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43 Abstract

44  The importance of spatiotemporal feature selection in fMRI decoding studies has not
45  been studied exhaustively. Temporal embedding of features allows the incorporation of
46  brain activity dynamics into multivariate pattern classification, and may provide enriched
47  information about stimulus-specific response patterns and potentially improve prediction
48 accuracy. This study investigates the possibility of enhancing the classification
49  performance by exploring spatial and temporal (spatiotemporal) domain, to identify the
50 optimum combination of the spatiotemporal features based on the classification
51 performance. We investigated the importance of spatiotemporal feature selection using a
52 slow event-related design adapted from the classic Haxby et al. (2001) study. Data were
53  collected using a multiband fMRI sequence with temporal resolution of 0.568 seconds. A
54  wide range of spatiotemporal observations was created as various combinations of
55  spatiotemporal features. Using both random forest, and support vector machine,
56 classifiers, prediction accuracies for these combinations were then compared with the
57  single time-point spatial multivariate pattern approach that uses only a single temporal
58 observation. The results showed that on average spatiotemporal feature selection
59  improved prediction accuracy. Moreover, the random forest algorithm outperformed the
60  support vector machine and benefitted from temporal information to a greater extent. As
61  expected, the most influential temporal durations were found to be around the peak of the
62  hemodynamic response function, a few seconds after the stimuli onset until ~4 seconds
63 after the peak of the hemodynamic response function. The superiority of spatiotemporal
64  feature selection over single time-point spatial approaches invites future work to design
65  systematic and optimal approaches to the incorporation of spatiotemporal dependencies
66 into feature selection for decoding.

67
68
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69 1. Introduction

70  In conventional univariate functional Magnetic Resonance Imaging (fMRI) analysis, the
71  objective is to find brain regions that show reproducible activation with the repetition of
72 specific experimental conditions (Friston et al., 1994). In contrast, in Multi-Variate
73  Pattern Classification (MVPC) approaches, the pattern of responses across multiple brain
74  voxels that together carry information about different experimental conditions is sought
75  (Haxby et al., 2001). In MVPC, the functional relationship between across-voxel patterns
76  of activation and the experimental conditions is modeled using discriminative pattern
77  recognition techniques; the experimental conditions are then predicted from the fMRI

78  signal (see (Haynes, 2015) review of MVPC).

79 A potential advantage of the MVPC approach over classical univariate analysis methods
80 s that a fixed HRF model does not need to be assumed or estimated. However, this
81  benefit from MVPC is yet to be realized fully because event-related decoding studies
82  generally extract features at fixed temporal delays, which are themselves determined

83  based on a canonical HRF, following the stimulus onset (e.g. Douglas et al. (2011)).

84  Even in the context of block designs, it may be critically important to take into account
85  fMRI temporal dynamics in addition to multivariate spatial information in MVPC. There
86  is strong temporal correlation in the fMRI time series, especially due to the delay and
87  smoothing from the HRF. Mourao-Miranda et al. (2007) studied the temporal dynamics
88  for MVPC by training and testing a classifier using all temporally contiguous acquisitions
89  in each block, effectively treating time as spatial information, to produce SpatioTemporal
90  (ST) signals. They found a localized peak of response in the amygdala only at a specific
91 time point in the block suggesting that temporal averaging of fMRI activity in a block
92  (i.e. assuming that hemodynamic responses to the same stimulus are a stationary process)
93 averaged out the effect of specific discriminating times in specific regions, and ignored

94  the temporal profiles caused by the hemodynamic response.

95 One study investigated the effect of entire-trial ST temporal embedding on MVPC
96 accuracy of slow event-related fMRI data (Fogelson et al., 2011). It was found that the
97  accuracy of classification using ST-embedded fMRI data (i.e. entire-trial ST embedding)

98 is higher than using individual, temporally distinct spatial-only observations (In the
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99  current study the aforementioned technique is referred to as single TR observations). ST
100 embedding was also investigated for another type of stimulus classification in (Rao,
101  Garg, & Cecchi, 2011) applying the same methods discussed by Fogelson and colleagues
102  (Fogelson et al., 2011). Another study investigated the variability of temporal dynamic
103  classification performance across single TR observations within the slow event-related
104 trails (Kohler et al., 2013). Their timepoint-by-timepoint MVPC showed that the peak of
105 classification accuracy was around the peak of region-average HRF; in some regions
106  prior to and in some regions after the region-average HRF peak. However, it was not
107  clear whether all of the temporal dynamics of a voxel activity within a trial carry stimulus

108  specific information.

109  On the other hand, most of the multivariate pattern recognition based studies applied to
110  fMRI data, modeling the pairwise relationship between the brain activity at separate time
111  points and the experimental condition. Although considering the shape of HRF for
112  modeling brain activity, they assign the same stimulus label to the dynamic brain
113  response that is changing over time. The temporal dynamics of the BOLD signal to
114  stimuli of different classes, and within different brain regions are very likely different
115 (Chuetal., 2011; Kohler et al., 2013). Not considering such these differences may reduce

116 the sensitivity of the classifier and reduce the decoding accuracy.

117 ST feature selection of fMRI finds the time points that carry the highest condition
118  specific information for MVPC (Choupan et al., 2014). The effect of ST feature selection
119 initially was tested on a block-design experiment (Choupan et al., 2014). We (Choupan et
120  al., 2014) found that ST feature selection could improve prediction accuracy even on a
121  block-design experiment. To study ST feature selection thoroughly, however, a slow
122 event-related design is preferred because it provides a “cleaner” temporal pattern in
123 which the neural response is less affected by the temporal overlapping of consecutive
124  stimuli responses that occurs in block or rapid event-related design. Particularly when the
125 BOLD signal is allowed to return to baseline before the next stimulus is presented. In
126  comparison to block designs, by randomizing condition/stimuli order, slow event-related
127  experiments minimize effects of strategy expectation and cognitive set (which affect the
128  temporal dynamics) (Pilgrim, Fadili, Fletcher, & Tyler, 2002; Strayer & Kramer, 1994).

