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Abstract (300/300 words)
Background There is debate about the value of adding information on genetic and other

molecular markers to conventional cardiovascular disease (CVD) risk predictors.

Methods Using data on 306,654 individuals without a history of CVD from UK Biobank, we
calculated measures of risk-discrimination and reclassification upon addition of polygenic risk
scores (PRS) and a panel of 27 clinical biochemistry markers to a conventional risk prediction
model (i.e., including age, sex, systolic blood pressure, smoking status, history of diabetes, total
cholesterol and HDL cholesterol). We then modelled implications of initiating
guideline-recommended statin therapy after the assessment of molecular markers for a UK

primary-care setting.

Findings The C-index was 0.710 (95% CI, 0.703-0.717) for a CVD prediction model containing
conventional risk predictors alone. The C-index increased by similar amounts when adding
information on PRS or biochemistry markers (0.011 and 0.014, respectively; P<0.001), and it
increased still further (0.022; P<0.001) when information on both was combined. Among cases
and controls, continuous net reclassification improvements were about 12% and 19%,
respectively, when both PRS and biochemistry markers were added. If PRS and biochemistry
markers were to be assessed in the entire primary care population aged 40-75, then it could
help prevent one additional CVD event for every 893 individuals screened. By contrast, targeted
assessment only among people at intermediate (i.e., 5-10%) 10-year CVD risk could help
prevent one additional CVD event for every 233 individuals screened. This targeted strategy
could help reclassify 16% of the intermediate-risk group to the high-risk (i.e., 210%) category,

preventing 11% more CVD events than conventional risk prediction.

Interpretation Adding information on both PRS and selected biochemistry markers moderately
enhanced CVD predictive accuracy and could improve primary prevention of CVD. However, our
modelling suggested that targeted assessment of molecular markers among individuals at

intermediate-risk would be more efficient than blanket approaches.


https://doi.org/10.1101/744565
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/744565; this version posted August 22, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

INTRODUCTION

A key strategy in the primary prevention of cardiovascular disease (CVD) is the use of risk
prediction algorithms to target preventive interventions to people who may benefit from them
most.}® These algorithms usually include information on conventional risk predictors, including
age, sex, smoking history, history of diabetes, blood pressure, total cholesterol and high density

lipoprotein (HDL) cholesterol.'™

Widely practicable assay technologies have opened
opportunities to enhance the accuracy of CVD risk prediction through addition of information on
many molecular risk markers. For example, analysis that combines millions of genetic variants
into polygenic risk scores (PRS) has shown potential to improve CVD risk prediction.”*°
Furthermore, several clinical biochemistry markers — both individually and in combination - have

been proposed to improve prediction when added to conventional risk factors.'*™*°

Due to inter-related reasons, however, previous studies have been able to provide limited
assessments.?°?? First, most studies have not recorded sufficient breadth of data to consider,
both separately and in combination, the impact of using information on conventional risk
predictors, PRS, and a panel of clinical biochemistry markers (beyond total- and HDL-
cholesterol). Second, previous studies have tended to involve moderate statistical power,
whereas a high degree of power is nheeded to make reliable comparisons using such molecular
data. Third, studies have often lacked modelling of clinical implications of initiating guideline-
recommended interventions (e.g., statin therapy) after the assessment of novel risk markers,

yielding uncertainty about clinical utility.

Our study, therefore, aimed to address two questions. First, what is the improvement in CVD
risk prediction that can be achieved when PRS and multiple clinical biochemistry markers are
added to predictors used in conventional risk algorithms? We analysed 306,654 participants from
UK Biobank (UKB) to assess PRS and biochemistry markers both separately and in combination.
Second, what is the estimated clinical impact of using information on molecular markers for CVD
prediction? We modelled the potential clinical impact and evaluated the benefit of initiating statin

therapy as recommended by guidelines in a contemporary primary care population setting.


https://doi.org/10.1101/744565
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/744565; this version posted August 22, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

METHODS

Study design and overview

Our study involved several interrelated components (Figure 1). First, we derived separate PRSs
for CHD and stroke, and identified informative clinical biochemistry markers that could enhance
prediction of incident CVD outcomes. Second, we studied these molecular markers using
measures of risk discrimination and reclassification to quantify their incremental predictive value
on top of conventional risk predictors. Third, to estimate the potential for disease prevention,
we used a separate large dataset (based on contemporary computerised records from general
practices in the UK) to adapt (i.e., recalibrate) our findings to the context of a primary prevention
population eligible for CVD screening. Fourth, we modelled the clinical implications of initiating
statin therapy as recommended by current guidelines comparing two different scenarios: a
“blanket” approach (i.e., assessment of molecular markers in all individuals eligible for CVD
primary prevention) and a “targeted” approach (i.e., focusing molecular assessment only in
people judged to be at intermediate 10-year risk of CVD after initial screening with conventional
risk predictors alone). Fifth, to help contextualise the potential clinical gains afforded by
assessing PRS or a biochemistry panel, we compared them in the same dataset with the gains

afforded by assessment of C-reactive protein alone.

