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26  Abstract

27  Identification of induced pluripotent stem (iPS) progenitor cells, the iPS forming cells in early

28  stage of reprogramming, could provide valuable information for studying the origin and

29  underlying mechanism of iPS cells. However, it is very difficult to identify experimentally

30  since there are no biomarkers known for early progenitor cells, and only about 6 days after

31  reprogramming initiation, iPS cells can be experimentally determined via fluorescent probes.

32 What is more, the ratio of progenitor cells during early reprograming period is below 5%,

33 which is too low to capture experimentally in the early stage.

34 In this paper, we propose a novel computational approach for the identification of iPS

35  progenitor cells based on machine learning and microscopic image analysis. Firstly, we

36  record the reprogramming process using a live cell imaging system after 48 hours of infection

37  with retroviruses expressing Oct4, Sox2 and Klf4, later iPS progenitor cells and normal

38  murine embryonic fibroblasts (MEFs) within 3 to 5 days after infection are labeled by

39  retrospectively tracing the time-lapse microscopic image. We then calculate 11 types of cell

40  morphological and motion features such as area, speed, etc., and select best time windows for

41  modeling and perform feature selection. Finally, a prediction model using XGBoost is built

42 based on the selected six types of features and best time windows. Our model allows several

43  missing values/frames in the sample datasets, thus it is applicable to a wide range of

44 scenarios.

45 Cross-validation, holdout validation and independent test experiments showed that the

46  minimum precision is above 52%, that is, the ratio of predicted progenitor cells within 3 to 5

47  days after viral infection is above 52%. The results also confirmed that the morphology and
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48  motion pattern of iPS progenitor cells is different from that of normal MEFs, which helps
49  with the machine learning methods for iPS progenitor cell identification.

50

51  Keywords

52 iPS progenitor cell; Machine learning; XGBoost; Cell reprogramming; Morphology features
53

54 Author Summary

55 Identification of induced pluripotent stem (iPS) progenitor cells could provide valuable
56  information for studying the origin and underlying mechanism of iPS cells. However, it is
57  very difficult to identify experimentally since there are no biomarkers known for early
58  progenitor cells, and only after about 6 days of induction, iPS cells can be experimentally
59  determined via fluorescent probes. What is more, the percentage of the progenitor cells during
60  the early induction period is below 5%, too low to capture experimentally in early stage. In
61  this work, we proposed an approach for the identification of iPS progenitor cells, the iPS
62  forming cells, based on machine learning and microscopic image analysis. The aim is to help
63  Dbiologists to enrich iPS progenitor cells during the early stage of induction, which allows
64  experimentalists to select iPS progenitor cells with much higher probability, and furthermore

65  to study the biomarkers which trigger the reprogramming process.
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67 Introduction

68 Induced pluripotent stem (iPS) cells are cells with embryonic-like state reprogrammed

69  from mouse embryonic or adult fibroblasts by introducing the defined factors[1]. Since

70  Takahashi and Yamanaka[l] first proposed the methods of reprogramming somatic cells to

71 iPS cells, it has become an important method for clinical cell therapy, and revolutionized

72 regenerative medicine[2], such as platelet deficiency[3], spinal cord injury[4], macular

73 degeneration[5], Parkinson’s disease[6] and Alzheimer’s disease[7]. However, obstacles still

74  remain in scientific and clinical applications for iPS cells because of potential tumorigenicity

75  and low efficiency of reprogramming technique[8-10]. Tumorigenicity is attributed to the

76 introduction of tumorigenic factors such as Oct4, Sox2, KlIf4 and c-Myc, of which

77  over-expression is generally associated with tumors. Inefficiency concerns low frequency for

78  reprogramming cells, which is less than a small proportion of 5%. In some induction

79  protocols, the ratio of progenitor cells during the early stage of reprogramming is even under

80  0.5%.

81 The above-mentioned obstacles are mainly due to poor understanding of molecular
82 mechanisms in iPS cell reprogramming, which ultimately prevented this technology from a
83 wide range of scientific and clinical applications. Theoretical mechanisms models are
84 proposed such as two-step process model[11] and seesaw model[12], most of which focus on

85 how factors such as Oct4, Sox2, Klf4, and c-Myc induce pluripotency. Experimental

86 approaches based on epigenetic profiling, RNA screening or single-cell analysis for

87 uncovering the mechanisms are limited by the low reprogramming efficiency or the lack of

88 biomarkers for progenitor cells [13-20].
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89 Recent studies found that iPS progenitor cells differed from normal MEFs in

90  morphology, motion or proliferation rate. Smith et al.[21] found that iPS progenitor cells

91  showed smaller cellular area and higher proliferative rate than normal MEFs via time-lapse

92  imaging. Zhang et al.[22] also found that iPS cells exhibited distinct morphology features and

93  different proliferative rate comparing with larger and quiescent differentiated cells. Li et al.

94  [23] showed the mesenchymal-to-epithelial transition, a process with significant

95  morphological changes, was a key cellular mechanism for induced pluripotency. Megyola et

96  al.[24] demonstrated that migratory motions for progenitor cells were often distinct in

97  direction and distance to bring distant progenitor cells together. Most of these studies relied

98 on time-lapse microscopy, which allowed studying/tracing cellular events in early

99  reprogramming by direct observation [24]. Since iPS progenitor cells exhibit unique

100  morphology and motion features, computational methods, especially machine learning based

101  methods, could provide an alternative method to identify iPS progenitor cells in the early

102 stage of reprogramming process through learning the morphology and motion patterns of iPS

103 progenitor cells.

