed for stimuli design in a previous study (Kohler et al.,
722 2013), and our initial investigations recommended that this temporal range embraces
723 highly decodable dynamics. All other 990 ST combinations were derived for each of the
724 4 participants. Of course, higher prediction accuracy than what is reported (Figure 10)
725 might have been obtained if the entire temporal domain was considered (e.g. comparing
726 ST-RF results in Figure 1A and Figure 10A). But here, our aim was to show that even
727 within this range an improvement in prediction accuracy could be obtained by the use of
728 ST feature selection.

729

730 4.6. Implications of temporal feature selection on brain decoding

731 Brain decoding not only allows for combinational effects across voxels, but also has
732 applications in brain-computer interfacing (Davis & Poldrack, 2013; Van De Ville & Lee,
733 2012). However, due to the challenges related to sensitivity and specificity, clinical
734 justification has not fully been achieved yet. But an improved brain decoding technique
735 can hasten the transition time of MVPC from laboratory to clinic.

736 The findings of this study open the way for further investigations into the understanding
737 of category learning dynamics, where the stimuli space will change over time as a result
738 of learning (Davis & Poldrack, 2013). A potential application of incorporating our ST
739 approach into MVPC would be to see if by embedding the dynamic patterns, the time at
740 which the brain starts shaping a motor decision and unconscious mental processes could
741 be decoded in a shorter temporal duration (Soon, Brass, Heinze, & Haynes, 2008). Our
742 observations have methodological implications for selecting the time at which to perform
743 classification analyses. Throughout IT there can be systematic differences in the temporal
744 dynamics of classification accuracy that could be investigated by ST embedding.
745 However, it remains to be seen as to whether these findings will generalize to other areas
746 and other stimuli.

747 One of the limitations of MVPC studies is the reported weak correlation of inter-subject
748 and intra-subject measured fMRI responses to the same stimuli (Chen et al., 2014). In
749 addition, it is challenging to establish a correspondence between selected voxels/ROIs
750 across participants in a dataset. A challenge in this study was to tax the subject's attention

751 considering our long ISI. It is desirable to create an experiment design that required the
752 subjects to spend less time inside the scanner and to watch stimuli for as long as time
753 allows (Franklin, 2012). However, the aim of this study was to investigate a wide range
754 of temporal information, which can lead to such ISI design.

755 While improvement was gained on average by utilizing ST feature selection, no specific
756 combination consistently outperformed others across runs and participants. This provides
757 a motivation for the future direction of our investigation on brain decoding using ST
758 feature selection, and that is to find a systematic optimum way to extract ST features.

759 In conclusion, on average the ST feature selection led to higher classification
760 performance compared with single TR observation. This study explored the temporal
761 domain and found that the discriminative power increased when time points around the
762 peak of the HRF were included in the ST combination. In particular, ST combinations
763 taken from between ~2–11 seconds after the stimuli onset outperformed the rest of the ST
764 combinations (including those combinations containing the entire trial, i.e. the whole trial
765 embedded ST). Our assessment of the importance of time points in ST combinations
766 confirmed the latter conclusion about the most important time points. Based on the
767 evaluation criteria of this study (MVPC prediction performance and the conforming
768 temporal pattern in TR influence index with canonical double gamma HRF), the findings
769 in this study suggest RF as the classifier of choice over SVM for brain decoding using ST
770 feature selection. RF led to higher prediction accuracy, and showed more consistency
771 across stimuli and runs. RF also benefits more from ST information compared with SVM
772 (the length of the highest performance ST combination was always longer with RF than
773 with SVM).

774

775 **Acknowledgement**

776 This work was support by W.M. Keck Foundation, National Institute of Health
777 (5T90DA022768), and by Staglin Center for Center for Cognitive Neuroscience.
778 Choupan J. was supported by University of Queensland International PhD Scholarship.

779

780

781 **References:**

782

783 Akama, H., Brian Murphy, L. N., Shimizu, Y., & Poesio, M. (2012). Decoding semantics
784 across fMRI sessions with different stimulus modalities: a practical MVPA study.
785 *Frontiers in Neuroinformatics*, 6.

786 Auerbach, E. J., Xu, J., Yacoub, E., Moeller, S., & Uğurbil, K. (2013). Multiband
787 accelerated spin-echo echo planar imaging with reduced peak RF power using time-
788 shifted RF pulses. *Magnetic Resonance in Medicine*, 69(5), 1261–1267.

789 Bode, S., & Haynes, J.-D. (2009). Decoding sequential stages of task preparation in the
790 human brain. *NeuroImage*, 45(2), 606–613.

791 Brainard, D. H. (1997). The psychophysics toolbox. *Spatial Vision*, 10, 433–436.

792 Breiman, L. (2001). Random forests. *Machine Learning*, 45(1), 5–32.

793 Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. *Data
794 Mining and Knowledge Discovery*, 2(2), 121–167.

