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Abstract 12 

Members of the Lactobacillus genus are frequently utilized in the probiotic industry with many species 13 

conferring demonstrated health benefits; however, these effects are largely strain-dependent. We 14 

designed a method called PROTEAN (Probabilistic Reconstruction Of constituent Anabolic Networks) to 15 

computationally analyze the genomic annotations and predicted metabolic production capabilities of 16 

144 strains across 16 species of Lactobacillus isolated from human intestinal, oral, and vaginal body 17 

sites. Using PROTEAN we conducted a genome-scale metabolic network comparison between strains, 18 

revealing that metabolic capabilities differ by isolation site. Notably, PROTEAN does not require a well-19 

curated genome-scale metabolic network reconstruction to provide biological insights. We found that 20 

predicted metabolic capabilities of lactobacilli isolated from the vaginal microbiota cluster separately 21 

from intestinal and oral isolates, and we also uncovered an overlap in the predicted metabolic 22 

production capabilities of intestinal and oral isolates. Using machine learning, we determined the most 23 

informative metabolic products driving the difference between predicted metabolic capabilities of 24 

intestinal, oral, and vaginal isolates. Notably, intestinal and oral isolates were predicted to have a higher 25 

likelihood of producing D-alanine, D/L-serine, and L-proline, while the vaginal isolates were 26 

distinguished by a higher predicted likelihood of producing L-arginine, citrulline, and D/L-lactate. We 27 

found the distinguishing products to be consistent with published experimental literature. This study 28 

showcases a systematic technique, PROTEAN, for comparing the predicted functional metabolic output 29 

of microbes using genome-scale metabolic network analysis and computational modeling and provides 30 

unique insight into human-associated Lactobacillus biology. 31 

Importance 32 

The Lactobacillus genus has been shown to be important for human health. Lactobacilli have been 33 

isolated from human intestinal, oral, and vaginal sites. Members of the genus contribute significantly to 34 

the maintenance of vaginal health by providing colonization resistance to invading pathogens. A wide 35 

variety of clinical studies have indicated that Lactobacillus-based probiotics confer health benefits for 36 
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several gut- and immune-associated diseases. Microbes interact with the human body in several ways, 37 

including the production of metabolites that influence physiology or other surrounding microbes. We 38 

have conducted a strain-level genome-scale metabolic network reconstruction analysis of human-39 

associated Lactobacillus strains, revealing that predicted metabolic capabilities differ when comparing 40 

intestinal/oral isolate to vaginal isolates. The technique we present here allows for direct interpretation 41 

of discriminating features between the experimental groups.  42 

Introduction 43 

Lactobacillus is a diverse genus of bacteria with many member strains associated with the human body. 44 

Lactobacilli are Gram‐positive, lactic acid-producing bacteria typically with a low GC content (1,2). They 45 

are known for their production of lactic acid, being facultative anaerobes, and are capable of being 46 

metabolically active in a large variety of conditions (3). There is evidence that human-associated 47 

lactobacilli colonize mucosal surfaces of the intestinal tract (4), vagina (5–12), and oral cavity (13,14). 48 

While strains of Lactobacillus have been isolated from all three of these body sites, it remains unknown 49 

which are permanent members of the resident microbiota (autochthonous) opposed to transient 50 

members (allochthonous). Transient intestinal lactobacilli are either resident members of the oral 51 

microbiota or have been ingested, most commonly from unpasteurized fermented foods (4,15).  52 

Lactobacilli have been used for a broad range of applications primarily associated with human intestinal 53 

probiotics and industrial production of useful metabolites. Lactobacillus-based probiotics have been 54 

shown to confer health benefits in clinical studies for a variety of conditions including prevention of 55 

antibiotic associated diarrhea (16), Clostridium difficile-associated diarrhea (17), constipation (18), 56 

irritable bowel syndrome (19), and eczema/atopic dermatitis (20). Probiotics are controversial, likely due 57 

to claims made by currently marketed probiotics that lack FDA approval for the treatment of specific 58 

diseases (21,22). The primary benefits associated with lactobacilli-based probiotics may be a function of 59 

their presence in the gut, production of metabolites, and modulation of the immune system (23,24). 60 

Metabolism plays a key role in all three of these general mechanisms; therefore, a better understanding 61 

of their metabolic capabilities will help to elucidate the mechanisms contributing to probiotic effects 62 