104 Usually cell detection, segmentation and tracking are firstly required for computational

105  methods to study cell images. Li et al.[25] proposed DCELLIQ for cell nuclei tracking based

106  on neighboring graph and integer programming technique. Dzyubachyk et al.[26] relied on

107  coupled active surfaces algorithm for cell segmentation and tracking in time-lapse

108  fluorescence microscopy images. Maska et al.[27] presented a tracking method for fluorescent

109  cells based on coherence-enhancing diffusion filtering and Chan-Vese model. Tiiretken et

110  al.[28] proposed an integer programming approach for tracking elliptical cell populations in
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111 time-lapse image sequences. Payer et al.[29] developed a recurrent fully convolutional

112 network architecture for instance segmentation and tracking with training network using an

113 embedding loss based on cosine similarities.

114 Recently machine learning/deep learning methods have been extensively developed for

115  the prediction and study of cell images. Using cell images, Erdmann et al.[30] introduced a

116  machine learning based framework for image-based screen analysis. Valen et al.[31] tried to

117  solve cell image segmentation problem utilizing deep convolutional neural networks, and

118  demonstrated its effectiveness in segmenting fluorescent images of cell nuclei. Chen et al.[32]

119  achieved high classification accuracy in label-free white blood T-cells against colon cancer

120 cell via a deep learning method. Similarly with a deep convolutional neural network method,

121  Kraus et al.[33] analyzed the microscopic images for yeast cell and other pheromone-arrested

122 cells, and Gao et al.[34] achieved a high ranking in the human epithelial-2 cell image

123 classification competition hosted by ICPR2014. Together with principal component analysis,

124 machine learning method can be used to infer regulatory network patterns underlying stem

125  cell pluripotency[35]. The ability of machine learning has been demonstrated with its

126  extensive application for cellular image data, however, it has been seldom used in the

127  identification of iPS progenitor cells in the early stage.

128 In this article, we propose a machine learning based approach to detect iPS progenitor

129 cells during the early stage of reprogramming. Given the cell images recorded via live-cell

130  imaging system during the reprogramming process, the paper aims to identify iPS progenitor

131  cells against normal MEFs in the same stage. Since the iPS progenitor cell to normal MEFs

132 ratio is usually below 5%, this makes the identification problem very difficult. In the paper we
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133 use Imaris, a software from Bitplane, to analyze and process microscopic cell images from

134 live-cell imaging system. Surpass, a module of Imaris is then used to extract cell numerical

135  information in the same time period. We then develop a machine learning method for

136  identification of iPS progenitor cells based on the extracted morphological and motional

137  features. The prediction model is built with XGBoost based on the selected six types of

138 features and time windows. In our method, cell division is not considered, and frames

139  contained in selected time windows are uniform. The model performance is evaluated by

140 three different validation methods. When tested on labeled datasets with a ratio of about 1:5

141  between progenitor cells and normal MEFs, the prediction precision to identify iPS progenitor

142 cells is above 52% during the first 1-3 days of reprogramming after adding iCD1 medium.

143 The image-based machine learning method allows experimentalists to select iPS progenitor

144 cells with much higher probability, and furthermore to study the biomarkers which trigger the

145 reprogramming process.

146

147  Materials and Methods

148 The workflow used in the paper is presented in Fig 1, which mainly includes feature

149  extraction, preprocessing with missing values, feature selection, machine learning for training

150  and validation. In this workflow, we acquire time-lapse images through experiments firstly,

151  then we label iPS progenitor cells and normal MEFs manually to generate datasets by tracing

152 images retrospectively. Next, we generate 11 types of morphology and motion features with

153  Imaris software. After the feature extraction, we perform time window selection and a

154  two-step feature selection. Finally, we build the prediction model based on the selected six
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155  types of features and six time windows. The machine learning algorithm for modeling is
156  XGBoost, a gradient boosting tree[36]. In the following sections, we will describe the steps of
157  our model in detail.

158  Fig 1. Flow chart of the machine learning based approach for iPS progenitor cell
159  identification

160 In time-lapse imaging, we record the reprogramming process periodically among 54 fields
161 after 48h of viral infection. For retrospective labeling, the figure only shows the labeled cell
162 images of the first frame of all eight phases. Only datasets from phase 1, 2 and 3 are used for
163  model training and testing.

164

165  Cell culture and generation of iPS cells

166 Mouse embryonic fibroblasts (MEFs) are derived from E13.5 embryos carrying the Oct4
167  promoter-driven GFP reporter gene[37] and maintain in DMEM (HyClone) supplemented
168  with 10% FBS (Gibco). To generate iPS cells, MEFs within two passages are seeded at a
169  density of 5x10* cells/well in 6-well plates and cultured overnight. The next day, MEFs are
170  infected with retroviral supernatants containing the DsRed gene and three reprogramming
171  factors (Oct4, Sox2, KIf4) twice in a 48h process. After 48h of infection, iCD1 medium[38] is
172 changed every day to achieve high reprogramming efficiency. iPS cell colonies are obtained
173 5-7 days post-treatment in iCD1 based on the Oct4-GFP expression.

