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Abstract 43	

The importance of spatiotemporal feature selection in fMRI decoding studies has not 44	

been studied exhaustively. Temporal embedding of features allows the incorporation of 45	

brain activity dynamics into multivariate pattern classification, and may provide enriched 46	

information about stimulus-specific response patterns and potentially improve prediction 47	

accuracy. This study investigates the possibility of enhancing the classification 48	

performance by exploring spatial and temporal (spatiotemporal) domain, to identify the 49	

optimum combination of the spatiotemporal features based on the classification 50	

performance. We investigated the importance of spatiotemporal feature selection using a 51	

slow event-related design adapted from the classic Haxby et al. (2001) study. Data were 52	

collected using a multiband fMRI sequence with temporal resolution of 0.568 seconds. A 53	

wide range of spatiotemporal observations was created as various combinations of 54	

spatiotemporal features. Using both random forest, and support vector machine, 55	

classifiers, prediction accuracies for these combinations were then compared with the 56	

single time-point spatial multivariate pattern approach that uses only a single temporal 57	

observation. The results showed that on average spatiotemporal feature selection 58	

improved prediction accuracy. Moreover, the random forest algorithm outperformed the 59	

support vector machine and benefitted from temporal information to a greater extent. As 60	

expected, the most influential temporal durations were found to be around the peak of the 61	

hemodynamic response function, a few seconds after the stimuli onset until ~4 seconds 62	

after the peak of the hemodynamic response function. The superiority of spatiotemporal 63	

feature selection over single time-point spatial approaches invites future work to design 64	

systematic and optimal approaches to the incorporation of spatiotemporal dependencies 65	

into feature selection for decoding. 66	

 67	
  68	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/746735doi: bioRxiv preprint 

https://doi.org/10.1101/746735
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction  69	

In conventional univariate functional Magnetic Resonance Imaging (fMRI) analysis, the 70	

objective is to find brain regions that show reproducible activation with the repetition of 71	

specific experimental conditions (Friston et al., 1994). In contrast, in Multi-Variate 72	

Pattern Classification (MVPC) approaches, the pattern of responses across multiple brain 73	

voxels that together carry information about different experimental conditions is sought 74	

(Haxby et al., 2001). In MVPC, the functional relationship between across-voxel patterns 75	

of activation and the experimental conditions is modeled using discriminative pattern 76	

recognition techniques; the experimental conditions are then predicted from the fMRI 77	

signal (see (Haynes, 2015) review of MVPC). 78	

A potential advantage of the MVPC approach over classical univariate analysis methods 79	

is that a fixed HRF model does not need to be assumed or estimated. However, this 80	

benefit from MVPC is yet to be realized fully because event-related decoding studies 81	

generally extract features at fixed temporal delays, which are themselves determined 82	

based on a canonical HRF, following the stimulus onset (e.g. Douglas et al. (2011)).  83	

Even in the context of block designs, it may be critically important to take into account 84	

fMRI temporal dynamics in addition to multivariate spatial information in MVPC. There 85	

is strong temporal correlation in the fMRI time series, especially due to the delay and 86	

smoothing from the HRF. Mourao-Miranda et al. (2007) studied the temporal dynamics 87	

for MVPC by training and testing a classifier using all temporally contiguous acquisitions 88	

in each block, effectively treating time as spatial information, to produce SpatioTemporal 89	

(ST) signals. They found a localized peak of response in the amygdala only at a specific 90	

time point in the block suggesting that temporal averaging of fMRI activity in a block 91	

(i.e. assuming that hemodynamic responses to the same stimulus are a stationary process) 92	

averaged out the effect of specific discriminating times in specific regions, and ignored 93	

the temporal profiles caused by the hemodynamic response.  94	

One study investigated the effect of entire-trial ST temporal embedding on MVPC 95	

accuracy of slow event-related fMRI data (Fogelson et al., 2011). It was found	 that the 96	

accuracy of classification using ST-embedded fMRI data (i.e. entire-trial ST embedding) 97	

is higher than using individual, temporally distinct spatial-only observations (In the 98	
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current study the aforementioned technique is referred to as single TR observations). ST 99	

embedding was also investigated for another type of stimulus classification in (Rao, 100	

Garg, & Cecchi, 2011) applying the same methods discussed by Fogelson and colleagues 101	

(Fogelson et al., 2011). Another study investigated the variability of temporal dynamic 102	

classification performance across single TR observations within the slow event-related 103	

trails (Kohler et al., 2013). Their timepoint-by-timepoint MVPC showed that the peak of 104	

classification accuracy was around the peak of region-average HRF; in some regions 105	

prior to and in some regions after the region-average HRF peak. However, it was not 106	

clear whether all of the temporal dynamics of a voxel activity within a trial carry stimulus 107	

specific information. 108	

On the other hand, most of the multivariate pattern recognition based studies applied to 109	

fMRI data, modeling the pairwise relationship between the brain activity at separate time 110	

points and the experimental condition. Although considering the shape of HRF for 111	

modeling brain activity, they assign the same stimulus label to the dynamic brain 112	

response that is changing over time. The temporal dynamics of the BOLD signal to 113	

stimuli of different classes, and within different brain regions are very likely different 114	

(Chu et al., 2011; Kohler et al., 2013). Not considering such these differences may reduce 115	

the sensitivity of the classifier and reduce the decoding accuracy.  116	

ST feature selection of fMRI finds the time points that carry the highest condition 117	

specific information for MVPC (Choupan et al., 2014). The effect of ST feature selection 118	

initially was tested on a block-design experiment (Choupan et al., 2014). We (Choupan et 119	

al., 2014) found that ST feature selection could improve prediction accuracy even on a 120	

block-design experiment. To study ST feature selection thoroughly, however, a slow 121	

event-related design is preferred because it provides a “cleaner” temporal pattern in 122	

which the neural response is less affected by the temporal overlapping of consecutive 123	

stimuli responses that occurs in block or rapid event-related design. Particularly when the 124	

BOLD signal is allowed to return to baseline before the next stimulus is presented. In 125	

comparison to block designs, by randomizing condition/stimuli order, slow event-related 126	

experiments minimize effects of strategy expectation and cognitive set (which affect the 127	

temporal dynamics) (Pilgrim, Fadili, Fletcher, & Tyler, 2002; Strayer & Kramer, 1994). 128	

In addition, slow event-related designs reduce the neuronal habituation that has been 129	
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shown to alter the results of MVPC in block design experiments (Choupan et al., 2014; 130	

