

Developmental stage-specific distribution of macrophages in mouse mammary gland

1 **Teneale A. Stewart^{1,2}, Katherine Hughes³, David A. Hume^{1,2}, Felicity M. Davis^{1,2,*}**

2 ¹Mater Research Institute-The University of Queensland, Faculty of Medicine, The University of
3 Queensland, Brisbane, Queensland, Australia

4 ²Translational Research Institute, Brisbane, Queensland, Australia

5 ³Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK

6 *** Correspondence:**

7 Corresponding Author

8 f.davis@uq.edu.au

9 **Keywords: Mammary gland, macrophages, development, embryonic mammary stem cells, adult
10 mammary stem cells, stem cell niche**

11

12 **Abstract**

13 Mammary gland development begins in the embryo and continues throughout the reproductive life of
14 female mammals. Tissue macrophages (Mφs), dependent on signals from the Mφ colony stimulating
15 factor 1 receptor (CSF1R), have been shown to regulate the generation, regression and regeneration of
16 this organ, which is central for mammalian offspring survival. However, the distribution of Mφs in the
17 pre- and post-natal mammary gland, as it undergoes distinct phases of development and regression, is
18 unknown or has been inferred from immunostaining of thin tissue sections. Here, we used optical tissue
19 clearing and 3-dimensional imaging of mammary tissue obtained from *Csf1r-EGFP* mice. Whilst tissue
20 Mφs were observed at all developmental phases, their abundance, morphology, localization and
21 association with luminal and basal epithelial cells exhibited stage-specific differences. Furthermore,
22 sexual dimorphism was observed at E14.5, when the male mammary bud is severed from the overlying
23 epidermis. These findings provide new insights into the localization and possible functions of
24 heterogeneous tissue Mφ populations in mammogenesis.

25 1 Introduction

26 Mammary gland development is phasic, with distinct developmental periods occurring in the embryo,
27 at puberty and during pregnancy/lactation (Lloyd-Lewis et al., 2017; Watson and Khaled, 2008). The
28 formation of the milk lines occurs at approximately embryonic day (E) 10 in mice and within 36 h
29 resolves into five pairs of disk-shaped thickenings known as mammary placodes (Cowin and
30 Wysolmerski, 2010). At around E12.5, mammary placodes invaginate into the dermal mesenchyme
31 forming the mammary buds, which later elongate and invade the fat pad precursor, creating a
32 rudimentary epithelial tree (Cowin and Wysolmerski, 2010; Lilja et al., 2018; Paine and Lewis, 2017).
33 During embryonic development, multi-potent mammary stem cells are replaced by unipotent luminal
34 and basal stem/progenitor cells (Lilja et al., 2018; Wuidart et al., 2018), with epithelial cell identities
35 being resolved by E15.5 (Lilja et al., 2018).

36 Initial postnatal growth of the mammary epithelium is proportional to body size and it is not until
37 puberty that ductal elongation occurs, fueled by proliferation of adult mammary stem/progenitor cells
38 within terminal end bud (TEB) structures (Davis et al., 2016; Lloyd-Lewis et al., 2017, 2018; Paine
39 and Lewis, 2017). Further epithelial expansion occurs during pregnancy to generate the functional
40 (milk-producing) alveolar epithelium (Davis et al., 2016; Watson and Khaled, 2008). With the
41 cessation of infant suckling, alveolar mammary epithelial cells undergo massive programmed cell
42 death (a process known as post-lactational involution), returning the mammary gland to a near pre-
43 pregnant state that is capable of supporting future pregnancies (Lloyd-Lewis et al., 2017; Sargeant et
44 al., 2014).

45 M ϕ s are present in all adult tissues (Hume et al., 2019b). These cells are first and foremost professional
46 phagocytes, but also regulate tissue development, function and dysfunction (Hume, 2015; Naik et al.,
47 2018; Yang et al., 2018). In the normal postnatal mammary gland, M ϕ s regulate ductal morphogenesis
48 during puberty (Gouon-Evans et al., 2000; Ingman et al., 2006; Van Nguyen and Pollard, 2002),
49 alveolar budding during ovarian cycling (Chua et al., 2010), alveologenesis in pregnancy (Pollard and
50 Hennighausen, 1994) and tissue remodeling during post-lactational involution (Hughes et al., 2012;
51 O'Brien et al., 2010, 2012), with many of these processes being impaired in mice that lack colony
52 stimulating factor 1 (CSF1). Moreover, M ϕ s identified by fluorescence-activated cell sorting (FACS)
53 of disaggregated tissue were detected within the embryonic mammary gland by E16.5 and fetal-derived
54 M ϕ s were apparently retained and expanded by self-renewal in adult mammary tissue (Jäppinen et al.,
55 2019).

56 With accumulating evidence demonstrating the dependence of the mammary epithelium on M ϕ s at all
57 developmental stages, it is tempting to speculate that tissue-resident M ϕ s institute or influence a
58 putative mammary stem cell niche, as has been shown for hematopoietic stem cells (Winkler et al.,
59 2010), intestinal stem cells (Sehgal et al., 2018) and hair follicle stem cells (Castellana et al., 2014;
60 Naik et al., 2018). Indeed, the activity of mammary “stem” or repopulating cells (defined as a subset
61 of basal cells that are capable of recreating the bi-layered mammary epithelium upon limiting dilution
62 transplantation) is reduced when cells are transplanted into the cleared fat pads of M ϕ -depleted
63 recipient mice (Gyorki et al., 2009). More recently, mammary repopulating cells were shown to express
64 a Notch ligand Delta like 1 (DLL1) and *Dll1*-conditional knockout mice showed reduced mammary
65 repopulating activity and lower levels of F4/80 $^{+}$ M ϕ s (Chakrabarti et al., 2018). Thus, it has been
66 suggested that DLL1-expressing basal cells activate Notch-expressing M ϕ s in a reciprocal stem cell-
67 macrophage niche (Chakrabarti et al., 2018; Kannan and Eaves, 2018). Studies revealing
68 developmental stage-dependent distribution of M ϕ s in the mammary gland, including their sites of
69 confluence, would provide further evidence for the existence of a stem cell-macrophage niche in this
70 organ and may help to reveal the specific and stage-dependent localization of mammary
71 stem/progenitor cells within the dynamic, bilayered epithelium under physiological conditions. Here,
72 we utilize a fluorescent reporter model and optical tissue clearing techniques to reveal the presence,
73 prevalence and position of M ϕ s in the mammary gland at all phases of development.

74

75 2 Materials and Methods

76 **2.1 Reagents.** Neutral buffered formalin (NBF), Quadrol®, triethanolamine and 4',6-diamidino-2-
77 phenylindole (DAPI) dilactate were purchased from Sigma Aldrich. Normal goat serum was purchased
78 from ThermoFisher. Urea and sucrose were purchased from Chem-Supply. Triton-X-100 was
79 purchased from VWR International. The following primary antibodies were used for immunostaining:
80 chicken anti-GFP (Abcam, ab13970, batch #s GR3190550-3 and -12), rat anti-F4/80 (Novus, NB600-
81 404), rat anti-keratin 8 (DSHB, TROMA-I, batch #s 7/7/16 and 30/3/17), rabbit anti-keratin 5
82 (BioLegend, 905504, batch # B230397) and rabbit anti-SMA (Abcam, ab5694, batch # GR3183259-
83 26). The following secondary antibodies were used: goat anti-chicken Alexa Fluor-488 (ThermoFisher,
84 A21236), goat anti-rat Cy3 (ThermoFisher, A10522) and goat anti-rabbit Alexa Fluor-647
85 (ThermoFisher, A21245).

86 **2.2 Animal models.** Animal experimentation was carried out in accordance with the *Australian Code*
87 *for the Care and Use of Animals for Scientific Purposes* and the *Queensland Animal Care and*
88 *Protection Act (2001)*, with local animal ethics committee approval. Animals were housed in
89 individually-ventilated cages with a 12 h light/dark cycle. Food and water were available *ad libitum*.
90 *Csf1r-EGFP* (MacGreen) (Sasmono et al., 2003) mice were a kind gift from A/Prof Allison Pettit
91 (Mater Research Institute-UQ). Mice were maintained as hemizygotes on a C57BL6/J background.
92 C57BL6/J mice were obtained from the Animal Resources Centre (Western Australia).

93 To obtain mammary tissue during gestation, female mice were mated and tissue harvested 14.5 days-
94 post-coitus. GFP⁺ embryos (E14.5) were also harvested and analyzed after PCR-sexing. To obtain
95 tissue during lactation, female mice were mated, allowed to litter naturally and lactating mammary
96 tissue harvested on day 10 of lactation. For studies during involution, females were allowed to nurse
97 for 10 days and mammary glands harvested 96 h post forced involution. Mammary glands from pre-
98 pubertal female GFP⁺ mice (postnatal day 10) were also harvested and analyzed.

99 **2.3 CUBIC-based tissue clearing and IHC.** Tissue clearing was performed as previously optimized
100 and described (Davis et al., 2016; Lloyd-Lewis et al., 2016). Briefly, mammary tissue was spread on
101 foam biopsy pads and fixed for 6-9 h in NBF (10%). Embryos were fixed whole. For CUBIC-based
102 clearing, tissue was immersed in Reagent 1A (Lloyd-Lewis et al., 2016; Susaki et al., 2014) at 37°C
103 for 3 days before washing and blocking in goat serum (10%) in PBS with Triton-X-100 (0.5%)
104 overnight at 4°C. Tissue was incubated in primary antibody in blocking buffer for 4 days and secondary
105 antibody in blocking buffer for 2 days at 4°C. DAPI (5 µg/mL) treatment was performed for 2-3 h at
106 room temperature (omitted for second harmonic generation) and tissue was immersed in modified
107 Reagent 2 (Lloyd-Lewis et al., 2016) at 37°C for at least 24 h prior to imaging.