174

175 Time-lapse imaging

176 Reprogramming process is recorded using an Olympus IX81 live cell imaging system
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177  equipped with a 10x UPlanFL objective, iXon3 EMCCD Camera. The date on which viral
178  supernatants are removed and iCD1 medium are added is defined as Day 0. From Day 0,
179  MEFs images are taken for a total time of 135 hours and 40 minutes. For the first 48 hours
180  and 40 minutes, both bright-field and red fluorescence images are acquired at 10-minute
181  intervals. After two days of the dual-channel imaging, a green fluorescence channel is added
182  to indicate the expression of Oct4-GFP and acquisition intervals are adjusted to 30 minutes.
183  Motorized Stage Control is used to follow cells in the same field and a total of 54 fields are
184  selected at each time for further analysis.

185 Cell images taken within the first 48 hours and 40 minutes since Day 0 are used to
186  construct the dataset because after this time the Oct4-GFP is added to identify the progenitor
187  cells experimentally and the paper tries to identify/predict progenitor cells using
188  computational methods as early as possible.

189

190  Cell segmentation and numerical feature extraction

191 The original files are time-lapse microscope images in TIFF format, whose pixels are
192 770 * 746 and the actual size is 1000 microns * 967 microns. Because some fields do not
193 show distinct Oct4-GFP signals and result in no signals for iPS cells in these fields, we only
194  use images from 33 fields for modeling. Imaris (Version 7) software is used to segment cells
195  in the images of these 33 fields and extract the corresponding numerical features for the
196  segmented cells. During this process, the parameter values of cell and nucleus intensity are set
197  the same for all the cells in each field, and cell tracking duration parameter of greater than

198 5000s is used. Imaris utilizes red fluorescent channel for cell segmentation and tracking. The
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199  image segmentation is based on the Watershed Algorithm, which is very sensitive to weak
200  edges and intensity in images.

201 Features are computed for each segmented/identified cell image at different time frames
202 by Imaris, and these features denote the morphological and movement information of the
203  segmented cells during reprogramming. Overall 11 types of features are extracted (volume,
204  area, sphericity, ellipsoid-prolate, ellipsoid-oblate, nucleus-cytoplasm volume ratio,
205  displacement, speed, Intensity-stdDev, Intensity-Max, Intensity-Min) and each type contains
206  features in several frames of the selected uniform time windows. The detailed list of features
207  is presented in Part 1 of the S1 File.

208

209  Cell image dataset generation

210 Cell image datasets for machine learning consist of normal MEFs cell images and
211  progenitor cell images within the first 48 hours and 40 minutes. The datasets will be used by
212 our machine learning method in the training and testing processes.

213 At first, we manually label iPS progenitor cell and normal MEFs cell images identified
214 by Imaris software within the first 48 hours and 40 minutes. Experimentally iPS cells can be
215  determined only by Oct4-GFP expression signal, which cannot be observed until the seventh
216  day after transfection with Yamanaka's factors. Cells showing green fluorescence in images
217  are considered as iPS cells. We can then label iPS progenitor cells in the early reprogramming
218  process by cell image backtracking. The corresponding cell images are retrospectively traced
219  frame by frame from GFP expression to the first 48 hours and 40 minutes (Fig 1). Due to

220  three one-hour iCD1 medium changes, the total reprogramming period is divided into four

10
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221  periods, the first period is 16 hours and 50 minutes long, from 18 hours to 24 hours and 40

222 minutes denoted as phase 1 in the paper, the second from 25 hours and 50 minutes to 40 hours

223 and 40 minutes denoted as phase 2, and the third from 41 hours and 50 minutes to 48 hours

224 and 40 minutes denoted as phase 3. In this paper, we focus on these three periods (phases 1, 2

225 and 3) only because of tiny ratio for iPS progenitor cells in the first 16 hours and 50 minutes,

226 which is even less than 2%.

227 Two rules are applied in the paper for generating the cell image datasets, (1) cell division

228  is not considered; (2) frames from the same window of each phase are selected for modeling

229  among uniform time periods. When cell division is taken into account, features in the mother

230  cell and its daughter cells are not comparable, for example, the area of mother cell is much

231  bigger than that of its daughter cells, thus the machine learning model will fail to process this

232 cell. The second rule guarantees that time dimension (time period and length) for the cell

233 image data samples should be uniform.

234 For each cell, not every image in different frames can be identified by Imaris due to the

235  fact that different parameter settings (cell or nucleus intensity threshold, cell tracking duration)

236 by Imaris will lead to different segmented cell images in a frame. This results in cell image

237  data missing in some frames, thus our method allows a certain number of missing cell images

238  in the selected uniform time periods and tries to find the maximum number of continuous

239  cells images in this uniform time period.

240 Overall three cell image sets are generated for three phases, each with an approximately

241 1:5 ratio between progenitor cell images and normal MEFs cell images. For phase 1, 78 IPS

242 progenitor cells and 391 normal MEFs are labeled; for phase 2, 84 IPS progenitor cells and

11
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243 420 normal MEFs are labeled; for phase 3, 74 IPS progenitor cells and 370 normal MEFs are
244 labeled. Each of these three initial cell image sets are divided into the training and test sets:
245  70% of cell images for each time phases are selected randomly as training set with the
246  remainder (30%) as test set. The ratio between progenitor cell images and normal MEFs cell
247  images is kept approximately 1:5 for these training and testing sets. For the the training sets,
248  there are 55 iPS progenitor cells and 274 normal MEF cells in phase 1, 59 iPS progenitor cells
249  and 294 normal MEF cells in phase 2, as well as 52 iPS progenitor cells and 259 normal MEF
250  cells in phase 3.