129  In addition, slow event-related designs reduce the neuronal habituation that has been
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130  shown to alter the results of MVPC in block design experiments (Choupan et al., 2014;
131  Mourao-Miranda, Friston, & Brammer, 2007; Sapountzis, Schluppeck, Bowtell, &
132 Peirce, 2010).

133  Following the previous works, this study is based on the hypothesis that by embedding
134  the temporal dynamics provided by fMRI into the process of multivariate brain pattern
135  recognition, more information contained in the BOLD signal can be utilized compared
136  with single TR methods, leading to a potential improvement in the prediction
137  performance. In particular, we predicted that not all of the temporal dynamics of voxels
138  within the trial are informative for the MVPC, and that a shorter sequence of time points
139  might still possess the most discriminative activity across stimulus conditions, possibly
140  around the peak of the HRF (Akama, Brian Murphy, Shimizu, & Poesio, 2012;
141  Formisano, De Martino, & Valente, 2008; Kohler et al., 2013). Therefore, this study
142  presents an investigation of the MVPC performance of ST feature selection using

143  different sequences of ST combinations.

144  On a dataset acquired with a CMRR multi-band EPI pulse sequences at a high temporal
145  resolution of 0.568 seconds in a binary slow event-related design (inter-stimulus interval
146  of ~25 seconds), using stimuli from the classic Haxby et al. (2001) experiment, we
147  assessed the prediction accuracy of 990 ST combinations. Our findings show that on
148  average, ST feature selection led to improved classification performance. Furthermore,
149  the discriminative power increased when time points around the peak of the HRF were

150 included in the ST combination.
151

152 2. Materials and Methods

153  2.1. Participants

154  Four right-handed healthy adult volunteers (ages 28, 30, 31, and 32; two of them were
155  females) participated in this study. None had a medical history of psychiatric disorder, as
156  assessed by self-report. Written informed consent, approved by the University of
157  California, Los Angeles Institutional Review Board, was obtained from each participant

158  prior to the experiment. The heart rate and skin conductivity of participants were
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159  recorded and monitored throughout the experiment.
160
161  2.2. Experimental design

162  The task paradigm was implemented in MATLAB (Mathworks, Inc.) using the
163  Psychophysics Toolbox, Version 3.0 (Brainard, 1997). Stimuli were projected onto a
164  screen behind the scanner bore which participants watched through a mirror installed on
165  the head coil. Participants engaged in six 11-minute fMRI scans. Each run consisted of
166 twenty slow event-related trials, yielding a total of 120 trials per participant. During each
167  fMRI run, participants viewed 10 pictures of human faces (five were females) and 10
168  pictures of houses. The pictures, which were borrowed from publicly available stimulus
169  set used in the Haxby and colleagues paper (Haxby et al., 2001), were displayed in
170 random order, different for each subject and trial. In each trial, participants viewed a
171  single stimulus picture for 500 ms, which was always followed by an inter-stimulus
172  interval of 25s (the stimulus onset times were jittered at each trial to avoid anticipatory
173  brain activations). In each run, three random trials were followed by their content
174  photographed from different angle. We asked the participants to perform a one-back
175  repetition detection task. The participants were provided with an MRI compatible button
176  box to indicate their responses. In the case of similar consecutive trials (identical re-
177  oriented pictures), participants were instructed to press the right button of the button box,
178  and the left button for the dissimilar pictures. The similar trials, which were employed
179  solely to ensure that subjects remained awake and engaged, were excluded from the
180  analysis. We chose a long Inter Stimulus Interval (ISI) of 25 seconds in considering the
181  standard double gamma HRF function characteristics (Friston et al., 1994) that requires
182  ~25 seconds for BOLD signal to get back to the baseline after observing a stimuli (Cohen
183 M. S, 1997).

184

185  2.3. Data acquisition
186  We acquired images were using the Siemens 3T Tim Trio scanner with a 32-channel head
187  coil at the Staglin Center for Cognitive Neuroscience at the University of California, Los

188  Angeles. The functional images were acquired with a CMRR multi-band EPI pulse
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189  sequences C2P, 010b (Auerbach, Xu, Yacoub, Moeller, & Ugurbil, 2013; Moeller et al.,
190  2010; Setsompop et al., 2012; Sotiropoulos et al., 2013; Xu et al., 2013) with multiband
191  acceleration factor of four, and phase encoding direction acceleration factor of 3 (referred
192  to as integrated-Parallel Acquisition-Techniques or iPAT factor in Siemens terminology)
193  yielding a net acceleration of 12 (4x3). In addition, in-plane rotation was set to 180-
194  degree, TR = 0.568 s, TE = 0.3 s, flip angle = 40°, 40 slices, 3x3x3mm, FOV = 192x192
195 mm (axial acquisition) covered the whole brain. SBRef data was collected, but not
196  utilized for pre-processing. No field map data was collected. This setting resulted in 45
197  TRs per trial. A high-resolution structural T1-weighted MPRAGE was acquired for each
198  participant (176 sagittal slices, 0.97x0.97 mm in-plane voxel resolution, 1 mm slice
199 thickness, matrix size = 256x256, FOV = 250x250x176 mm, TR = 1.9 s, TE = 2.26 s,
200  flip angle = 9°).

201
202  2.4. Data pre-processing

203  We pre-processed the functional images using Statistical Parametric Mapping software
204  (SPMS; http://www.fil.ion.ucl.ac.uk/spm). Because we used multi-band acquisition, no
205  slice-timing correction was applied (Glasser et al., 2013). Each fMRI volume was first
206  realigned to its mean image using the 4™ degree B-spline interpolation for head motion
207  correction. The anatomical volume was segmented to gray matter, white matter, and
208  cerebrospinal fluid. We registered the functional data from each run to the anatomical
209  volume, then spatially normalized the data into standard stereotaxic space with voxel size
210  of 2x2x2 mm?, using the Montreal Neurological Institute (MNI) template. Warping to
211  MNI was performed to assure that the input data for each subject has the same

212 size/dimension across subjects.