Data sources

UK Biobank prospective study

Details of the design, methods, and participants of UKB have been described previously.?*?*
Briefly, participants aged 40 to 75 years identified through primary care lists were recruited
across 22 assessment centres throughout the UK between 2006 and 2010. At recruitment,
information was collected via a standardized questionnaire and selected physical measurements.
Details of the data used from UKB are provided in the Supplementary Appendix 1. Data were
subsequently linked to Hospital Episode Statistics (HES), as well as national death and cancer
registries. HES uses International Classification of Diseases (ICD)-9th and 10th Revisions to
record diagnosis information, and Office of Population, Censuses and Surveys: Classification of

Interventions and Procedures, version 4 (OPCS-4) to code operative procedures. Death registries

include deaths in the UK, with both primary and contributory causes of death coded in ICD-10.
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Genotyping was undertaken using a custom-built genome-wide array of ~826,000 markers.?*°

Imputation to ~96 million markers was subsequently carried out using the Haplotype Reference
Consortium and UK10K/1000Genomes reference panels.?® Thirty circulating clinical biochemistry
markers were measured at baseline in serum or red blood cells.?®?” These markers were selected
for measurement in UKB for various reasons, including their relevance as established risk factors
for chronic diseases, established diagnostic markers, and/or ability to reflect phenotypes not

otherwise well-assessed or feasibly measured at scale.

UK Clinical Practice Research Datalink

To estimate the potential for disease prevention, we used data from the Clinical Practice
Research Datalink (CPRD), a primary care database of anonymised medical records, with
coverage of over 11.3 million patients who have opted into data linkage from 674 general
practices in the UK. Individual-level data from consenting practices in the CPRD have been linked
to HES and national death registry. Details of the CPRD data used and endpoint definition are
provided in the Supplementary Appendix 2. The present analysis involved records on a
random sample of all CPRD data, including 3.1 million patients. Individuals in this database

should be broadly representative of the UK general population.

Statistical analysis

Analyses included only participants of self-reported European ancestry, excluding those who: 1)
had missing genotype array or clinical biochemistry marker information; 2) had prior history of
vascular disease at baseline (i.e., coronary heart disease [CHD], other heart disease, stroke,
transient ischaemic attack, peripheral vascular disease, angina, or cardiovascular surgery); 3)
used lipid-lowering treatment at baseline; or 4) were included in the training dataset for PRS
derivation (eFigure 1). The primary outcome was a first CVD event, defined as CHD (i.e.,
myocardial infarction or fatal CHD) or any stroke. Secondary outcomes included a combination
of CHD, stroke, and cardiac revascularisation procedures (i.e., percutaneous transluminal
coronary angioplasty [PTCA], and coronary artery bypass grafting [CABG]). Details of endpoints

definitions are in eTable 1.
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Separate PRSs for CHD and stroke were calculated as previously described,®2%2° i.e., using the
sum of each participant’s genome-wide genotypes weighted by corresponding genotype effect
sizes (eFigure 2). Briefly, the PRS for CHD included 1,743,179 variants, using a meta-scoring
approach to give a weighted average of three previous PRSs derived using summary statistics
from up to 60,801 cases and 123,504 controls in studies from the CARDIoGRAMplusC4D
Consortium.®2?® The PRS for stroke included 2,595,401 variants with effect sizes taken from up

to 67,162 cases and 454,450 controls in the MEGASTROKE Consortium.?°

Of the 30 circulating clinical biochemistry markers measured in UKB, 27 biomarkers were
evaluated in the current analysis (eTable 2) because the remainder were either sex-specific
markers (i.e., testosterone and oestradiol) or had >90% with missing values (i.e., rheumatoid
factor). Biomarker values reported as being below or above the detectable range of assays were
replaced with the minimum and maximum value reported in the available data. Distributions of
continuous predictors were checked using histograms and box plots, and predictors with
positively skewed distributions were natural log-transformed. To select informative clinical
biochemistry markers, forward stepwise variable selection was applied using significance
threshold of P <0.0001 (eFigure 2), yielding the following nine markers: cystatin C,
lipoprotein(a), C-reactive protein, sex hormone-binding globulin, haemoglobin Alc, creatinine,

albumin, gamma-glutamyltranferse, and alanine transaminase (eTable 3).