251 In this paper, the initial cell dataset is used for cross-validating the proposed method, and
252 the training dataset is used for missing value processing and feature selection. For different
253 analytic steps, the specific data sample size depends on the time period from which the data
254 has been collected. Numerical features are calculated for all cell images in the datasets and
255  saved in CSV files. All datasets are standardized utilizing z-score.

256

257  Missing values processing

258 Processing missing values for the cells in the corresponding frames is an important step
259  for our model. Imaris cannot continuously identify all the cells in the frame due to different
260  parameter settings or complex three-dimensional cell environment. This implies that there
261 exists a certain number of cell images with missing feature values in the uniform time periods.
262 A certain number of missing images in the frames are permitted for cells to guarantee a
263  modest data size, and missing cell features are estimated with an imputation method. To

264  choose the most appropriate approach, we first analyze the impact of the number of missing

12
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265  frames on the model, and then analyze the effect of three different imputation methods under

266  the corresponding missing frame numbers. Details for the three imputation methods are as

267 follows:

268 e set mean. The missing value is set to the average value of all nonempty frames for a
269 specific type of feature in its sample from the selected time window.
270 o set KNN. The missing value is set to the weighted average value of five nearest
271 nonempty neighbor frames for a specific type of feature in its sample. The calculation
272 of weight uses k-Nearest Neighbor (KNN) algorithm. The formula is as

Missing value, . = Zmeme. - feature ., Wi = S

T BN G

273 D
274 where j represents the index of five nearest frames neighbor for missing frame i.
275 e set mean_mod. Missing value is set to the average value of five nearest nonempty
276 neighbor frames for a specific type of feature in its sample.
277
278 Time window and feature selection
279 Because of the two rules used in dataset generation (Section Cell image datasets

280  generation), although images are provided up to 49 hours, it is unable to construct the model

281 based on the whole period. From a total of 49 hours, numerous time periods can be chosen,

282  and the model needs to select best time windows among all these eligible time periods. Time

283  window selection includes start frame selection and window length selection. Start frame

284  represents the moment that the time window starts from, and window length represents frame

285 number that the time window contains. For each time window with a selected time frame and

286  window length, we train and validate the proposed method on the corresponding dataset

13
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287  generated. Validation is performed with 5-fold cross validation and the evaluation metric is
288  precision.

289 Morphological and motion feature selection is used to improve the performance. Since it
290  is difficult to guarantee image recording time to be accurately consistent for every batch
291  through experiments, model performance needs to be robust among wider time periods. Every
292 type of features contains multiple frames of features from the corresponding best time
293  windows. Features in a time window are treated as a bundle so we can learn the dynamic cell
294 growth process.

295 There are two steps for feature selection. The first step is recursive feature elimination.
296  Firstly, we use all 11 types of features to train the model with 5-fold cross validation and
297  calculate its precision as initial unimportance score. Then we delete each type of feature at a
298  time and obtain 11 precision values as new unimportance scores. We compare every new
299  score with the initial score, and remove the feature type with the largest unimportance score
300  higher than initial score. The recursive process will be repeated on feature set until the model
301  performance can be no longer improved or there is no feature. We then rank the importance of
302  all 11 types of features and delete the least important feature types. Second, we calculate the
303  Pearson correlation coefficient for the selected feature types from step 1 to remove the highly
304  correlated features with a correlation coefficient of 0.60 or above.

305

306  Machine learning model and validation

307 XGBoost, a Boosting algorithm, is used in this paper for feature selection and IPS cell

308  recognition. XGBoost integrates many weak tree-classifiers together to form a strong

14
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309  classifier. This algorithm applies numerous strategies to prevent overfitting, and it is widely

310  utilized in data science such as cell analysis [39-43]. Hyperparameters of XGBoost are tuned

311  using grid-search for model training with selected features and best time windows.

312 For model validation, firstly we use 5-fold cross-validation on the initial cell image

313 datasets from the time windows of the three phases. Dataset generated from initial cell-sets

314  contains about 70 iPS cells for each phase. The ratio of iPS cells and normal MEFs keeps as

315 1:5 in each dataset.

316 In order to test the model’s ability/robustness to predict the iPS progenitor cells around

317  the neighborhood of the corresponding training time window, holdout validation is performed.

318 Because iCDI1 medium change is operated manually during the experiments, it is

319  impracticable to guarantee that for per batch data the duration of medium change is accurately

320  consistent with the existing data. This inconsistency might lead to a non-exact match between

321  the timeline after medium change and the timeline used in the model training process. The

322 holdout validation is designed as follows, for the model trained on time window i~j, we

323  examine the model's performance on several neighbor time windows, including time windows

324 -3~j-3,i-2~j-2,i-1~j-1,i~]j, i+l ~j+1, i+2 ~j+2, and i+3 ~ j+3, where i represents start

325  time frame of the window and j represents the terminal frame. The training dataset from time

326  window i~j is generated from the initial training image data sets (70% of the initial total

327  dataset), and test datasets of the seven neighbor time windows are generated from the test

328  datasets (30% of the initial total dataset).