795 Chen, M., Han, J., Hu, X., Jiang, X., Guo, L., & Liu, T. (2014). Survey of encoding and
796 decoding of visual stimulus via fMRI: an image analysis perspective. *Brain Imaging
797 and Behavior*, 8(1), 7–23.

798 Choupan, J., Gal, Y., Reutens, D. C., & Yang, Z. (2014). The effect of temporal
799 observation selection on the prediction of visual stimulus from block design
800 functional MRI (pp. 25–28). Presented at the Biomedical Imaging (ISBI), 2014 IEEE
801 11th International Symposium on, IEEE.

802 Chu, C., Mourão-Miranda, J., Chiu, Y.-C., Kriegeskorte, N., Tan, G., & Ashburner, J.
803 (2011). Utilizing temporal information in fMRI decoding: classifier using kernel
804 regression methods. *NeuroImage*, 58(2), 560–571.

805 Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of
806 action choices. *Annual Review of Neuroscience*, 33, 269–298.

807 Cohen M. S. (1997). Parametric analysis of fMRI data using linear systems methods.
808 *Neuroimage*, 6(2), 93-103. PubMed PMID: 9299383.

809 Davis, T., & Poldrack, R. A. (2013). Measuring neural representations with fMRI:
810 practices and pitfalls. *Annals of the New York Academy of Sciences*, 1296(1), 108–
811 134.

812 Douglas, P. K., Harris, S., Yuille, A., & Cohen, M. S. (2011). Performance comparison of
813 machine learning algorithms and number of independent components used in fMRI
814 decoding of belief vs. disbelief. *NeuroImage*, 56(2), 544–553.

815 Egner, T., Monti, J. M., & Summerfield, C. (2010). Expectation and surprise determine
816 neural population responses in the ventral visual stream. *The Journal of
817 Neuroscience*, 30(49), 16601–16608.

818 Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR:
819 A library for large linear classification. *The Journal of Machine Learning Research*,
820 9, 1871–1874.

821 Fogelson, S. V., Kohler, P. J., Hanke, M., Halchenko, Y. O., Haxby, J. V., Granger, R.
822 H., & Peter, U. T. (2011). STMVPA: Spatiotemporal multivariate pattern analysis
823 permits fine-grained visual categorization. *Journal of Vision*, 11(11), 814–814.

824 Formisano, E., De Martino, F., & Valente, G. (2008). Multivariate analysis of fMRI time
825 series: classification and regression of brain responses using machine learning.
826 *Magnetic Resonance Imaging*, 26(7), 921–934.

827 Franklin, J. (2012). The elements of statistical learning: data mining, inference and
828 prediction. *The Mathematical Intelligencer*, 27(2), 83–85.
829 <http://doi.org/10.1007/BF02985802>

830 Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R.
831 S. (1994). Statistical parametric maps in functional imaging: a general linear
832 approach. *Human Brain Mapping*, 2(4), 189–210.

833 Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson,
834 J. L., et al. (2013). The minimal preprocessing pipelines for the Human Connectome
835 Project. *NeuroImage*, 80, 105–124.

836 Handwerker, D. A., Ollinger, J. M., & D'Esposito, M. (2004). Variation of BOLD
837 hemodynamic responses across subjects and brain regions and their effects on
838 statistical analyses. *NeuroImage*, 21(4), 1639–1651.

839 Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning
840 (Second). New York, NY: Springer New York. <http://doi.org/10.1007/978-0-387-84858-7>

841 Haufe, S., Meinecke, F., Görzen, K., Dähne, S., Haynes, J.-D., Blankertz, B., &
842 Bießmann, F. (2014). On the interpretation of weight vectors of linear models in
843 multivariate neuroimaging. *NeuroImage*, 87, 96–110.

844 Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P.
845 (2001). Distributed and overlapping representations of faces and objects in ventral
846 temporal cortex. *Science*, 293(5539), 2425–2430.

847 Haynes, J.-D. (2015). A Primer on Pattern-Based Approaches to fMRI: Principles,
848 Pitfalls, and Perspectives. *Neuron*, 87(2), 257–270.

849 Herwig, U., Abler, B., Walter, H., & Erk, S. (2007). Expecting unpleasant stimuli—an
850 fMRI study. *Psychiatry Research: Neuroimaging*, 154(1), 1–12.

851 Jaitalil, A. (2009). Classification and regression by randomforest-matlab. *URL*
852 <Http://Code. Google. Com/P/Randomforest-Matlab>.

853 Kohler, P. J., Fogelson, S. V., Reavis, E. A., Meng, M., Guntupalli, J. S., Hanke, M., et
854 al. (2013). Pattern classification precedes region-average hemodynamic response in
855 early visual cortex. *NeuroImage*, 78, 249–260.

856 Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., et al. (2008).
857 Matching categorical object representations in inferior temporal cortex of man and
858 monkey. *Neuron*, 60(6), 1126–1141.