Mourao-Miranda, Friston, & Brammer, 2007; Sapountzis, Schluppeck, Bowtell, & 131	

Peirce, 2010). 132	

Following the previous works, this study is based on the hypothesis that by embedding 133	

the temporal dynamics provided by fMRI into the process of multivariate brain pattern 134	

recognition, more information contained in the BOLD signal can be utilized compared 135	

with single TR methods, leading to a potential improvement in the prediction 136	

performance. In particular, we predicted that not all of the temporal dynamics of voxels 137	

within the trial are informative for the MVPC, and that a shorter sequence of time points 138	

might still possess the most discriminative activity across stimulus conditions, possibly 139	

around the peak of the HRF (Akama, Brian Murphy, Shimizu, & Poesio, 2012; 140	

Formisano, De Martino, & Valente, 2008; Kohler et al., 2013). Therefore, this study 141	

presents an investigation of the MVPC performance of ST feature selection using 142	

different sequences of ST combinations. 143	

On a dataset acquired with a CMRR multi-band EPI pulse sequences at a high temporal 144	

resolution of 0.568 seconds in a binary slow event-related design (inter-stimulus interval 145	

of ~25 seconds), using stimuli from the classic Haxby et al. (2001) experiment, we 146	

assessed the prediction accuracy of 990 ST combinations. Our findings show that on 147	

average, ST feature selection led to improved classification performance. Furthermore, 148	

the discriminative power increased when time points around the peak of the HRF were 149	

included in the ST combination.  150	

 151	

2. Materials and Methods 152	

2.1. Participants 153	

Four right-handed healthy adult volunteers (ages 28, 30, 31, and 32; two of them were 154	

females) participated in this study. None had a medical history of psychiatric disorder, as 155	

assessed by self-report. Written informed consent, approved by the University of 156	

California, Los Angeles Institutional Review Board, was obtained from each participant 157	

prior to the experiment. The heart rate and skin conductivity of participants were 158	
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recorded and monitored throughout the experiment.  159	

 160	

2.2. Experimental design  161	

The task paradigm was implemented in MATLAB (Mathworks, Inc.) using the 162	

Psychophysics Toolbox, Version 3.0 (Brainard, 1997). Stimuli were projected onto a 163	

screen behind the scanner bore which participants watched through a mirror installed on 164	

the head coil. Participants engaged in six 11-minute fMRI scans. Each run consisted of 165	

twenty slow event-related trials, yielding a total of 120 trials per participant. During each 166	

fMRI run, participants viewed 10 pictures of human faces (five were females) and 10 167	

pictures of houses. The pictures, which were borrowed from publicly available stimulus 168	

set used in the Haxby and colleagues paper (Haxby et al., 2001), were displayed in 169	

random order, different for each subject and trial. In each trial, participants viewed a 170	

single stimulus picture for 500 ms, which was always followed by an inter-stimulus 171	

interval of 25s (the stimulus onset times were jittered at each trial to avoid anticipatory 172	

brain activations). In each run, three random trials were followed by their content 173	

photographed from different angle. We asked the participants to perform a one-back 174	

repetition detection task. The participants were provided with an MRI compatible button 175	

box to indicate their responses. In the case of similar consecutive trials (identical re-176	

oriented pictures), participants were instructed to press the right button of the button box, 177	

and the left button for the dissimilar pictures. The similar trials, which were employed 178	

solely to ensure that subjects remained awake and engaged, were excluded from the 179	

analysis. We chose a long Inter Stimulus Interval (ISI) of 25 seconds in considering the 180	

standard double gamma HRF function characteristics (Friston et al., 1994) that requires 181	

~25 seconds for BOLD signal to get back to the baseline after observing a stimuli (Cohen 182	

M. S., 1997).  183	

 184	

2.3. Data acquisition  185	

We acquired images were using the Siemens 3T Tim Trio scanner with a 32-channel head 186	

coil at the Staglin Center for Cognitive Neuroscience at the University of California, Los 187	

Angeles. The functional images were acquired with a CMRR multi-band EPI pulse 188	
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sequences C2P, 010b (Auerbach, Xu, Yacoub, Moeller, & Uğurbil, 2013; Moeller et al., 189	

2010; Setsompop et al., 2012; Sotiropoulos et al., 2013; Xu et al., 2013) with multiband 190	

acceleration factor of four, and phase encoding direction acceleration factor of 3 (referred 191	

to as integrated-Parallel Acquisition-Techniques or iPAT factor in Siemens terminology) 192	

yielding a net acceleration of 12 (4×3). In addition, in-plane rotation was set to 180-193	

degree, TR = 0.568 s, TE = 0.3 s, flip angle = 40°, 40 slices, 3×3×3mm, FOV = 192×192 194	

mm (axial acquisition) covered the whole brain. SBRef data was collected, but not 195	

utilized for pre-processing. No field map data was collected. This setting resulted in 45 196	

TRs per trial. A high-resolution structural T1-weighted MPRAGE was acquired for each 197	

participant (176 sagittal slices, 0.97×0.97 mm in-plane voxel resolution, 1 mm slice 198	

thickness, matrix size = 256×256, FOV = 250×250×176 mm, TR = 1.9 s, TE = 2.26 s, 199	

flip angle = 9°).  200	

 201	

2.4. Data pre-processing  202	

We pre-processed the functional images using Statistical Parametric Mapping software 203	

(SPM8; http://www.fil.ion.ucl.ac.uk/spm). Because we used multi-band acquisition, no 204	

slice-timing correction was applied (Glasser et al., 2013). Each fMRI volume was first 205	

realigned to its mean image using the 4th degree B-spline interpolation for head motion 206	

correction. The anatomical volume was segmented to gray matter, white matter, and 207	

cerebrospinal fluid. We registered the functional data from each run to the anatomical 208	

volume, then spatially normalized the data into standard stereotaxic space with voxel size 209	

of 2x2x2 mm3, using the Montreal Neurological Institute (MNI) template. Warping to 210	

MNI was performed to assure that the input data for each subject has the same 211	

size/dimension across subjects.  212	

As recommended by Kohler (Kohler et al., 2013; Misaki, Luh, & Bandettini, 2013), we 213	

applied no spatial smoothing.  214	

At each separate fMRI run, we linearly-detrended the voxels time course to reduce the 215	

effects of signal drifts during the course of fMRI experiment, then, we normalized the 216	

detrended voxels time course across the entire run to zero mean and unit variance across 217	

observations.  218	
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Field map data was not collected at the time of data collection, and field map 219	

inhomogeneity distortion correction was not performed. Regardless, visual inspection 220	

showed that the fMRI images were registered to structural image with minimal distortion.  221	