108 **2.4 Immunohistochemistry (FFPE slides).** IHC on FFPE slides was performed as previously
109 described in detail (Stewart et al., 2019). Wholmount immunostaining using anti-GFP antibody was
110 performed prior to processing for paraffin embedding.

111 **2.5 Microscopy.** Immunostained tissue sections were imaged using an Olympus BX63 upright
112 epifluorescence microscope using UPlanSAPO 10×/0.4, 20×/0.75, 40×/0.95, 60×/1.35 and 100×/1.35
113 objective lenses. Immunostained optically-cleared tissue was imaged using an Olympus FV3000 laser
114 scanning confocal microscope with UPLSAPO 10×/0.40, UPLSAPO 20×/0.75, UPLSAPO 30×/1.05
115 and UPLFLN 40×/0.75 objective lenses. 3D de-noising was performed as previously described
116 (Boulanger et al., 2010). For SHG, images were acquired using a Mai Tai DeepSee multiphoton laser

117 on a Zeiss 710 laser scanning inverted microscope. Visualization and image processing was performed
118 in ImageJ (v1.52e, National Institutes of Health) (Linkert et al., 2010; Schindelin et al., 2012).

119

120 **3 Results**

121 **3.1 M ϕ s are present in the embryonic bud and early postnatal gland with sexually dimorphic**
122 **distribution.** M ϕ s have never been visualized in the embryonic mammary gland and, until recently,
123 were thought to arrive postnatally (Jäppinen et al., 2019). A study by Jäppinen et al. has revealed the
124 presence of F4/80 $^{+}$ cells in digested mammary tissue by E16.5 by flow cytometry (Jäppinen et al.,
125 2019). However, in the absence of *in situ* imaging, it is currently unclear whether these embryonic M ϕ s
126 physically associate with the developing mammary epithelium, as has been observed in the postnatal
127 gland.

128 To assess M ϕ distribution in 3-dimensions in intact mammary tissue, we used a *Csf1r-EGFP* mouse
129 model (Sasmono et al., 2003), combined with methods for optical tissue clearing and deep tissue
130 imaging (**Supplementary Fig. 1**) (Davis et al., 2016; Lloyd-Lewis et al., 2016, 2018) (Lloyd-Lewis et
131 al., manuscript in preparation). In this model, green fluorescent protein (GFP) expression in tissues is
132 restricted to monocytes and M ϕ s in the developing embryo, starting with yolk sac-derived phagocytes,
133 and in all adult tissues (Hume et al., 2019a; Sasmono et al., 2003). Much lower expression in
134 granulocytes and some B lymphocytes is detectable by FACS, but not in tissues. Multi-color
135 fluorescence immunostaining of tissue sections from mouse spleen confirmed that the majority of GFP $^{+}$
136 cells were also positive for the M ϕ cell surface marker, F4/80 (**Supplementary Fig. 2**).

137 In 3D image stacks of female *Csf1r-EGFP* embryos, M ϕ s were detected in the mammary and dermal
138 mesenchyme surrounding the mammary epithelial bud as early as E14.5 (**Fig. 1A** and **Supplementary**
139 **Fig. 3A**). As expected (Sasmono et al., 2003), M ϕ s were also present in the embryonic liver at this
140 stage (**Fig. 1B**), and it has been suggested that these fetal liver-derived M ϕ s contribute extensively to
141 the pool of tissue M ϕ s present in the adult gland (Jäppinen et al., 2019). Our data show that M ϕ s were
142 positioned adjacent to the embryonic mammary epithelium around the time of lineage segregation
143 (Lilja et al., 2018; Wuidart et al., 2018). Interestingly, although M ϕ s were positioned around the
144 embryonic bud, they were rarely observed to directly interact with the developing epithelium of female
145 embryos (**Fig. 1A** and **Supplementary Fig. 3A**). In contrast, M ϕ s directly contacted and invaded the
146 mammary bud of male mice at E14.5, the developmental period when the male bud is severed from the

147 overlying epidermis in mice and begins to regress (**Fig. 1C-D** and **Supplementary Fig. 3B**) (Cowin
148 and Wysolmerski, 2010; Dunbar et al., 1999; Heuberger et al., 2006). Mammary M ϕ s were also
149 observed in the early postnatal period in female mice (**Fig. 1E-F**). By this stage, however, M ϕ s were
150 positioned around and inside of this rudimentary structure, apparently interacting with the epithelium
151 (**Fig. 1E**).

152 **3.2 M ϕ s envelope and infiltrate the elongating terminal end bud during ductal morphogenesis.** M ϕ s
153 are essential for normal ductal morphogenesis during puberty (Gouon-Evans et al., 2000; Ingman et
154 al., 2006; Van Nguyen and Pollard, 2002). Pre-pubertal leukocyte depletion using sub-lethal γ -
155 irradiation is associated with impaired ductal development and in M ϕ -deficient *Csf1^{op}/Csf1^{op}* mice,
156 misshapen TEBs fail to properly invade the mammary fat pad at the rate observed in age-matched
157 controls (Gouon-Evans et al., 2000; Ingman et al., 2006; Van Nguyen and Pollard, 2002). Previous
158 studies analyzing M ϕ density and distribution in mouse mammary tissue sections have shown
159 recruitment of F4/80 $^+$ M ϕ s to the pubertal epithelium and their convergence around the neck of TEBs
160 (Gouon-Evans et al., 2000; Schwertfeger et al., 2006), where adult mammary stem/progenitor cells are
161 thought to reside (Lloyd-Lewis et al., 2017; Sreekumar et al., 2015).

162 3D imaging of mammary tissue from pubertal *Csf1r-EGFP* mice revealed that mammary TEBs were
163 enveloped by M ϕ s, with spatial clustering observed (**Fig. 2A** and **Supplementary Fig. 4A**). Previous
164 studies using the F4/80 marker indicated that M ϕ s were restricted to the neck of TEBs, whereas
165 eosinophils (distinguished by their eosinophilic cytoplasm and segmented nuclei) were concentrated at the
166 TEB head (Gouon-Evans et al., 2000, 2002). By contrast, in this study GFP $^+$ M ϕ s in both locations
167 shared stellate morphology (**Fig. 2A** and **Supplementary Fig. 4A**) and neither showed any evidence
168 of segmented nuclei (**Supplementary Fig. 4A**). A small number of mammary M ϕ s were observed
169 inside the body of TEBs (**Fig. 2A**), where they may contribute to clearance of apoptotic cells from the
170 TEB lumen (Gouon-Evans et al., 2000; Humphreys et al., 1996; Paine and Lewis, 2017). GFP $^+$ M ϕ s
171 were found along the length of the ductal epithelium in the pubertal gland (**Fig. 2B** and **Supplementary**
172 **Fig. 4B**) and in some cases appeared to be positioned between the luminal and basal cell layers (**Fig.**
173 **2B**, arrow). Intraepithelial M ϕ s, detected with F4/80, are a feature of ductal epithelia throughout the
174 body (Hume et al., 1984). It is currently unclear how these interposed M ϕ s affect luminal-basal cell
175 connections [e.g., desmosomes and gap junctions (Shamir and Ewald, 2015)] and their precise function
176 within the epithelial bilayer. GFP $^+$ cells were also dispersed throughout the mammary fat pad (**Fig. 2**

177 and **Supplementary Fig. 4**) (Chua et al., 2010; Schwertfeger et al., 2006) and were densely packed in
178 the inguinal lymph node (**Fig. 2C** and **Supplementary Fig. 4B**) and nipple region (**Fig. 2D**).

179 Mammary M ϕ s have been shown to organize collagen into fibrillar bundles to steer TEB growth
180 through the stromal fat pad (Ingman et al., 2006). We therefore examined fibrillar collagens with
181 second harmonic generation (SHG) (Williams et al., 2005) in tissue from *Csf1r-EGFP* mice at depth
182 using an immersion-based optical clearing approach, which preserves endogenous fluorescence and
183 tissue architecture (Lloyd-Lewis et al., 2016; Vigouroux et al., 2017). Although surface collagen fibers
184 in the mammary gland were dense and multi-directional [**Fig. 2E** (red)], deeper collagen fibers
185 proximal to the growing TEB were aligned along its perimeter, extended in the direction of TEB growth
186 and were associated with M ϕ s (**Fig. 2E**). These data provide further evidence that mechanical forces
187 from the stroma guide epithelial development in the normal mammary gland (Ingman et al., 2006;
188 Stewart et al., 2019).

189 **3.3 M ϕ s are intimately associated with the mature ductal epithelium.** M ϕ s are present in the post-
190 pubertal mouse mammary gland at all phases of the estrus cycle, with the numbers being highest in
191 diestrus (Chua et al., 2010). In tissue sections at all estrus stages, F4/80 $^{+}$ cells are detectable around
192 alveolar side buds versus ducts, where they are thought to promote the development and regression of
193 these transient structures (Chua et al., 2010). Using 3D imaging of mammary tissue from *Csf1r-EGFP*
194 mice, we observed similar numbers of M ϕ s closely-associated with mammary ducts (**Fig. 3A** and
195 **Supplementary Fig. 5**) and side buds (**Fig. 3B** and **Supplementary Fig. 5A**). As in the pubertal
196 epithelium, M ϕ s were also positioned between the luminal and basal cell layers in mature ducts and
197 buds (**Fig. 3A-B** and **Supplementary Fig. 5B**, arrowheads) with some evidence of periodicity in
198 intraepithelial M ϕ placement (**Supplementary Fig. 5B**). This is consistent with regular distributions
199 of M ϕ s in many locations throughout the body (Hume et al., 2019b). SHG of mature ducts revealed
200 some fibrillar collagens that were located around the ducts and vessels (**Supplementary Fig. 5C**).

