

1

2

3

4 ***The effect of blue-blocking lenses on photostress***
5 ***recovery times for low and high contrast***
6 ***chromatic and achromatic stimuli***

7

8

9 Hind Saeed Alzahrani^{1,2}, Sieu K. Khuu¹, Adiba Ali¹, Maitreyee Roy^{1*}

10

11

12

13 ¹School of Optometry and Vision Science, The University of New South Wales,
14 Kensington, Sydney, NSW 2052, Australia

15 ²Department of Physics, Taif University, Ta'if, Saudi Arabia

16

17

18 *Corresponding Author

19 E-mail: maitreyee.roy@unsw.edu.au (MR)

20

21 These authors contributed equally to this work.

22

23 **Abstract**

24 The selective reduction in visible wavelengths transmitted through commercially available
25 blue-blocking lenses (BBLs) is known to influence the appearance and contrast detection of
26 objects, particularly at low light levels which may impact the human retinal receptor response time
27 to dynamic light changes during photostress events. In the present study, we assessed whether BBLs
28 selectively affect photostress recovery times (PSRTs) in 12 participants for chromatic and
29 achromatic stimuli presented under low and high contrast luminance conditions. Four types of
30 commercially available BBLs were evaluated, and their effects on PSRTs were investigated. Our
31 results showed that PSRTs required to detect high contrast chromatic and achromatic stimuli were
32 unaffected by BBLs when compared to a clear control lens. However, PSRTs were significantly
33 affected by BBLs and were longer when chromatic and achromatic stimuli were of low contrast. In
34 addition, BBLs had the greatest impact on the PSRTs of blue coloured targets, and this was
35 dependent on the spectral transmittance profile. These results indicate that wearing BBLs under
36 low contrast conditions can have serious implications for visual behavior, particularly under low-
37 light levels and in situations in which the observer is directly exposed to bright light sources. For
38 example, during night time driving, the driver might be briefly exposed to bright lights by glancing
39 at the headlights of a passing car. This increases the time required for vision to be restored after
40 bright light exposure, resulting in delayed object detection, and therefore stoppage and reaction
41 times, which might pose a safety risk for a driver.

42

43 **Introduction**

44 Blue-blocking lenses (BBLs), particularly so-called yellow BBLs with cutoff wavelengths
45 between 450 nm and 512 nm, have been designed to provide protection against hazardous blue light
46 [1]. These yellow BBLs have become popular in recent years and are used to aid vision in tasks such
47 as shooting [2], skiing, aviation [3], hunting and sailing [4]. It has been suggested that BBLs benefit

48 vision with reported improvement in visual tasks such as visual acuity [5, 6] particularly enhancing
49 the clarity of vision [7], and decreased glare [5, 8]. However, at present, the benefit of BBLs have
50 yet to be fully verified by empirical and independent evidence [9].

51 Despite the potential benefits of BBLs, previous studies have shown that BBLs may impair
52 vision, particularly affecting the ability of the visual system to detect contrast under different visual
53 conditions [5, 10-12]. For example, Thomas et al. have shown that while BBLs do not affect
54 sensitivity to high-contrast photopic stimuli, detection of low-contrast mesopic stimuli is impaired
55 by BBLs [5]. BBLs also dramatically reduce contrast sensitivity under scotopic conditions even after
56 dark adaptation [10]. Collectively, these studies suggest that BBLs have the potential to affect the
57 visibility of targets at low lighting levels, which poses a risk for visual behaviors such as driving and
58 visual search under twilight and night-time conditions. However, the full extent to which BBLs,
59 particularly newer generation lenses, affect visual perception, remains unclear despite their
60 commercial availability and prescription by optometrists [9, 13].

61 Previous studies have begun to address this paucity in knowledge by investigating how newer
62 generation BBLs might affect a number of visual judgements such as colour, contrast sensitivity,
63 and visual acuity [13, 14]. Of particular note are studies that investigated whether BBLs (typically
64 as yellow intraocular lenses (IOLs)) contribute to the time required to recover from a brief exposure
65 to an intense light source, in the so-called photostress test [11, 12]. Here, retinal receptors are initially
66 driven to the maximum response by exposure to intense light, and the time required for vision to be
67 restored (i.e., recovery time) provides an indication of photoreceptors to respond to dynamic light
68 change and recover function [15,16-19]. The speed of recovery from a photostress event is dependent
69 on a variety of factors such as the observer's current adaptive state and macular pigments [19, 20].
70 Quantifying PSRT is particularly important for vision under twilight and night conditions, in which
71 the visual system might be exposed to a bright light source (e.g., passing car lights) and become
72 temporarily 'blind' until recovery occurs.

73 Two studies have investigated BBLs as a contributing factor to PSRTs [11, 12]. Hammond et
74 al. [11, 12], quantified PSRTs to a monochromatic (yellow) sinusoidal grating in patients with yellow
75 intraocular lenses (IOLs). However, they found that PSRTs were not significantly different from
76 clear IOLs or phakic controls, but in a subsequent study, the authors did show that PSRTs improved
77 when the stimulus background was blue. This improvement in PSRTs might be attributed to the fact
78 that BBLs inherently reduce blue light, and thereby enhancing image contrast. While these reports
79 implicate that BBLs have the potential of affecting vision and PSRTs, the stimulus conditions under
80 which they impair vision remains unclear. In the present study, we sought to further contribute to
81 understanding the potential effects of BBLs on PSRTs by investigating how they might be affected
82 by stimulus contrast and colour. Our motivation for doing so is two-fold: Firstly, as mentioned, BBLs
83 appear to greatly affect vision under low light level conditions, and they might also affect PSRTs.
84 Secondly, BBLs selectively filter blue light, and potentially PSRTs are dependent on the colour of
85 the stimulus [11, 12].

86 In the present study, two experiments were conducted to investigate the effect of newer
87 generation BBLs on PSRTs. In Experiment 1, the time required to correctly identify an achromatic
88 letter optotype after exposure to an intense light source was measured for low and high stimulus
89 contrasts sufficiently for those to be within photopic and mesopic limits. In Experiment 2, PSRTs
90 were measured for chromatic (blue, red, yellow and green) high and low contrast stimuli. For
91 Experiments 1 and 2, PSRTs were measured using 4 commercially available BBLs (UV++Blue
92 Control, Crizal Prevencia, Blue Guardian, and Blu-OLP lenses) and a clear lens as a control. The
93 newer generation BBLs showed higher spectral transmission properties than previously used
94 yellow coloured BBLs [21]. Recent studies showed the effect of commercially available BBLs on
95 visual and non-visual functions and reported that BBLs might have significant unintended effects
96 on visual behavior as they attenuate blue light required for blue perception and scotopic vision [21,
97 22]. This may pose a risk regarding their use under low lighting conditions such as night driving.

98 However, their potential effects on visual perception have not been fully quantified in the
99 empirical and clinical studies [9, 13, 14, 22].

100

101 **Materials and Methods**

102 **Blue-blocking lenses (BBLs) characteristics**

103 As mentioned, a clear control lens and 4 BBLs were utilised in the present study: UV++Blue
104 Control (JuzVision), Crizal Prevencia (Essilor), Blue Guardian (Opticare), and Blu-OLP (GenOp).
105 The spectral transmittance characteristics of these lenses were previously measured using a Cary
106 5000 UV-Vis-NIR with an integrating sphere spectrophotometer (Model: EL04043683) across a
107 range of wavelengths from 280 to 780 nm. The outcomes of this analysis are shown in Fig 1, which
108 demonstrate that the BBLs utilized in the present study were effective in reducing transmittance of
109 short wavelengths of light (in comparison to the clear control lens), but the extent is dependent on
110 the type of BBLs, with in particular the Blu-OLP and Crizal Prevencia lenses filter the most light
111 [21, 22].