329 Moreover, in order to further test our model’s ability to predict the iPS progenitor cell on

330  atime window which doesn’t overlap with the window in the training process, an independent

15
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331 test is performed. Model performance is tested on time windows which are far away from the

332  training time windows. Since we have three time phases, we first select test time windows in

333  phase 2 and 3 for the models trained on time windows of phase 1 and 2 respectively. For

334  testing our model developed for phase 3, we select the independent test time windows also in

335  phase 3, but without any overlap with the corresponding training time windows.

336

337  Evaluation metrics

338 In this paper, precision is mainly used for evaluation defined as,
. P
precision = ————
339 TP+ FP

340  where TP and FP represent the number of true positive and false positive prediction. This
341 metric evaluates the accuracy for the positive sample predicted by the model. Biologists need
342  a cell sample set enriched with true iPS progenitor cells so that in the early stage of
343  reprogramming progenitor cells can be studied with high probability.

344

345 Results and Discussion

346

347  Missing frames processing and imputation method

348 First, the effect of missing frames and imputation methods on the model’s performance
349  was analyzed. Experiment for missing value was performed under six kinds of missing frame
350  numbers, which were numbers below or equal to five, four, three, two, one and zero. Model
351  performance was tested for each missing frame number with three imputation methods on

352 time periods of two window lengths (10 and 19 frames) located in three phases, which were

16


https://doi.org/10.1101/744920
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/744920; this version posted August 22, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

353  time period/window 19h30min ~ 21h10min from phase 1 (TP1), 25h50min ~ 27h30min from

354  phase 1 (TP2), 41h50min ~ 43h30min from phase 2 (TP3), 18h10min ~ 21h20min from phase

355 2 (TP4), 26h ~ 29h10min from phase 3 (TP5) and 42h ~ 45h10min from phase 3 (TP6).

356 Two window lengths (10 and 19 frames) were selected because a reasonable number of

357  continuous cell images could be traced. A short window will have more data but the motion

358  and morphological pattern of iPS progenitor cells cannot be learned while a long window will

359  result in a much smaller dataset. For each length, we chose three time windows randomly to

360  study whether different lengths would affect model performance under uniform missing frame

361  number. Datasets were generated from the training datasets, which were about 52~59 iPS

362 cells and 259~294 normal MEFs for time windows with 10 frames, 43~50 iPS cells and

363  238~264 normal MEFs for time windows with 19 frames. Model was evaluated by the

364  average precision with 5-fold cross validation over 20 times.

365 Fig 2 showed the comparison results of different missing frame numbers and imputation

366  methods. For each missing number and imputation method, Fig 2(a) described the average

367  precision over six time windows (TP1 to TP6), indicated by blue boxes for set KNN, red

368  Dboxes for set mean and green boxes for set mean mod. Also shown in Fig 2(a) was the

369 average precision over all three imputation methods, indicated by grey boxes. Fig 2(b)

370  described the standard deviations of the corresponding precision values in Fig 2(a). Detailed

371  precisions for all six time periods (TP1~TP6) were provided in Figure S1 of the S1 File.

372 Fig 2. Model comparison for different missing frame number and imputation methods

373  Fig 2(a) shows the average precision over six time periods (TP1 to TP6) for each missing

374  frame number and imputation method set KNN (colored as blue), set mean (colored as red),
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375  set_ mean _mod (colored as green) and all three imputation methods (colored as gray). Fig 2(b)

376  shows the standard deviation, as a function of missing frame number, of imputation method

377  set KNN (colored as blue), set mean (colored as red), set mean _mod (colored as green) and

378  all three imputation methods (colored as gray).

379 Fig 2(a) showed that precision was higher when several missing frames were allowed.

380  For missing frame number of 0, the average precision of all method was only 0.585 and all

381  the average precisions of non-zero missing frame numbers were higher than 0.585. Fig 2(a)

382  also showed that the maximum average precision of all method was about 0.632 under

383  missing frames of 4, 4.7% higher than precision under no missing frames and 0.9% higher

384  than precision under missing frame number of 2. On one hand, the size of the dataset is larger

385  when missing value is permitted, on the other hand, the missing frame may introduce new

386  pattern for classification because iPS progenitor cells proliferate more frequently than normal

387  MEFs, and cell division can partly result in missing value. When cells divide at a certain

388  frame in their time periods, the feature values of all subsequent frames are missing.

389 In Fig 2(b), the maximum standard deviation of all methods as indicated by gray box

390 was 0.061 under missing 4 frames. For each specific method, the maximum standard

391  deviation was 0.081 for Set_ mean under 5 missing frames. The precision with two missing

392  frame numbers had the minimum standard deviation for all method (0.048 as indicated by

393  gray boxes) and at the same time it was also very close to the maximum precision (0.623

394  compared with the maximum value of 0.632 in Fig 2(a)). In addition, Set mean mod showed

395  the minimum standard deviation of all 3 imputation methods for all missing frame numbers

396  (indicated by green boxes), an indication of stable performance. Although Set mean mod
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397  also showed smallest standard deviation for missing frame number of 1, its precision value of

398  missing frame number was smaller than that of missing frame number of 2. Therefore, we

399  used missing frame number less than or equal to two and select imputation method as

400  set mean mod in our model.