201 **3.4 M ϕ s surround alveolar units in gestation and lactation.** M ϕ deficient *Csf1^{op}/Csf1^{op}* female mice
202 have compromised fertility (Pollard et al., 1991). Amongst those that do generate offspring, none are
203 able to nurture a full litter, despite normal maternal behaviors (Pollard and Hennighausen, 1994). In-
204 depth analyses of mammary tissue from pregnant and lactating *Csf1^{op}/Csf1^{op}* mice showed incomplete
205 branching and precocious alveolar development (Pollard and Hennighausen, 1994) and F4/80 $^{+}$ cells
206 have been detected around the developing and functional alveolar units during pregnancy and late
207 gestation (Gouon-Evans et al., 2002).

208 3D analysis of mammary tissue from pregnant *Csf1r-EGFP* mice (day 14.5 gestation, dG) confirmed
209 M ϕ localization around the expanding alveolar structures (**Fig. 4A** and **Supplementary Fig. 6**). By
210 lactation, M ϕ s were observed immediately adjacent to alveolar basal cells, where they frequently
211 imitated basal cell morphology (**Fig. 4B-C**, white arrowheads). M ϕ s were also present within
212 lactational alveoli (**Fig. 4C**, arrow), consistent with their enrichment in breast milk (Field, 2005).

213 **3.5 The irreversible phase of involution is associated with an increase in M ϕ number in and around**
214 **regressing alveolar structures.** The number of M ϕ s surrounding the mammary epithelium increases
215 drastically from days 3-4 of involution (Hughes et al., 2012; Lund et al., 1996; Stein et al., 2004), and
216 involution-associated M ϕ s appear polarized toward tissue repair (O'Brien et al., 2010). The recruitment
217 and polarization of M ϕ s in the involuting mammary gland is regulated by epithelial *Stat3* expression
218 (Hughes et al., 2012). Moreover, pre-weaning depletion of CSF1R-expressing cells reduces mammary
219 epithelial cell death during post-lactational involution, an effect that can be reversed by orthotopic
220 transplantation of bone marrow-derived M ϕ s (O'Brien et al., 2012).

221 To further examine M ϕ number, morphology and distribution in the regressing mammary gland in 3-
222 dimensions, we analyzed optically-clear tissue from *Csf1r-EGFP* mice during the irreversible phase of
223 involution. Relative to other developmental stages, M ϕ density was high at 96 h involution and M ϕ s
224 were observed around and inside ducts and regressing alveoli (**Fig. 5A-B**). Large aggregates of GFP $^+$
225 cells, reminiscent of homotypic fusion (MacLauchlan et al., 2009), were also observed inside
226 degenerating alveolar structures (**Fig. 5B** arrowheads). Similar aggregates of GFP $^+$ M ϕ s have been
227 observed in a model of epithelial regeneration in the kidney following transient ischemia (Joo et al.,
228 2016).

229 Collagen density increases during mammary gland involution and partially-degraded nonfibrillar
230 collagens have been suggested to be chemotactic for M ϕ s (O'Brien et al., 2010). Intra- and interlobular
231 fibrillar collagens were observed with SHG in *Csf1r-EGFP* mice and GFP $^+$ M ϕ s were observed to be
232 associated with collagen fibrils (**Fig. 5C**).

233 4 Discussion

234 M ϕ s contribute to mammary gland development and remodeling at all developmental stages (Chua et
235 al., 2010; Dai et al., 2002; Gouon-Evans et al., 2000; Hughes et al., 2012; Ingman et al., 2006; O'Brien
236 et al., 2010, 2012; Pollard and Hennighausen, 1994; Van Nguyen and Pollard, 2002). In this study, we
237 provide new insights into the relative number, morphology and distribution of M ϕ s in the embryonic,

238 pre-pubertal, pubertal, post-pubertal, pregnant, lactating and involuting mammary glands of
239 fluorescent reporter-positive mice *in situ* in 3-dimensions (**Fig. 6**). Our study yields a number of
240 important observations that could only be revealed by multi-dimensional imaging using a tamoxifen-
241 independent, cell type-specific fluorescent reporter model (Hume et al., 2019b, 2019a). Firstly, in
242 contrast to previous reports (Gouon-Evans et al., 2000, 2002), we demonstrate that M ϕ s encase the
243 length of elongating TEBs and are not restricted to the TEB neck. Mammary M ϕ s were also frequently
244 embedded between luminal and basal cells of the ductal epithelium. This has previously been observed
245 in mammalian ductal epithelia, including the bile duct, salivary gland, tracheobronchial gland and
246 mammary gland using thin sections prepared from formalin-fixed paraffin-embedded or frozen tissue
247 (Hume et al., 1984; Sun et al., 2013). Regularity in the spacing of these intraepithelial M ϕ s was also
248 noted. Our findings suggest a close functional relationship between M ϕ s and ductal epithelial cells,
249 and possible communication between morphologically-related M ϕ populations. Further studies are
250 needed to determine whether these intraepithelial M ϕ s share similar gene and protein expression
251 patterns and whether this information can be used to probe their function, retention and passage within
252 the epithelium. Tissue M ϕ s have been shown to be influenced by properties of their specific niche
253 within each tissue (e.g., anchoring scaffolds and local cues) (Chakarov et al., 2019; Mondor et al.,
254 2019). Single cell sequencing of isolated mammary M ϕ s from *Csf1r-EGFP* mice at distinct
255 developmental stages, as exemplified by recent studies of other tissues (Chakarov et al., 2019; Mondor
256 et al., 2019), might help to reveal the extent of functional diversity within M ϕ populations in this organ.
257 Secondly, we show that M ϕ s alter their morphology at distinct developmental stages, including the
258 transition from gestation to lactation. The localization of M ϕ s around growing alveolar units during
259 gestation and the observation that M ϕ -deficient *Csf1^{op}/Csf1^{op}* mice exhibit precocious alveolar
260 development, suggests that during this phase, alveolar-associated M ϕ s may restrain alveogenesis.
261 During lactation, M ϕ s altered their anatomical position and were observed to closely imitate the
262 morphology of adjacent, differentiated alveolar basal cells. Whether these cells specifically align
263 themselves with oxytocin-responsive basal cells during lactation to modify basal cell function (Davis
264 et al., 2015; Stevenson et al., 2019) or more simply to occupy the physical space that these force-
265 exerting cells create within the alveolar epithelium (Davis, 2016; Stewart et al., 2019), remains
266 unknown. Such a function might be analogous to the role of CSF1-dependent M ϕ s in the regulation of
267 peristalsis in the muscularis externa of the intestine (Muller et al., 2014).

Finally, we were able to visualize for the first time tissue-resident M ϕ s in the mesenchyme surrounding the mammary epithelial bud in 14.5 day-old female embryos. Intriguingly, these embryonic M ϕ s rarely contacted the epithelial cells of the developing mammary bud at this stage of embryogenesis. This is in striking contrast to epithelial-M ϕ interactions in the early postnatal period, where M ϕ s surround and invade the rudimentary ductal epithelium. This also contrasts with the male embryo, where M ϕ s were often observed to both contact and infiltrate the epithelial bud at the time when its connection to the overlying epidermis is severed and the structure begins to regress (Cowin and Wysolmerski, 2010; Dunbar et al., 1999; Heuberger et al., 2006). At this stage, M ϕ s may have an important role in clearing apoptotic epithelial and mesenchymal cells (Dunbar et al., 1999; Henson and Hume, 2006).

Mammary stem/progenitor cells are located within the mammary bud (in the embryo) and TEBs (in puberty). After ductal elongation is complete and TEBs regress, however, the location of long-lived mammary stem/progenitor cells and their putative niche remains unknown, although it has been suggested that these cells are deposited along the ductal epithelium by elongating TEBs (Davis et al., 2016; Lloyd-Lewis et al., 2017). In the embryo, M ϕ s were positioned uniformly around, but not in contact with, the mammary bud. These data suggest that if a mammary stem cell-macrophage niche exists in the embryo around the time of lineage segregation, it operates over the scale of tens of micrometers and is fairly homogeneous. M ϕ s were also positioned around pubertal TEBs, however, in contrast to the embryo, these cells contacted and infiltrated TEBs, were more densely arranged around these structures and often showed spatial clustering. Future studies combining tamoxifen-independent *Dll1-mCherry* (Chakrabarti et al., 2018) and *Csf1r-EGFP* mouse models with optical tissue clearing and 3D imaging may help to reveal the precise location of mammary stem/progenitor cells within TEBs and the post-pubertal ductal epithelium. It should be noted, however, that whilst ductal elongation is delayed in *Csf1^{op}/Csf1^{op}* mice, these structures are still capable of invading the fat pad and by 12 weeks of age have reached the fat pad limits (Gouon-Evans et al., 2000). These findings imply that mammary epithelial cells have mechanisms to overcome insufficiencies in niche signaling. One candidate is the alternative CSF1R ligand, IL34, which may also be expressed by mammary epithelial cells (DeNardo et al., 2011). Studies investigating the activation and roles of the CSF1R in mammary development have been thwarted by the severe postnatal phenotype of *Csf1r^{-/-}/Csf1r^{-/-}* mice (Chitu and Stanley, 2017), but may be more amenable to study in recently described *Csf1r^{-/-}/Csf1r^{-/-}* rats (Pridans et al., 2019). Alternatively, these findings may reflect a long-term plasticity in mammary epithelial cells (Lilja et al., 2018) and a shifting definition of ‘stemness’ in some tissues away from a unidirectional, top-down model to a model where stemness is considered as a cell state that may be acquired or extinguished

300 under specific microenvironmental conditions (Laplane and Solary, 2019). A closer examination of
301 mammary cell behaviors—including lineage segregation—under conditions of Mφ depletion may
302 provide important insights into epithelial plasticity in this vital mammalian organ.