(25).  63 

In recent years, there has been an explosion of genomic and metagenomic sequencing of human-64 

associated microbiota, which provides a unique opportunity to apply genome-scale metabolic network 65 

reconstructions (GENREs) to enhance our current understanding of human-associated lactobacilli 66 

metabolism utilizing in silico techniques (25). Systems biology has the potential to advance design, 67 

selection, and delivery of Lactobacillus-based probiotics (26,27). GENREs are a powerful computational 68 

tool for mathematically modeling the metabolic processes within a cell at a systems-level, including all 69 

known metabolic reactions, metabolites, and metabolic genes in an organism (28). GENREs are created 70 

by referencing an annotated genome against biochemical databases, then integrating experimental data 71 

when available (29). There are several examples of Lactobacillus-specific comparative genomics studies 72 

(30–35); however, GENREs allow for a more functional perspective than genomics data alone because of 73 

the quantitative accounting for interactions between components in the network (25,36). Simulations 74 

with GENREs can accurately predict microbial growth yields and the metabolic pathways utilized for the 75 

production of metabolites during exponential growth of a microbe (37). A variety of analytical 76 

approaches can be applied to interrogate emergent properties of a GENRE. Flux Balance Analysis (FBA) 77 

and related methods have proven highly successful in the analysis of metabolic networks (38). FBA is a 78 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/746420doi: bioRxiv preprint 

https://doi.org/10.1101/746420
http://creativecommons.org/licenses/by-nd/4.0/


mathematical technique for analyzing the flow of metabolites through a GENRE; it can be used to 79 

identify a set of reaction fluxes that maximize growth in a specified media condition among other 80 

applications (28,39,40). Metabolic network reconstructions and FBA provide a mechanistic look into 81 

cellular metabolism and are increasingly used to study biochemical processes of single bacterial species 82 

as well as communities of organisms (41).  83 

GENREs enable the computational prediction of metabolic capabilities of microbes, both catabolic and 84 

anabolic. Additionally, GENREs are capable of contextualizing large ‘omic datasets (i.e. genomics, 85 

transcriptomics, and metabolomics) with known biochemistry and biological network architectures for 86 

improved understanding of the experimental data (42). An important recent finding demonstrated that 87 

metabolomics data alone can be used to differentiate between bacterial cultures at the strain level (43). 88 

We developed a computational method using GENREs to predict the metabolic products that a strain is 89 

likely able to produce. We used predicted production capabilities to then differentiate between 90 

different human-associated Lactobacillus strains. Just as metabolomics data can be used to differentiate 91 

bacterial strains, predicted production capabilities can be used for the same comparisons. We assessed 92 

the metabolic potential across a broad set of Lactobacillus species, consisting of 144 strains, which have 93 

all been isolated from three human-related body sites: intestinal, oral, and vaginal. We found that 94 

intestinal and oral isolates have a great deal of overlap in their metabolic functionality, while vaginal 95 

isolates have more unique metabolic production capabilities. These analyses can facilitate additional 96 

experimental interrogation of this important genus of bacteria. 97 

Results and Discussion 98 

Annotated metabolic genes associated with known metabolic functions are sufficiently represented 99 

among human-associated lactobacilli 100 

In this study we predict the metabolic production capabilities of 144 lactobacilli strains. We utilized the 101 

PATRIC Cross-Genus Protein Families (PGfams) (4) for an initial genomic analysis. PGfams are 102 

comparable clusters of proteins that likely have similar functions. These clusters are intended to be used 103 

for cross-genus comparison due to their slightly relaxed clustering criteria. However, PGfams allow for 104 

the comparison of the large number of strains analyzed in this study. Lactobacilli consist of a broad 105 

range of species and thus using the PGfams was appropriate for an initial genomic comparison in this 106 

study. We first filtered the PGfams to only include metabolic gene families associated with known 107 

metabolic functions (see Methods). The distribution of total metabolic PGfams associated with each 108 

genome ranges from 340 to 580 and has a median value of 515 (Figure 1A). Across these 144 strains we 109 

found that they share 116 core metabolic PGfams, spanning a variety of cellular functions including, but 110 

not limited to, carbohydrate, nucleotide, and amino acid metabolism (Table S1). The pan set of 111 

metabolic PGfams, which represents the total set of unique PGfams, expanded to over 1500 after 112 

considering all strains utilized within this study (Figure 1B). The Lactobacillus strains we studied 113 

consisted of 16 species and were isolated from intestinal, oral, and vaginal human body sites (Figure 1C). 114 
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Figure 1: Known metabolic annotations are extensively sampled across the 16 Lactobacillus species included in 116 
this study. The genomic features used for this analysis are PATRIC Cross-Genera Protein families (PGfams), a 117 
standardized set of features across the PATRIC Database (4). (A) The number of metabolic PGfams for each 118 
genome are shown here, with the median value indicated by the middle line in the boxplot. (B) For the 144 strains 119 
from 16 species of Lactobacillus, we found that there are 116 protein families in the core set of metabolic PGfams, 120 
while the pan set of PGfams expands to over 1500 families. The nearly plateau shape of the curve for the pan set 121 
of PGfams curve indicates that this sampling represents a large portion of the genetic diversity among the 16 122 
species included in the study. (C) This table shows the complete list of species used in this study and indicates the 123 
percentage of strains that were isolated from each human body site. Each strain in this study is a member from 124 
one of the 16 species and isolated from one of three human-associated body sites; intestinal, oral, or vaginal (Table 125 
S2).  126 