112 The CIE (1931) x, y chromaticity coordinates and the luminance Y of BBLs were
113 previously calculated with a simulated D65 illuminant. The BBLs had x, y, Y coordinates of
114 0.318, 0.338, 93.82 (UV++Blue Control); 0.331, 0.354, 92.20 (Crizal Prevencia); 0.320,
115 0.338, 95.39 (Blue Guardian); and 0.336, 0.355, 87.50 (Blu-OLP). However, these BBLs
116 block only a small part of the range of blue wavelengths (< 420 nm), while transmitting other
117 longer wavelengths of visible light approximately similar rates [21, 22]. All tested lenses
118 were prepared to be worn as goggles, which allowed the BBLs to be worn over spectacles.

119

120 **Fig 1. Transmission characteristics of the 4 BBLs and a clear lens as a function of**
121 **wavelength.**

122

123 **Participants**

124 Twelve participants aged between 18 and 39 years participated in the study, and they were
125 randomly divided into two groups and participated in either Experiment 1 (n = 7) or Experiment 2
126 (n=5). All had normal or corrected to normal visual acuity with no history of any visual
127 abnormalities. All participants were screened for monocular and binocular visual acuity of 6/6 or
128 better using a Snellen chart, and normal colour perception using the Ishihara Test Book 24 Plate
129 abridged edition. Individuals with colour deficiencies or with a history of ocular disease were
130 excluded from this study. Each participant gave their written consent prior to testing, and the risks
131 and benefits of the study were explained. The research adhered to the Tenets of the Declaration of
132 Helsinki. Ethics approval was granted by the University of New South Wales Australia Human
133 Research Ethics Advisory Panel (reference number: HC16934).

134

135 **Experiment 1: The dependency of recovery times on stimulus contrast 136 under photopic conditions**

137

138 **Stimuli**

139 The visual stimuli (achromatic and chromatic) used in Experiment 1 and Experiment 2 were
140 generated on a 15-inch MacBook Pro using custom software written in MATLAB (version 14) and
141 displayed on a linearised CRT monitor screen. The detected stimulus was a single uppercase letter
142 Snellen optotype (2 degrees in visual angle, including: D, E, F , H, N, P, R, U, V, Z) of different
143 Weber contrasts (as mentioned below) which was viewed on a black background (3 cd/m²) from a
144 viewing distance of 130 cm, see Fig 2 as an example.

145 In Experiment 1, achromatic letter stimuli were grey and displayed on a darker grey
146 background at Weber contrasts of 0.1, 0.2, and 0.4. Monochromatic letter stimuli were also
147 displayed on a dark gray background and were either red (CIE 1931 xy: 0.64, 0.35), green (CIE

148 1931 xy: 0.3, 0.6), yellow (CIE 1931 xy: 0.51, 0.42), or blue stimuli (CIE 1931 xy: 0.15, 0.06) and
149 corresponded to the maximum output of the sRGB monitor. All chromatic stimuli were presented
150 at one contrast level of 0.4.

151

152 **Fig 2. A schematic representation of a PSRT experimental trial showing achromatic and**
153 **chromatic stimuli.**

154

155 **Procedure**

156 In Experiment 1, the participant wore a custom-made goggle with removable lenses and was
157 seated in front of a monitor screen. The participant viewed the monitor binocularly, and steady
158 viewing was maintained by using a head and chin rest. The participant was allowed to adapt to
159 wearing each google for 2 minutes before starting the experiment. The viewing distance was 130
160 cm from the monitor screen and was level with the participant's eyes. Before viewing a stimulus,
161 the participant was exposed for 5 seconds to very high light intensity from a 30W- white LED
162 lamp (5000K, 12640lux, 28727cd/m²) mounted at a distance 30 cm from the eyes along the
163 fixation axis, and under safe conditions [23]. The high-level of light from the LED lamp is
164 sufficient for cone photoreceptors to respond and reach maximum response, as shown in Fig 3
165 which describes the relative sensitivity of cone photoreceptors in response to the light source. After
166 photostress, the optotype was immediately presented at the centre of the computer monitor, and the
167 time required to correctly name the letter provided an indication of the PSRT (Fig 2).

168 The above mentioned procedures were repeated for achromatic targets with contrast levels of
169 0.1, 0.2 and 0.4 (corresponding to luminance values of 3.3, 3.6, and 4.2 cd/m² and thus these
170 stimuli were within the low photopic range), and the four different BBL brands in a randomised
171 order using an online tool (available at www.randomization.com). Each contrast level was repeated
172 twice. Using the same procedures, testing was also conducted with chromatic red, green, blue and
173 yellow stimuli set to a contrast of 0.4.

174

175 **Fig 3. The relative sensitivities of S-cones, L-cones, and M-cones when are exposed to the LED**
176 **lamp.** Dashed lines represent the normal sensitivity of cone photoreceptors based on CIE TN
177 003:2015 [24], while solid lines represent the simulated sensitivity curves resulting from exposure
178 to LED lamp.

179

180 **Results**

181 The PSRTs required to detect an achromatic target stimulus were plotted against the stimulus
182 luminance contrast (Fig 4). Different symbols represent different lens types, and error bars signify 1
183 standard error of the mean. A two-way repeated measures ANOVA showed a main effect of contrast
184 such that increasing the stimulus contrast reduced PSRTs ($F [2,18] = 4.013, p = 0.036$). However,
185 PSRTs between different BBLs and the control lens were not significantly different regardless of the
186 contrast level ($F [4,72] = 0.8, p = 0.5291$). These results indicated that for achromatic stimuli
187 presented under photopic conditions, while reducing contrast resulted in longer PSRTs, BBLs did
188 not significantly affect PSRTs after photostress when compared to a clear control lens.

189

190 **Fig 4. Mean recovery times are plotted as a function of luminance contrast for an achromatic**
191 **stimulus.** Error bars signify 1 SEM. All achromatic stimuli were high contrast and were tested for
192 each lens type under photopic conditions of 3.3, 3.6, and 4.2 cd/m².

193

194 The mean difference in PSRTs between each BBL type and the control lens required to detect
195 different chromatic stimuli are shown in Fig 5. Error bars signify one standard error of the mean. A
196 two-way repeated measures ANOVA (mixed effect) showed no significant effect of BBL type (F
197 $(9,72) = 0.490, p = 0.879$), but there was a main effect of colour ($F (3,72) = 4.29, p = 0.0156$). These
198 findings suggest that while the BBL type did not affect PSRTs, they were dependent on the stimulus
199 colour. As evident in Fig 5, while PSRTs to red, green and yellow stimuli viewed through BBLs did
200 not greatly differ from the control lens, however, blue stimuli resulted in a modest (approximately 1
201 – 2 seconds) increase in PSRTs. These results indicate that under photopic stimulus conditions,
202 BBLs might have a small effect on PSRTs, particularly to a blue stimulus.

203

204 **Fig 5. Mean difference in recovery times for high contrast coloured stimuli and lens types.**
205 Error bars signify one standard error of the mean. High contrast coloured stimuli can be red, yellow,
206 green, or blue, and all stimuli were tested for each lens type under the photopic condition of 4.2
207 cd/m².
208

209 **Experiment 2: Recovery times under mesopic conditions**

210 In Experiment 2, we measured PSRTs at low luminance levels to simulate mesopic viewing
211 conditions. As mentioned, previous studies investigating contrast sensitivity [5, 10] suggests that
212 BBLs can greatly affect perception at low light-levels, and accordingly, it might be expected that
213 PSRTs are longer as the overall light level available for perception. Moreover, the selective nature
214 of BBLs might further render blue targets less perceptible and further increasing PSRTs. Here, we
215 repeated Experiment 1 and a neutral density filter overlaid with the BBLs was used to reduce the
216 overall light intensity by an approximately a factor of 10. Both achromatic and chromatic stimuli
217 were tested at one contrast level of 0.4.