401

402  Time window selection

403 Time window selection was performed to select best time windows with high precision

404  for each phase. Since Imaris could not detect all cell images in every frame, the whole time

405  periods of three phases were divided into numerous time windows. For time window selection

406  (including start frame and window length), we set start frame to 21 time points which were

407  18h20min, 18h40min, 19h, 19h20min, 19h40min, 20h, 20h20min, 26h10min, 26h30min,

408  26h50min, 27h10min, 27h30min, 27h50min, 28h10min, 42h10min, 42h30min, 42h50min,

409  43h10min, 43h30min, 43h50min, 44h10min in three phases. Meanwhile, we set window

410  length to 12 different values including 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 and 29 frames.

411  For the total of 252 (12 times 21) time windows, we first generated datasets for each time

412  window with 11 types of morphological/motion features. All datasets were generated based

413  on the training dataset and contained about 38~59 iPS progenitor cells and about 190~295

414  normal MEFs. Then we selected the optimal time window through 5-fold cross-validation

415 based on 20 XGBoost runs.

416 The model performance on these different time windows was shown in Fig 3. In this

417  figure, shorter window lengths were marked in red colors and longer window lengths were

418  marked in blue colors. We observed that precision of longer window lengths was lower than
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419  that of shorter window lengths in three phases, and this trend was less pronounced for phase 3.

420  The size of the dataset may be the major reason for this trend. Due to the two rules in dataset

421  generation, the amount of samples satisfying conditions decreases gradually with the

422  increasing window length. For window length of 29 frames, there are just about 38 iPS

423 progenitor cells and 262 normal MEFs in phase 1, about 44 iPS progenitor cells and 283

424  normal MEFs in phase 2, about 36 iPS progenitor cells and 242 normal MEFs in phase 3. As

425  compared with the window length of 7 frames, there are about 53 iPS progenitor cells and 290

426  normal MEFs in phase 1, about 55 iPS progenitor cells and 285 normal MEFs in phase 2,

427  about 57 iPS progenitor cells and 300 normal MEFs in phase 3. On the other hand, the

428  number of samples is much less for later start frame than that for previous time since some

429  cells have divided. For instance, there are only about 30 iPS progenitor cells and 200 normal

430  MEFs for the last start frame with length of 29 frames in phase 3.

431  Fig 3. Time window selection

432 The three subplots represent the precision values for different time windows based on 21 start

433 frames (x axis) and 12 window lengths (7 frames to 29 frames) for phases 1, 2, and 3 (from

434 top to bottom) respectively, and the black bash line in each subplot indicates a precision value

435 of 0.55.

436 Selection of best time windows according to maximum precision resulted in an unstable

437  prediction performance. For instance, precision achieved the maximum value on the time

438  window starting at 43h30min with length of 29 frames while all its adjacent time windows

439  had poor performance with lower precision. It is unlikely to achieve the same performance on

440 a new dataset of the same time window.
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441 We selected the best start frame for each phase respectively. To exclude the start frame
442  with high prediction precision for only 1 or 2 window lengths, 14 candidates of best start
443  frames were selected when precision was above 0.55 for at least three successive window
444  lengths. For each candidate best start frame, the average precision was calculated over the
445  successive window lengths whose precision was above 0.55 and the average precision values
446  were shown above each candidate best start frame in Fig 3. We only selected one best start
447  frame for each phase according to the average precision values of the candidate best start
448 frames, resulted in 19h40min, 26h10min and 42h30min for phases 1, 2 and 3, respectively.
449 Secondly, the candidate best window lengths were selected whose precision values were
450  all above 0.55 for 3 best start frames of step 1, resulting in window lengths 11, 13, 15 and 17
451  frames. For each window length, the precision values, average precisions and the
452  corresponding standard deviation of 3 different best start frames were provided in Table S1 of
453 S1 File. The average precision of 0.640 for window length of 13 frame was the highest while
454  its standard deviation was the smallest (0.01), thus window length of 13 frames was selected
455  as the best window length.

456

457  Two-step feature selection

458 We performed a two-step feature selection method on three phases respectively. Firstly,
459  we generated datasets from best time windows based on the training cell image datasets. The
460  dataset of each phase contained 11 types of morphological and motion features, all of which
461 contained about 50~59 iPS progenitor cells and about 200~295 normal MEFs.

462 For the first step, an iterative feature removal procedure was performed on the
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463  corresponding dataset of each phase to study the importance of each feature type. Average

464  precision was calculated via 5-fold cross-validation over 20 runs on the dataset of each phase,

465  and later sets as initial unimportance score. Next, we removed each type of features and

466  calculated the unimportance scores (average precision). Feature with maximum score would

467  be deleted only if this score was greater than the initial unimportance score, which would then

468  be updated as the maximum score. This step was repeated until no score was greater than

469 1nitial score or no more feature could be selected.

470 Results from step 1 feature selection were shown in Fig 4. For phase 1 precision was no

471  longer improving after removing ellipsoid-oblate, displacement and volume; for phase 2

472  precision was no longer improving after removing displacement and volume; for phase 3

473  precision was no longer improving after removing displacement, ellipsoid-prolate, area and

474  volume. In the end, eight types of features were selected for phase 1, nine types of features

475  were retained for phase 2, and seven types of features were retained for phase 3. Selected

476  features from this step were indicated in Fig 4 by star symbols. The corresponding precisions

477 for best windows with 13 frames before feature selection were 0.624, 0.607, 0.646 for phases

478 1, 2 and 3, respectively, and after feature selection, these precision values had increased to

479  0.691, 0.613 and 0.682 respectively.

480  Fig 4. Feature ranking and selection

481 This figure shows how the precision values change with the deleted feature in a recursive

482  fashion. Least important features are removed earlier.