Probabilistic Reconstruction Of constituent Anabolic Networks (PROTEAN) 127 

We developed PROTEAN to predict the metabolic production capabilities of microbes based on genomic 128 

data alone. PROTEAN generates constituent metabolic production networks with maximum parsimony 129 

and probability to predict the production of a given metabolite with a defined set of input metabolites. 130 

PROTEAN is a combination of well-validated methods, including Parsimonious Enzyme Usage Flux 131 

Balance Analysis (pFBA) (37), likelihood-based gap filling (44), fastGapFill (45), and CarveMe (46). The 132 

algorithm uses the ModelSEED biochemical reaction database, a large set of known metabolic reactions, 133 

for constituent network generation (47). First, reaction likelihoods are calculated for each reaction in the 134 

ModelSEED database using Probannopy (48) (Figure 2). Reaction likelihoods correspond to the 135 

probability that a given reaction is catalyzed by an enzyme that is encoded for by the genome. We 136 

modified pFBA to utilize reaction likelihoods for weighted minimization of flux through each reaction, 137 

while still maintaining near-optimal flux through the objective function. Standard pFBA assumes that 138 

metabolism is optimized to minimize enzymatic turnover and thus the method is driven by a 139 

minimization of the total flux through the metabolic network (37). Weighted pFBA allows for the 140 

reconstruction of constituent anabolic networks while accounting for maximum genomic probability and 141 

resource parsimony (see Methods). The constituent anabolic networks output by PROTEAN consist of 142 

flux-carrying reactions required for the production of a certain metabolite with preferential flux through 143 

reactions that have higher reaction likelihoods. A constituent network represents a theoretically optimal 144 
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biosynthetic network while accounting for the greatest genomic evidence for production of a given 145 

metabolite in a set media condition (Table S4). We represent the information from each constituent 146 

network using a single summary metric referred to as the Production Likelihood by calculating the 147 

average of all likelihoods of reactions that carry flux. The average of all reaction likelihoods in a 148 

metabolic pathway has been previously shown to be a valuable metric for making comparisons between 149 

networks (44).  150 

 151 

Figure 2: PROTEAN is an approach for quantifying the likelihood that a given metabolic network, derived 152 
exclusively from genomic evidence, is capable of synthesizing a particular metabolite. A modified version of 153 
Parsimonious Enzyme Usage FBA (weighted pFBA) was performed on a standardized set of reactions to generate 154 
constituent anabolic networks for each genome. Reaction likelihoods were used to weight the minimization of flux 155 
through each reaction in the network. Therefore, reactions with a greater likelihood were more likely to be 156 
included in the resulting constituent anabolic network. Each constituent network has a set of input metabolites 157 
representing the media condition (Table S4) and a demand reaction for a certain metabolic product. The resulting 158 
constituent network is the set of reactions that requires flux to produce the metabolic product in the given media 159 
condition. The production likelihood metric is an average of all the reaction likelihoods associated with the 160 
reactions included in the constituent network. This metric is used as a summary statistic that allows for the 161 
comparison of constituent networks across different metabolic products and strains, where a higher production 162 
likelihood corresponds with greater genetic evidence for that particular constituent anabolic network.  163 

The Scaled Production Likelihood metric facilitates comparison of anabolic capabilities between 164 

species and strains  165 

Predicted constituent anabolic networks were generated for a set of 50 biologically-relevant metabolic 166 

products for each of the 144 Lactobacillus strains. The 50 metabolites were selected based on known 167 

Lactobacillus biology (see Methods). For each metabolic product, we generated a constituent anabolic 168 

network (Table S3) across all strains. For each genome we scaled the Production Likelihoods metric by 169 

calculating the corresponding z-score. The standard deviation for the z-score calculation was across all 170 

metabolic products for each strain. This metric allows for a relative comparison of production 171 

capabilities across strains that does not rely on well-curated metabolic network reconstructions. The 172 

resulting Scaled Production Likelihood (SPL) is a metric indicating likelihood that a genome encodes for 173 

the cellular machinery required to produce a metabolite, given a specific media condition, relative to all 174 

of the other SPLs for the metabolic products per strain. For visualization, these data were grouped by 175 

species and summarized using the median of the SPLs across all of the strains within each species (Figure 176 