To quantify associations between potential risk predictors and incident outcomes, hazard ratios
(HR) were calculated using Cox proportional hazards models, stratified by study centre and sex,
and using time since study entry as the timescale. Outcomes were censored if a participant was
lost to follow-up, died from non-CVD causes, or up to currently available end of follow-up (31
March, 2017). All predictors were entered as linear terms, after visual checking for log-linearity.

No violation of the proportional hazards assumption was identified.

The incremental predictive ability of PRS and selected clinical biochemistry markers was assessed
upon addition (as linear terms) to a model containing conventional CVD risk predictors, including

age, sex, systolic blood pressure, smoking status, history of diabetes, total cholesterol and HDL
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cholesterol. Risk discrimination was assessed using Harrell’'s C-index, stratified by UKB
recruitment centre and sex, which estimated the probability of correctly ranking who will have
an event first in a randomly selected pair of participants.3°! To avoid optimism, we applied ten-
fold cross-validation analyses for the main analyses. Improvements in risk prediction were also
quantified using the continuous net reclassification improvement (cNRI), which summarises
appropriate directional change in risk predictions for those who do and do not experience an
event during follow-up (with increases in predicted risk being appropriate for cases and

decreases being appropriate for non-cases).>?

To assess the public health and clinical relevance of adding PRS and the selected biochemistry
markers to conventional risk predictors, we generalised our reclassification analyses to the
context of a primary prevention UK population eligible for screening (eFigure 3). We
recalibrated risk prediction models derived in UKB to represent 10-year risks that would be

expected in a UK primary care setting using CPRD data,>® using methods previously described.?*

We then modelled a population of 100,000 adults aged 40-75 years, with an age and sex profile

as contemporary UK population (2017 mid-year population, https://www.ons.gov.uk/), and CVD

incidence rates as observed in individuals without previous CVD and not on statin treatment at
registration, in the CPRD. We assumed an initial policy of statin allocation for people at 210%
predicted 10-year risk as recommended by current National Institute for Health and Care
Excellence (NICE) guidelines.® We then modelled additional targeted assessment of PRS, clinical
biochemistry markers, or both, among people at intermediate (5%-10% predicted 10-year risk)
to estimate the potential for additional treatment allocation and case prevention, assuming statin
allocation would reduce CVD risk by 20%.>° Details of the statistical analyses are provided in the
Supplementary Appendix 3. Analyses were performed with PLINK 2.0,%® and Stata version

14, with two-sided p-values and 95% confidence intervals.

Role of the funding source
The funders of the study did not have any role in the study design, data analysis, or reporting

of this manuscript. All authors gave approval to submit for publication.
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RESULTS

Characteristics of the study participants

Among 306,654 participants of European ancestry without a history of CVD and not on lipid-
lowering treatment, the mean (SD) age was 56 (8) years, and 43% were men (eTable 4).
During 2.6 million person-years at risk (median [5%,95™ percentile] follow-up of 8.1 [6.8-9.4]
years), 3333 CHD and 2347 stroke events were recorded. Associations of PRS or biochemistry
markers with CVD outcomes were approximately log-linear (eFigures 4-5). Figure 2 shows the
baseline characteristics of participants, as well as HRs for CVD adjusted for conventional risk
predictors. HRs for CHD and stroke outcomes separately and for the composite secondary

outcome (including CHD, stroke, CABG and PTCA) are presented in eFigure 6.