303 **5 Conflict of Interest**

304 The authors declare that the research was conducted in the absence of any commercial or financial
305 relationships that could be construed as a potential conflict of interest.

306 **6 Author Contributions**

307 F.M.D. and T.A.S. performed all experiments. F.M.D., D.A.H. and T.A.S. conceived and designed the
308 experiments. K.H., T.A.S., D.A.H. and F.M.D. analyzed the results. F.M.D. wrote the manuscript.
309 D.A.H., K.H. and T.A.S. edited the manuscript.

310 **7 Funding**

311 This work was supported by the National Health and Medical Research Council (1141008 and 1138214
312 to F.M.D.). Funding was also provided by the Mater Foundation (Equity Trustees / AE Hingeley Trust).

313 **8 Acknowledgments**

314 The authors acknowledge the Translational Research Institute (TRI) for the research space, equipment
315 and core facilities that enabled this research. We thank the UQ Biological Resource staff for animal
316 care and husbandry; Mr Alex Stevenson for laboratory management and ordering of consumables;
317 A/Prof Allison Pettit and Dr. Katharine Irvine for their helpful comments on the manuscript; Dr.
318 Jerome Boulanger (MRC Laboratory of Molecular Biology) for the 3D de-noising algorithm; and Mr
319 Eric Pizzani (Translational Research Institute) for research computing support.

320 **9 References**

321 Boulanger, J., Kervrann, C., Bouthemy, P., Elbau, P., Sibarita, J.-B., and Salamero, J. (2010). Patch-
322 based nonlocal functional for denoising fluorescence microscopy image sequences. *IEEE Trans.
323 Med. Imaging* 29, 442–54. doi:10.1109/TMI.2009.2033991.

324 Castellana, D., Paus, R., and Perez-Moreno, M. (2014). Macrophages contribute to the cyclic
325 activation of adult hair follicle stem cells. *PLoS Biol.* 12, e1002002.
326 doi:10.1371/journal.pbio.1002002.

327 Chakarov, S., Lim, H. Y., Tan, L., Lim, S. Y., See, P., Lum, J., et al. (2019). Two distinct interstitial
328 macrophage populations coexist across tissues in specific subtissular niches. *Science* (80-).
329 363. doi:10.1126/science.aau0964.

330 Chakrabarti, R., Celià-Terrassa, T., Kumar, S., Hang, X., Wei, Y., Choudhury, A., et al. (2018).
331 Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal
332 niche. *Science* (80-). 360. doi:10.1126/science.aan4153.

333 Chitu, V., and Stanley, E. R. (2017). "Regulation of Embryonic and Postnatal Development by the
334 CSF-1 Receptor," in *Current Topics in Developmental Biology*
335 doi:10.1016/bs.ctdb.2016.10.004.

336 Chua, A. C. L., Hodson, L. J., Moldenhauer, L. M., Robertson, S. A., and Ingman, W. V. (2010).
337 Dual roles for macrophages in ovarian cycle-associated development and remodelling of the
338 mammary gland epithelium. *Development* 137, 4229–4239. doi:10.1242/dev.059261.

339 Cowin, P., and Wysolmerski, J. (2010). Molecular mechanisms guiding embryonic mammary gland
340 development. *Cold Spring Harb. Perspect. Biol.* 2, a003251.

341 Dai, X. M., Ryan, G. R., Hapel, A. J., Dominguez, M. G., Russell, R. G., Kapp, S., et al. (2002).
342 Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in
343 osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell
344 frequencies, and reproductive defects. *Blood* 99, 111–120. doi:10.1182/blood.V99.1.111.

345 Davis, F. M. (2016). The ins and outs of calcium signalling in lactation and involution: implications
346 for breast cancer treatment. *Pharmacol. Res.* 116, 100–104. doi:10.1016/j.phrs.2016.12.007.

347 Davis, F. M., Janoshazi, A., Janardhan, K. S., Steinckwich, N., D'Agostin, D. M., Petranka, J. G., et
348 al. (2015). Essential role of Orai1 store-operated calcium channels in lactation. *Proc. Natl. Acad.*
349 *Sci.* 112, 5827–5832. doi:10.1073/pnas.1502264112.

350 Davis, F. M., Lloyd-Lewis, B., Harris, O. B., Kozar, S., Winton, D. J., Muresan, L., et al. (2016).
351 Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of
352 stem/progenitor cell progeny. *Nat. Commun.* 7, 13053. doi:10.1038/ncomms13053.

353 DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011).
354 Leukocyte complexity predicts breast cancer survival and functionally regulates response to
355 chemotherapy. *Cancer Discov.* 1, 54–67. doi:10.1158/2159-8274.CD-10-0028.

356 Dunbar, M. E., Dann, P. R., Zhang, J.-P., Wysolmerski, J. J., Robinson, G. W., and Hennighausen, L.
357 (1999). Parathyroid hormone-related protein signaling is necessary for sexual dimorphism
358 during embryonic mammary development. *Development* 126, 3485–93.

359 Field, C. J. (2005). The immunological components of human milk and their effect on immune
360 development in infants. *J. Nutr.* 135, 1–4. doi:10.1093/jn/135.1.1.

361 Gouon-Evans, V., Lin, E. Y., and Pollard, J. W. (2002). Requirement of macrophages and
362 eosinophils and their cytokines/chemokines for mammary gland development. *Breast Cancer*
363 *Res.* doi:10.1186/bcr441.

364 Gouon-Evans, V., Rothenberg, M. E., and Pollard, J. W. (2000). Postnatal mammary gland
365 development requires macrophages and eosinophils. *Development* 127, 2269–2282.

366 Gyorki, D. E., Asselin-Labat, M. L., van Rooijen, N., Lindeman, G. J., and Visvader, J. E. (2009).
367 Resident macrophages influence stem cell activity in the mammary gland. *Breast Cancer Res.*
368 11, R62. doi:10.1186/bcr2353.

369 Henson, P. M., and Hume, D. A. (2006). Apoptotic cell removal in development and tissue
370 homeostasis. *Trends Immunol.* 27, 244–250. doi:10.1016/j.it.2006.03.005.

371 Heuberger, B., Fitzka, I., Wasner, G., and Kratochwil, K. (2006). Induction of androgen receptor
372 formation by epithelium-mesenchyme interaction in embryonic mouse mammary gland. *Proc.*
373 *Natl. Acad. Sci.* 79, 2957–61. doi:10.1073/pnas.79.9.2957.

374 Hughes, K., Wickenden, J. A., Allen, J. E., and Watson, C. J. (2012). Conditional deletion of Stat3 in
375 mammary epithelium impairs the acute phase response and modulates immune cell numbers
376 during post-lactational regression. *J. Pathol.* doi:10.1002/path.3961.

377 Hume, D. A. (2015). The many alternative faces of macrophage activation. *Front. Immunol.* 6.
378 doi:10.3389/fimmu.2015.00370.

379 Hume, D. A., Caruso, M., Ferrari-Cestari, M., Summers, K. M., Pridans, C., and Irvine, K. M.
380 (2019a). Phenotypic impacts of CSF1R deficiencies in humans and model organisms. *J. Leukoc.*
381 *Biol.*

382 Hume, D. A., Perry, V. H., and Gordon, S. (1984). The mononuclear phagocyte system of the mouse
383 defined by immunohistochemical localisation of antigen F4/80: Macrophages associated with
384 epithelia. *Anat. Rec.* 210, 503–12. doi:10.1002/ar.1092100311.

385 Hume, D., Irvine, K., and Pridans, C. (2019b). The Mononuclear Phagocyte System: The
386 Relationship between Monocytes and Macrophages. *Trends Immunol.* 40, 98–112.

387 Humphreys, R. C., Krajewska, M., Krnacik, S., Jaeger, R., Weiher, H., Krajewski, S., et al. (1996).
388 Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal
389 morphogenesis. *Development* 122, 4013–22.

390 Ingman, W. V., Wyckoff, J., Gouon-Evans, V., Condeelis, J., and Pollard, J. W. (2006).
391 Macrophages promote collagen fibrillogenesis around terminal end buds of the developing
392 mammary gland. *Dev. Dyn.* 235, 3222–3229. doi:10.1002/dvdy.20972.

393 Jäppinen, N., Félix, I., Lokka, E., Tyystjärvi, S., Pynttäri, A., Lahtela, T., et al. (2019). Fetal-derived
394 macrophages dominate in adult mammary glands. *Nat. Commun.* doi:10.1038/s41467-018-
395 08065-1.

