
1	
		

Use of polygenic risk scores and other molecular markers to enhance cardiovascular 

risk prediction: prospective cohort study and modelling analysis  

	

Luanluan Sun1*, DPhil; Lisa Pennells1*, PhD; Stephen Kaptoge1*, PhD; Christopher P Nelson2, PhD; Gad 

Abraham1,3, PhD; Matthew Arnold1, PhD; Steven Bell1, PhD; Thomas Bolton1, MSc; Stephen Burgess1, PhD; 

Frank Dudbridge2,4, PhD; Qi Guo1, PhD; Scott C Ritchie1,5, PhD; Eleni Sofianopoulou1, PhD; David Stevens1, 

MSc; John R Thompson2, PhD; Adam S Butterworth1, PhD; Angela Wood1, PhD; John Danesh1,6†, FMedSci; 

Nilesh J Samani2,4i†, FMedSci; Michael Inouye1,3, 5†, PhD; Emanuele Di Angelantonio1†, FRCP. 

 

1 Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK 

2 Department of Cardiovascular Sciences and NIHR Leicester Biomedical Centre, University of Leicester, 

Leicester, UK 

3 Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, 

Australia 

4 Department of Health Sciences, University of Leicester, Leicester, UK 

5 Cambridge Baker Systems Genomics Initiative, University of Cambridge, Cambridge, UK 

6 Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK 

 

* joint first author; † joint senior author 

 

 

Correspondence:   Emanuele Di Angelantonio 
       Cardiovascular Epidemiology Unit 

 Department of Public Health and Primary Care 
 University of Cambridge 
 Cambridge CB1 8RN, UK 
 Email: ed303@medschl.cam.ac.uk 

	
	
	
	
	
	
Word count: 3141  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 22, 2019. ; https://doi.org/10.1101/744565doi: bioRxiv preprint 

https://doi.org/10.1101/744565
http://creativecommons.org/licenses/by/4.0/


 
	

2 

Abstract (300/300 words) 

Background There is debate about the value of adding information on genetic and other 

molecular markers to conventional cardiovascular disease (CVD) risk predictors.  

 
Methods Using data on 306,654 individuals without a history of CVD from UK Biobank, we 

calculated measures of risk-discrimination and reclassification upon addition of polygenic risk 

scores (PRS) and a panel of 27 clinical biochemistry markers to a conventional risk prediction 

model (i.e., including age, sex, systolic blood pressure, smoking status, history of diabetes, total 

cholesterol and HDL cholesterol). We then modelled implications of initiating 

guideline-recommended statin therapy after the assessment of molecular markers for a UK 

primary-care setting. 

 
Findings The C-index was 0.710 (95% CI, 0.703-0.717) for a CVD prediction model containing 

conventional risk predictors alone. The C-index increased by similar amounts when adding 

information on PRS or biochemistry markers (0.011 and 0.014, respectively; P<0.001), and it 

increased still further (0.022; P<0.001) when information on both was combined. Among cases 

and controls, continuous net reclassification improvements were about 12% and 19%, 

respectively, when both PRS and biochemistry markers were added. If PRS and biochemistry 

markers were to be assessed in the entire primary care population aged 40-75, then it could 

help prevent one additional CVD event for every 893 individuals screened. By contrast, targeted 

assessment only among people at intermediate (i.e., 5-10%) 10-year CVD risk could help 

prevent one additional CVD event for every 233 individuals screened. This targeted strategy 

could help reclassify 16% of the intermediate-risk group to the high-risk (i.e., ≥10%) category, 

preventing 11% more CVD events than conventional risk prediction. 

	
Interpretation Adding information on both PRS and selected biochemistry markers moderately 

enhanced CVD predictive accuracy and could improve primary prevention of CVD. However, our 

modelling suggested that targeted assessment of molecular markers among individuals at 

intermediate-risk would be more efficient than blanket approaches.  
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INTRODUCTION 

A key strategy in the primary prevention of cardiovascular disease (CVD) is the use of risk 

prediction algorithms to target preventive interventions to people who may benefit from them 

most.1-6 These algorithms usually include information on conventional risk predictors, including 

age, sex, smoking history, history of diabetes, blood pressure, total cholesterol and high density 

lipoprotein (HDL) cholesterol.1-3 Widely practicable assay technologies have opened 

opportunities to enhance the accuracy of CVD risk prediction through addition of information on 

many molecular risk markers. For example, analysis that combines millions of genetic variants 

into polygenic risk scores (PRS) has shown potential to improve CVD risk prediction.7-10 

Furthermore, several clinical biochemistry markers – both individually and in combination - have 

been proposed to improve prediction when added to conventional risk factors.11-19  

 

Due to inter-related reasons, however, previous studies have been able to provide limited 

assessments.20-22 First, most studies have not recorded sufficient breadth of data to consider, 

both separately and in combination, the impact of using information on conventional risk 

predictors, PRS, and a panel of clinical biochemistry markers (beyond total- and HDL-

cholesterol). Second, previous studies have tended to involve moderate statistical power, 

whereas a high degree of power is needed to make reliable comparisons using such molecular 

data. Third, studies have often lacked modelling of clinical implications of initiating guideline-

recommended interventions (e.g., statin therapy) after the assessment of novel risk markers, 

yielding uncertainty about clinical utility.	