Incremental value in risk prediction

The C-index was 0.710 (95% CI, 0.703-0.717) for a CVD prediction model containing
conventional risk predictors alone. Addition of information on PRS or nine selected clinical
biochemistry markers increased the C-index by 0.011 (0.009-0.014) and 0.014 (0.011-0.017),
respectively (Figure 3). When both PRS and biochemistry markers were added to the model,
the C-index increased by 0.022 (0.019-0.026). Incremental risk prediction afforded by PRS
and/or biochemistry markers was greater than that afforded by assessment of each individual
biomarker including C-reactive protein (eFigure 7). Among cases and controls, cNRIs for CVD
were 10.1% (7.2%-13.1%) and 12.2% (11.8%-12.6%) for PRS; 7.1% (4.1%-10.1%) and
17.1% (16.7%-17.5%) for biochemistry markers; and 12.2% (9.2%-15.3%) and 18.7%
(18.3%-19.0%) for both sets of markers (Figure 4, and eFigure 8). The predictive value of

PRS and/or biochemistry markers was greater for CHD than for stroke outcomes (Figures 3-4).

The effects of adding information on PRS and biochemistry markers were similar in analyses that
included: measures of body-mass index or family history of CVD or both of the preceding factors
in the prediction model (eFigure 9); participants receiving lipid-lowering treatment at baseline
(eFigure 10); broader definitions of CVD outcomes (i.e., CHD, stroke, PTCA and CABG;
eFigure 11). The C-index changes with PRS were somewhat greater in men than women, but

similar across age groups (eTable 5).
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Estimate of the potential for disease prevention

We modelled targeted assessment of PRS and biochemistry markers in a hypothetical population
of 100,000 adults aged 40-75 years, assuming the current UK population age and sex structure
and CVD incidence rates observed in UK primary care. Under this scenario, we estimated that,
using conventional risk predictors alone, there would be 25,562 individuals classified as
intermediate 10-year risk (i.e., 5%-10%) who were not already taking or eligible for statin
treatment (i.e., people without a history of diabetes or CVD and with LDL-cholesterol <5.0
mmol/L; Figure 5). Additional assessment of PRS and clinical biochemistry markers in these
individuals would reclassify 4013 individuals as high-risk (i.e., 210%), of whom approximately
548 would be expected to have a CVD event within 10 years. This would correspond to about

10.7% of the CVD events already classified at high risk using conventional risk predictors alone.

Assuming statin allocation per current guidelines (i.e., those with 10-year CVD risk 210%) and
statin treatment conferring a 20% relative risk reduction, such targeted assessment would help
prevent 110 (i.e., 548 x 0.2) events over the next 10-year period. In other words, targeted
assessment of PRS and biochemistry markers in individuals at intermediate-risk for a CVD event
could help prevent one additional event over 10 years for every 233 people so screened. For
comparison, the corresponding number needed to screen with targeted assessment of PRS, nine
selected clinical biochemistry markers, or C-reactive protein alone would be 287, 305 or 503,
respectively (Figure 5 and eTable 6). Similar results were observed when analysis involved

cut-offs for clinical risk categories defined by the other guidelines (eFigure 12 and eTable 7).

In contrast with a targeted approach, we also modelled a “blanket” strategy of assessing PRS
and biochemistry markers in all adults aged 40-75 years. In this scenario, 4250 individuals would
be reclassified from low- or intermediate-risk (i.e., <10%) to high-risk (i.e., 210%), and 5173
individuals would be reclassified from high-risk to low- or intermediate-risk, of whom
approximately 561 and 443 would be expected to have a CVD event within 10 years, respectively
(eFigure 13 and eTable 8), suggesting the need to screen 893 people with additional

assessment of PRS and biochemistry markers to help prevent one additional event over 10 years.
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DISCUSSION

Our study has yielded several findings of potential relevance to CVD risk prediction. First, our
results indicate that assessment of either PRS or nine molecular markers moderately enhanced
CVD prediction accuracy, affording similar gains to each other when added to conventional risk
predictors. Furthermore, when information on both PRS and biochemistry markers was used in
combination, the gain in predictive accuracy was largely additive, suggesting that these different
sets of markers synergistically capture non-overlapping information about pathways that are

uncorrelated (or weakly correlated) with conventional risk factors.

Second, our results argue in favour of targeted use of additional information on PRS and clinical
biochemistry markers, rather than their “blanket” use, in screening approaches. We modelled a
scenario in which PRS and biochemistry markers were assessed in a primary care setting only
among individuals considered at “intermediate” risk (i.e., predicted 10-year CVD risk of 5-10%)
after initial screening with conventional risk predictors alone. In a hypothetical population of
100,000 adults, we found that such targeted assessment of additional risk factors could reclassify
approximately 16% (i.e., 4013/25,562) of people screened to a high-risk category (i.e., 210%
predicted CVD risk), of whom 14% would be expected to have a CVD event within 10 years. If
such an approach were to be coupled with initiation of statin therapy in accordance with
guidelines, our data suggest one extra CVD outcome could be prevented over a period of 10
years for approximately every 230 people in whom both PRS and biochemistry markers are
assessed. By contrast, a blanket approach in which PRS and biochemistry markers were to be
assessed among all individuals relevant to a primary prevention setting would require the
screening of 890 people to prevent one additional CVD outcome, i.e., a strategy that would be

almost four-fold less efficient.