859 LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector
860 machines for temporal classification of block design fMRI data. *NeuroImage*, 26(2),
861 317–329.

862 Misaki, M., Luh, W.-M., & Bandettini, P. A. (2013). The effect of spatial smoothing on
863 fMRI decoding of columnar-level organization with linear support vector machine.
864 *Journal of Neuroscience Methods*, 212(2), 355–361.

865 Moeller, S., Yacoub, E., Olman, C. A., Auerbach, E., Strupp, J., Harel, N., & Uğurbil, K.
866 (2010). Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using
867 partial parallel imaging with application to high spatial and temporal whole-brain
868 fMRI. *Magnetic Resonance in Medicine*, 63(5), 1144–1153.

869 Mourao-Miranda, J., Friston, K. J., & Brammer, M. (2007). Dynamic discrimination
870 analysis: a spatial–temporal SVM. *NeuroImage*, 36(1), 88–99.

871 Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI:
872

873 a tutorial overview. *NeuroImage*, 45(1), S199–S209.

874 Pilgrim, L. K., Fadili, J., Fletcher, P., & Tyler, L. K. (2002). Overcoming confounds of
875 stimulus blocking: an event-related fMRI design of semantic processing.
876 *NeuroImage*, 16(3), 713–723.

877 Puri, A. M., Wojciulik, E., & Ranganath, C. (2009). Category expectation modulates
878 baseline and stimulus-evoked activity in human inferotemporal cortex. *Brain*
879 *Research*, 130(1), 89–99.

880 Ranganath, C., DeGutis, J., & D'Esposito, M. (2004). Category-specific modulation of
881 inferior temporal activity during working memory encoding and maintenance.
882 *Cognitive Brain Research*, 20(1), 37–45.

883 Rao, A. R., Garg, R., & Cecchi, G. A. (2011). A spatio-temporal support vector machine
884 searchlight for fMRI analysis. *Biomedical Imaging: From Nano to Macro* ..., 1023–
885 1026. <http://doi.org/10.1109/ISBI.2011.5872575>

886 Ritter, C., Hebart, M. N., Wolbers, T., & Bingel, U. (2014). Representation of spatial
887 information in key areas of the descending pain modulatory system. *The Journal of*
888 *Neuroscience*, 34(13), 4634–4639.

889 Sapountzis, P., Schluppeck, D., Bowtell, R., & Peirce, J. W. (2010). A comparison of
890 fMRI adaptation and multivariate pattern classification analysis in visual cortex.
891 *NeuroImage*, 49(2), 1632–1640.

892 Setsompop, K., Gagoski, B. A., Polimeni, J. R., Witzel, T., Wedeen, V. J., & Wald, L. L.
893 (2012). Blipped-controlled aliasing in parallel imaging for simultaneous multislice
894 echo planar imaging with reduced g-factor penalty. *Magnetic Resonance in Medicine*,
895 67(5), 1210–1224.

896 Shen, G., Zhang, J., Wang, M., Lei, D., Yang, G., Zhang, S., Du, X., 2014. Decoding the
897 individual finger movements from single-trial functional magnetic resonance imaging
898 recordings of human brain activity. *European Journal of Neuroscience* 39, 2071–
899 2082.

900 Soon, C. S., Brass, M., Heinze, H.-J., & Haynes, J.-D. (2008). Unconscious determinants
901 of free decisions in the human brain. *Nature Neuroscience*, 11(5), 543–545.

902 Sotropoulos, S. N., Moeller, S., Jbabdi, S., Xu, J., Andersson, J. L., Auerbach, E. J., et al.
903 (2013). Effects of image reconstruction on fiber orientation mapping from
904 multichannel diffusion MRI: Reducing the noise floor using SENSE. *Magnetic*
905 *Resonance in Medicine*, 70(6), 1682–1689.

906 Strayer, D. L., & Kramer, A. F. (1994). Strategies and automaticity: II. Dynamic aspects
907 of strategy adjustment. *Journal of Experimental Psychology: Learning, Memory, and*
908 *Cognition*, 20(2), 342.

909 Van De Ville, D., & Lee, S.-W. (2012). Brain decoding: Opportunities and challenges for
910 pattern recognition, 45(6), 2033–2034.

911 Vapnik, V. N. (2000). The nature of statistical learning theory. *Statistics for Engineering*
912 *and Information Science*. *Springer-Verlag, New York*.

913 Waskom, M. L., Kumaran, D., Gordon, A. M., Rissman, J., & Wagner, A. D. (2014).
914 Frontoparietal representations of task context support the flexible control of goal-
915 directed cognition. *The Journal of Neuroscience*, 34(32), 10743–10755.

916 Xu, J., Moeller, S., Auerbach, E. J., Strupp, J., Smith, S. M., Feinberg, D. A., et al.
917 (2013). Evaluation of slice accelerations using multiband echo planar imaging at 3T.
918 *NeuroImage*, 83, 991–1001.