 222	

2.5. Region of interest  223	

Our selection of the regions-of-interest (ROIs) was based on prior knowledge. Previous 224	

studies have shown that inferior temporal (IT) gyrus exhibits category-specific responses 225	

during perception of faces (in FFA) or scenes (in PPA) (Kriegeskorte et al., 2008; 226	

Ranganath, DeGutis, & D'Esposito, 2004). Therefore, our analysis was restricted to 227	

bilateral IT defined as in the AAL atlas in the WFU_PickAtlas MATLAB software 228	

toolbox (http://fmri.wfubmc.edu/software/PickAtlas). Functional images, and the ROI 229	

mask, were defined in the MNI space, and the derived mask was applied to the 230	

preprocessed functional images. In total there were 7547 voxels in IT, using 231	

WFU_PickAtlas. 232	

Training the classification algorithms on total number of voxels in IT in spatiotemporal 233	

form was computationally intensive. Therefore, we decided to perform spatial feature 234	

selection. Random Forest (RF) (Breiman, 2001) was utilized as a spatial feature selection 235	

method to further reduce the size of the already masked data, discarding the voxels that 236	

do not improve category specific classification. RF feature selection calculated the voxels 237	

importance for the training data. Voxels importance was calculated based on the mean 238	

error of bootstrap tree samples in the forest. During the bootstrapping procedure, the 239	

voxel is randomly permuted in the Out Of Bag (OOB) cases. The aim of this permutation 240	

is to eliminate the existing association between voxels and the stimuli, and then to test the 241	

effect of this elimination on the RF model among trees built on these bootstrap samples. 242	

A voxel is considered to be in a strong association with the stimuli if the mean error 243	

decreases.  244	

For each subject, the spatial feature selection was applied on IT voxels (containing 7547 245	

features), on 100 trials as training samples. 1000 trees were utilized to train the RF 246	

model. After training, voxels in the top 1% of maximum OOB importance were selected, 247	
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resulting 115 voxels for each subject. All subjects were registered to MNI space, which 248	

results in same number of voxels after feature selection.  249	

 250	

2.6. Spatiotemporal data representation 251	

For each trial of fMRI, all possible ST combinations were defined from the data acquired 252	

at all N = 45 TRs. In another word, for investigating the most informative temporal 253	

features, the entire hemodynamic response temporal domain was searched for 254	

voxels/features picked by RF feature selection. Assuming that the combination should 255	

have at least 2 time points of voxels activity, and the combinations should be continues 256	

and in ascending orders according to time, this representation led to obtaining in total 257	

𝐶"#$, 990 ST combinations for each fMRI run. The ST observations for each trial were 258	

defined as 	259	

                             𝑆𝑇':) = [𝑽', 𝑽'./, …𝑽)]                                 (1) 260	

where 	𝑽3  were the BOLD signals at volume 	𝑖 ∈ {1,2, … ,45}, 𝑎 = 1, 2, … , 𝑁 − 1, 𝑏 =261	

2, 3, … , 𝑁  𝑎𝑛𝑑	𝑎 < 𝑏.  Therefore, each 𝑆𝑇':)  was the result of concatenating voxels 262	

activity in 𝑽' …𝑽). Utilizing such a concatenation routine, the temporal information was 263	

embedded together with the spatial information, forming an ST observation. The 264	

prediction accuracies of entire cases were explored to investigate the informative duration 265	

of BOLD signal for classification relative to the stimulus onset. The concatenation 266	

process in ST is illustrated in Figure 1.  267	

In a previous slow event-related decoding study, which investigated the temporal domain 268	

effect on MVPC (Kohler et al., 2013), the inter-stimulus interval was around 11 seconds. 269	

Therefore, an extra examination was performed to validate the effect of ST embedding on 270	

overall prediction accuracy of all subjects in this study, using only the first 11 seconds 271	

after the stimulus onset. 272	
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 273	

Figure 1. Graphical illustration of data processing. The top row indicates the 274	

preprocessing steps employed in this study. Spatiotemporal embedding is shown in the 275	

dotted box, which involves concatenating the fMRI volumes, a through to b. Each 3D 276	

cube is a symbolic fMRI volume. The bottom row illustrates the learning steps. 277	

 278	

2.7. Single TR data representation  279	

For comparison purposes, we used single TR spatial observation (utilizing the spatial 280	

information acquired during one Time to Repeat or (TR)). The maximum accuracy of 281	

single TR observation in slow event-related fMRI was reported to be around the peak of 282	

HRF at ~5 seconds, but with a small jitter across regions (Kohler et al., 2013). The HRF 283	

peak has also been found to be jittered across people (~ 4 to 7 seconds) (Handwerker, 284	

Ollinger, & D'Esposito, 2004). Therefore, single TR classifications were performed for 285	

all TRs in the above range (1 second before and 2 seconds after the HRF peak) and only 286	

the highest performances were reported. This approach assured that our ST combinations 287	

were compared with the highest performance of the single TR approach. It should be 288	
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noted that the high temporal resolution of the acquired fMRI data allowed us to perform 289	

this rigorous investigation.  290	

 291	

2.8. Pattern classification 292	

Multivariate brain pattern recognition was performed using the Princeton MVPA toolbox 293	

(http://code.google.com/p/princeton-mvpatoolbox/). Support Vector Machine (SVM) is a 294	

widely used classifier in the field of neuroimaging and MVPC applications (Bode & 295	

Haynes, 2009; Kohler et al., 2013; Mourao-Miranda et al., 2007; Rao et al., 2011; Ritter, 296	

Hebart, Wolbers, & Bingel, 2014; Waskom, Kumaran, Gordon, Rissman, & Wagner, 297	

2014). Douglas et al. found that RF outperforms SVM in a binary classification of belief 298	

vs. disbelief using fMRI data (Douglas, Harris, Yuille, & Cohen, 2011). Hence, in this 299	

study the two classification algorithms RF and SVM were employed and compared. In 300	

addition, the two classifiers allow the extraction of feature weight vectors, indicating 301	

discrimination power. All analyses were performed using MATLAB software (V. 8.5 302	

Mathworks, Inc.). MATLAB-based tools for RF (Jaiantilal, 2009) and linear SVM (Fan, 303	

Chang, Hsieh, Wang, & Lin, 2008) were utilized. For SVM analyses the regularization 304	

parameter that controls the trade-off between model fitting error and classification 305	

accuracy, was set to 1 (Waskom et al., 2014). A leave one run out cross validation 306	