Third, a head-to-head comparison in our study has suggested that assessment of either PRS or
a panel of biochemistry markers affords about two-fold greater predictive gains than assessment
of C-reactive protein alone. This comparison might help contextualise the potential clinical gains
afforded by assessing PRS and a biochemistry panel because C-reactive protein assessment

alone has been recommended by some guidelines as an adjunct to CVD risk prediction.?’
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Fourth, we found that assessment of PRS and biochemistry markers could improve prediction of
CHD outcomes much more than they improve prediction of stroke outcomes. Reasons for such
differential gains may relate to both the greater phenotypic heterogeneity of stroke outcomes,3®
4% and the relatively lower statistical power of previous GWAS studies of stroke,?° compared with
CHD.?®“% Nevertheless, to reflect current guidelines and practice in CVD prevention, the primary
outcome of our study was any first cardiovascular event (defined as fatal or nonfatal CHD or

stroke).

Our study involved major strengths. We considered concomitant information on conventional
CVD risk factors, PRS, and a panel of clinical biochemistry markers on more than 300,000
participants without a history of CVD at baseline. The validity of our findings was supported by
the broadly concordant results we observed when using complementary measures of risk
reclassification and discrimination, and by improvements in risk reclassification across the
absolute risk thresholds used in different clinical guidelines. To ensure that our public health
modelling was relevant to a general population, we adapted (i.e., recalibrated) the predicted risk

distributions obtained from UKB to be representative of those in a primary care population.??

The potential limitations of this study also merit consideration. Although we used a conventional
10-year timeframe and standard clinical risk categories, we acknowledge that reclassification
analyses are intrinsically sensitive to choice of follow-up interval and clinical risk categories.
Furthermore, since 10 years of follow up was not available for all UKB recruitment centres, 9-
year risk estimates were used in reclassification analyses. However, this limitation had minimal
impact on our findings because our recalibration approach allowed reliable translation of 9-year
risk estimates to 10-year risk estimates. Somewhat greater clinical impact than suggested by
our analysis would be estimated if we had used less conservative modelling assumptions (e.g.,
use of more effective statin regimens and longer time horizons) or alternative disease outcomes
(such as an exclusive focus on CHD rather than on CHD plus stroke). Conversely, our clinical

models could have overestimated potential benefits of assessing PRS and clinical biochemistry
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markers because not all people eligible for statins will receive them or be willing, adherent, or

able to take them.

A formal health economic evaluation was beyond the scope of this analysis, although we
acknowledge the importance of such detailed evaluations as part of future considerations. For
example, genome-wide array genotyping has a 1-time cost (approximately £40 at current prices)
and can be used to calculate PRS for CVD, as well as many other chronic diseases. Future
prospective studies are needed to evaluate strategies for incorporation of PRS into CVD
screening, such as a “genome-first” approach that invert current “conventional risk factors first”

approach to CVDs.

In summary, adding information on both PRS and selected biochemistry markers moderately
enhanced CVD predictive accuracy and could improve primary prevention of CVD. However, our
modelling suggested that targeted assessment of molecular markers among individuals at

intermediate-risk would be more efficient than blanket approaches.
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Figure 1: Study design

Element of analysis

Data sources

Deriyation 9f PRSs and selection ¢
of biochemistry markers

CARDIoGRAMplusC4D
60,801 CHD cases and 123,504 controls;

MEGASTROKE

67,162 stroke cases and 454,450 controls;

UK Biobank

306,654 individuals with no prior history of vascular disease, and

not on lipid-lowering treatment;
3333 CHD cases, 2347 stroke cases, during follow up

Quantification of incremental

UK Biobank

306,654 individuals with no prior history of vascular disease, and
not on lipid-lowering treatment;

3333 CHD cases, 2347 stroke cases, during follow up

UK Clinical Practice Research Datalink (CPRD)
3.1 million individuals without prior history of vascular diseases,
and not on lipid-lowering treatment

prediction ability —
Recalibration to a contemporary
primary care population ¢
\ 4
Modelling to estimate clinical
implications y