218

219 **Results**

220 Fig 6 shows the mean recovery time required to detect an achromatic target in
221 Experiment 2. A one-way repeated measures ANOVA observed a significant effect of BBL
222 type ($F(2.006,8.02) = 61.95, p < 0.0001$), indicating that PSRTs were dependent on the type
223 of BBL. Post-hoc comparisons test (Dunnett's test corrected for multiple comparisons
224 assuming an alpha of 0.05) showed that both the Blu-OLP (mean difference, 6.475s, $p =$
225 0.0011) and Crizal Prevencia (mean difference, 3.038s, $p = 0.0018$) lenses produced
226 significantly longer PSRTs than the control lens. However, PSRTs for the UV++Blue
227 Control and Blue Guardian lenses were not significantly different from the control lens.
228 Importantly, these results suggest that under low light levels, BBLs affect PSRTs, but this is
229 dependent on the type of lens.

230 Note that the different lenses used in the present study differ in their transmission
231 profiles (see Fig 1) and PSRTs might be dependent on the overall amount of light transmitted
232 by these lenses. To investigate this, we calculated the area under the curve (AUC) values for
233 the transmittance functions shown in Fig 1 and correlated them with their average PSRTs.
234 Indeed, we find that PSRTs were significantly correlated with AUC with $r = 0.964$, $p = 0.036$.
235 These results suggest that for achromatic stimuli BBLs affect PSRTs, but this is dependent
236 on their overall light transmittance properties.

237

238 **Fig 6. Mean recovery times for low contrast achromatic stimuli and lens types.** Error bars
239 signify one standard error of the mean. All achromatic stimuli were tested for each lens type under
240 the mesopic condition of 0.4 cd/m^2 .
241

242 In Fig 7, the mean recovery time difference (relative to the clear control lens) are shown for
243 different coloured stimuli (different plots) and BBL type. Error bars signify one standard error of the
244 mean. A repeated-measures two-way ANOVA (mixed effect) was conducted with colour and BBL
245 type as factors. This analysis observed a main effect of colour ($F (3, 48) = 149.53$, $p < 0.0001$) and
246 BBL type ($F (3, 16) = 139.01$, $p < 0.0001$). A significant interaction effect was also evident ($F (9, 48)$
247 = 278.79 , $p < 0.0001$) which indicated that PSRTs for each colour were dependent on the type of
248 BBL. Particularly, average PSRTs (relative to the control lens) for blue stimuli (38.40s) were
249 considerably longer than yellow (0.7775s), green (0.1380s) and red (1.539s) stimuli. Indeed, Tukey's
250 multiple comparisons tests indicated that PSRTs to the blue stimulus was significantly longer than
251 the other colours ($P < 0.0001$). One sample t-test showed that only the PSRTs for the blue stimulus
252 (regardless of BBL type) was significantly different ($t (19) = 5.726$, $p < 0.0001$) from zero (i.e., the
253 control lens). Given that BBLs selectively block short wavelengths, these results demonstrate that at
254 low contrasts BBLs considerably affect the ability of the visual system to recover from photostress,

255 which has implications for their wear under conditions of twilight and night time driving where
256 overall light levels are low, and objects are frequently low contrast.

257 A significant interaction effect indicated that the effect of BBLs on PSRTs was dependent on
258 the colour of the stimulus. Given this, individual one-way repeated measures ANOVA was
259 conducted for each coloured stimulus. This analysis showed that for red, green and yellow coloured
260 targets, there was no significant difference between the BBLs, and their PSRTs were not
261 significantly different from the clear lens. However, a significant effect was observed between BBLs
262 for the blue coloured target ($F(1.513, 6.050) = 155.3, p < 0.0001$), and Post-hoc comparisons tests
263 indicated that all BBLs led to significantly longer PSRTs relative to the control lens. In particular,
264 the Crizal Prevencia and Blu-OLP resulted in much longer PSRTs (> 30 seconds) compared to the
265 control lens. PSRTs are consistent with the transmittance properties of the BBLs, particularly the
266 degree to which they block blue light. Indeed, a Spearman's correlation between the transmittance
267 efficiency for each BBL for the blue target (CIE 1931 xy: 0.15, 0.06) of a dominant wavelength of
268 440 nm used in the present study revealed a significant positive relationship ($r = 0.994, p = 0.004$).

269 **Fig 7. Mean difference in recovery times for low contrast coloured stimuli and lens types.** Error
270 bars signify one standard error of the mean. Low contrast coloured stimuli can be red, yellow, green,
271 or blue, and all stimuli were tested for each lens type under the mesopic condition of 0.4 cd/m².
272

273 **Discussion**

274 In this study, the effect of wearing BBLs on PSRTs for low and high contrast stimuli was
275 measured. We find that under photopic stimulus conditions, while reducing luminance contrast
276 increased PSRTs, BBLs had a modest influence on PSRTs (relative to a clear control lens) for
277 chromatic stimuli only (Fig 5). However, under mesopic stimulus conditions, BBLs significantly
278 affect PSRTs for both achromatic and chromatic stimuli, particularly for blue coloured targets, which
279 had considerably longer PSRTs. The type of BBL was also shown to selectively affect PSRTs, with
280 those with transmittance profiles that block the most blue light having longer PSRTs.

282 The findings of our study demonstrate that the use of BBLs has unintended adverse
283 consequences to visual function. Particularly, the fact that BBLs are designed to reduce light
284 transmittance, albeit at shorter wavelengths, reduces the availability of light for visual perception.
285 Indeed, some preliminary studies [5, 10] have shown impaired contrast sensitivity under low light
286 conditions. Additionally, BBLs are known to induce a Tritan like defect in colour vision, and thus
287 further impairing visual function [25, 26]. These findings, together with those reported by the present
288 study, raise concerns and caution regarding their everyday use.

289 Our finding of longer PSRTs, particularly for blue stimuli under low light levels has important
290 ramifications for night time activities or those in which light-levels are low. For example, during
291 night time driving, the driver might be briefly exposed to bright lights by glancing at the headlights
292 of a passing car. BBLs impair night time vision as they would unintendedly increase the time
293 required for vision to be restored after bright light exposure. This might result in delayed object
294 detection, and therefore stoppage and reaction times, and therefore might pose a safety risk for a
295 driver, which outweighs their benefits, which has yet to be proven. These unintended properties of
296 BBLs are particularly significant given that newer generation BBLs are a design feature of spectacles
297 intended for everyday wear and cannot be removed.

298 In the present study, PSRTs were measured in younger participants (18-39 years old) with no
299 history of ocular disease or abnormal vision. However, PSRTs have been shown to be dependent on
300 age and are significantly longer due to eye disease. For older individuals, potential reductions in lens
301 transparency, presence of vitreous floaters and slower response to light stimuli (particularly to
302 coloured targets [27]) are common problems associated with ageing [28] and are likely to impact
303 and increases PSRT. In addition, longer PSRT has been observed in individuals with primary open-
304 angle glaucoma (POAG) and AMD [29-31], which are likely to further exacerbated by wearing
305 BBLs. However, further research is needed to quantify the full extent to which BBL type affect
306 vision in elderly people and patients with colour vision deficiency.