(LOROCV) scheme was employed (Pereira, Mitchell, & Botvinick, 2009). In 307	

experiments on both single TR and ST combinations, the fMRI data were divided into 308	

training and test sets, training the classifier using five runs and testing on the sixth run. 309	

This test was repeated 6 times, with each of the different runs serving once as a test set. 310	

Finally the prediction accuracies were reported to quantify how accurately the classifiers 311	

were able to distinguish between faces and houses.   312	

SVM (Burges, 1998; Vapnik, 2000) was employed in similar temporal investigation 313	

decoding studies (Kohler et al., 2013; Mourao-Miranda et al., 2007). The learning 314	

process of SVM classifier finds the maximum-margin hyperplane that separates the 315	

training data observations according to the class they belong (faces or houses in this 316	

study). This hyperplane is orthogonal to the direction along which the training 317	

observations of both classes differ most. 318	
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Linear SVM training outputs a set of weights, one for each feature, whom their linear 319	

combination predicts the value of stimuli categories. This weight vector allows 320	

investigation on the discriminating power of features across stimulus categories. The 321	

directions of the weight vectors are perpendicular to the separating hyperplane. A feature 322	

with a positive weight value means that the feature has higher activity (discrimination 323	

power) for stimuli 1 than stimuli 2 in the training examples. The weight patterns were 324	

reconstructed according to (Haufe et al., 2014) by applying the following algorithm: 325	

             𝑨 = ∑ 𝑾𝑿 ∑ 	I/
𝒔K                                             (2) 326	

where, 𝑨 is the reconstructed pattern,	𝑾 is the weight vector, ∑ 	𝑿 is the n-by-p covariance 327	

matrix of the data (with n voxels and p samples), and ∑ 	𝒔K is the source covariance, 328	

defined as 𝑾L × 𝑿 . 329	

RF is an ensemble classifier that employs decision trees as base learners (Breiman, 330	

2001). In this algorithm, training set observations is resampled (random redistribution, 331	

with replacement) multiple times using bootstrap technique to produce multiple training 332	

subsets. Decision trees are then created from each training subset, until all ensembles of 333	

trees have been created. For predicting the label of an unseen testing observation at each 334	

tree, the data is feed to the root of the tree, and goes down the tree following the splits 335	

and falls into a terminal node. Each tree outputs the label in the terminal node. Final 336	

predictions are assigned based on the majority voting on trees label decision. 1000 trees 337	

were utilized for training the RF model, and the number of trees was selected based on 338	

the stability of the OOB error rate to an asymptotic plateau. 339	

 340	

2.9. Performance evaluation  341	

Two criteria were employed to evaluate the performance of the classification at each 342	

cross validation run: the overall prediction accuracy, and sensitivity to each stimulus, or 343	

recall. Overall accuracy was calculated as the percentage of correctly classified trials at 344	

each testing step. Sensitivity or true positive rate was measured as 345	

     𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = LSTU	VWX3Y3ZU
(LSTU	VWX3Y3ZU.\']XU	^U_'Y3ZU)

	                                (3) 346	
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that is the number of correctly predicted positive instances over all positive instances. 347	

When measuring sensitivities, the category of interest was considered as positive instance. 348	

When comparing different techniques, the mean of derived cross-validation runs was 349	

reported. We obtained the same results when looking at specificity (or precision). 350	

Therefore, we only reported sensitivity for readability. 351	

 352	

2.10. Analysis of single TR combinations results  353	

In total, the ST and single TR methods were utilized with SVM and RF classifiers to 354	

perform the analyses: ST-SVM, ST-RF, Single TR-SVM, and Single TR-RF. The best 355	

performance of the entire ST combinations was compared with the best single TR 356	

approach around the peak of HRF to investigate if ST embedding can improve the 357	

classification. Then, the prediction accuracy of all ST combinations were plotted and 358	

mapped to explore the most discriminating temporal duration for decoding. For all above 359	

cases RF and SVM were compared with each other. The temporal duration of top 360	

performed ST combinations were plotted to investigate which classifier benefits more 361	

from temporal embedding, the longer the ST combination of top performed classification 362	

is, indicates that the classifier benefits more from the temporal information compared 363	

with the other classifier.  364	

All aforementioned analyses were performed on participants 1. As a result of deriving the 365	

important temporal duration across all ST combinations in participant 1, the duration was 366	

employed to analyze best performance across all participants to investigate if a shorter 367	

inter-stimulus interval, which is similar to previous work (Kohler et al., 2013), could still 368	

provide higher prediction accuracy compare with Single TR technique.  369	

 370	

2.11. TR influence index  371	

This study investigated the influence of data acquired at each TR over the course of 372	

fMRI, relative to the stimulus onset, on the classification performance for each stimulus 373	

category across all 990 ST combinations. Firstly, the most discriminating ST features (i.e., 374	

the BOLD signal acquired at a TR in a voxel) in each ST combination were determined 375	
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from the training results. When SVM was employed, on each stimulus side of the 376	

hyperplane, the selected features were the top 1% ST features with the largest 377	

reconstructed weight value. When RF was employed, the top 1% ST features with the 378	

largest OOB importance were selected. Secondly, the presence of a given TR in all 379	

selected ST features was counted as an indication of its influence on the classification 380	

performance. Thirdly, the presence of a given TR was normalized by the total number of 381	

times (P) that TR was presented in all 990 ST combinations. P is calculated as 𝑃 =382	

	𝑇(𝑁 − 𝑇 + 1) − 1, where T is the serial number of the given TR, ranging from 1 to 45, 383	

and N is 45, the total number of TRs. This study calls this normalized value TR influence 384	

index. 385	

BOLD signals measured via fMRI are very slow. A TR with high influence in a ST 386	

combination window affects its neighbors not to be selected, until that TR is out of the 387	

ST window. Therefore, for better representation the results were overlaid with the 388	

maximum TR influence for tri-seconds interval. This time interval almost mimics the 389	

temporal resolution of conventional fMRI sequence.  390	

 391	

3. Results 392	

3.1. Brain decoding based on spatiotemporal features versus spatial-only single time 393	

point technique 394	

The ST embedding based techniques resulted in higher cross-validated prediction 395	

accuracy in comparison to single TR techniques. This improvement was consistent across 396	

separate stimuli categories for the two studied classification methods. Table 1 showed 397	

that on average, across six runs RF (over cross-validate accuracy of ST and single TR 398	

techniques were 81.66 and 69.16, respectively) outperformed SVM (over cross-validate 399	

accuracy of ST and single TR techniques were 78.33 and 58.33, respectively) overall, and 400	

in separate stimuli specific evaluation. When looking at the stimulus-specific results 401	