 

Our study, therefore, aimed to address two questions. First, what is the improvement in CVD 

risk prediction that can be achieved when PRS and multiple clinical biochemistry markers are 

added to predictors used in conventional risk algorithms? We analysed 306,654 participants from 

UK Biobank (UKB) to assess PRS and biochemistry markers both separately and in combination. 

Second, what is the estimated clinical impact of using information on molecular markers for CVD 

prediction? We modelled the potential clinical impact and evaluated the benefit of initiating statin 

therapy as recommended by guidelines in a contemporary primary care population setting.  
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METHODS 

Study design and overview  

Our study involved several interrelated components (Figure 1). First, we derived separate PRSs 

for CHD and stroke, and identified informative clinical biochemistry markers that could enhance 

prediction of incident CVD outcomes. Second, we studied these molecular markers using 

measures of risk discrimination and reclassification to quantify their incremental predictive value 

on top of conventional risk predictors. Third, to estimate the potential for disease prevention, 

we used a separate large dataset (based on contemporary computerised records from general 

practices in the UK) to adapt (i.e., recalibrate) our findings to the context of a primary prevention 

population eligible for CVD screening. Fourth, we modelled the clinical implications of initiating 

statin therapy as recommended by current guidelines comparing two different scenarios: a 

“blanket” approach (i.e., assessment of molecular markers in all individuals eligible for CVD 

primary prevention) and a “targeted” approach (i.e., focusing molecular assessment only in 

people judged to be at intermediate 10-year risk of CVD after initial screening with conventional 

risk predictors alone). Fifth, to help contextualise the potential clinical gains afforded by 

assessing PRS or a biochemistry panel, we compared them in the same dataset with the gains 

afforded by assessment of C-reactive protein alone. 

 

Data sources  

UK Biobank prospective study  

Details of the design, methods, and participants of UKB have been described previously.23,24 

Briefly, participants aged 40 to 75 years identified through primary care lists were recruited 

across 22 assessment centres throughout the UK between 2006 and 2010. At recruitment, 

information was collected via a standardized questionnaire and selected physical measurements. 

Details of the data used from UKB are provided in the Supplementary Appendix 1. Data were 

subsequently linked to Hospital Episode Statistics (HES), as well as national death and cancer 

registries. HES uses International Classification of Diseases (ICD)–9th and 10th Revisions to 

record diagnosis information, and Office of Population, Censuses and Surveys: Classification of 

Interventions and Procedures, version 4 (OPCS-4) to code operative procedures. Death registries 

include deaths in the UK, with both primary and contributory causes of death coded in ICD-10. 	
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Genotyping was undertaken using a custom-built genome-wide array of ~826,000 markers.23,25 

Imputation to ~96 million markers was subsequently carried out using the Haplotype Reference 

Consortium and UK10K/1000Genomes reference panels.25 Thirty circulating clinical biochemistry 

markers were measured at baseline in serum or red blood cells.26,27 These markers were selected 

for measurement in UKB for various reasons, including their relevance as established risk factors 

for chronic diseases, established diagnostic markers, and/or ability to reflect phenotypes not 

otherwise well-assessed or feasibly measured at scale.  

 

UK Clinical Practice Research Datalink  

To estimate the potential for disease prevention, we used data from the Clinical Practice 

Research Datalink (CPRD), a primary care database of anonymised medical records, with 

coverage of over 11.3 million patients who have opted into data linkage from 674 general 

practices in the UK. Individual-level data from consenting practices in the CPRD have been linked 

to HES and national death registry.  Details of the CPRD data used and endpoint definition are 

provided in the Supplementary Appendix 2. The present analysis involved records on a 

random sample of all CPRD data, including 3.1 million patients. Individuals in this database 

should be broadly representative of the UK general population.  