3).  177 
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 179 

Figure 3: Predicted metabolic production capabilities with the Scaled Production Likelihood (SPL) metric align 180 
poorly with phylogeny. There is a single production likelihood for each genome associated with each metabolite. A 181 
median SPL can be calculated for a species that allows for more general comparisons across species, illustrated 182 
here by the distribution for one species (L. rhamnosus) and one metabolite (adenine). There are 50 metabolites 183 
used as features to allow for the comparison of predicted production capabilities across the lactobacilli analyzed.  184 

The strains were grouped by species and clustered based on median SPLs. We found that across the 16 185 

species, D- and L-lactate both have high median SPLs, as we would expect with lactobacilli. Additionally, 186 

fumarate and GABA have particularly low SPLs across all species. We were able to find several 187 

publications indicating GABA can be produced by select lactobacilli in specific environments (49,50). 188 

However, we were unable to find publications discussing the production of fumarate by lactobacilli. 189 

Additionally, we found that the dendrogram from clustering based on predicted metabolic production 190 

capabilities does not qualitatively align well with published phylogenetic trees generated using the 16S 191 

rRNA gene (34). The misalignment to established phylogenetic trees indicates that phylogeny is a poor 192 

indicator of metabolic production capabilities. It is likely that evolution of metabolic production 193 

capabilities is driven independently from classical genes used for phylogenetic comparisons, such as the 194 

16S rRNA gene. Therefore, we need more precise computational tools to better understand the 195 

phenotypic differences between microbial species when interrogating metabolism. Perhaps 196 

phylogenetic analysis would be augmented with the consideration of metabolic genes in addition to the 197 

16S rRNA gene. 198 

Intestinal and oral Lactobacillus strains have different metabolic capabilities compared to vaginal 199 

strains 200 

We performed principle coordinate analysis (PCoA) on the SPLs for each species and determined that 201 

the Lactobacillus strains cluster significantly by both species (Figure 4A) and isolation site (Figure 4B) 202 

(PERMANOVA; P < 0.001). The vaginal isolates differ from both the oral and gut cluster (Figure 4B). 203 

Substantial overlap was found between oral and gut isolates, specifically within L. gasseri, L. rhamnosus, 204 

and L. salivarius, likely due to the consistent transmission of orally colonized microbes to the intestines 205 

(15). It has been hypothesized that many of the lactobacilli isolated from the gut are actually transient 206 

strains that are colonized in the oral cavity (51). Our data supports this hypothesis by showing that oral 207 
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isolates are metabolically similar to a portion of the intestinal isolates. However, there are lactobacilli, 208 

such as L. reuteri, which likely colonize the human intestines (52). Five of the 16 species in this study are 209 

only represented by strains isolated from the intestines; although this result is influenced by sampling 210 

bias in the PATRIC Database, it provides support that our data contains species that are only found in 211 

the intestines. The vaginal isolates cluster separately from the intestinal/oral isolates along the primary 212 

coordinate that accounts for 78% of the variation in these data. The vaginal microbiota is frequently 213 

dominated by several Lactobacillus species, such as L. iners, L. crispatus, and L. jensenii (53–55). This 214 

separation of vaginal isolates from intestinal/oral isolates indicates that these two main clusters have 215 

differences in their metabolic production capabilities. This result is to be expected because the 216 

intestinal/oral nutrient environment is drastically different from the vaginal environment and the 217 

dominant species appear to have metabolic capabilities that reflect this difference.  218 

 219 

Figure 4: The Scaled Production Likelihood metric distinguishes metabolic functionality among species. (A) We 220 
found that Lactobacillus strains cluster significantly by species (PERMANOVA; P < 0.001). (B) Additionally, they 221 
cluster significantly by isolation site (PERMANOVA; P < 0.001). Both plots are PCoA using the Bray-Curtis distance 222 
metric of the SPLs for each isolate. Points in both panels are identical, but displayed with different color schemes.  223 