213  As recommended by Kohler (Kohler et al., 2013; Misaki, Luh, & Bandettini, 2013), we
214  applied no spatial smoothing.

215 At each separate fMRI run, we linearly-detrended the voxels time course to reduce the
216  effects of signal drifts during the course of fMRI experiment, then, we normalized the
217  detrended voxels time course across the entire run to zero mean and unit variance across

218  observations.
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219  Field map data was not collected at the time of data collection, and field map
220 inhomogeneity distortion correction was not performed. Regardless, visual inspection

221  showed that the fMRI images were registered to structural image with minimal distortion.
222
223 2.5. Region of interest

224 Our selection of the regions-of-interest (ROIs) was based on prior knowledge. Previous
225  studies have shown that inferior temporal (IT) gyrus exhibits category-specific responses
226  during perception of faces (in FFA) or scenes (in PPA) (Kriegeskorte et al., 2008;
227  Ranganath, DeGutis, & D'Esposito, 2004). Therefore, our analysis was restricted to
228  bilateral IT defined as in the AAL atlas in the WFU_PickAtlas MATLAB software
229  toolbox (http:/fmri.wfubmc.edu/software/PickAtlas). Functional images, and the ROI

230 mask, were defined in the MNI space, and the derived mask was applied to the
231  preprocessed functional images. In total there were 7547 voxels in IT, using

232  WFU_PickAtlas.

233  Training the classification algorithms on total number of voxels in IT in spatiotemporal
234  form was computationally intensive. Therefore, we decided to perform spatial feature
235  selection. Random Forest (RF) (Breiman, 2001) was utilized as a spatial feature selection
236  method to further reduce the size of the already masked data, discarding the voxels that
237  do not improve category specific classification. RF feature selection calculated the voxels
238 importance for the training data. Voxels importance was calculated based on the mean
239  error of bootstrap tree samples in the forest. During the bootstrapping procedure, the
240  voxel is randomly permuted in the Out Of Bag (OOB) cases. The aim of this permutation
241  1s to eliminate the existing association between voxels and the stimuli, and then to test the
242  effect of this elimination on the RF model among trees built on these bootstrap samples.
243 A voxel is considered to be in a strong association with the stimuli if the mean error

244  decreases.

245  For each subject, the spatial feature selection was applied on IT voxels (containing 7547
246  features), on 100 trials as training samples. 1000 trees were utilized to train the RF

247  model. After training, voxels in the top 1% of maximum OOB importance were selected,
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248  resulting 115 voxels for each subject. All subjects were registered to MNI space, which

249  results in same number of voxels after feature selection.
250
251  2.6. Spatiotemporal data representation

252 For each trial of fMRI, all possible ST combinations were defined from the data acquired
253 at all N = 45 TRs. In another word, for investigating the most informative temporal
254  features, the entire hemodynamic response temporal domain was searched for
255  voxels/features picked by RF feature selection. Assuming that the combination should
256  have at least 2 time points of voxels activity, and the combinations should be continues
257 and in ascending orders according to time, this representation led to obtaining in total
258  CJ°, 990 ST combinations for each fMRI run. The ST observations for each trial were

259  defined as
260 STap = [Va, Vasr, - Vil (D

261  where V; were the BOLD signals at volume i € {1,2,...,45},a=1,2,..,N—1,b =
262  2,3,..,N and a < b. Therefore, each ST,., was the result of concatenating voxels
263  activity in V,, ... V. Utilizing such a concatenation routine, the temporal information was
264  embedded together with the spatial information, forming an ST observation. The
265  prediction accuracies of entire cases were explored to investigate the informative duration
266  of BOLD signal for classification relative to the stimulus onset. The concatenation

267  process in ST is illustrated in Figure 1.

268 In a previous slow event-related decoding study, which investigated the temporal domain
269  effect on MVPC (Kohler et al., 2013), the inter-stimulus interval was around 11 seconds.
270  Therefore, an extra examination was performed to validate the effect of ST embedding on
271  overall prediction accuracy of all subjects in this study, using only the first 11 seconds

272 after the stimulus onset.
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274  Figure 1. Graphical illustration of data processing. The top row indicates the
275  preprocessing steps employed in this study. Spatiotemporal embedding is shown in the
276  dotted box, which involves concatenating the fMRI volumes, a through to b. Each 3D

277  cube is a symbolic fMRI volume. The bottom row illustrates the learning steps.
278
279  2.7.Single TR data representation

280  For comparison purposes, we used single TR spatial observation (utilizing the spatial
281 information acquired during one Time to Repeat or (TR)). The maximum accuracy of
282  single TR observation in slow event-related fMRI was reported to be around the peak of
283  HREF at ~5 seconds, but with a small jitter across regions (Kohler et al., 2013). The HRF
284  peak has also been found to be jittered across people (~ 4 to 7 seconds) (Handwerker,
285  Ollinger, & D'Esposito, 2004). Therefore, single TR classifications were performed for
286  all TRs in the above range (1 second before and 2 seconds after the HRF peak) and only
287  the highest performances were reported. This approach assured that our ST combinations

288  were compared with the highest performance of the single TR approach. It should be
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289  noted that the high temporal resolution of the acquired fMRI data allowed us to perform

290  this rigorous investigation.
291
292  2.8. Pattern classification

293  Multivariate brain pattern recognition was performed using the Princeton MVPA toolbox
294  (http://code.google.com/p/princeton-mvpatoolbox/). Support Vector Machine (SVM) is a
295  widely used classifier in the field of neuroimaging and MVPC applications (Bode &
296  Haynes, 2009; Kohler et al., 2013; Mourao-Miranda et al., 2007; Rao et al., 2011; Ritter,
297  Hebart, Wolbers, & Bingel, 2014; Waskom, Kumaran, Gordon, Rissman, & Wagner,
298  2014). Douglas et al. found that RF outperforms SVM in a binary classification of belief
299  vs. disbelief using fMRI data (Douglas, Harris, Yuille, & Cohen, 2011). Hence, in this
300 study the two classification algorithms RF and SVM were employed and compared. In
301 addition, the two classifiers allow the extraction of feature weight vectors, indicating
302  discrimination power. All analyses were performed using MATLAB software (V. 8.5
303 Mathworks, Inc.). MATLAB-based tools for RF (Jaiantilal, 2009) and linear SVM (Fan,
304 Chang, Hsieh, Wang, & Lin, 2008) were utilized. For SVM analyses the regularization
305 parameter that controls the trade-off between model fitting error and classification
306 accuracy, was set to 1 (Waskom et al.,, 2014). A leave one run out cross validation
307 (LOROCV) scheme was employed (Pereira, Mitchell, & Botvinick, 2009). In
308 experiments on both single TR and ST combinations, the fMRI data were divided into
309 training and test sets, training the classifier using five runs and testing on the sixth run.
310  This test was repeated 6 times, with each of the different runs serving once as a test set.
311  Finally the prediction accuracies were reported to quantify how accurately the classifiers