396 Joo, S., Kim, D. K., Sim, H. J., Lee, G. D., Hwang, S. K., Choi, S., et al. (2016). Clinical results of
397 sublobar resection versus lobectomy or more extensive resection for lung cancer patients with
398 idiopathic pulmonary fibrosis. *J. Thorac. Dis.* 8, 977–84. doi:10.21037/jtd.2016.03.76.

399 Kannan, N., and Eaves, C. J. (2018). Macrophages stimulate mammary stem cells. *Science* (80-.).
400 360, 1401–1402. doi:10.1126/science.aau1394.

401 Laplane, L., and Solary, E. (2019). Philosophy of Biology: Towards a classification of stem cells.
402 *Elife* 8, e46563.

403 Lilja, A. M., Rodilla, V., Huyghe, M., Hannezo, E., Landragin, C., Renaud, O., et al. (2018). Clonal
404 analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-
405 term plasticity in the embryonic mammary gland. *Nat. Cell Biol.* 20, 677–687.

406 Linkert, M., Rueden, C. T., Allan, C., Burel, J. M., Moore, W., Patterson, A., et al. (2010). Metadata
407 matters: access to image data in the real world. *J. Cell Biol.* 189, 777–782.
408 doi:10.1083/jcb.201004104.

409 Lloyd-Lewis, B., Davis, F. M., Harris, O. B., Hitchcock, J. R., Loureco, F. C., Pasche, M., et al.
410 (2016). Imaging the mammary gland and mammary tumours in 3D: Optical tissue clearing and
411 immunofluorescence methods. *Breast Cancer Res.* 18.

412 Lloyd-Lewis, B., Davis, F. M., Harris, O. B., Hitchcock, J. R., and Watson, C. J. (2018). Neutral
413 lineage tracing of proliferative embryonic and adult mammary stem/progenitor cells.
414 *Development* 145, dev164079. doi:10.1242/dev.164079.

415 Lloyd-Lewis, B., Harris, O. B., Watson, C. J., and Davis, F. M. (2017). Mammary stem cells:
416 Premise, properties and perspectives. *Trends Cell Biol.* 8, 556–567.
417 doi:10.1016/j.tcb.2017.04.001.

418 Lund, L. R., Rømer, J., Thomasset, N., Solberg, H., Pyke, C., Bissell, M. J., et al. (1996). Two
419 distinct phases of apoptosis in mammary gland involution: proteinase-independent and -
420 dependent pathways. *Development* 122, 181–193. doi:10.1111/j.1600-
421 6143.2008.02497.x. Plasma.

422 MacLauchlan, S., Skokos, E. A., Meznarich, N., Zhu, D. H., Raoof, S., Shipley, J. M., et al. (2009).
423 Macrophage fusion, giant cell formation, and the foreign body response require matrix
424 metalloproteinase 9. *J. Leukoc. Biol.* 85, 617–626. doi:10.1189/jlb.1008588.

425 Mondor, I., Baratin, M., Lagueyrie, M., Saro, L., Henri, S., Gentek, R., et al. (2019). Lymphatic
426 Endothelial Cells Are Essential Components of the Subcapsular Sinus Macrophage Niche.
427 *Immunity* 50, 1453–1466. doi:10.1016/j.immuni.2019.04.002.

428 Muller, P. A., Koscsó, B., Rajani, G. M., Stevanovic, K., Berres, M. L., Hashimoto, D., et al. (2014).
429 Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal
430 motility. *Cell* 158, 300–13. doi:10.1016/j.cell.2014.04.050.

431 Naik, S., Larsen, S. B., Cowley, C. J., and Fuchs, E. (2018). Two to Tango: Dialog between
432 Immunity and Stem Cells in Health and Disease. *Cell* 175, 908–920.
433 doi:10.1016/j.cell.2018.08.071.

434 O'Brien, J., Lyons, T., Monks, J., Lucia, M. S., Wilson, R. S., Hines, L., et al. (2010). Alternatively
435 activated macrophages and collagen remodeling characterize the postpartum involuting
436 mammary gland across species. *Am. J. Pathol.* 176, 1241–1255.
437 doi:10.2353/ajpath.2010.090735.

438 O'Brien, J., Martinson, H., Durand-Rougely, C., and Schedin, P. (2012). Macrophages are crucial for

439 epithelial cell death and adipocyte repopulation during mammary gland involution.
440 *Development* 139, 269–275. doi:10.1242/dev.071696.

441 Paine, I. S., and Lewis, M. T. (2017). The Terminal End Bud: the Little Engine that Could. *J.*
442 *Mammary Gland Biol. Neoplasia* 22, 93–108. doi:10.1007/s10911-017-9372-0.

443 Pollard, J. W., and Hennighausen, L. (1994). Colony stimulating factor 1 is required for mammary
444 gland development during pregnancy. *Proc. Natl. Acad. Sci.* 91, 9312–9316.
445 doi:10.1073/pnas.91.20.9312.

446 Pollard, J. W., Hunt, J. S., Wiktor-Jedrzejczak, W., and Stanley, E. R. (1991). A pregnancy defect in
447 the osteopetrotic (op op) mouse demonstrates the requirement for CSF-1 in female fertility.
448 *Dev. Biol.* 148, 273–83. doi:10.1016/0012-1606(91)90336-2.

449 Pridans, C., Raper, A., Davis, G. M., Alves, J., Sauter, K. A., Lefevre, L., et al. (2019). Pleiotropic
450 Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted
451 Mutation of the *Csf1r* Locus. *J. Immunol.* 201, 2683–2699. doi:10.4049/jimmunol.1900420.

452 Sargeant, T. J., Lloyd-Lewis, B., Resemann, H. K., Ramos-Montoya, A., Skepper, J., and Watson, C.
453 J. (2014). Stat3 controls cell death during mammary gland involution by regulating uptake of
454 milk fat globules and lysosomal membrane permeabilization. *Nat. Cell Biol.* 16, 1057–68.
455 doi:10.1038/ncb3043.

456 Sasmono, R. T., Oceandy, D., Pollard, J. W., Tong, W., Pavli, P., Wainwright, B. J., et al. (2003). A
457 macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed
458 throughout the mononuclear phagocyte system of the mouse. *Blood* 101, 1155–63.
459 doi:10.1182/blood-2002-02-0569.

460 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012).
461 Fiji: an open source platform for biological image analysis. *Nat. Methods* 9, 676–682.
462 doi:10.1038/nmeth.2019.Fiji.

463 Schwertfeger, K. L., Rosen, J. M., and Cohen, D. A. (2006). Mammary gland macrophages:
464 Pleiotropic functions in mammary development. *J. Mammary Gland Biol. Neoplasia* 11, 229–
465 238. doi:10.1007/s10911-006-9028-y.

466 Sehgal, A., Donaldson, D. S., Pridans, C., Sauter, K. A., Hume, D. A., and Mabbott, N. A. (2018).
467 The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. *Nat.*
468 *Commun.* doi:10.1038/s41467-018-03638-6.

469 Shamir, E. R., and Ewald, A. J. (2015). Adhesion in mammary development: Novel roles for E-
470 cadherin in individual and collective cell migration. *Curr. Top. Dev. Biol.* 112, 353–382.
471 doi:10.1016/bs.ctdb.2014.12.001.

472 Sreekumar, A., Roarty, K., and Rosen, J. M. (2015). The mammary stem cell hierarchy: a looking
473 glass into heterogeneous breast cancer landscapes. *Endocr. Relat. Cancer* 22, T161-76.
474 doi:10.1530/ERC-15-0263.

475 Stein, T., Morris, J. S., Davies, C. R., Weber-Hall, S. J., Duffy, M.-A., Heath, V. J., et al. (2004).
476 Involution of the mouse mammary gland is associated with an immune cascade and an acute-

477 phase response, involving LBP, CD14 and STAT3. *Breast Cancer Res.* 6, R75.
478 doi:10.1186/bcr753.

479 Stevenson, A. J., Vanwalleghem, G., Stewart, T. A., and et al. (2019). Multiscale activity imaging in
480 the mammary gland reveals how oxytocin enables lactation. *Biorxiv*.

481 Stewart, T. A., Hughes, K., Stevenson, A. S. J., Marino, N., Ju, A. J. L., Morehead, M., et al. (2019).
482 Mammary mechanobiology: PIEZO1 mechanically-activated ion channels in lactation and
483 involution. *bioRxiv*. doi:10.1101/649038.

484 Sun, X., Robertson, S. A., and Ingman, W. V. (2013). Regulation of epithelial cell turnover and
485 macrophage phenotype by epithelial cell-derived transforming growth factor beta1 in the
486 mammary gland. *Cytokine* 61, 377–388. doi:10.1016/j.cyto.2012.12.002.

487 Susaki, E. A., Tainaka, K., Perrin, D., Kishino, F., Tawara, T., Watanabe, T. M., et al. (2014).
488 Whole-brain imaging with single-cell resolution using chemical cocktails and computational
489 analysis. *Cell* 157, 726–39. doi:10.1016/j.cell.2014.03.042.

490 Van Nguyen, A., and Pollard, J. W. (2002). Colony stimulating factor-1 is required to recruit
491 macrophages into the mammary gland to facilitate mammary ductal outgrowth. *Dev. Biol.* 247,
492 11–25. doi:10.1006/dbio.2002.0669.

493 Vigouroux, R. J., Belle, M., and Chédotal, A. (2017). Neuroscience in the third dimension: Shedding
494 new light on the brain with tissue clearing. *Mol. Brain* 10, 33. doi:10.1186/s13041-017-0314-y.