483 The removing order of feature type in Fig 4 indicated the importance of each feature

484  type. We observed from Fig 4 that three types of features, nucleus-cytoplasm ratio, sphericity
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485  and intensity-StdDev, were important among all three phases. Nucleus-cytoplasm ratio was

486  the top important factor in three phases. Sphericity and intensity-StdDev were among the top

487 4 common features of three phases. Intensity showed clear different patterns between normal

488  MEFs and progenitor cells. As shown in Fig 5(a), the progenitor cells in the blue circles

489  showed a uniform intensity distribution between nucleus and cytoplasm, while for normal

490  MEFs in the yellow boxes, the cytoplasm showed weaker intensity as indicated by the

491  blurring edges. Also shown in Fig 5(a), the nucleus and cytoplasm of progenitor cells in the

492  blue circles and normal MEFs in the yellow boxes were enlarged and colored by light blue

493  and green respectively. It is clear that nucleus-cytoplasm ratio for progenitor cells are much

494  larger than that of normal MEFs. From Fig 5(a), the cell area of progenitor cells is also

495  smaller on average than normal MEFs, indicating the importance of sphericity since area is

496  closely related to sphericity by the equation from Part 1 of the S1 File. The selected features

497  are consistent with the experimental results that iPS progenitor cells exhibit higher

498  nucleus-cytoplasm ratio, smaller total area, and higher proliferation rate than normal

499  MEFs[21].

500  Fig 5. iPS progenitor cells vs. MEFs and Feature correlation

501  (a) shows the examples of iPS progenitor cell images (blue circles) and normal MEFs images

502  (yellow boxes) taken from phase 1, 2 and 3 of field 2 (Left, middle and right). Nucleus and

503  cytoplasm of the enlarged progenitor cells and normal MEFs are colored in light blue and

504  green respectively. (b) shows the Pearson coefficients between remaining types of features in

505  three phases after the first step of feature selection. Note in this figure ellipsoid-prolate is

506  denoted as E-prolate, intensity-StdDev as I-stdDev, intensity-min as [-Min, intensity-max as
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507  I-Max, nucleus-cytoplasm volume ratio as Ratio, ellipsoid-oblate as E-oblate.

508 In order to further study the correlations of different features, as a second step we

509 calculated the Pearson correlation coefficients between the selected features. The results for

510  three phases were shown in Fig 5(b). In our model, two feature types were considered

511  strongly correlated if the coefficient was greater than 0.6 and one of them was removed.

512  When two different feature types were strongly correlated with a third feature type, both of

513  them were removed with the purpose of keeping as less number of features as possible. For

514  phase 1, the coefficient between sphericity and area was 0.77 in phase 1, and the coefficient

515  between sphericity and ellipsoid-prolate was 0.66, thus area and ellipsoid-prolate were

516 removed from the list. Similarly, they were removed for phase 2 as well. The strong

517  correlation between sphericity, ellipsoid-prolate and area is caused by the fact that Imaris

518  extracts features from two-dimensional cell images assuming cell thickness as constant.

519  Furthermore, since ellipsoid-oblate was associated with cell thickness, it was removed from

520  the feature list as well for phase 2 and phase 3. Overall, six types of features (Sphericity,

521 I-Min, I-stdDev, I-Max, Ratio, Speed) were selected for all the models.

522

523 Cross-validation

524 With selected features, a grid-search scheme was used for hyperparameter optimization

525  of XGBoost with 5-fold cross-validation, and the datasets were generated based on the

526  training sets for three phases. Three hyperparameters such as learning rate, n_estimators and

527  gamma were set to 0.01, 385 and 0 respectively. We had validated our model with three

528  different experiments as shown in Fig 1.
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529 For cross-validation, datasets were generated from initial whole cell image dataset.

530  Dataset for phase 1 contained about 63 iPS progenitor cells and about 326 normal MEFs.

531  Dataset for phase 2 contained about 82 iPS progenitor cells and about 427 normal MEFs.

532  Dataset for phase 3 contained about 72 iPS progenitor cells and about 359 normal MEFs. For

533  each phase, 5-fold cross validation was performed 10 times on every best time windows with

534 6 selected feature types, resulting in a total of 117 for window length of 13 frames. Fig 6(a)

535  showed precision scores for 3 different phases, and all of the precision values were above

536  0.580. For phase 1, the precision value was highest, 0.732.

537  Fig 6 Model validation

538 In all sub-figures, X axis indicates the start frame of the best time windows and the

539  corresponding window length (13 frames) is indicated in the inlet. (a) 5-fold cross-validation

540  precisions over 10 runs. (b) the standard deviation of the average precision of the

541 neighborhood time windows in Figure 6(d). (c) the standard deviation of the average

542  precision of the distant windows in Figure 6(e). (d) the average precision of seven

543  neighborhood time windows calculated over 10 holdout validation runs. (e) the average

544  precision over 10 independent tests for six best time windows on their corresponding distant

545 windows.

546

547  Holdout validation

548 Holdout validation was used to test the model’s ability to predict the iPS progenitor cells

549  in the neighborhood of the time window in which the model had been trained. Since in real

550  application, it is difficult to generate the dataset whose images have the exact start time as in
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551 the training dataset, holdout-validation is very important for testing the model’s generality on
552 the neighborhood time windows. For each phase, the training dataset for window length of 13
553  frames was generated. In phase 1, the window start frame I was 19h40min as shown in Fig
554  6(d). Models trained on this dataset was then tested on seven test datasets corresponding to
555 start frames I, I-1, I-2, -3, I+1, [+2 and I+3, illustrated in Fig 1 and Fig 6(d). There was no
556  overlap between the training and testing datasets.