312  were able to distinguish between faces and houses.

313 SVM (Burges, 1998; Vapnik, 2000) was employed in similar temporal investigation
314  decoding studies (Kohler et al., 2013; Mourao-Miranda et al., 2007). The learning
315 process of SVM classifier finds the maximum-margin hyperplane that separates the
316 training data observations according to the class they belong (faces or houses in this
317  study). This hyperplane is orthogonal to the direction along which the training

318  observations of both classes differ most.
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319 Linear SVM training outputs a set of weights, one for each feature, whom their linear
320 combination predicts the value of stimuli categories. This weight vector allows
321 investigation on the discriminating power of features across stimulus categories. The
322  directions of the weight vectors are perpendicular to the separating hyperplane. A feature
323  with a positive weight value means that the feature has higher activity (discrimination
324  power) for stimuli 1 than stimuli 2 in the training examples. The weight patterns were

325  reconstructed according to (Haufe et al., 2014) by applying the following algorithm:
326 A=YxWEs' ©)

327  where, A is the reconstructed pattern, W is the weight vector, ).y is the n-by-p covariance
328 matrix of the data (with n voxels and p samples), and )5 is the source covariance,

329  definedas WT x X .

330 RF is an ensemble classifier that employs decision trees as base learners (Breiman,
331 2001). In this algorithm, training set observations is resampled (random redistribution,
332  with replacement) multiple times using bootstrap technique to produce multiple training
333  subsets. Decision trees are then created from each training subset, until all ensembles of
334  trees have been created. For predicting the label of an unseen testing observation at each
335 tree, the data is feed to the root of the tree, and goes down the tree following the splits
336 and falls into a terminal node. Each tree outputs the label in the terminal node. Final
337  predictions are assigned based on the majority voting on trees label decision. 1000 trees
338  were utilized for training the RF model, and the number of trees was selected based on

339  the stability of the OOB error rate to an asymptotic plateau.
340
341  2.9. Performance evaluation

342  Two criteria were employed to evaluate the performance of the classification at each
343  cross validation run: the overall prediction accuracy, and sensitivity to each stimulus, or
344  recall. Overall accuracy was calculated as the percentage of correctly classified trials at

345  each testing step. Sensitivity or true positive rate was measured as

True Positive

346 Sensitivity = 3)

(True Positive+False Negative)
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347  that is the number of correctly predicted positive instances over all positive instances.
348  When measuring sensitivities, the category of interest was considered as positive instance.
349  When comparing different techniques, the mean of derived cross-validation runs was
350 reported. We obtained the same results when looking at specificity (or precision).
351  Therefore, we only reported sensitivity for readability.

352

353  2.10. Analysis of single TR combinations results

354 In total, the ST and single TR methods were utilized with SVM and RF classifiers to
355 perform the analyses: ST-SVM, ST-RF, Single TR-SVM, and Single TR-RF. The best
356  performance of the entire ST combinations was compared with the best single TR
357 approach around the peak of HRF to investigate if ST embedding can improve the
358 classification. Then, the prediction accuracy of all ST combinations were plotted and
359  mapped to explore the most discriminating temporal duration for decoding. For all above
360 cases RF and SVM were compared with each other. The temporal duration of top
361 performed ST combinations were plotted to investigate which classifier benefits more
362  from temporal embedding, the longer the ST combination of top performed classification
363 is, indicates that the classifier benefits more from the temporal information compared

364  with the other classifier.

365  All aforementioned analyses were performed on participants 1. As a result of deriving the
366  important temporal duration across all ST combinations in participant 1, the duration was
367 employed to analyze best performance across all participants to investigate if a shorter
368 inter-stimulus interval, which is similar to previous work (Kohler et al., 2013), could still

369  provide higher prediction accuracy compare with Single TR technique.
370
371  2.11. TR influence index

372  This study investigated the influence of data acquired at each TR over the course of
373  fMRI, relative to the stimulus onset, on the classification performance for each stimulus
374  category across all 990 ST combinations. Firstly, the most discriminating ST features (i.e.,

375  the BOLD signal acquired at a TR in a voxel) in each ST combination were determined
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376  from the training results. When SVM was employed, on each stimulus side of the
377  hyperplane, the selected features were the top 1% ST features with the largest
378  reconstructed weight value. When RF was employed, the top 1% ST features with the
379 largest OOB importance were selected. Secondly, the presence of a given TR in all
380  selected ST features was counted as an indication of its influence on the classification
381  performance. Thirdly, the presence of a given TR was normalized by the total number of
382 times (P) that TR was presented in all 990 ST combinations. P is calculated as P =
383 T(N —T + 1) — 1, where T is the serial number of the given TR, ranging from 1 to 45,
384 and N is 45, the total number of TRs. This study calls this normalized value 7R influence
385  index.