307 Acknowledgments

308 The authors of this study wish to thank, Mr Justin Baker (JuzVision), Mr Tim Thurn (Essilor
309 Australia) and Ms Dubravka Huber (Optometry Clinic, School of Optometry and Vision Science,
310 UNSW Sydney) for providing BBLs used in this study. We thank Dr Kathleen Watt for valuable
311 discussion.

312

313 References

314

- 315 1. Hiromoto K, Kuse Y, Tsuruma K, Tadokoro N, Kaneko N, Shimazawa M, et al. Colored lenses
316 suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells. *J
317 Biomed Opt.* 2016; 21(3):035004-035004. doi:[10.1117/1.JBO.21.3.035004](https://doi.org/10.1117/1.JBO.21.3.035004)
- 318 2. Bierman EO. Tinted lenses in shooting. *Am J Ophthalmol.* 1952; 35(6):859-60.
319 doi:[10.1016/0002-9394\(52\)90683-1](https://doi.org/10.1016/0002-9394(52)90683-1)
- 320 3. Clark BA. The luminous transmission factor of sunglasses*. *OPTOMETRY VISION SCI.*
321 1969; 46(5):362-78. PMID: [4892513](https://pubmed.ncbi.nlm.nih.gov/4892513/)
- 322 4. Clark BA. Color in sunglass lenses*. *OPTOMETRY VISION SCI.* 1969; 46(11):825-40.
323 PMID: [4901978](https://pubmed.ncbi.nlm.nih.gov/4901978/)
- 324 5. Kuyk, Garcia, McLin, Kent, & Northrop Grumman Corp San Antonio Tx Information
325 Technology. (2008). Effects of Colored Filters on Visual Function. Available from:
326 <http://handle.dtic.mil/100.2/ADA485481>
- 327 6. Wolffsohn JS, Cochrane AL, Khoo H, Yoshimitsu Y, Wu S. Contrast is enhanced by yellow
328 lenses because of selective reduction of short-wavelength light. *OPTOMETRY VISION SCI.* 2000;
329 77(2):73-81. doi:[10.1097/00006324-200002000-00011](https://doi.org/10.1097/00006324-200002000-00011) PMID: [10701805](https://pubmed.ncbi.nlm.nih.gov/10701805/)
- 330 7. Rosenblum Y, Zak P, Ostrovsky M, Smolyaninova I, Bora E, Dyadina U, et al. Spectral filters
331 in low-vision correction. *OPHTHAL PHYS OPT.* 2000; 20(4):335-41. doi:[10.1046/j.1475-1313.2000.00545.x](https://doi.org/10.1046/j.1475-1313.2000.00545.x) PMID:[10962699](https://pubmed.ncbi.nlm.nih.gov/10962699/)
- 332 8. Luque M, Capilla P, Diez M, Felipe A. Effect of a yellow filter on brightness evaluated by
333 asymmetric matching: measurements and predictions. *Pure and Applied Optics.* 2006; 8(5):398.
334 doi:[10.1088/1464-4258/8/5/006](https://doi.org/10.1088/1464-4258/8/5/006)
- 335 9. Downie LE. Blue - light filtering ophthalmic lenses: to prescribe, or not to prescribe?
336 *OPHTHAL PHYS OPT.* 2017; 37(6):640-3. doi: [10.1111/oph.12414](https://doi.org/10.1111/oph.12414) PMID:[29044667](https://pubmed.ncbi.nlm.nih.gov/29044667/)
- 337 10. Werner J. Night vision in the elderly: consequences for seeing through a “blue filtering”
338 intraocular lens. *Br J Ophthalmol.* 2005; 89(11):1518-21. doi:[10.1136/bjo.2005.073734](https://doi.org/10.1136/bjo.2005.073734)

340

341

342

343

344

345

346

347

348

349

350 11. Hammond BR, Bernstein B, Dong J. The effect of the AcrySof natural lens on glare disability
351 and photostress. *AM J OPHTHALMOL*. 2009; 148(2):272-6. e2. doi:[10.1016/j.ajo.2009.03.014](https://doi.org/10.1016/j.ajo.2009.03.014)
352

353 12. Hammond Jr BR, Renzi LM, Sachak S, Brint SF. Contralateral comparison of blue-filtering and
354 non-blue-filtering intraocular lenses: glare disability, heterochromatic contrast, and photostress
355 recovery. *Clinical ophthalmology (Auckland, NZ)*. 2010; 4:1465. doi:[10.2147/OPTH.S15102](https://doi.org/10.2147/OPTH.S15102)
356 PMID: [21191442](https://pubmed.ncbi.nlm.nih.gov/21191442/)
357

358 13. Lawrenson JG, Hull CC, Downie LE. The effect of blue - light blocking spectacle lenses on
359 visual performance, macular health and the sleep - wake cycle: a systematic review of the
360 literature. *OPHTHAL PHYSL OPT*. 2017; 37(6):644-54. doi:[10.1111/opo.12406](https://doi.org/10.1111/opo.12406) PMID:
361 [29044670](https://pubmed.ncbi.nlm.nih.gov/29044670/)
362

363 14. Leung TW, Li RW-h, Kee C-s. Blue-Light Filtering Spectacle Lenses: Optical and Clinical
364 Performances. *PloS one*. 2017; 12(1):e0169114. doi:[10.1371/journal.pone.0169114](https://doi.org/10.1371/journal.pone.0169114)
365 PMID: [28045969](https://pubmed.ncbi.nlm.nih.gov/28045969/)
366

367 15. LACEY JA, JACOBS RJ. The macular photostress test. *CLIN EXP OPTOM*. 1983; 66(4):147-
368 50. doi:[10.1111/j.1444-0938.1983.tb03699.x](https://doi.org/10.1111/j.1444-0938.1983.tb03699.x)
369

370 16. Alpern M, Maaseidvaag F, Ohba N. The kinetics of cone visual pigments in man. *Vision Res*.
371 1971;11(6):539-49. doi:[10.1016/0042-6989\(71\)90075-7](https://doi.org/10.1016/0042-6989(71)90075-7) PMID: [558574](https://pubmed.ncbi.nlm.nih.gov/558574/)
372

373 17. Dhalla MS, Fantin A, Blinder KJ, Bakal JA. The macular automated photostress test. *AM J*
374 *OPHTHALMOL*. 2007; 143(4):596-600. doi: [10.1016/j.ajo.2006.12.033](https://doi.org/10.1016/j.ajo.2006.12.033)
375

376 18. Alpern M. Rhodopsin kinetics in the human eye. *J Physiol*. 1971; 217(2):447-71.
377 doi:[10.1113/jphysiol.1971.sp009580](https://doi.org/10.1113/jphysiol.1971.sp009580) PMID: [5097608](https://pubmed.ncbi.nlm.nih.gov/5097608/)
378

379 19. Margrain TH, Thomson D. Sources of variability in the clinical photostress test. *OPHTHAL*
380 *PHYSL OPT*. 2002; 22(1):61-7. doi:[10.1046/j.1475-1313.2002.00005.x](https://doi.org/10.1046/j.1475-1313.2002.00005.x) PMID: [11824648](https://pubmed.ncbi.nlm.nih.gov/11824648/)
381

382 20. Hammond BR, Fletcher LM, Elliott JG. Glare disability, photostress recovery, and chromatic
383 contrast: relation to macular pigment and serum lutein and zeaxanthin. *INVEST OPHTH VIS*
384 *SCI*. 2013; 54(1):476-81. doi:[10.1167/iovs.12-10411](https://doi.org/10.1167/iovs.12-10411)
385