(Figure 2B-C), ST techniques showed higher sensitivity (19-25% higher). In particular, 402	

ST-RF sensitivity to independent stimuli were always 90% or higher. Single TR SVM, 403	

which is among the most popular techniques (Kohler et al., 2013; Mourao-Miranda et al., 404	
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2007), performed slightly higher than chance. However, by using ST-SVM, sensitivity to 405	

independent stimuli were 80% or higher.  406	

When looking at the best prediction outcome of different classifiers, we noticed that RF 407	

outperformed SVM in most of the instances. The superiority was consistent across all 408	

runs and categories, where RF results were almost always higher than SVM and ST-RF 409	

results were always equal or higher than ST-SVM. It should be noted that here only the 410	

highest achieved prediction accuracies and sensitivities were reported. Therefore, the 411	

reported results in Figure 2 A, B and C are not from the same ST combination. It can be 412	

seen that the overall accuracy is mainly lower than the highest accuracy achieved in 413	

detecting either faces or houses.  414	

Prediction accuracies of all possible ST combinations are demonstrated in Figure 3. In 415	

this figure, all the 990 ST combinations are ordered next to each other in a way that the 416	

early results are the ST combinations where the early time points are included in the ST 417	

time window, and each immediate neighboring result is from the ST window expanded to 418	

the next time point until it reaches to time point = 45. Note that by using ST embedding 419	

technique, not all ST-RF combinations outperformed single TR-RF, and the classification 420	

performance in many of the combinations are even lower than chance. While ST 421	

embedding improves prediction accuracy in ST-RF compared to the Single TR-RF 422	

(around canonical HRF peak), the improvement highly depends on the choice of ST 423	

combination. For example, in ST-RF the accuracy was higher than Single TR-RF mainly 424	

when early TRs in the first third of the time interval after the stimulus onset were 425	

included. However, in the later combinations, which associated with combinations 426	

containing the last third TRs in the trials, the performance of ST-RF was lower than 427	

Single TR-RF.  No consistent pattern was observed in the results of ST-SVM. 428	

Figures 2 and 3 showed that across all runs Single TR-RF performs better than Single 429	

TR-SVM. Single TR with RF classifiers was even as high as ST-SVM in most cases, but 430	

not better than the best performing ST-SVMs.  431	

  432	
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 433	

Figure 2. Best performance of each technique across six runs. (A) Overall accuracy of 434	

single TR Support Vector machine (SVM) and Random Forest (RF), together with 435	

SpatioTemporal SVM (ST-SVM) and ST-RF. For single TR, the canonical 436	

Hemodynamic Response Function (HRF) peak with 1 second before and 2 seconds after 437	

the peak was considered and the highest performance was reported. For ST techniques, 438	
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the highest achieved prediction accuracy is illustrated. The red line indicates the chance 439	

level accuracy (50%) for faces versus houses classification. Sensitivity in detecting faces 440	

and houses are illustrated in (B) and (C), respectively.  441	

 442	

Table 1. Average performance of each technique across six runs. Average 443	
performance of single TR Support Vector machine (SVM) and Random Forest (RF), 444	
together with Spatio-Temporal SVM (ST-SVM) and ST-RF (rows) across six cross-445	
validation run. Columns from left to right present the overall performance, accuracy on 446	
predicting Face stimuli, and House stimuli, respectively. 447	

 448	

 449	

3.2. Investigating discriminative temporal duration 450	

In order to explore the most informative temporal duration using ST, all ST trials were 451	

mapped in Figures 4 and 5. The two figures reflect a heatmap of the result space, and 452	

show where, in temporal duration, high informative spatiotemporal combinations are 453	

centered. The color distribution represents the strong and weak prediction accuracies. 454	

Using ST-RF, a trend in prediction accuracy was observed (Figure 4). The high accuracy 455	

was mainly concentrated in the left side of the maps, which is associated with ST 456	

combinations that started at the early time points from stimuli onset. A noticeable drop in 457	

prediction accuracies was seen when the beginning of ST-RF was 6s or later. In some 458	

runs or categories, most of 45 TRs were included in the ST leading to high accuracy, but 459	

their accuracy never exceeded the ST combinations ST5:20, including TRs from ~2 460	

seconds to ~11 seconds. 461	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/746735doi: bioRxiv preprint 

https://doi.org/10.1101/746735
http://creativecommons.org/licenses/by-nc-nd/4.0/


 462	

Figure 3. Overall prediction accuracy of all possible spatiotemporal combinations 463	

across six runs. Each box shows the prediction accuracy of 990 possible SpatioTemporal 464	

(ST) combinations out of 45 TRs. The odd and even columns represent prediction 465	

accuracies using Support Vector machine (SVM) and Random Forest (RF) classifiers, 466	

respectively. Green line indicates the prediction chance (50%), and red line represents 467	

performance of the single TR technique (around canonical HRF peak) of that run. The x-468	

axis shows the 990 ST  combinations beginning with 1st TR (i.e. TRs: 1-2, 1-3, 1-4, …, 1-469	

45) followed by all combinations starting with 2nd TR (i.e. TRs: 2-3, 2-4, 2-5, …, 2-45) 470	

and so forth. The 990th ST trial includes the 44th and 45th  TRs.  471	

 472	

Across all runs and categories, the prediction accuracy of ST combinations with end 473	

points smaller than TR 5, e.g. ST1:4 or ST2:3, were around chance. These ST combinations 474	

can be seen in the top left corner of the maps in Figure 4. As soon as the ST combination 475	

started to include the preceding TRs, increased prediction accuracy was observed. In 476	

quite a few instances, an increase in prediction accuracy was observed in the ST 477	
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combinations including late TRs, which are around 20 seconds after stimulus onset. This 478	

increase can be visualized as the hyperintensity patch in the right bottom corner of the 479	

maps. The importance of individual TRs was further investigated, as illustrated in Figure 480	

6 and 7. 481	

As opposed to ST-RF, in ST-SVM there was no consistent pattern in the performance 482	

across runs and categories. In addition, no specific interval with highest accuracy was 483	

found. For example, in ST-SVM run 5, excluding the beginning time intervals leads to a 484	

noticeable drop in overall performance (i.e. dark region in the top left corner of the map). 485	