557 For each time window, average precision value was computed over 10 holdout validation
558  runs, and the results were shown in Fig 6(d). The minimum average precision values were
559  0.616 for window length of 13 frames and start frame I-2 in phase 1, 0.522 for window length
560  of 13 frames and start frame I-2 in phase 2 and 0.566 for window length of 13 frames and
561  start frame I-3 in phase 3. These minimum precisions were all smaller than the corresponding
562  precisions in Fig 6(a); what is more, Fig 6(d) also showed the average precision values for
563  phase 1, 2 and 3 were all smaller than the cross-validation resulted in Fig 6(a), indicating the
564  difficulties for predicting the neighborhood time windows.

565 For each result of the 3 phases in Fig 6(d), the standard deviations of average precisions
566  were computed for window length of 13 frames in Fig 6(b). The maximum deviation was
567  0.042 for window length of 13 frames in phase 1 and this indicated the trained models were
568  relatively stable in terms of prediction precision in a wide range of neighborhood windows.
569

570  Independent test

571 Finally, to test the model’s ability to predict the iPS progenitor cells on a distant time

572 window without overlapped frames with the training window, we performed an independent
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573  test. If the training cell trajectory is long and contains enough typical iPS progenitor cells, the

574  trained model on one window should be able to identify the motion and morphological

575  patterns of iPS progenitor cells against normal MEFs, regardless of the selected time window.

576 For phase 1, the model trained on time window 19h40min~21h40min (length of 13

577  frames) was tested on time windows of phase 2, including time windows starting from

578 26h20min (S11), 26h40min (S12), 27h (S13), 27h20min (S14), 27h40min (S15), and 28h

579  (S16), shown in the first panel of Fig 6(e). Similarly, for phase 2, the model trained on time

580  windows 26h10min~28h10min (length of 13 frames) was tested on six time windows of

581  phase 3 starting from 42h10min (S21), 42h30min (S22), 42h50min (S23), 43h10min (S24),

582  43h30min (S25), 43h50min (S26), shown in the middle panel of Fig 6(e). Lastly, for phase 3,

583  model testing was performed on the distant time windows without overlapped frames from

584  the same phase, shown in the right panel of Fig 6(e). For time windows 42h30min~44h30min,

585  we selected test time windows starting from 45h10min (S31), 45h30min (S32), 45h50min

586 (S33), 46h10min (S34), 46h30min (S35).

587 Results of the independent test runs were shown in Fig 6(e). The minimum precision was

588  0.523 for window length of 13 frames for S16 in phase 1. The average precision of phase 1

589  was lower than those of holdout validation and cross-validation, however, the average

590  precision of phase 2 and 3 were both better than cross-validation and holdout validation. For

591  the prediction of distant time windows, our model could have worse performance than that of

592 neighborhood windows, but our model could also outperform the cross validation and holdout

593  validation (indicated by the standard deviation in Fig 6(c)). The reason was the independent

594  test datasets for phase 2 and 3 were closely related to the training dataset. The standard
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595  deviations of the independent tests were much higher than those of the holdout validation,

596  which could also be seen from the large fluctuations of the precision values in Fig 6(e).

597  Nevertheless, the minimum average prediction precision was above 52% among all the

598  experiments, and maximum average precision was about 0.750 for the independent test in

599  phase 3.

600

601  Conclusion

602 In this paper, we proposed a machine learning based model together with time-lapse

603  image analysis to predict/identify iPS progenitor cells during the first 3-5 days after

604  reprogramming initiation. The model generated a variety of morphological and motion

605  features among different time windows, then relied on a two-step feature selection algorithm

606  to select the most important features. The proposed computational approach is very unique

607  from previous experimental techniques which identify the iPS progenitor cells by

608  retrospectively tracking the cell images manually frame by frame from the image frame of

609  GFP expression.

610 By the experimental study of the enriched iPS progenitor cells in the early stage of

611  reprogramming, the proposed method could provide a new technique or attempt for

612  experimenters to improve the iPS reprogramming efficiency and to study the underlying

613  mechanism of iPS reprogramming. Morphological and motion features, especially sphericity,

614  intensity-StdDev and nucleus-cytoplasm volume ratio, have been found most important for

615  the progenitor cell classification, which is consistent with the experimental observations.

616 Cross-validation of the proposed method trained and tested on the same time window
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617  showed that the prediction precision is above 0.580 for all three phases. Since in real
618  applications, it is very difficult to match imaging timeline precisely between different
619  experiments, holdout validation and an independent test are also performed to test the model’s
620  ability to predict iPS progenitor cells in the neighborhood time windows and distant time
621  windows, respectively. The results showed our model can predict the iPS progenitor cells
622  with a minimum precision of 52% for neighborhood windows and distant windows, and the
623  maximum average precision is about 0.750 for the independent test in phase 3. The prediction
624  performance of our model tends to have a larger fluctuation for distant windows than for
625  neighborhood windows, indicated by the larger standard deviation of independent test runs.
626 For future works, models on different time windows for each phase can be combined to
627  achieve higher prediction accuracy.
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