386 21. Roy M, Alzahrani H, Khuu S. Does the preferential wavelength selection of blue blocking lens
387 affects visual and non-visual functions? *INVEST OPHTH VIS SCI*. 2018; 59(9):4039.
388

389 22. Alzahrani H, Khuu S, Roy M. Modeling the effect of commercially available blue-blocking
390 lenses on visual and non-visual functions. *CLIN EXP OPTOM*. 2019;102(4):1-22. doi:
391 [10.1111/cxo.12959](https://doi.org/10.1111/cxo.12959)
392

393 23. O'hagan J, Khazova M, Price L. Low-energy light bulbs, computers, tablets and the blue light
394 hazard. *EYE*. 2016; 30(2):230. doi:[10.1038/eye.2015.261](https://doi.org/10.1038/eye.2015.261) PMID:[26768920](https://pubmed.ncbi.nlm.nih.gov/26768920/)
395

396 24. Price LL, Peirson SN. The first international workshop on circadian and neurophysiological
397 photoreception, 2013: a physicist's perspective on the construction of standard units. *LIGHT*
398 *ENG*. 2014; 22(4): 8-35.
399

400 25. Zhu X-f, Zou H-d, Yu Y-f, Sun Q, Zhao N-q. Comparison of blue light-filtering IOLs and UV
401 light-filtering IOLs for cataract surgery: a meta-analysis. PloS one. 2012; 7(3):e33013. Doi:
402 10.1371/journal.pone.0033013
403

404 26. Mester U, Holz F, Kohnen T, Lohmann C, Tetz M. Intraindividual comparison of a blue-light
405 filter on visual function: AF-1 (UY) versus AF-1 (UV) intraocular lens. J CATARACT REFR
406 SURG. 2008; 34(4):608-15. doi:[10.1016/j.jcrs.2007.11.049](https://doi.org/10.1016/j.jcrs.2007.11.049) PMID:[18361983](https://pubmed.ncbi.nlm.nih.gov/18361983/)
407

408 27. Dougherty RF, Press WA, Wandell BA. Perceived speed of colored stimuli. Neuron. 1999;
409 24(4):893-9. doi:[10.1016/S0896-6273\(00\)81036-3](https://doi.org/10.1016/S0896-6273(00)81036-3)
410

411 28. Esenwah E, Azuamah Y, Okorie M, Ikoro N. The Aging Eye and Vision: A review. IJHSR.
412 2014; 4(7):218-26.
413

414 29. Azuamah Y, Merem C, Ikoro N, Esenwah E, Megwas A, Daniel-Nwosu E. Assessment of
415 foveal and extra-foveal photostress recovery time in primary open angle glaucoma. JNOA.
416 2018; 20(2):31-6.
417

418 30. Sandberg MA, Gaudio AR. Slow photostress recovery and disease severity in age-related
419 macular degeneration. Retina (Philadelphia, Pa). 1995;15(5):407-12. PMID: [8594633](https://pubmed.ncbi.nlm.nih.gov/8594633/)
420

421 31. Simunovic M. Colour vision deficiency. EYE. 2010; 24(5):747. doi: [10.1038/eye.2009.251](https://doi.org/10.1038/eye.2009.251)
422 PMID: [19927164](https://pubmed.ncbi.nlm.nih.gov/19927164/)
423