In addition to distinguishing isolates by body site, the SPL metric is capable of defining collections of 224 

functional components that drive differences between groups. Using standard genomic analyses, 225 

differences between groups are typically defined by the differential gene content. Genes are intrinsically 226 

part of a larger network of metabolism where absence of specific functionality related to a gene may be 227 

compensated for within the system. Since our approach is based on Production Likelihoods of specific 228 

metabolites, it functions within a more complex metabolic framework compared to the analysis of 229 

genomic data without the network context. Using machine learning, we were able to identify the set of 230 

metabolites for which each group of strains is more likely to encode the cellular machinery required for 231 

production. We conducted a machine learning feature selection to determine the metabolites that are 232 

most likely to be produced by each group of strains, intestinal/oral strains and vaginal strains. We 233 

grouped the intestinal and oral strains together due to their inherent similarity (Figure 4B) and the 234 

observed transmission of oral strains to the intestines (15,51).  We generated two separate area under 235 

the curve random forest (AUCRF) models to determine the metabolites that were more likely to be 236 

produced by each of the groups. Two models were necessary to enrich for the most discriminatory 237 

metabolites that were more likely to be produced in each of the groups, rather than simply identifying 238 

the metabolites that best classify the samples based on isolation site regardless of being more or less 239 
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likely to be produced (See methods). The first model was generated to select the metabolites that are 240 

most likely to be produced by the intestinal and oral isolates compared to the vaginal isolates, while 241 

maximally discriminating the groups. The eight metabolites selected accurately classify greater than 90% 242 

of isolates to the correct group (Figure 5A). The second model was generated to select the metabolites 243 

that are most likely to be produced by the vaginal isolates compared to the intestinal and oral isolates, 244 

while maximally discriminating the groups. The seven metabolites selected accurately classify greater 245 

than 90% of the isolates to the correct group (Figure 5B).246 

 247 

Figure 5: Machine learning of the SPL scores identifies metabolites that discriminate Lactobacillus strains. 248 
Machine learning feature selection identified the metabolites that are both most likely to be produced by each 249 
group and capable of classifying the strains into two groups, intestinal/oral and vaginal, with greater than 90% 250 
accuracy. (A) There are eight metabolites that are more likely to be produced by the intestinal/oral isolates 251 
compared to the vaginal isolates. (B) There are seven metabolites that are more likely to be produced by the 252 
vaginal isolates compared to intestinal/oral isolates. Both models are more than 90% accurate in predicting the 253 
membership to which the given isolate belongs using the SPLs of the metabolites listed. 254 

Using SPLs as an input for AUCRF feature selection, we identified the metabolites that are most likely to 255 

be produced by the strains associated with the two isolate groups, intestinal/oral and vaginal. The 256 

selected metabolite products may contribute to how the strains interact with the mucosal tissues in 257 

each site. We hypothesize that these metabolites are related to key phenotypic differences between the 258 

two isolate groups. Four of the selected metabolites that are likely produced by intestinal/oral strains, 259 

D-alanine, D/L-serine, and L-proline (Figure 5A), have all been previously identified to have an impact on 260 

the human intestinal epithelium (23,24,56–58). Additionally, four of the selected metabolites that are 261 

likely produced by vaginal strains, L-arginine, citrulline, and D/L-lactate (Figure 5B), have been previously 262 

identified to have an impact on the human vaginal microbiome (59–62). The metabolites for which we 263 

have not found existing experimental evidence for are likely worth focusing on in future experimental 264 

studies. 265 
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For intestine-associated lactobacilli in this study, there is a connection between intestinal immune 266 

system regulation and D-alanine rich lipotechoic acid, a glycolipid expressed by some lactobacilli, such as 267 

L. plantarum (23,24). D-alanine rich lipotechoic acid, produced by lactobacilli, has been shown to down-268 

regulate local colonic inflammation in a murine colitis model (23,24). With PROTEAN we identified that 269 

intestinal lactobacilli were more likely to produce D-alanine (Figure 5A). It is possible that a positive 270 

interaction with the intestinal host immune system would result in an evolutionary advantage by 271 

reducing local immune response. Additionally, serine rich serine‐threonine peptides have been shown to 272 

have a similar regulatory effect on intestinal dendritic cells (56,57). These peptides expressed by L. 273 

plantarum are resistant to intestinal proteolysis and appear to be present in the colon of most healthy 274 

individuals (56,57). Similar to D-alanine, the production of D/L-serine would require a robust 275 

biosynthesis pathway present in those strains.  276 

A final gut-related connection involves the biosynthesis of L-proline (Figure 5A). One of the primary 277 

stress responses in L. acidophilus to high osmotic pressure results in the accumulation of L-proline in the 278 

cell; there is little evidence that this response is a result of L-proline transport into the cell (58). These 279 

Lactobacillus strains are exposed to a large range of stressors in the gut, including suboptimal osmotic 280 

pressures. There is strong evidence that L-proline is used by L. acidophilus to tolerate suboptimal 281 

osmotic pressures and there is a lack of evidence for L-proline transporters. As such, the biosynthesis of 282 