However, the same time interval led to the highest prediction accuracy in run 6. The 486	

aforementioned trials correspond to the interval that starts from the stimuli onset and ends 487	

around the peak of HRF (~5 seconds after stimuli onset).  488	

Comparing Figures 4 and 5, in ST-SVM the highest performance was either equal to or 489	

lower than ST-RF. When looking at only the first 10 seconds from the onset (from onset 490	

to post HRF peak), ST-RF was superior to ST-SVM. Similar to ST-RF, an increase in 491	

prediction accuracy was observed in the later temporal trials in some cases (e.g. after ~22 492	

seconds, as shown in the right bottom corner of maps).  493	

The results were dominant dependent on the selected ST combination, especially within 494	

stimuli categories. For example, in run 2, the prediction accuracy of face stimuli was as 495	

high as 90% or as low as 10% depending on the selected ST combination.  496	
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 497	

Figure 4. Prediction accuracy of all possible spatiotemporal combinations across six 498	

runs using Random Forest classifier. First column of each hot map shows the overall 499	

prediction accuracy of 990 possible SpatioTemporal (ST). Second and third columns of 500	

each hot map show the sensitivity in predicting face and houses, respectively. X- and Y-501	

axes indicate the start and end time of the ST, respectively. The precise time (in seconds) 502	

of each ST combination is shown in green axes. For example, point [2,18] in these maps 503	

is the ST combination that starts from TR of 2 (on X axis) and ends at 18 (on Y axis). 504	

The columns represent overall prediction accuracies and sensitivity to faces and houses, 505	
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respectively. Different color map ranges were used for each map, to assist visual 506	

inspection of most informative intervals.  507	

 508	

Figure 4. (Continue)   509	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/746735doi: bioRxiv preprint 

https://doi.org/10.1101/746735
http://creativecommons.org/licenses/by-nc-nd/4.0/


 510	

Figure 5. Prediction accuracy of all possible spatiotemporal combinations across six 511	

runs using Support Vector Machine classifier. First column of each hot map shows the 512	

overall prediction accuracy of 990 possible SpatioTemporal (ST). Second and third 513	

columns of each hot map show the sensitivity in predicting face and houses, respectively. 514	

X- and Y-axes indicate the starting and ending time of the ST, respectively. The precise 515	

time (in seconds) of each ST combination is shown in green axes. For example, point 516	

[2,18] in these maps is the ST combination that starts from TR of 2 (on X axis) and ends 517	

at 18 (on Y axis). The columns represent overall prediction accuracies, sensitivity to 518	
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faces and houses, respectively. Different color map ranges were used for each map, to 519	

assist visual inspection of most informative intervals.  520	

 521	
Figure 5. (Continue) 522	

 523	

3.3. TR influence index results 524	

The tri-second maximum TR influence indices were higher in the first quarter of TRs 525	

compared to the later TRs (Figure 6). A pattern observed in the tri-second maximum 526	
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temporal influence across the studied categories using the RF classifier. The interval with 527	

highest tri-second maximum influence index contains the peak of the HRF, and the most 528	

influential was the 10th TR that is around the peak of HRF, 5.68 seconds. Another peak in 529	

the tri-second maximum TR influence index was observed around the 40th TR (~22 530	

seconds from the stimulus onset), which was consistent across all categories.  531	

 532	
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Figure 6. Influence of each time point using Random Forest (RF). Bars indicate the 533	

mean and standard deviation of TR influence index across six runs. TR influence index 534	

represents the number of times where each time point was chosen as the most informative 535	

time point of the ST combination, normalized over the total number of times that the time 536	

point was utilized (see Method section). The whole time block was divided into nine sub-537	

temporal regions. The highest spatiotemporal influence index for every three seconds was 538	

overlaid on the bar chart (red line). X-axis represents time in seconds. (A) Illustrates the 539	

temporal influence for overall prediction. Temporal influence in detecting faces and 540	

houses are illustrated in (B) and (C), respectively. 541	

 542	

Figure 7. Spatiotemporal influence of each time point using Support Vector 543	

Machine (SVM). Bars indicate the mean and standard deviation of spatiotemporal 544	

influence index across six runs. Spatiotemporal influence index represents the number of 545	
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times were each time points was chosen as the most informative time point of the ST 546	

combination, normalized over the total number of times that the time point was utilized 547	

(see Methods section). X-axis represents time in seconds. Red line indicates the highest 548	

spatiotemporal influence index for every three seconds. Temporal influence in detecting 549	

faces and houses are illustrated in the top and bottom panels, respectively. 550	

In contrast to the tri-second maximum TR influence of ST-RF, there was no specific 551	

trend in the tri-second maximum temporal influence across the two categories using ST-552	

SVM. It should be noted that the classification performance for ST-SVM was relatively 553	

poor comparing to ST-RF. For the face category, the first TR (0.568 seconds after the 554	

stimulus onset) has been selected with a high mean influence level compared to the other 555	

TRs across six runs. In the same category, the second best tri-second maximum TR is at 556	

the 34th TR (19 seconds after the stimulus onset). The most tri-second maximum 557	

influential TR in house category happened after the HRF peak in the 16th TR.  558	

 559	

3.4. Temporal length in best SpatioTemporal combinations 560	

The top ten accurate ST combinations were from the beginning half intervals (i.e. ~ the 561	

20th TR) (with the exception of run 5). The ST-RF with highest overall prediction 562	

accuracy always contained the peak of HRF across the six runs (the 10th TR). Using ST-563	

SVM, in run 5, an unexpected temporal region appeared to be most informative (around 564	

40th TR). Similarly, using ST-RF in runs 3 and 5 the later temporal domain seemed to be 565	

informative.  566	

The most accurate ST-SVMs are no longer than 19 TR and are mainly short in duration 567	

across runs (Figure 9). The lengths of ST-RF across the top 1% trials (top ten ST 568	

combinations) were longer than ST-SVM on average across cross-validation runs. The 569	

measured duration was ~9s for RF and ~5s for SVM.  570	
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 571	

Figure 8. Temporal length of the top ten SpatioTemporal (ST) combinations. Bars 572	

indicate the mean and standard deviation of temporal length for ST combinations with 573	

highest overall prediction accuracy (top ten ST combinations of each run are considered). 574	