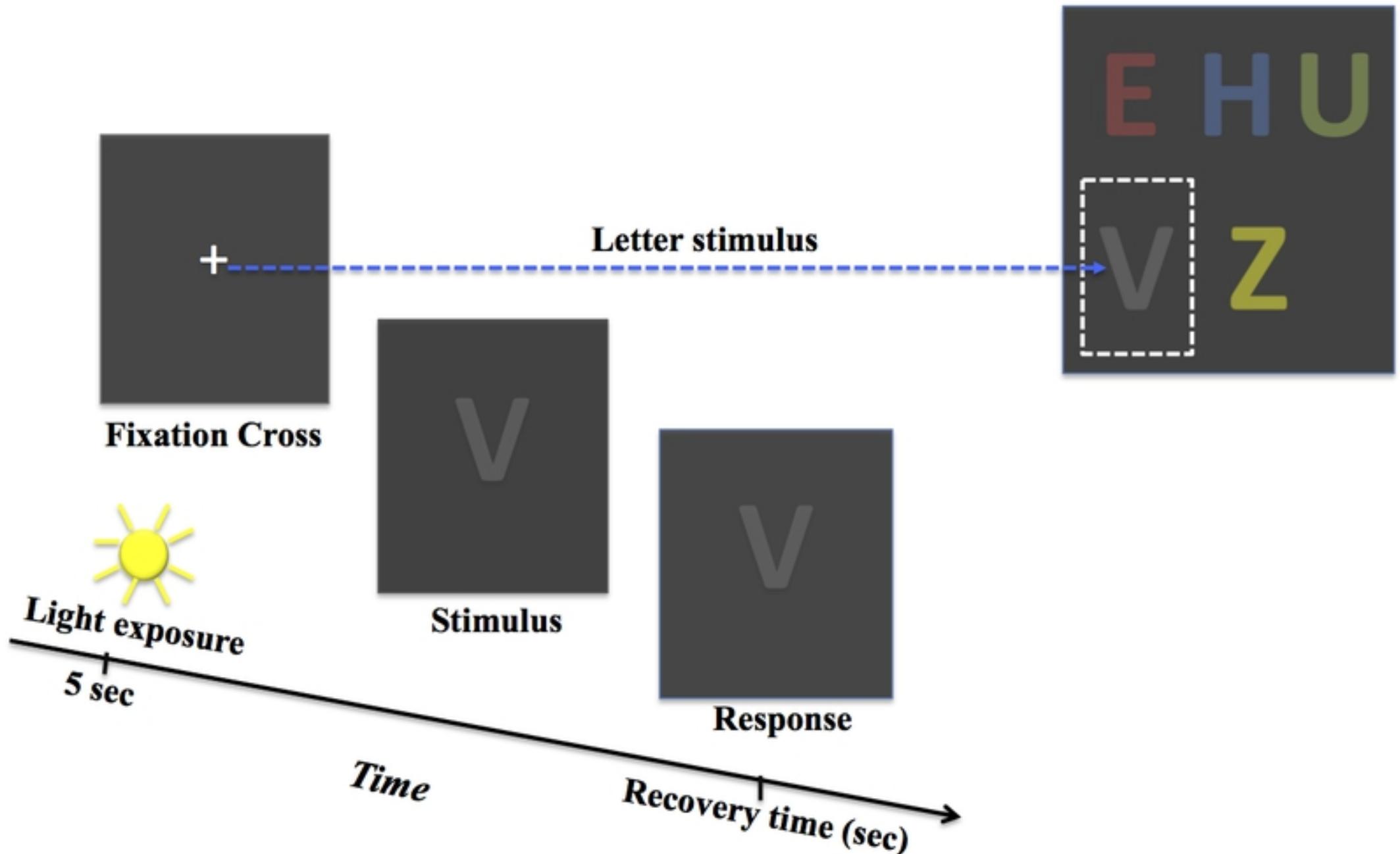


Figure 2

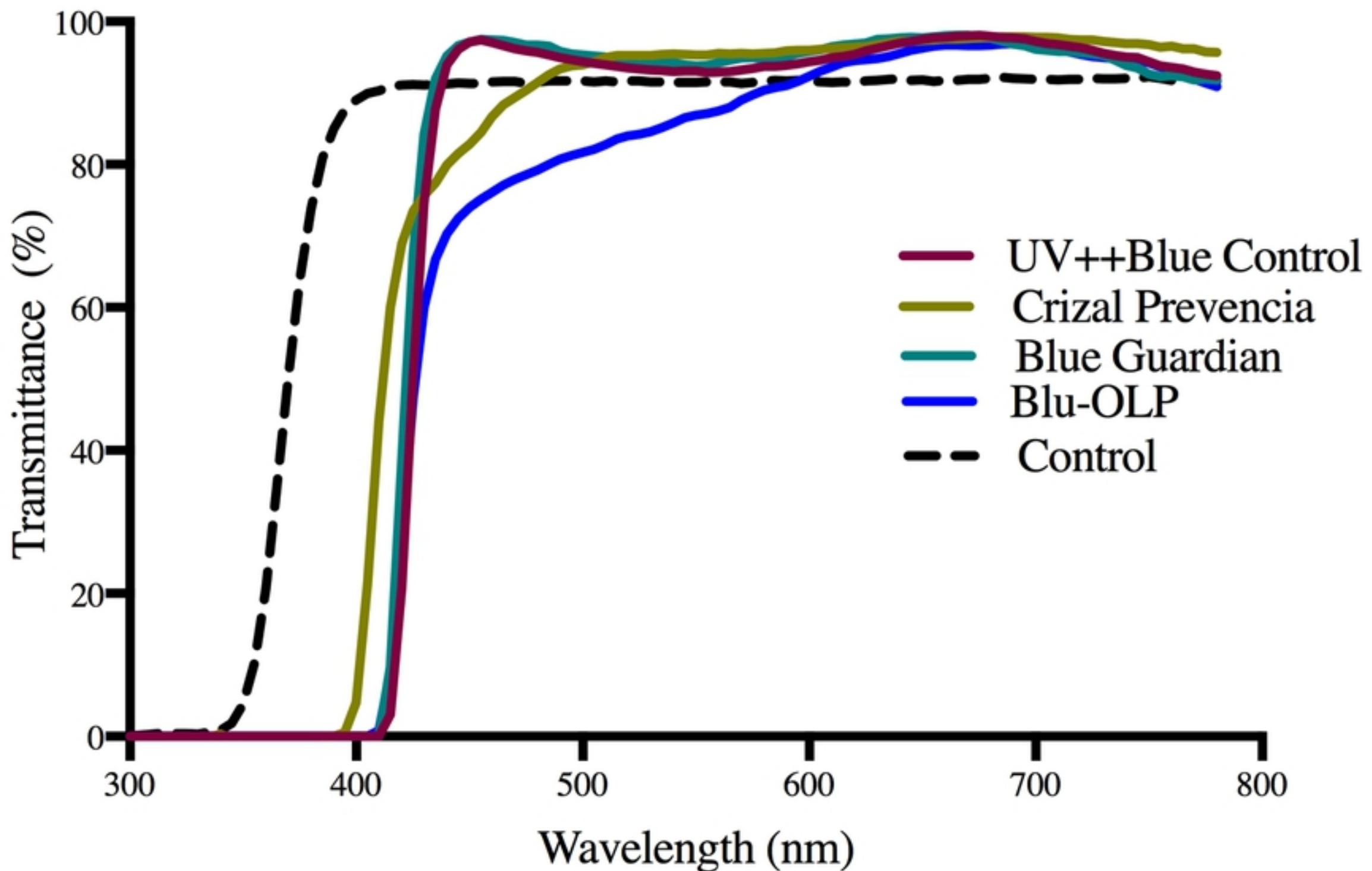


Figure 1