L-proline may be advantageous for growth in the gut.  283 

For the enriched metabolic products in vaginal isolates (Figure 5B), there is evidence for an 284 

arginine/ornithine antiporter and arginine deiminase in L. fermentum (59). These enzymes are part of 285 

the arginine deiminase pathway through which there is the production of citrulline which is exported 286 

from the cell and contributes to acid tolerance (59). It has also been demonstrated that treatment with 287 

probiotics containing arginine deiminase-positive lactobacilli can improve clinical symptoms of vaginosis 288 

in parallel with significant declines in polyamine (i.e. arginine, ornithine, and citrulline) levels in the 289 

vagina (60,61). The vaginal isolates in this study show enrichment for the cellular machinery required for 290 

the production of both citrulline and L-arginine (Figure 5B). The importance of lactate for the adequate 291 

maintenance of vaginal health in many individuals is known. The current hypothesis revolves around 292 

colonization resistance where vaginal lactobacilli establish an acidic environment by producing lactate 293 

(62). The acidic environment is generally inhospitable to invading pathogens as well as other microbes 294 

that are otherwise capable of residing in the vaginal environment (62). It has been shown that higher 295 

levels of D-lactate over L-lactate present in the vagina, produced by lactobacilli, further decrease the 296 

chance of infections in female patients (62). However, both isoforms of lactate remain important in 297 

maintaining vaginal health.  298 

Conclusions 299 

Microbial biosynthesis of metabolites has a broad range of applications, from bio-manufacturing to 300 

microbiome research (63). There is a wealth of well-curated and accessible knowledge stored in 301 

biochemical reaction databases such as ModelSEED (64). Genome-Scale Metabolic Network 302 

Reconstructions access this fundamental knowledge while accounting for systems-level interactions. 303 

This study represents one such application of GENREs that is a step toward predicting the metabolic 304 

production capabilities of understudied organisms. Experimental validation of the production 305 

capabilities predicted with PROTEAN will allow for conclusions to be made beyond the statement that a 306 

microbe is genetically likely to be able to produce a metabolite. Utilizing PROTEAN data, we found that 307 
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human-associated lactobacilli strains cluster significantly by species and isolation site. Additionally, 308 

many of the metabolic products that drive the clustering of strains by the isolation sites have known 309 

physiological function and importance in the respective isolation sites.  310 

Future applications of PROTEAN could include optimal strain selection for bio-manufacturing of a certain 311 

compound, generating predicted metabolomics data for an organism to generate a prioritized list of 312 

conditions that would be most worthwhile to validate experimentally, and predicting the metabolites 313 

that are most likely to be produced in a microbiota. Microbes can have a wide range of physiological 314 

impacts on human health; these impacts are, in part, a result of the metabolites that are or are not 315 

produced by members of a microbiota. One of the core limitations of this study includes the lack of 316 

reaction likelihoods for some reactions in the universal reaction bag we used from ModelSEED. The 317 

number of reactions we could generate likelihoods for was limited by the Probannopy reaction 318 

template. However, this template can be expanded to continue to improve the utility of PROTEAN. With 319 

the inclusion of validation data, additional analyses will be possible, such as determining metabolic 320 

production pathways lacking proper annotation. By determining the reactions that are most likely 321 

required for biosynthesis of a known product, it would be possible to generate additional hypotheses for 322 

enzyme annotation experiments. PROTEAN is an algorithm with potential for a wide range of 323 

applications in the study and use of microbial metabolic networks.  324 

Methods 325 

Constituent Anabolic Network Generation (PROTEAN) 326 

Probabilistic pFBA-based constituent anabolic network generation was accomplished using three Python 327 

packages, Cobrapy (65), Mackinac (66), and Probannopy (48). The complete ModelSEED universal 328 

reaction bag was downloaded from the github repository and filtered based on the annotation quality 329 

score, including all reactions with an ‘OK’ quality status or better (64). For each reaction in the 330 

ModelSEED universal reaction bag, we used Probannopy to generate a reaction likelihood based on the 331 

FASTA file for each genome obtained from the PATRIC database (4). The Cobrapy implementation of 332 

Parsimonious Enzyme Usage Flux Balance Analysis (pFBA) was altered to allow for each reaction’s linear 333 

constraint to be set individually based on the reaction likelihood. The linear constraint for each reaction 334 

was set to one minus the reaction likelihood (a value between 0 and 1). There were reactions included in 335 

the universal reaction bag that were lacking from the Probannopy template model, therefore resulting 336 

in several gene-associated reactions lacking reaction likelihood scores. The reactions without likelihoods 337 

were left at a full minimization penalty (linear constraint value of 1). We chose to penalize the reactions 338 

without likelihoods to bias our results towards the construction of networks for which all reactions had 339 

evidence of presence. The linear constraints applied to each reaction based on likelihood acted as a 340 

weighting (inclusion penalty) for the minimization step in pFBA, resulting in the reactions with greater 341 

likelihood having a lower penalty for carrying flux; therefore, the reactions had a higher likelihood of 342 

being included in the constituent anabolic networks.  343 

Using PROTEAN, we generated constituent anabolic networks by setting a certain input media condition 344 