495 Watson, C. J., and Khaled, W. T. (2008). Mammary development in the embryo and adult: a journey
496 of morphogenesis and commitment. *Development* 135, 995–1003. doi:10.1242/dev.005439.

497 Williams, R. M., Zipfel, W. R., and Webb, W. W. (2005). Interpreting second-harmonic generation
498 images of collagen I fibrils. *Biophys. J.* 88, 1377–1386. doi:10.1529/biophysj.104.047308.

499 Winkler, I. G., Sims, N. A., Pettit, A. R., Barbier, V., Nowlan, B., Helwani, F., et al. (2010). Bone
500 marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion
501 mobilizes HSCs. *Blood*. doi:10.1182/blood-2009-11-253534.

502 Wuidart, A., Sifrim, A., Fioramonti, M., Matsumura, S., Brisebarre, A., Brown, D., et al. (2018).
503 Early lineage segregation of multipotent embryonic mammary gland progenitors. *Nat. Cell Biol.*
504 20, 666–676.

505 Yang, M., McKay, D., Pollard, J. W., and Lewis, C. E. (2018). Diverse functions of macrophages in
506 different tumor microenvironments. *Cancer Res.* 78. doi:10.1158/0008-5472.CAN-18-1367.

507

508

509 **10 Figure Legends**

510 **Fig. 1: Mφs in the embryonic and early postnatal mouse mammary gland.** Maximum intensity *z*-
511 projection and individual optical slices of cleared tissue from (A-B) embryonic (E14.5) female mice
512 and (C) embryonic (E14.5) male mice. (D) The distance of Mφs (within a 100 μ m radius) of the female
513 and male embryonic buds. Mφs contacting the bud or inside of the bud were assigned a value of 0; this
514 was only observed in male embryos. (E) Mammary tissue from postnatal day (PND) 10 *Csf1r-EGFP*
515 female mice. (F) Inguinal lymph node from PND10 mice showing subcapsular sinus Mφs. Keratin (K)
516 8 immunostaining shows K8-positive luminal cells; K5 immunostaining reveals K5-expressing basal
517 cells; smooth muscle actin (SMA) immunostaining reveals basal cells and SMA-positive vessels.
518 White arrowhead in (A) points to a Mφ that appears to be in contact with the embryonic bud in the
519 maximum intensity projection, but is revealed to be positioned in the mammary mesenchyme above
520 the bud in optical slices. Yellow arrowheads in (C) point to Mφs that are in direct contact with the
521 embryonic bud. Arrows in (E) point to Mφs that are in contact with the PND10 mammary epithelium.
522 Images are representative of 3 mice/embryos at each developmental stage.

523

524 **Fig. 2: Mφs in the mammary glands of pubertal virgin mice.** Maximum intensity *z*-projection and
525 individual optical slices of cleared mammary tissue from pubertal (6-7 week old) *Csf1r-EGFP* mice.
526 K8 immunostaining reveals the luminal cell layer; SMA marks the basal cell layer and SMA-positive
527 vessels. (A) terminal end buds (TEBs), (B) ductal regions, (C) inguinal lymph node and (D) nipple
528 region. Arrows in (A) show Mφs that have invaded the TEB epithelium and lumen (arrowhead). Arrow
529 in (B) shows a Mφ positioned between the epithelial bilayer. T, ductal tips; Du, ducts; LN, lymph node.
530 Images are representative of 3 mice. (E) Second harmonic generation (SHG) showing fibrillar
531 collagens around a TEB structure. Image stacks in middle panel are depth-coded (R-Y-G-C-B). Dashed
532 arrow shows direction of TEB growth. Arrowhead in (E) shows a Mφ interacting with collagen.

533

534 **Fig. 3: Mφs in the mammary glands of post-pubertal virgin mice.** Maximum intensity *z*-projection
535 and individual optical slices of cleared mammary tissue from post-pubertal (12 week-old) *Csf1r-EGFP*
536 mice. K8 immunostaining shows luminal cells; SMA immunostaining reveals basal cells and SMA-
537 positive vessels. (A) Mammary ducts and (B) side buds. Du, duct; B, side bud. Arrowheads show Mφs

538 that are positioned within the epithelial bilayer. K8 immunostaining reveals the luminal cell layer and
539 SMA marks the basal cell layer. Images are representative of 3 mice.

540

541 **Fig. 4: M ϕ s in the mammary glands of pregnant and lactating mice.** Maximum intensity z -
542 projection and individual optical slices of cleared mammary tissue from (A) pregnant (14.5 days
543 gestation, dG) and (B-C) lactating (day 10 lactation, d10) *Csf1r-EGFP* mice. K8 immunostaining
544 reveals K8-positive luminal cells; smooth muscle actin (SMA) marks the basal/myoepithelial cells and
545 SMA-positive vessels. Arrowheads in (A) show M ϕ s that are interacting with the developing alveolar
546 epithelium. In (B and C), white arrowheads show M ϕ s that are aligned along basal cells (versus white
547 arrows showing M ϕ s that are not imitating basal cell morphology). Yellow arrowheads in (C) show
548 M ϕ s that are positioned between the ductal epithelial bilayer. Images are representative of 3 mice at
549 each developmental stage.

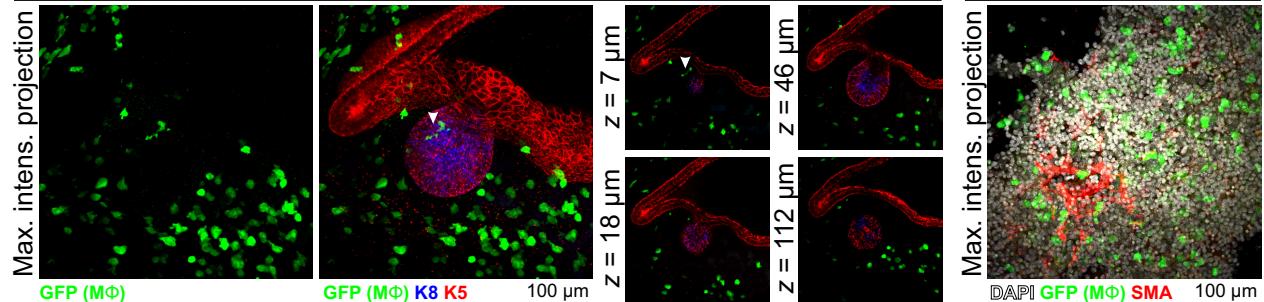
550

551 **Fig. 5: M ϕ s in the mammary glands of mice during post-lactational involution. (A-C)** Maximum
552 intensity z -projection and individual optical slices of cleared mammary tissue from *Csf1r-EGFP* mice
553 during involution (96 h post forced weaning). K8 immunostaining shows luminal cells; SMA
554 immunostaining reveals basal cells and SMA-positive vessels. Arrowheads in (B) show a cluster of
555 GFP $^+$ M ϕ s inside of collapsed alveolar units. (C) SHG showing fibrillar collagens surrounding
556 regressing alveoli. Images are representative of 3 mice.

557

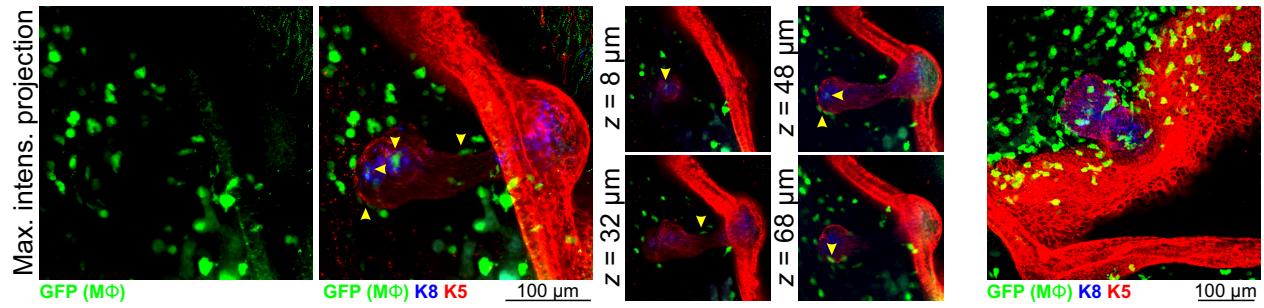
558 **Fig. 6: Diagram summarizing M ϕ distribution in the mouse mammary gland during distinct
559 phases of development and remodeling.**

560

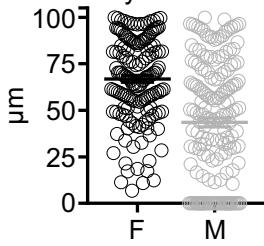

561

562

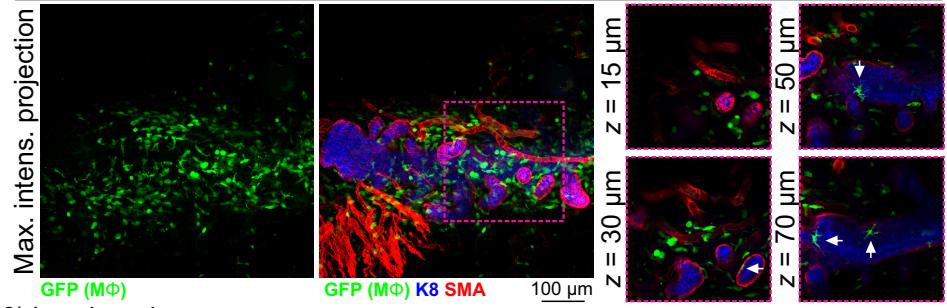
Figure 1


A

Female embryonic mammary bud (E14.5)