Hypothetical 100,000 individuals targeted for screening
Age- and sex-structure as in 2017 UK standard population
Incidence rates of CHD and stroke as in CPRD

PRS, Polygenic Risk Score. CHD, Coronary Heart Disease;
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Figure 2: Baseline characteristics of the 306,654 participants in UK Biobank and hazard
ratios for CVD adjusted for conventional risk predictors

Mean (SD), % HR (95% Cl)

Conventional risk predictors

Age, years 56.1 (8.0) = 1.70 (1.65, 1.75)
Men 42.4 = 2.11 (1.98, 2.24)
Current-smoker 10.2 = 2.42 (2.27, 2.59)
History of diabetes 1.2 —— 1.85 (1.58, 2.17)
Systolic blood pressure, mmHg 137.1 (18.3) = 1.31 (1.28, 1.34)
Total cholesterol, mmol/L 5.9 (1.0) =2 1.21 (1.18, 1.25)
HDL cholesterol, mmol/L 1.5 (0.4) = 0.77 (0.75, 0.80)
Polygenic risk scores (PRS)

PRS for coronary heart disease 0.0 (1.0) = 1.31 (1.27, 1.34)
PRS for stroke 0.0 (1.0) = 1.11 (1.08, 1.13)

Selected clinical biochemistry markers

Cystatin C, mg/L 0.9 (0.1) | 1.11 (1.10, 1.13)
Ln-C-reactive protein, mg/L 0.3 (1.1) = 1.19 (1.15, 1.22)
Ln-Lipoprotein (a), mg/dL 3.1(1.3) = 1.13 (1.10, 1.16)
Sex hormone-binding globulin, nmol/L 53.2 (28.5) = 1.11 (1.07, 1.15)
Hemoglobin A1c, mmol/mol 35.0 (4.9) | 1.07 (1.05, 1.09)
Creatinine, umol/L 71.1 (14.7) -] 1.04 (1.02, 1.06)
Albumin, g/L 45.2 (2.4) = 0.87 (0.85, 0.90)
Ln-Gamma-glutamyltransferase, iu/l 3.3 (0.6) = 1.10 (1.07, 1.13)
Ln-Alanine transaminase, iu/l 3.0 (0.5) =| 0.97 (0.94, 1.00)
0i5 1.0 2j0 3j0

Hazard ratio (95% Cl)
per SD higher or category

Hazard ratios (HRs) were estimated using Cox regression, stratified by study centre and sex, and adjusted for age at baseline, smoking
status, history of diabetes, systolic blood pressure, total cholesterol and HDL-cholesterol levels, where appropriate. For continuous
variables, HRs are shown for each SD higher of each predictor to facilitate comparison. For categorical variables, HRs are shown for men
vs. women, for patients with diabetes vs. without, for current smokers vs. others.
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Figure 3: Incremental predictive ability of polygenic risk score and clinical biochemistry markers for CVD outcomes, above conventional

risk predictors
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CVD, cardiovascular disease; CHD, coronary heart disease; PRS, polygenic risk score; *Reference model included information on information on age at baseline, sex, smoking status, history of diabetes,
systolic blood pressure, total cholesterol and HDL-cholesterol levels. PRSs for CVD included PRS for CHD and PRS for stroke as two variables. Clinical biochemistry markers were Cystatin C, C-reactive
protein, Lipoprotein (a), Sex hormone-binding globulin, Hemoglobin A1c, Creatinine, Albumin, Gamma-glutamyltransferase, Alanine transaminase (Figures S2 and Table S3).
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Figure 4: Continuous net reclassification improvement in risk prediction for CVD outcomes, with addition of information on polygenic risk
score, clinical biochemistry markers, and both, to conventional risk predictors
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CVD, cardiovascular disease; CHD, coronary heart disease; PRS, polygenic risk score; Conventional risk predictors included information on age at baseline, sex, smoking, systolic blood pressure, history of
diabetes, total cholesterol and HDL-cholesterol levels. Clinical biochemistry markers included Cystatin C, C-reactive protein, Lipoprotein (a), Sex hormone-binding globulin, Hemoglobin A1c, Creatinine,

Albumin, Gamma-glutamyltransferase, Alanine transaminase (Figures S2 and Table S3).
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Figure 5: Estimated public health impact with targeted assessment of polygenic risk score,
and clinical biochemistry markers among 100,000 UK adults in primary care setting
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