(Table S4) and constraining flux through the single metabolite objective function (Table S3). We ran our 345 

likelihood-weighted pFBA flux minimization across the entire universal reaction bag and isolated the 346 

reactions that carried flux to get the desired product. The resulting networks consist of the direct 347 

reactions that would be part of a production pathway as might be shown in a typical biosynthesis 348 

pathway figure, while also accounting for all of the secondary and energy metabolites that are required 349 
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for the production of the metabolite in consideration. Additionally, this algorithm is optimizing for three 350 

core characteristics in the constituent networks: 1) minimum flux through the network (loosely, the 351 

minimum number of reactions), 2) maximum average reaction likelihood across the constituent 352 

network, and 3) output flux within 90% of the optimal yield of the metabolic product. We chose to allow 353 

flux through any reaction in the universal reaction bag during the generation of the constituent anabolic 354 

production pathways rather than simply pulling from a GENRE that was first gapfilled to allow 355 

production of biomass. Using the universal reaction bag instead of a gapfilled model was important 356 

because the biomass function is difficult to define for understudied organisms and unnecessary for our 357 

applications.  358 

Scaled Production Likelihood Metric 359 

We represent the information from each constituent network using a single summary metric for ease of 360 

comparison, simply named the Production Likelihood. This metric is the average of the reaction 361 

likelihoods included in the constituent network. The average reaction likelihood for a metabolic pathway 362 

has been previously used for making comparisons between networks (44). The Production Likelihoods 363 

for all 50 metabolites are scaled for each given genome by calculating the z-score to create the Scaled 364 

Production Likelihoods used for the majority of the analysis in this study. The z-score is calculated for 365 

each individual strain using the median and standard deviation for the production likelihoods across the 366 

50 metabolic products. The Scaled Production Likelihood allows for a ranked comparison of metabolic 367 

products across the genome set and corrects for annotation bias by essentially comparing the ranked z-368 

score for each metabolic product.  369 

Supporting data for pathway generation 370 

The simulated media formulation was based on in vitro minimal media growth conditions for L. 371 

plantarum (Table S4) (67–69). The techniques used in this study do not assume that all species are 372 

capable of growth in the given media condition, therefore this media condition simply provides a 373 

standard reference for comparison. The product list was developed by identifying metabolites that have 374 

been shown to be produced by lactobacilli during in vitro growth experiments, in addition to other 375 

metabolites that have been shown to be related to human physiology (70–74). 376 

Machine learning feature selection 377 

Discriminating intestinal/oral and vaginal features were selected using area under the ROC curve 378 

random forest (AUCRF) using default parameters (75) (see Code). We generated two separate AUCRF 379 

models to determine the metabolites that were more likely to be produced by each of the groups, 380 

intestinal/oral and vaginal. Two models allowed us to enrich for likely products rather than simply 381 

selecting for the metabolites that provide the greatest discrimination between the groups but which 382 

may have poor likelihood scores. We conducted the enrichment for likely metabolic products for each 383 

model by reducing the feature set down to only metabolites that were more likely to be produced by 384 

the group of interest. Likely metabolic products were determined by comparing the median SPLs of each 385 

metabolite between the groups. Additionally, the feature sets were reduced to include only metabolites 386 

with a median value greater than zero for the group of interest. An AUCRF model was then generated to 387 

select the features that provided the greatest discrimination between the two groups.  388 

Statistical modeling and figure generation 389 
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The principle coordinate analysis (PCoA) ordinations were created using the R vegan package (76), 390 

implemented with the Bray-Curtis dissimilarity metric. Statistical significance for comparing the PCoA 391 

clusters was determined using a PERMANOVA (R Adonis test). A variety of R packages were used for all 392 

figure generation (77–81).  393 

Genome Quality and PATRIC Cross Genus Protein Family Data 394 

Genomes used in the study were filtered for quality before being included in the analysis. Strains with 395 

greater than 0.2% unknown nucleotide calls in the genome were eliminated. Low quality genome 396 

assemblies with greater than 300 contigs were removed. Non-human associated Lactobacillus strains 397 

from the PATRIC database were used to determine the GC content range for each species (82,83), and 398 

significant outliers (plus or minus two percent) were removed to control for sequencing bias (84,85). 399 