 575	

 576	

Figure 9. Temporal duration in the top ten SpatioTemporal (ST) trials across six 577	

runs. Blue and red lines show the time duration of the ST combination with the top 10 578	

highest prediction accuracy for overall category using SVM and RF, respectively. Each 579	

line indicates the start and end point of the ST combination.  580	

 581	

3.5. Replicability of the SpatioTemporal results  582	

Consistent with our previous investigation in participant 1, ST resulted in higher 583	

prediction accuracy in almost all runs across other participants, compared with single TR 584	

technique. The average values of top five prediction accuracies from ST combinations 585	

were close to the highest performance, with a small standard deviation (Figure 10). Table 586	
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2 showed that the average classification accuracy of ST-RF technique was consistently 587	

higher than single TR-RF in four participants across cross-validation runs.  588	

Note that in some cases both single TR and ST settings resulted in poor classification 589	

accuracies (e.g. run 2 and 5 of participant 2). Monitoring the skin conductivity (not 590	

included here) showed different level of conductance in the aforementioned runs, 591	

suggested that the poor performances were most likely due to the decreased engagement 592	

of the participant. Note that in some cases the ST combination resulted in a dominant 593	

improvement in the prediction accuracy, which was not observed in participant 1. For 594	

example, in run 4 of participant 4, ST resulted in 20% improvement of prediction 595	

accuracy, compared with 55% prediction accuracy in single TR.  596	

Using RF classifier, the highest overall performance of participant 1, when the first 11 597	

seconds after the stimuli onset was utilized (Figure 10), was similar to when all 25 598	

seconds were used in Figure 2, except for runs 2 and 5. This finding indicates that there is 599	

temporal information in between 11 seconds until 25 seconds from the stimulus onset that 600	

assist on increasing the MVPC performance. 601	

 602	
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Figure 10. Highest classification accuracy of single TR versus SpatioTemporal (ST) 603	

technique across 4 participants. Overall accuracy of single TR classification is 604	

compared with ST technique using random forest (RF) classifier (RF-ST). White bar 605	

demonstrates the overall performance of the single TR classification. Grey bar 606	

demonstrates the highest classification accuracy using RF-ST technique considering only 607	

at the first 11 seconds from the stimuli onset. Black bar shows the mean and standard 608	

deviation of top five prediction accuracies within the aforementioned temporal domain.  609	

 610	

Table 2. Average classification accuracy of highest single TR, SpatioTemporal (ST) 611	
technique in 4 participants across cross-validation runs. Average overall accuracy of 612	
top single TR classification, top five ST technique, using random forest (RF) classifier 613	
(rows) across four participants (in columns).	614	

 615	

 616	

4. Discussion  617	

The effect of ST feature selection on brain decoding was investigated in this study and 618	

the obtained prediction accuracies were compared with those obtained using the single 619	

TR approach. When considering the single TR scenario, the best decoding performance 620	

was achieved using single time point data around the HRF peak. Using ST feature 621	

selection, the best sensitivity to each stimulus was 90% or higher that was higher on 622	

average than single TR across all cross-validation runs (see ST-RF results in Figure 2B–623	

C). A multi-band EPI pulse sequences was utilized, providing high temporal resolution, 624	

which enables rigorous exploration of the temporal domain.  625	

 626	

4.1. ST features versus single TRs 627	

Results of this study showed that on average, ST feature selection led to higher prediction 628	

accuracy compared to the single TR observation. The effect of including the whole ISI 629	

(25 seconds) was investigated on the performance of MVPC and the results show that the 630	
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ten best performing ST combinations do not include the whole ISI (Figures 8 and 9). 631	

Furthermore, the highest prediction accuracies were gained with ST combinations that 632	

include time points around the peak of the HRF (ST combinations containing from ~2–11 633	

seconds after the stimuli onset). The discriminative power that was gained from ST 634	

combinations within this range was even higher than those combinations containing the 635	

entire trial of 25 seconds (used in (Fogelson et al., 2011)). The same conclusion was 636	

made when the influence of each time point on the ST combinations was assessed.  637	

In some ST combinations that did not have stimuli specific BOLD activities, the 638	

performances of the classifiers were lower than chance. On these cases the classification 639	

optimizer fails to diverge, which results to a failure in classification in a systematically 640	

biased way. Particularly, when the training data is extremely noisy (in this case, un-641	

informative temporal features) the classification may fit the model to noise and cause a 642	

bias. 643	

Findings in this section complied with the strategy used in a recent study where MVPC 644	

was employed to decode individual finger movements (Shen et al., 2014). The feature 645	

vector was constructed using two successive volumes in the image series for a trial 646	

corresponding to the duration close to the peak of the HRF in the studied ROI. Later, the 647	

two successive volumes were concatenated to construct spatial-temporal feature vectors 648	

(Shen et al., 2014). 649	

 650	

4.2. Comparison between SVM and RF 651	

Based on the findings in this study, compared to the SVM, RF performs better in MVPC 652	

using ST feature selection. RF led to higher prediction accuracy compared to the SVM 653	

and showed more consistency across stimuli and runs. No consistent pattern was 654	

observed across SVM results from ST combinations. In addition, ST combinations with 655	

the highest prediction accuracy from the RF classifier were always longer than those 656	

from the SVM (Figure 8-9), suggesting that RF benefits more from temporal information 657	

encoded in ST embedding than does the SVM. In general, RF led to higher prediction 658	

accuracies across stimuli and runs compared with the SVM, regardless of utilization of 659	

ST feature selection. 660	
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While SVM algorithms are computationally stable, generalize well, and have been 661	

applied successfully to fMRI data (LaConte, Strother, Cherkassky, Anderson, & Hu, 662	

2005), for MVPC with ST feature selection, RF outperformed SVM. The superiority of 663	

RF was also reported by Douglas et al. (Douglas et al., 2011) for the conventional case of 664	

MVPC analyses. One possible reason for this dominance could be that RF has greater 665	

power for handling high-dimensional data compared with SVM. RF holds a unique 666	

advantage by employing multiple feature subsets, which is well suited for high-667	

dimensional data. This robustness of RF is largely due to the relative insensitivity of 668	

misclassification cost to the bias and variance of the probability estimates in each tree 669	

(Hastie, Tibshirani, & Friedman, 2009). In principle, SVMs should be highly resistant to 670	

over-fitting but in practice this depends on the careful choice of regularization parameter 671	

and the kernel parameters. However, over-fitting can also occur quite easily when tuning 672	

the hyper-parameters (Hastie et al., 2009).  673	

4.3. HRF peak jittering and temporally averaged BOLD signals 674	

The results of this study were compared with the highest prediction accuracy that was 675	

obtained using the single TR around the peak of the HRF. A temporal range was 676	

considered around the peak of the HRF, rather than the canonical peak. Time point by 677	

time point, MVPC showed that the peak of classification accuracy is around the peak of 678	

the region-average HRF (Kohler et al., 2013); in some regions prior to and in some 679	

regions after the region-average HRF peak. By performing the comparison against the 680	

highest prediction accuracy around the peak (based on the findings of Kohler et al. 681	