C

Male embryonic mammary bud (E14.5)


D

MΦ distance from
embryonic bud

E

Postnatal (PND10) mammary gland

F

Postnatal (PND10) lymph node

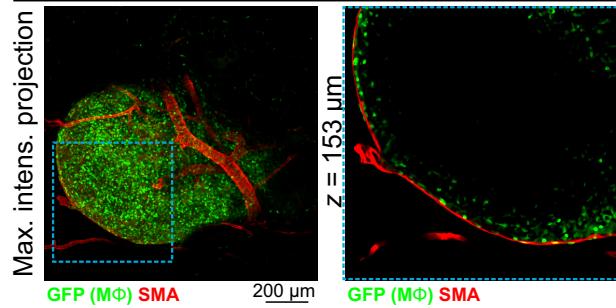
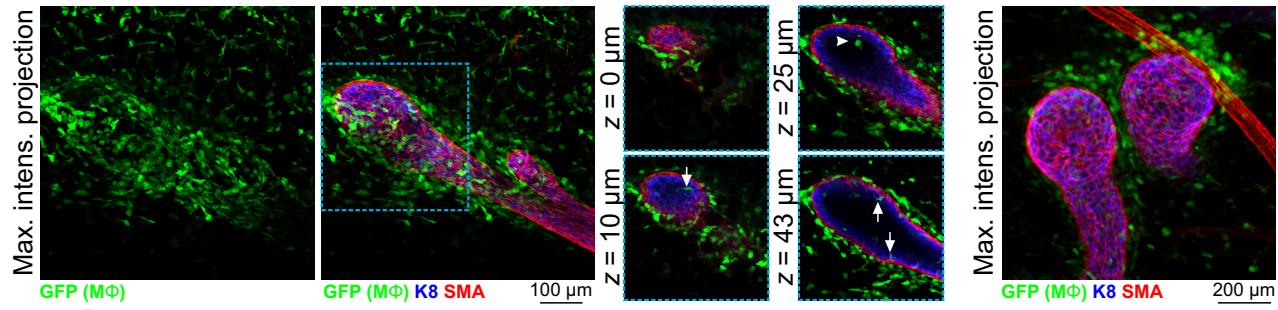
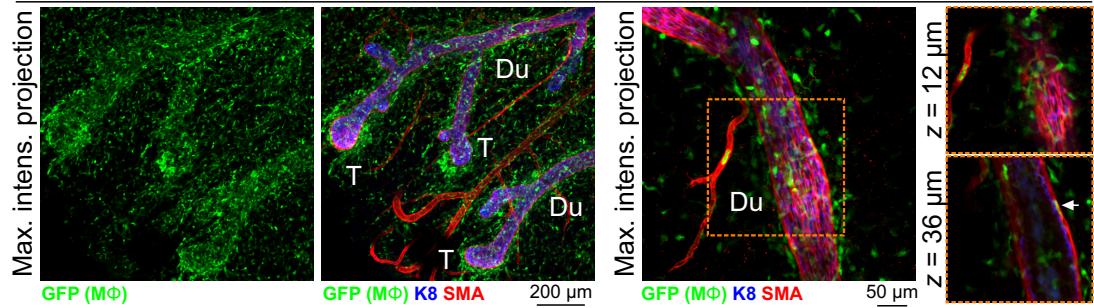
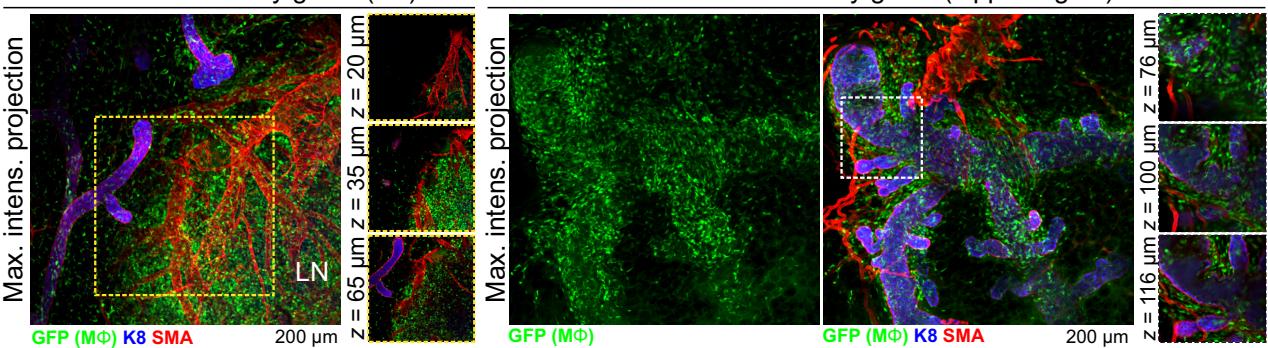



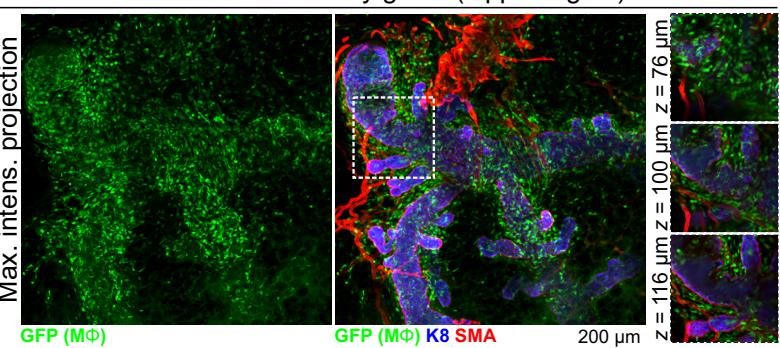
Figure 2


A

Pubertal mammary gland (TEB)


B

Pubertal mammary gland (ducts)


C

Pubertal mammary gland (LN)

D

Pubertal mammary gland (nipple region)