Only isolates from the three human-associated sites (oral, intestinal, and vaginal) were included in the 400 

final dataset.  401 

The inclusion of metabolic PATRIC cross genus protein families was conducted by filtering the PGfams 402 

for each genome based on the existence of an associated known reaction and Probannopy likelihood 403 

greater than 0. Pan and core metabolic PGfam sets were evaluated after the addition of all genomic 404 

features from each genome. The pan set of metabolic PGfams was defined as the total number of 405 

unique PGfams included in the data set after the above filtering steps. The core set of metabolic PGfams 406 

are those that existed within each genome included in this study. 407 

Data and code availability 408 

Genome FASTA files and metadata were downloaded from the PATRIC Database (4). Python and R code 409 

is available at: Github.com/Tjmoutinho/Lactobacillus 410 
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 615 

Figure 1: Known metabolic annotations are extensively sampled across the 16 Lactobacillus species included in 616 
this study. The genomic features used for this analysis are PATRIC Cross-Genera Protein families (PGfams), a 617 
standardized set of features across the PATRIC Database (4). (A) The number of metabolic PGfams for each 618 
genome are shown here, with the median value indicated by the middle line in the boxplot. (B) For the 144 strains 619 
from 16 species of Lactobacillus, we found that there are 116 protein families in the core set of metabolic PGfams, 620 
while the pan set of PGfams expands to over 1500 families. The nearly plateau shape of the curve for the pan set 621 
of PGfams curve indicates that this sampling represents a large portion of the genetic diversity among the 16 622 
species included in the study. (C) This table shows the complete list of species used in this study and indicates the 623 
percentage of strains that were isolated from each human body site. Each strain in this study is a member from 624 
one of the 16 species and isolated from one of three human-associated body sites; intestinal, oral, or vaginal (Table 625 
S2).  626 

 627 

Figure 2: PROTEAN is an approach for quantifying the likelihood that a given metabolic network, derived 628 
exclusively from genomic evidence, is capable of synthesizing a particular metabolite. A modified version of 629 
Parsimonious Enzyme Usage FBA (weighted pFBA) was performed on a standardized set of reactions to generate 630 
constituent anabolic networks for each genome. Reaction likelihoods were used to weight the minimization of flux 631 
through each reaction in the network. Therefore, reactions with a greater likelihood were more likely to be 632 
included in the resulting constituent anabolic network. Each constituent network has a set of input metabolites 633 
representing the media condition (Table S4) and a demand reaction for a certain metabolic product. The resulting 634 
constituent network is the set of reactions that requires flux to produce the metabolic product in the given media 635 
condition. The production likelihood metric is an average of all the reaction likelihoods associated with the 636 
reactions included in the constituent network. This metric is used as a summary statistic that allows for the 637 
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comparison of constituent networks across different metabolic products and strains, where a higher production 638 
likelihood corresponds with greater genetic evidence for that particular constituent anabolic network.  639 

 640 

Figure 3: Predicted metabolic production capabilities with the Scaled Production Likelihood (SPL) metric align 641 
poorly with phylogeny. There is a single production likelihood for each genome associated with each metabolite. A 642 
median SPL can be calculated for a species that allows for more general comparisons across species, illustrated 643 
here by the distribution for one species (L. rhamnosus) and one metabolite (adenine). There are 50 metabolites 644 
used as features to allow for the comparison of predicted production capabilities across the lactobacilli analyzed.  645 

 646 

Figure 4: The Scaled Production Likelihood metric distinguishes metabolic functionality among species. (A) We 647 
found that Lactobacillus strains cluster significantly by species (PERMANOVA; P < 0.001). (B) Additionally, they 648 
cluster significantly by isolation site (PERMANOVA; P < 0.001). Both plots are PCoA using the Bray-Curtis distance 649 
metric of the SPLs for each isolate. Points in both panels are identical, but displayed with different color schemes.  650 
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 651 

Figure 5: Machine learning of the SPL scores identifies metabolites that discriminate Lactobacillus strains. 652 
Machine learning feature selection identified the metabolites that are both most likely to be produced by each 653 
group and capable of classifying the strains into two groups, intestinal/oral and vaginal, with greater than 90% 654 
accuracy. (A) There are eight metabolites that are more likely to be produced by the intestinal/oral isolates 655 
compared to the vaginal isolates. (B) There are seven metabolites that are more likely to be produced by the 656 
vaginal isolates compared to intestinal/oral isolates. Both models are more than 90% accurate in predicting the 657 
membership to which the given isolate belongs using the SPLs of the metabolites listed. 658 

 659 
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