(Kohler et al., 2013)), ST-based results are compared against those from the state-of-the-682	

art approaches. It would be interesting to investigate the hypotheses in this experiment 683	

applied to other brain regions. 684	

 685	

4.4. High decoding accuracy at the end of ISI 686	

The provided classification weight vectors from ST-based input data identifies when 687	

class-discriminating information arises, indicated by the TR influence index (Figure 6). 688	

Using RF, the tri-second average TR influence index in the first part of the trials in the IT 689	

conformed to the temporal pattern in the canonical double gamma HRF. In addition to the 690	
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time around the peak of HRF, high temporal influence was observed around 23 seconds 691	

after stimuli onset. The time at which this observation occurred is around the time when 692	

negative undershoot is almost passed according to the canonical double gamma HRF 693	

(Friston et al., 1994). The participant’s task in this study was to perform a one back 694	

repetition detection task from trial to trial. For each trial the participant attempts to retain 695	

in their memory details of the stimuli introduced in that trial, and then waits for the next 696	

trial in which they perform the one back repetition detection task. Category expectation 697	

was found to be affecting the baseline and stimulus evoked activity in IT (Puri, 698	

Wojciulik, & Ranganath, 2009). Expectation was reported to be related to a degree of 699	

certainty about an upcoming stimulus (Cisek & Kalaska, 2010), meaning that if a certain 700	

stimulus category has a high probability of appearance, preparatory processes of 701	

expectation can facilitate its detection and the associated responses (Cisek & Kalaska, 702	

2010). It was reported that the baseline activity level in subcortical regions in IT (FFA 703	

and PPA) was higher during expectation of the preferred (e.g. face for FFA) versus non-704	

preferred category (Egner, Monti, & Summerfield, 2010; Herwig, Abler, Walter, & Erk, 705	

2007; Puri et al., 2009). Therefore, a high chance of correspondence exists between the 706	

high discrimination power in the 23rd second of the trial, and the expectation mechanism 707	

in IT. Observing such an effect in the TR influence highly depends on the experimental 708	

design, brain region, the task, and the inter stimulus interval. Note that the influence of 709	

the TRs suspected to be related to expectation was much lower than the TRs around the 710	

peak of the HRF. The latter finding invites further investigations on the effect of category 711	

expectation using MVPC.  712	

 713	

4.5. Improved performance across participants 714	

In this study, a rigorous investigation was performed on the effect of ST feature selection 715	

on the MVPC performance for one of the participants. Later, the analysis conclusion was 716	

validated on the rest of the participants. Participant 1 was chosen as the subject for a 717	

detailed comparison as the MVPC performance in single TR for participant 1 was overall 718	

higher than other subjects of this study. For the other participants, only the first 11 719	

seconds of each trial were utilized to investigate the effect of ST feature selection. This 720	
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time interval was also employed for stimuli design in a previous study (Kohler et al., 721	

2013), and our initial investigations recommended that this temporal range embraces 722	

highly decodable dynamics. All other 990 ST combinations were derived for each of the 723	

4 participants. Of course, higher prediction accuracy than what is reported (Figure 10) 724	

might have been obtained if the entire temporal domain was considered (e.g. comparing 725	

ST-RF results in Figure 1A and Figure 10A). But here, our aim was to show that even 726	

within this range an improvement in prediction accuracy could be obtained by the use of 727	

ST feature selection.  728	

 729	

4.6. Implications of temporal feature selection on brain decoding 730	

Brain decoding not only allows for combinational effects across voxels, but also has 731	

applications in brain-computer interfacing (Davis & Poldrack, 2013; Van De Ville & Lee, 732	

2012). However, due to the challenges related to sensitivity and specificity, clinical 733	

justification has not fully been achieved yet. But an improved brain decoding technique 734	

can hasten the transition time of MVPC from laboratory to clinic.  735	

The findings of this study open the way for further investigations into the understanding 736	

of category learning dynamics, where the stimuli space will change over time as a result 737	

of learning (Davis & Poldrack, 2013). A potential application of incorporating our ST 738	

approach into MVPC would be to see if by embedding the dynamic patterns, the time at 739	

which the brain starts shaping a motor decision and unconscious mental processes could 740	

be decoded in a shorter temporal duration (Soon, Brass, Heinze, & Haynes, 2008). Our 741	

observations have methodological implications for selecting the time at which to perform 742	

classification analyses. Throughout IT there can be systematic differences in the temporal 743	

dynamics of classification accuracy that could be investigated by ST embedding. 744	

However, it remains to be seen as to whether these findings will generalize to other areas 745	

and other stimuli. 746	

One of the limitations of MVPC studies is the reported weak correlation of inter-subject 747	

and intra-subject measured fMRI responses to the same stimuli (Chen et al., 2014). In 748	

addition, it is challenging to establish a correspondence between selected voxels/ROIs 749	

across participants in a dataset. A challenge in this study was to tax the subject’s attention 750	
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considering our long ISI. It is desirable to create an experiment design that required the 751	

subjects to spend less time inside the scanner and to watch stimuli for as long as time 752	

allows (Franklin, 2012). However, the aim of this study was to investigate a wide range 753	

of temporal information, which can lead to such ISI design.  754	

While improvement was gained on average by utilizing ST feature selection, no specific 755	

combination consistently outperformed others across runs and participants. This provides 756	

a motivation for the future direction of our investigation on brain decoding using ST 757	

feature selection, and that is to find a systematic optimum way to extract ST features.  758	

In conclusion, on average the ST feature selection led to higher classification 759	

performance compared with single TR observation. This study explored the temporal 760	

domain and found that the discriminative power increased when time points around the 761	

peak of the HRF were included in the ST combination. In particular, ST combinations 762	

taken from between ~2–11 seconds after the stimuli onset outperformed the rest of the ST 763	

combinations (including those combinations containing the entire trial, i.e. the whole trial 764	

embedded ST). Our assessment of the importance of time points in ST combinations 765	

confirmed the latter conclusion about the most important time points. Based on the 766	

evaluation criteria of this study (MVPC prediction performance and the conforming 767	

temporal pattern in TR influence index with canonical double gamma HRF), the findings 768	

in this study suggest RF as the classifier of choice over SVM for brain decoding using ST 769	

feature selection. RF led to higher prediction accuracy, and showed more consistency 770	

across stimuli and runs. RF also benefits more from ST information compared with SVM 771	

(the length of the highest performance ST combination was always longer with RF than 772	

with SVM). 773	
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