386 BOLD signals measured via fMRI are very slow. A TR with high influence in a ST
387  combination window affects its neighbors not to be selected, until that TR is out of the
388 ST window. Therefore, for better representation the results were overlaid with the
389 maximum TR influence for tri-seconds interval. This time interval almost mimics the

390 temporal resolution of conventional fMRI sequence.
391
392 3. Results

393  3.1. Brain decoding based on spatiotemporal features versus spatial-only single time

394  point technique

395 The ST embedding based techniques resulted in higher cross-validated prediction
396 accuracy in comparison to single TR techniques. This improvement was consistent across
397  separate stimuli categories for the two studied classification methods. Table 1 showed
398 that on average, across six runs RF (over cross-validate accuracy of ST and single TR
399  techniques were 81.66 and 69.16, respectively) outperformed SVM (over cross-validate
400  accuracy of ST and single TR techniques were 78.33 and 58.33, respectively) overall, and
401 in separate stimuli specific evaluation. When looking at the stimulus-specific results
402  (Figure 2B-C), ST techniques showed higher sensitivity (19-25% higher). In particular,
403  ST-RF sensitivity to independent stimuli were always 90% or higher. Single TR SVM,
404  which is among the most popular techniques (Kohler et al., 2013; Mourao-Miranda et al.,
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405  2007), performed slightly higher than chance. However, by using ST-SVM, sensitivity to
406  independent stimuli were 80% or higher.

407  When looking at the best prediction outcome of different classifiers, we noticed that RF
408  outperformed SVM in most of the instances. The superiority was consistent across all
409  runs and categories, where RF results were almost always higher than SVM and ST-RF
410  results were always equal or higher than ST-SVM. It should be noted that here only the
411  highest achieved prediction accuracies and sensitivities were reported. Therefore, the
412  reported results in Figure 2 A, B and C are not from the same ST combination. It can be
413  seen that the overall accuracy is mainly lower than the highest accuracy achieved in

414  detecting either faces or houses.

415  Prediction accuracies of all possible ST combinations are demonstrated in Figure 3. In
416  this figure, all the 990 ST combinations are ordered next to each other in a way that the
417  early results are the ST combinations where the early time points are included in the ST
418  time window, and each immediate neighboring result is from the ST window expanded to
419 the next time point until it reaches to time point = 45. Note that by using ST embedding
420 technique, not all ST-RF combinations outperformed single TR-RF, and the classification
421  performance in many of the combinations are even lower than chance. While ST
422  embedding improves prediction accuracy in ST-RF compared to the Single TR-RF
423  (around canonical HRF peak), the improvement highly depends on the choice of ST
424  combination. For example, in ST-RF the accuracy was higher than Single TR-RF mainly
425  when early TRs in the first third of the time interval after the stimulus onset were
426 included. However, in the later combinations, which associated with combinations
427  containing the last third TRs in the trials, the performance of ST-RF was lower than
428  Single TR-RF. No consistent pattern was observed in the results of ST-SVM.

429  Figures 2 and 3 showed that across all runs Single TR-RF performs better than Single
430 TR-SVM. Single TR with RF classifiers was even as high as ST-SVM in most cases, but
431 not better than the best performing ST-SVMs.

432
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434  Figure 2. Best performance of each technique across six runs. (A) Overall accuracy of
435 single TR Support Vector machine (SVM) and Random Forest (RF), together with
436  SpatioTemporal SVM (ST-SVM) and ST-RF. For single TR, the canonical
437  Hemodynamic Response Function (HRF) peak with 1 second before and 2 seconds after

438  the peak was considered and the highest performance was reported. For ST techniques,
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439  the highest achieved prediction accuracy is illustrated. The red line indicates the chance
440 level accuracy (50%) for faces versus houses classification. Sensitivity in detecting faces

441  and houses are illustrated in (B) and (C), respectively.

442

443  Table 1. Average performance of each technique across six runs. Average
444  performance of single TR Support Vector machine (SVM) and Random Forest (RF),
445  together with Spatio-Temporal SVM (ST-SVM) and ST-RF (rows) across six cross-
446  validation run. Columns from left to right present the overall performance, accuracy on
447  predicting Face stimuli, and House stimuli, respectively.

SVM

58.33 66.66 66.66

RF 69.16 76.66 71.66

ST-SVM 78.33 91.66 86.66

448  STRF 81.66 95 93.33

449
450  3.2. Investigating discriminative temporal duration

451  In order to explore the most informative temporal duration using ST, all ST trials were
452  mapped in Figures 4 and 5. The two figures reflect a heatmap of the result space, and
453  show where, in temporal duration, high informative spatiotemporal combinations are
454  centered. The color distribution represents the strong and weak prediction accuracies.
455  Using ST-RF, a trend in prediction accuracy was observed (Figure 4). The high accuracy
456  was mainly concentrated in the left side of the maps, which is associated with ST
457  combinations that started at the early time points from stimuli onset. A noticeable drop in
458  prediction accuracies was seen when the beginning of ST-RF was 6s or later. In some
459  runs or categories, most of 45 TRs were included in the ST leading to high accuracy, but
460  their accuracy never exceeded the ST combinations S75.20, including TRs from ~2

461 seconds to ~11 seconds.
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Figure 3. Overall prediction accuracy of all possible spatiotemporal combinations
across six runs. Each box shows the prediction accuracy of 990 possible SpatioTemporal
(ST) combinations out of 45 TRs. The odd and even columns represent prediction
accuracies using Support Vector machine (SVM) and Random Forest (RF) classifiers,
respectively. Green line indicates the prediction chance (50%), and red line represents
performance of the single TR technique (around canonical HRF peak) of that run. The x-
axis shows the 990 ST combinations beginning with 1 TR (i.e. TRs: 1-2, 1-3, 14, ..., 1-
45) followed by all combinations starting with 2"d TR (i.e. TRs: 2-3, 2-4, 2-5, ..., 2-45)
and so forth. The 990" ST trial includes the 44" and 45" TRs.

Across all runs and categories, the prediction accuracy of ST combinations with end
points smaller than TR 5, e.g. ST1.4 or ST>:3, were around chance. These ST combinations
can be seen in the top left corner of the maps in Figure 4. As soon as the ST combination
started to include the preceding TRs, increased prediction accuracy was observed. In

quite a few instances, an increase in prediction accuracy was observed in the ST

1000

spatiotemporal trial number
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478  combinations including late TRs, which are around 20 seconds after stimulus onset. This
479  increase can be visualized as the hyperintensity patch in the right bottom corner of the
480  maps. The importance of individual TRs was further investigated, as illustrated in Figure

481 6 and 7.