E

Epithelial cells and MΦs

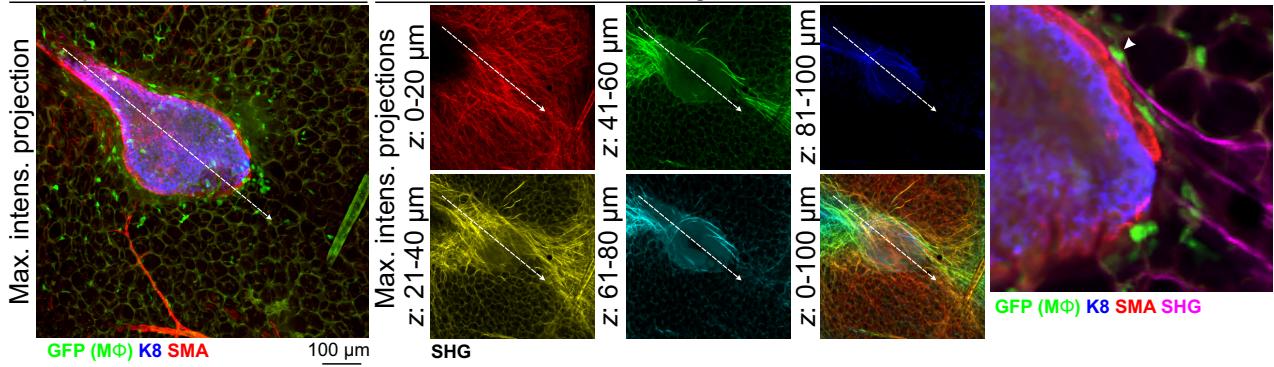


Figure 3

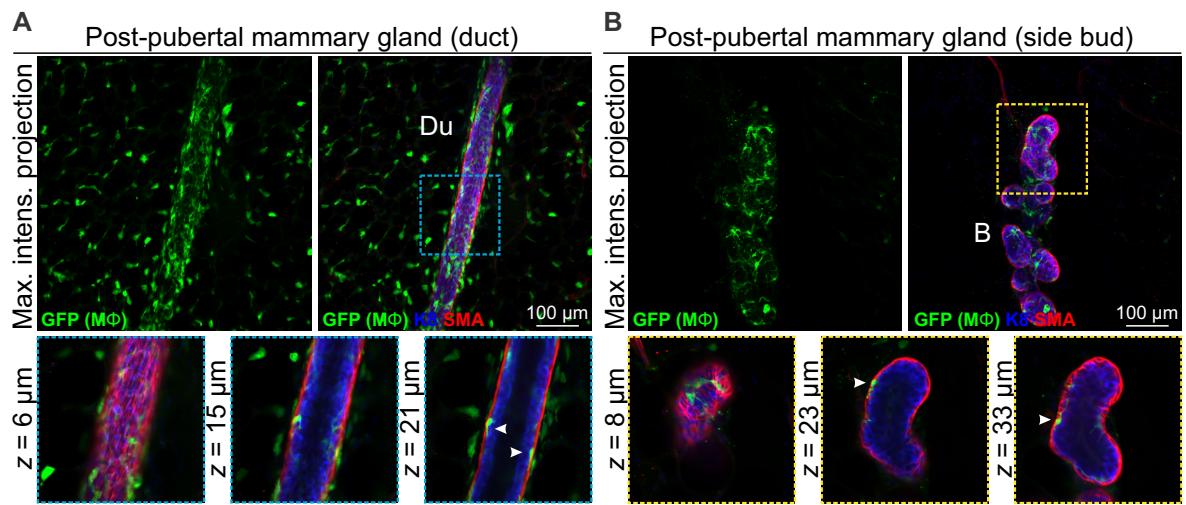
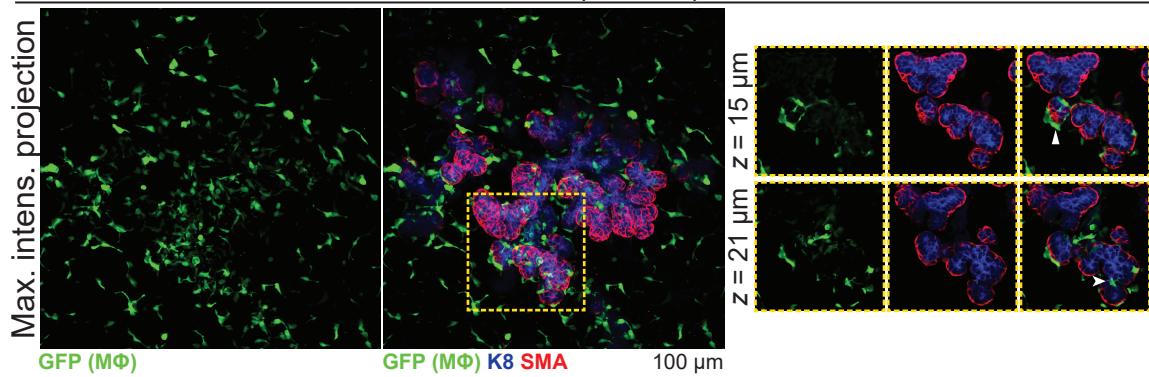
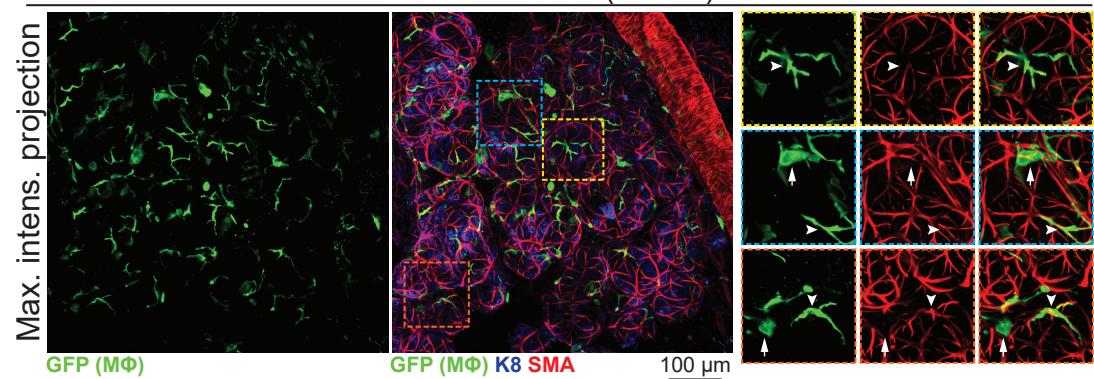



Figure 4


A

Gestation (14.5dG)

B

Lactation d10 (alveoli)

C

Lactation d10 (subtending duct and alveoli)

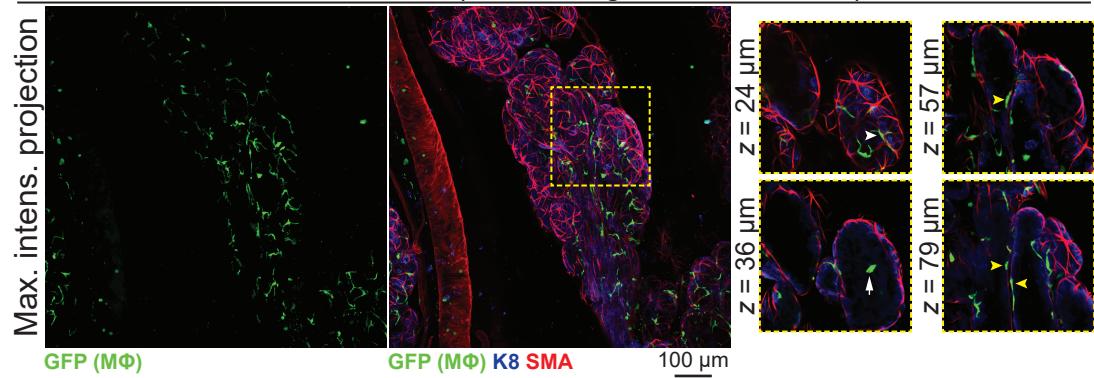


Figure 5

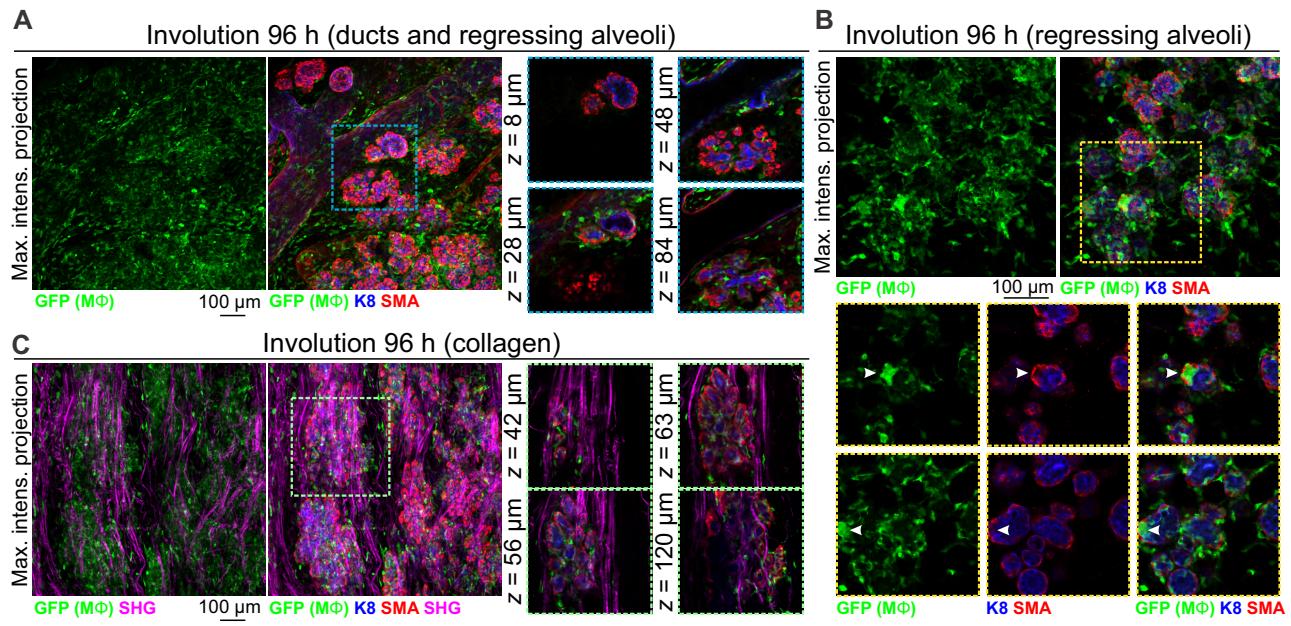
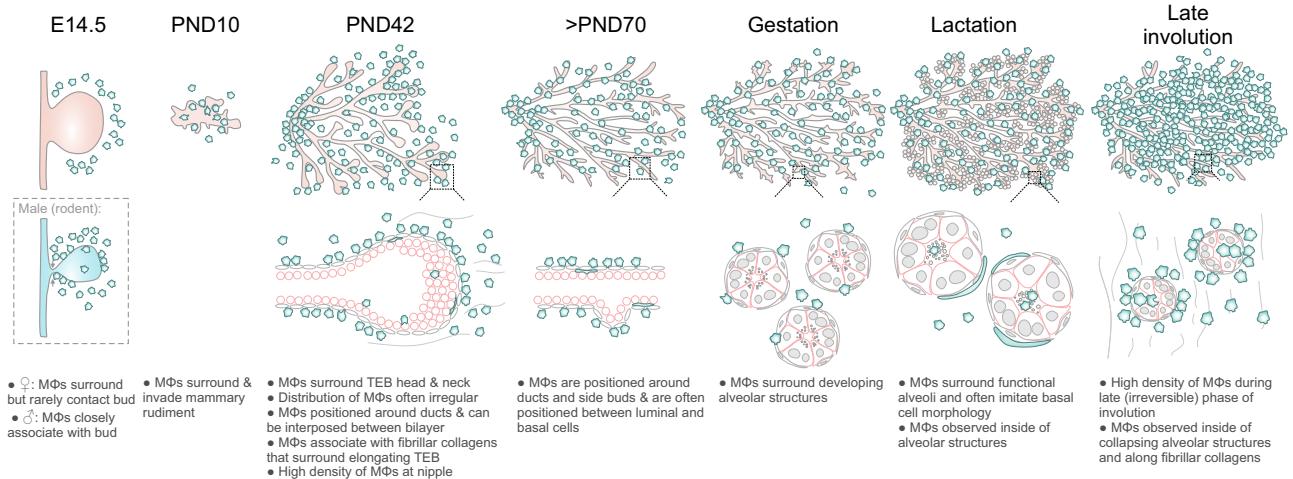



Figure 6