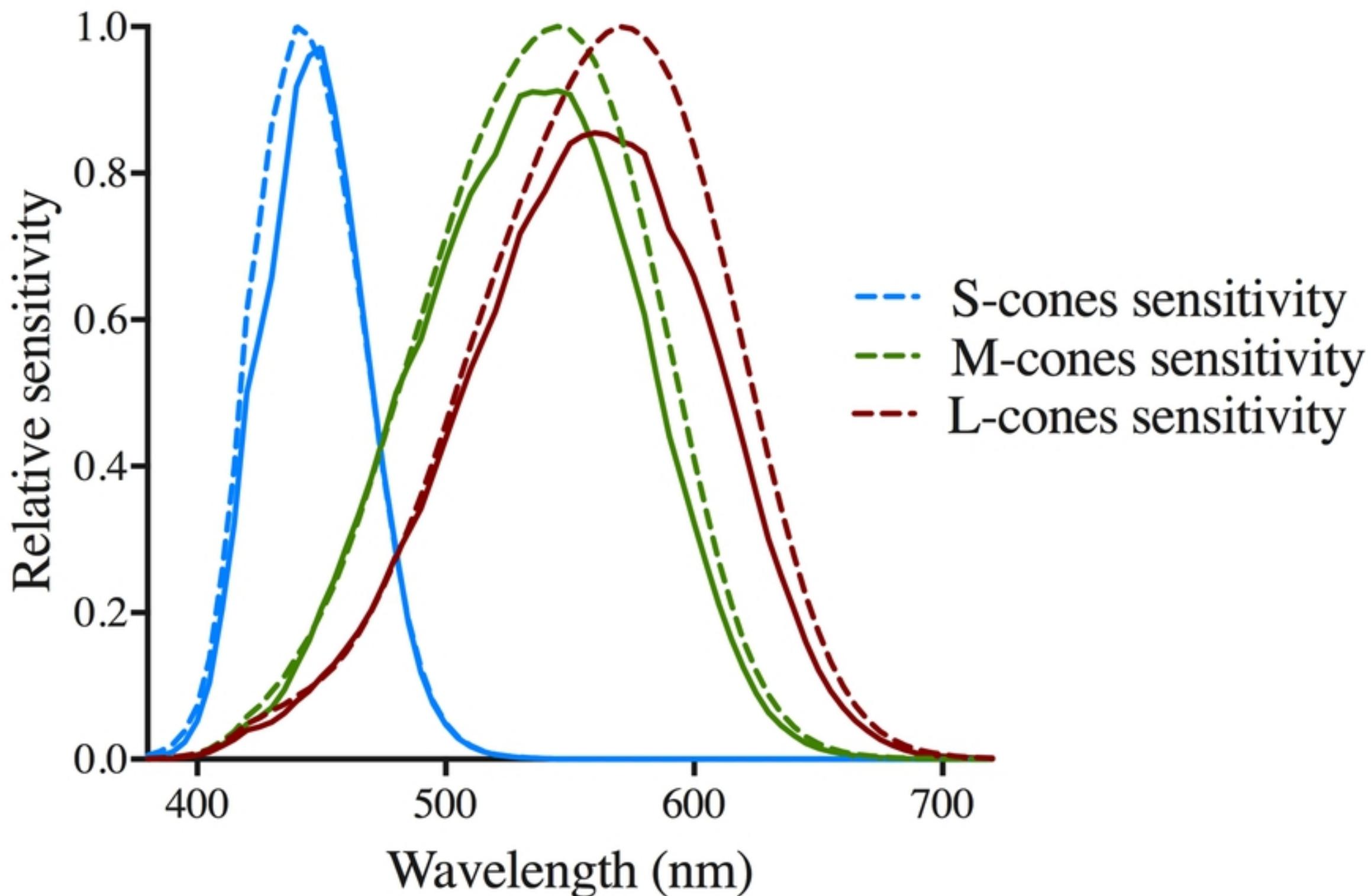


Figure 3

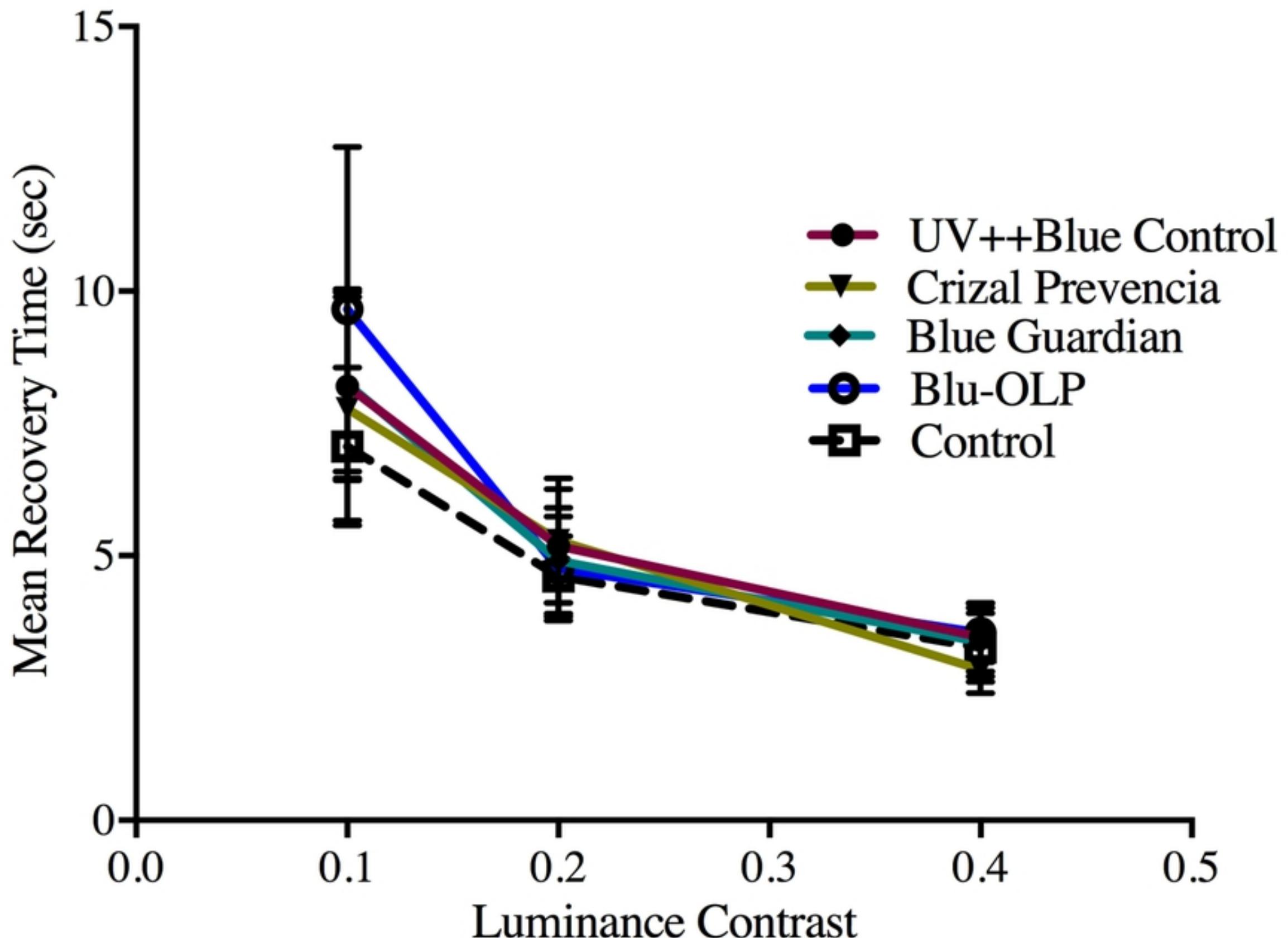


Figure 4

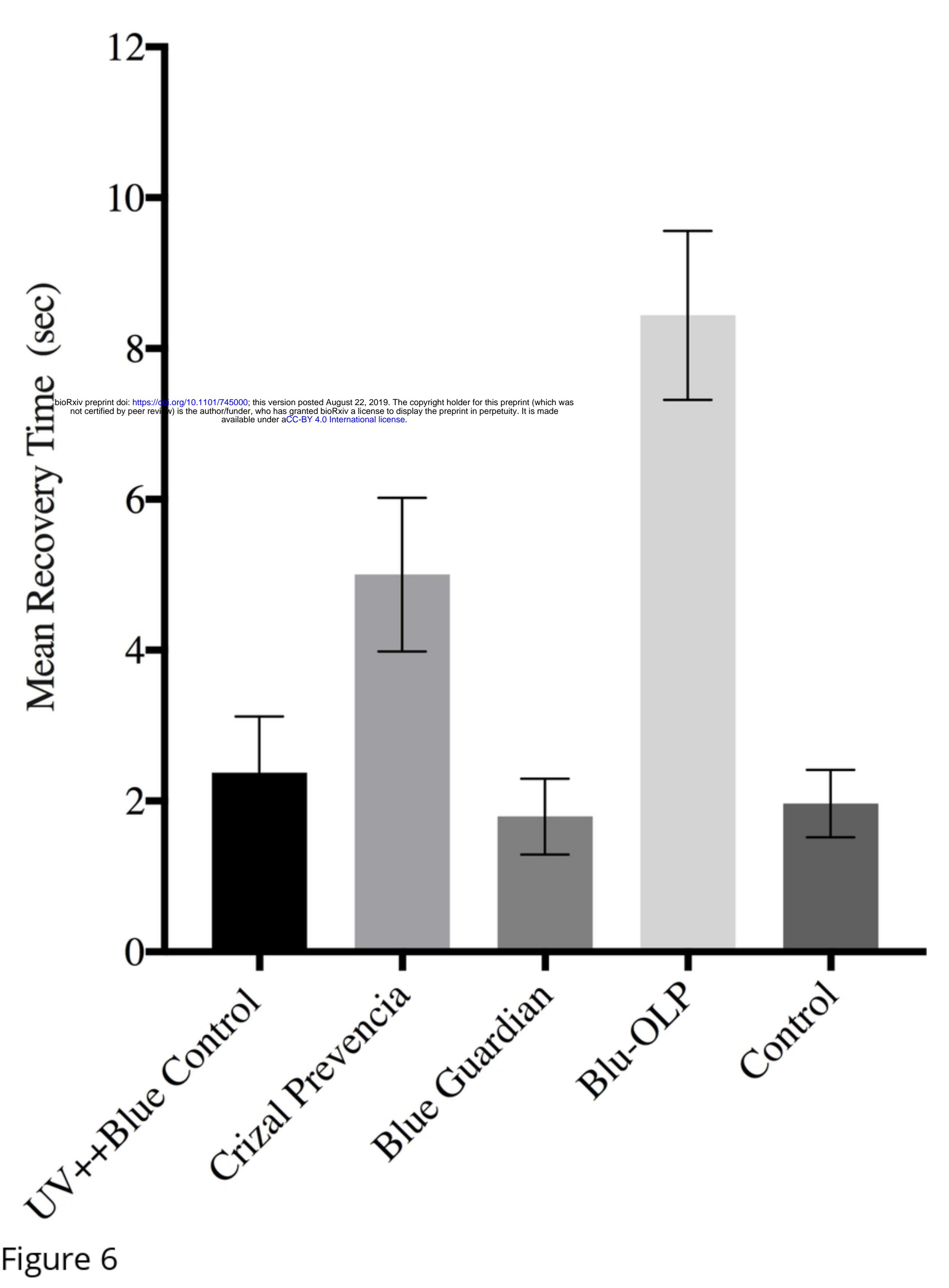