482  As opposed to ST-RF, in ST-SVM there was no consistent pattern in the performance
483  across runs and categories. In addition, no specific interval with highest accuracy was
484  found. For example, in ST-SVM run 5, excluding the beginning time intervals leads to a
485 noticeable drop in overall performance (i.e. dark region in the top left corner of the map).
486  However, the same time interval led to the highest prediction accuracy in run 6. The
487  aforementioned trials correspond to the interval that starts from the stimuli onset and ends

488  around the peak of HRF (~5 seconds after stimuli onset).

489  Comparing Figures 4 and 5, in ST-SVM the highest performance was either equal to or
490 lower than ST-RF. When looking at only the first 10 seconds from the onset (from onset
491  to post HRF peak), ST-RF was superior to ST-SVM. Similar to ST-RF, an increase in
492  prediction accuracy was observed in the later temporal trials in some cases (e.g. after ~22

493  seconds, as shown in the right bottom corner of maps).

494  The results were dominant dependent on the selected ST combination, especially within
495  stimuli categories. For example, in run 2, the prediction accuracy of face stimuli was as

496  high as 90% or as low as 10% depending on the selected ST combination.
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506  respectively. Different color map ranges were used for each map, to assist visual

507 inspection of most informative intervals.
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527  temporal influence across the studied categories using the RF classifier. The interval with
528  highest tri-second maximum influence index contains the peak of the HRF, and the most
529 influential was the 10" TR that is around the peak of HRF, 5.68 seconds. Another peak in
530 the tri-second maximum TR influence index was observed around the 40" TR (~22

531 seconds from the stimulus onset), which was consistent across all categories.

Spatiotemporal Random Forest (ST-RF)
0.35 T T T T T T T

03} Overall accuracy across six run -

Spatiotemporal influence index

Spatiotemporal influence index
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533  Figure 6. Influence of each time point using Random Forest (RF). Bars indicate the
534  mean and standard deviation of TR influence index across six runs. TR influence index
535  represents the number of times where each time point was chosen as the most informative
536  time point of the ST combination, normalized over the total number of times that the time
537  point was utilized (see Method section). The whole time block was divided into nine sub-
538 temporal regions. The highest spatiotemporal influence index for every three seconds was
539  overlaid on the bar chart (red line). X-axis represents time in seconds. (A) Illustrates the
540 temporal influence for overall prediction. Temporal influence in detecting faces and
541  houses are illustrated in (B) and (C), respectively.

Spatiotemporal Support Vector Machine (ST-SVM)
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543  Figure 7. Spatiotemporal influence of each time point using Support Vector
544  Machine (SVM). Bars indicate the mean and standard deviation of spatiotemporal

545 influence index across six runs. Spatiotemporal influence index represents the number of
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546  times were each time points was chosen as the most informative time point of the ST
547  combination, normalized over the total number of times that the time point was utilized
548  (see Methods section). X-axis represents time in seconds. Red line indicates the highest
549  spatiotemporal influence index for every three seconds. Temporal influence in detecting

550 faces and houses are illustrated in the top and bottom panels, respectively.

551 In contrast to the tri-second maximum TR influence of ST-RF, there was no specific
552 trend in the tri-second maximum temporal influence across the two categories using ST-
553  SVM. It should be noted that the classification performance for ST-SVM was relatively
554  poor comparing to ST-RF. For the face category, the first TR (0.568 seconds after the
555  stimulus onset) has been selected with a high mean influence level compared to the other
556  TRs across six runs. In the same category, the second best tri-second maximum TR is at
557 the 34" TR (19 seconds after the stimulus onset). The most tri-second maximum
558 influential TR in house category happened after the HRF peak in the 16" TR.

559

560 3.4. Temporal length in best SpatioTemporal combinations

561  The top ten accurate ST combinations were from the beginning half intervals (i.e. ~ the
562 20" TR) (with the exception of run 5). The ST-RF with highest overall prediction
563  accuracy always contained the peak of HRF across the six runs (the 10" TR). Using ST-
564 SVM, in run 5, an unexpected temporal region appeared to be most informative (around
565  40™ TR). Similarly, using ST-RF in runs 3 and 5 the later temporal domain seemed to be

566 informative.

567  The most accurate ST-SVMs are no longer than 19 TR and are mainly short in duration
568 across runs (Figure 9). The lengths of ST-RF across the top 1% trials (top ten ST
569 combinations) were longer than ST-SVM on average across cross-validation runs. The

570  measured duration was ~9s for RF and ~5s for SVM.
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572  Figure 8. Temporal length of the top ten SpatioTemporal (ST) combinations. Bars
573  indicate the mean and standard deviation of temporal length for ST combinations with

574  highest overall prediction accuracy (top ten ST combinations of each run are considered).
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577  Figure 9. Temporal duration in the top ten SpatioTemporal (ST) trials across six
578  runs. Blue and red lines show the time duration of the ST combination with the top 10
579  highest prediction accuracy for overall category using SVM and RF, respectively. Each

580 line indicates the start and end point of the ST combination.

581
582  3.5. Replicability of the SpatioTemporal results

583  Consistent with our previous investigation in participant 1, ST resulted in higher
584  prediction accuracy in almost all runs across other participants, compared with single TR
585 technique. The average values of top five prediction accuracies from ST combinations

586  were close to the highest performance, with a small standard deviation (Figure 10). Table
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587 2 showed that the average classification accuracy of ST-RF technique was consistently

588  higher than single TR-RF in four participants across cross-validation runs.

589  Note that in some cases both single TR and ST settings resulted in poor classification
590 accuracies (e.g. run 2 and 5 of participant 2). Monitoring the skin conductivity (not
591 included here) showed different level of conductance in the aforementioned runs,
592  suggested that the poor performances were most likely due to the decreased engagement
593  of the participant. Note that in some cases the ST combination resulted in a dominant
594  improvement in the prediction accuracy, which was not observed in participant 1. For
595 example, in run 4 of participant 4, ST resulted in 20% improvement of prediction

596  accuracy, compared with 55% prediction accuracy in single TR.