Figure 6

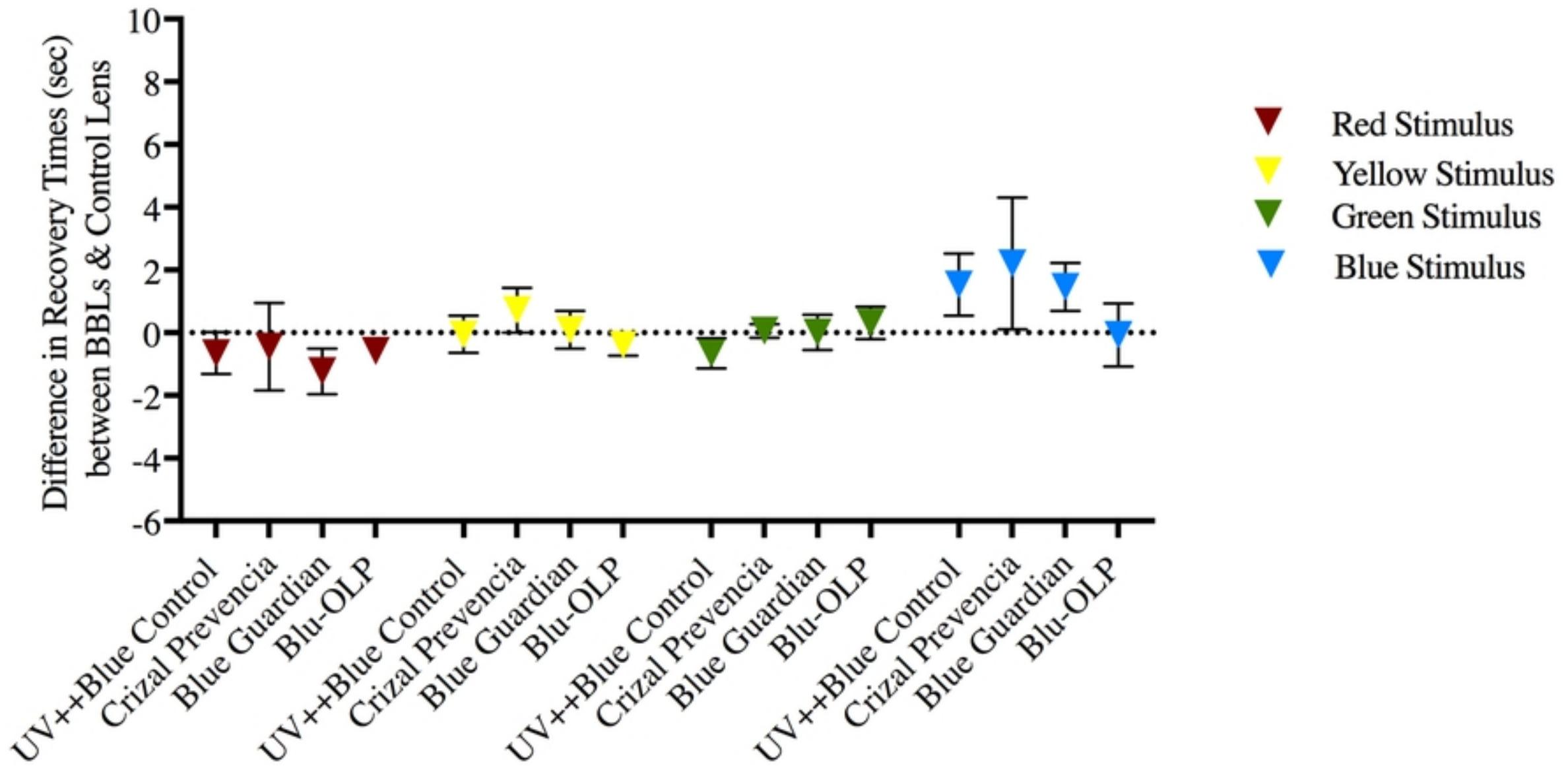


Figure 5

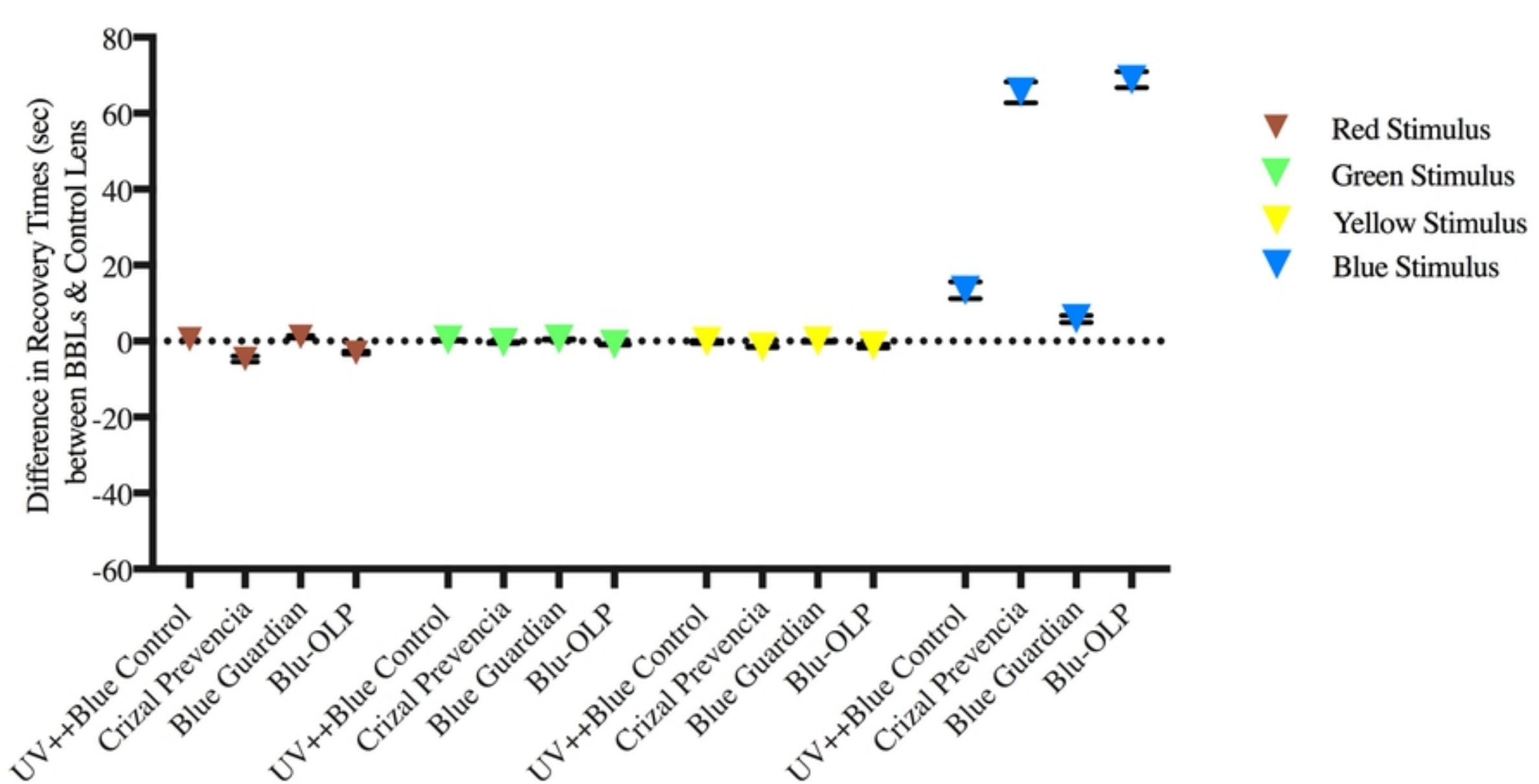


Figure 7