597  Using RF classifier, the highest overall performance of participant 1, when the first 11
598 seconds after the stimuli onset was utilized (Figure 10), was similar to when all 25
599  seconds were used in Figure 2, except for runs 2 and 5. This finding indicates that there is
600 temporal information in between 11 seconds until 25 seconds from the stimulus onset that

601  assist on increasing the MVPC performance.
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603  Figure 10. Highest classification accuracy of single TR versus SpatioTemporal (ST)
604 technique across 4 participants. Overall accuracy of single TR classification is
605 compared with ST technique using random forest (RF) classifier (RF-ST). White bar
606  demonstrates the overall performance of the single TR classification. Grey bar
607  demonstrates the highest classification accuracy using RF-ST technique considering only
608 at the first 11 seconds from the stimuli onset. Black bar shows the mean and standard

609 deviation of top five prediction accuracies within the aforementioned temporal domain.

610

611 Table 2. Average classification accuracy of highest single TR, SpatioTemporal (ST)
612  technique in 4 participants across cross-validation runs. Average overall accuracy of
613  top single TR classification, top five ST technique, using random forest (RF) classifier
614  (rows) across four participants (in columns).

_ Participant 1 Participant 2 Participant 3 Participant 4

Single TR 69.16 63.33 67.5 62.5
615 ST 78.33 72.5 75 75

616
617 4. Discussion

618  The effect of ST feature selection on brain decoding was investigated in this study and
619  the obtained prediction accuracies were compared with those obtained using the single
620 TR approach. When considering the single TR scenario, the best decoding performance
621 was achieved using single time point data around the HRF peak. Using ST feature
622  selection, the best sensitivity to each stimulus was 90% or higher that was higher on
623  average than single TR across all cross-validation runs (see ST-RF results in Figure 2B—
624  C). A multi-band EPI pulse sequences was utilized, providing high temporal resolution,

625  which enables rigorous exploration of the temporal domain.
626
627  4.1. ST features versus single TRs

628  Results of this study showed that on average, ST feature selection led to higher prediction
629  accuracy compared to the single TR observation. The effect of including the whole ISI
630 (25 seconds) was investigated on the performance of MVPC and the results show that the
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631 ten best performing ST combinations do not include the whole ISI (Figures 8 and 9).
632  Furthermore, the highest prediction accuracies were gained with ST combinations that
633  include time points around the peak of the HRF (ST combinations containing from ~2—11
634  seconds after the stimuli onset). The discriminative power that was gained from ST
635 combinations within this range was even higher than those combinations containing the
636  entire trial of 25 seconds (used in (Fogelson et al., 2011)). The same conclusion was

637  made when the influence of each time point on the ST combinations was assessed.

638 In some ST combinations that did not have stimuli specific BOLD activities, the
639  performances of the classifiers were lower than chance. On these cases the classification
640  optimizer fails to diverge, which results to a failure in classification in a systematically
641  biased way. Particularly, when the training data is extremely noisy (in this case, un-
642  informative temporal features) the classification may fit the model to noise and cause a

643  Dbias.

644  Findings in this section complied with the strategy used in a recent study where MVPC
645 was employed to decode individual finger movements (Shen et al., 2014). The feature
646  vector was constructed using two successive volumes in the image series for a trial
647  corresponding to the duration close to the peak of the HRF in the studied ROI. Later, the
648  two successive volumes were concatenated to construct spatial-temporal feature vectors

649  (Shenetal., 2014).
650
651  4.2. Comparison between SVM and RF

652  Based on the findings in this study, compared to the SVM, RF performs better in MVPC
653  using ST feature selection. RF led to higher prediction accuracy compared to the SVM
654 and showed more consistency across stimuli and runs. No consistent pattern was
655  observed across SVM results from ST combinations. In addition, ST combinations with
656  the highest prediction accuracy from the RF classifier were always longer than those
657  from the SVM (Figure 8-9), suggesting that RF benefits more from temporal information
658 encoded in ST embedding than does the SVM. In general, RF led to higher prediction
659  accuracies across stimuli and runs compared with the SVM, regardless of utilization of

660 ST feature selection.
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661 While SVM algorithms are computationally stable, generalize well, and have been
662  applied successfully to fMRI data (LaConte, Strother, Cherkassky, Anderson, & Hu,
663  2005), for MVPC with ST feature selection, RF outperformed SVM. The superiority of
664  RF was also reported by Douglas et al. (Douglas et al., 2011) for the conventional case of
665 MVPC analyses. One possible reason for this dominance could be that RF has greater
666 power for handling high-dimensional data compared with SVM. RF holds a unique
667 advantage by employing multiple feature subsets, which is well suited for high-
668  dimensional data. This robustness of RF is largely due to the relative insensitivity of
669  misclassification cost to the bias and variance of the probability estimates in each tree
670  (Hastie, Tibshirani, & Friedman, 2009). In principle, SVMs should be highly resistant to
671  over-fitting but in practice this depends on the careful choice of regularization parameter
672  and the kernel parameters. However, over-fitting can also occur quite easily when tuning

673  the hyper-parameters (Hastie et al., 2009).
674  4.3. HRF peak jittering and temporally averaged BOLD signals

675  The results of this study were compared with the highest prediction accuracy that was
676  obtained using the single TR around the peak of the HRF. A temporal range was
677  considered around the peak of the HRF, rather than the canonical peak. Time point by
678 time point, MVPC showed that the peak of classification accuracy is around the peak of
679  the region-average HRF (Kohler et al., 2013); in some regions prior to and in some
680 regions after the region-average HRF peak. By performing the comparison against the
681  highest prediction accuracy around the peak (based on the findings of Kohler et al.
682  (Kohler et al., 2013)), ST-based results are compared against those from the state-of-the-
683  art approaches. It would be interesting to investigate the hypotheses in this experiment

684  applied to other brain regions.
685
686  4.4. High decoding accuracy at the end of ISI

687  The provided classification weight vectors from ST-based input data identifies when
688  class-discriminating information arises, indicated by the TR influence index (Figure 6).
689  Using RF, the tri-second average TR influence index in the first part of the trials in the IT

690  conformed to the temporal pattern in the canonical double gamma HRF. In addition to the
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691 time around the peak of HRF, high temporal influence was observed around 23 seconds
692  after stimuli onset. The time at which this observation occurred is around the time when
693  negative undershoot is almost passed according to the canonical double gamma HRF
694  (Friston et al., 1994). The participant’s task in this study was to perform a one back
695  repetition detection task from trial to trial. For each trial the participant attempts to retain
696 in their memory details of the stimuli introduced in that trial, and then waits for the next
697 trial in which they perform the one back repetition detection task. Category expectation
698 was found to be affecting the baseline and stimulus evoked activity in IT (Puri,
699  Wojciulik, & Ranganath, 2009). Expectation was reported to be related to a degree of
700  certainty about an upcoming stimulus (Cisek & Kalaska, 2010), meaning that if a certain
701  stimulus category has a high probability of appearance, preparatory processes of
702  expectation can facilitate its detection and the associated responses (Cisek & Kalaska,
703  2010). It was reported that the baseline activity level in subcortical regions in IT (FFA
704  and PPA) was higher during expectation of the preferred (e.g. face for FFA) versus non-
705  preferred category (Egner, Monti, & Summerfield, 2010; Herwig, Abler, Walter, & Erk,
706  2007; Puri et al., 2009). Therefore, a high chance of correspondence exists between the
707  high discrimination power in the 23" second of the trial, and the expectation mechanism
708 in IT. Observing such an effect in the TR influence highly depends on the experimental
709  design, brain region, the task, and the inter stimulus interval. Note that the influence of
710  the TRs suspected to be related to expectation was much lower than the TRs around the
711  peak of the HRF. The latter finding invites further investigations on the effect of category
712  expectation using MVPC.

713
714  4.5. Improved performance across participants

715  In this study, a rigorous investigation was performed on the effect of ST feature selection
716  on the MVPC performance for one of the participants. Later, the analysis conclusion was
717  validated on the rest of the participants. Participant 1 was chosen as the subject for a
718  detailed comparison as the MVPC performance in single TR for participant 1 was overall
719  higher than other subjects of this study. For the other participants, only the first 11

720  seconds of each trial were utilized to investigate the effect of ST feature selection. This
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721  time interval was also employed for stimuli design in a previous study (Kohler et al.,
722  2013), and our initial investigations recommended that this temporal range embraces
723  highly decodable dynamics. All other 990 ST combinations were derived for each of the
724 4 participants. Of course, higher prediction accuracy than what is reported (Figure 10)
725  might have been obtained if the entire temporal domain was considered (e.g. comparing
726  ST-RF results in Figure 1A and Figure 10A). But here, our aim was to show that even
727  within this range an improvement in prediction accuracy could be obtained by the use of

728 ST feature selection.
729
730  4.6. Implications of temporal feature selection on brain decoding

731  Brain decoding not only allows for combinational effects across voxels, but also has
732  applications in brain-computer interfacing (Davis & Poldrack, 2013; Van De Ville & Lee,
733  2012). However, due to the challenges related to sensitivity and specificity, clinical
734  justification has not fully been achieved yet. But an improved brain decoding technique

735  can hasten the transition time of MVPC from laboratory to clinic.

736  The findings of this study open the way for further investigations into the understanding
737  of category learning dynamics, where the stimuli space will change over time as a result
738  of learning (Davis & Poldrack, 2013). A potential application of incorporating our ST
739  approach into MVPC would be to see if by embedding the dynamic patterns, the time at
740  which the brain starts shaping a motor decision and unconscious mental processes could
741  be decoded in a shorter temporal duration (Soon, Brass, Heinze, & Haynes, 2008). Our
742  observations have methodological implications for selecting the time at which to perform
743  classification analyses. Throughout IT there can be systematic differences in the temporal
744  dynamics of classification accuracy that could be investigated by ST embedding.
745  However, it remains to be seen as to whether these findings will generalize to other areas

746  and other stimuli.

747  One of the limitations of MVPC studies is the reported weak correlation of inter-subject
748  and intra-subject measured fMRI responses to the same stimuli (Chen et al., 2014). In
749  addition, it is challenging to establish a correspondence between selected voxels/ROIs

750 across participants in a dataset. A challenge in this study was to tax the subject’s attention
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751  considering our long ISI. It is desirable to create an experiment design that required the
752 subjects to spend less time inside the scanner and to watch stimuli for as long as time
753  allows (Franklin, 2012). However, the aim of this study was to investigate a wide range

754  of temporal information, which can lead to such ISI design.

755  While improvement was gained on average by utilizing ST feature selection, no specific
756  combination consistently outperformed others across runs and participants. This provides
757  a motivation for the future direction of our investigation on brain decoding using ST

758  feature selection, and that is to find a systematic optimum way to extract ST features.

759 In conclusion, on average the ST feature selection led to higher -classification
760  performance compared with single TR observation. This study explored the temporal
761  domain and found that the discriminative power increased when time points around the
762  peak of the HRF were included in the ST combination. In particular, ST combinations
763  taken from between ~2—11 seconds after the stimuli onset outperformed the rest of the ST
764  combinations (including those combinations containing the entire trial, i.e. the whole trial
765 embedded ST). Our assessment of the importance of time points in ST combinations
766  confirmed the latter conclusion about the most important time points. Based on the
767  evaluation criteria of this study (MVPC prediction performance and the conforming
768  temporal pattern in TR influence index with canonical double gamma HRF), the findings
769 in this study suggest RF as the classifier of choice over SVM for brain decoding using ST
770  feature selection. RF led to higher prediction accuracy, and showed more consistency
771  across stimuli and runs. RF also benefits more from ST information compared with SVM
772  (the length of the highest performance ST combination was always longer with RF than
773  with SVM).
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