 

Statistical analysis 

Analyses included only participants of self-reported European ancestry, excluding those who: 1) 

had missing genotype array or clinical biochemistry marker information; 2) had prior history of 

vascular disease at baseline (i.e., coronary heart disease [CHD], other heart disease, stroke, 

transient ischaemic attack, peripheral vascular disease, angina, or cardiovascular surgery); 3) 

used lipid-lowering treatment at baseline; or 4) were included in the training dataset for PRS 

derivation (eFigure 1). The primary outcome was a first CVD event, defined as CHD (i.e., 

myocardial infarction or fatal CHD) or any stroke. Secondary outcomes included a combination 

of CHD, stroke, and cardiac revascularisation procedures (i.e., percutaneous transluminal 

coronary angioplasty [PTCA], and coronary artery bypass grafting [CABG]). Details of endpoints 

definitions are in eTable 1. 
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Separate PRSs for CHD and stroke were calculated as previously described,8,28,29 i.e., using the 

sum of each participant’s genome-wide genotypes weighted by corresponding genotype effect 

sizes (eFigure 2). Briefly, the PRS for CHD included 1,743,179 variants, using a meta-scoring 

approach to give a weighted average of three previous PRSs derived using summary statistics 

from up to 60,801 cases and 123,504 controls in studies from the CARDIoGRAMplusC4D 

Consortium.8,28 The PRS for stroke included 2,595,401 variants with effect sizes taken from up 

to 67,162 cases and 454,450 controls in the MEGASTROKE Consortium.29  

 

Of the 30 circulating clinical biochemistry markers measured in UKB, 27 biomarkers were 

evaluated in the current analysis (eTable 2) because the remainder were either sex-specific 

markers (i.e., testosterone and oestradiol) or had >90% with missing values (i.e., rheumatoid 

factor). Biomarker values reported as being below or above the detectable range of assays were 

replaced with the minimum and maximum value reported in the available data. Distributions of 

continuous predictors were checked using histograms and box plots, and predictors with 

positively skewed distributions were natural log-transformed. To select informative clinical 

biochemistry markers, forward stepwise variable selection was applied using significance 

threshold of P <0.0001 (eFigure 2), yielding the following nine markers: cystatin C, 

lipoprotein(a), C-reactive protein, sex hormone-binding globulin, haemoglobin A1c, creatinine, 

albumin, gamma-glutamyltranferse, and alanine transaminase (eTable 3). 

 

To quantify associations between potential risk predictors and incident outcomes, hazard ratios 

(HR) were calculated using Cox proportional hazards models, stratified by study centre and sex, 

and using time since study entry as the timescale. Outcomes were censored if a participant was 

lost to follow-up, died from non-CVD causes, or up to currently available end of follow-up (31 

March, 2017). All predictors were entered as linear terms, after visual checking for log-linearity. 

No violation of the proportional hazards assumption was identified.  

 

The incremental predictive ability of PRS and selected clinical biochemistry markers was assessed 

upon addition (as linear terms) to a model containing conventional CVD risk predictors, including 

age, sex, systolic blood pressure, smoking status, history of diabetes, total cholesterol and HDL 
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cholesterol. Risk discrimination was assessed using Harrell’s C-index, stratified by UKB 

recruitment centre and sex, which estimated the probability of correctly ranking who will have 

an event first in a randomly selected pair of participants.30,31 To avoid optimism, we applied ten-

fold cross-validation analyses for the main analyses. Improvements in risk prediction were also 

quantified using the continuous net reclassification improvement (cNRI), which summarises 

appropriate directional change in risk predictions for those who do and do not experience an 

event during follow-up (with increases in predicted risk being appropriate for cases and 

decreases being appropriate for non-cases).32  

 

To assess the public health and clinical relevance of adding PRS and the selected biochemistry 

markers to conventional risk predictors, we generalised our reclassification analyses to the 

context of a primary prevention UK population eligible for screening (eFigure 3). We 

recalibrated risk prediction models derived in UKB to represent 10-year risks that would be 

expected in a UK primary care setting using CPRD data,33 using methods previously described.34  

 

We then modelled a population of 100,000 adults aged 40-75 years, with an age and sex profile 

as contemporary UK population (2017 mid-year population, https://www.ons.gov.uk/), and CVD 

incidence rates as observed in individuals without previous CVD and not on statin treatment at 

registration, in the CPRD. We assumed an initial policy of statin allocation for people at ≥10% 

predicted 10-year risk as recommended by current National Institute for Health and Care 

Excellence (NICE) guidelines.6 We then modelled additional targeted assessment of PRS, clinical 

biochemistry markers, or both, among people at intermediate (5%-10% predicted 10-year risk) 

to estimate the potential for additional treatment allocation and case prevention, assuming statin 

allocation would reduce CVD risk by 20%.35 Details of the statistical analyses are provided in the 

Supplementary Appendix 3. Analyses were performed with PLINK 2.0,36 and Stata version 

14, with two-sided p-values and 95% confidence intervals. 

 
Role of the funding source 

The funders of the study did not have any role in the study design, data analysis, or reporting 

of this manuscript. All authors gave approval to submit for publication. 
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RESULTS  

Characteristics of the study participants 

Among 306,654 participants of European ancestry without a history of CVD and not on lipid-

lowering treatment, the mean (SD) age was 56 (8) years, and 43% were men (eTable 4). 

During 2.6 million person-years at risk (median [5th,95th percentile] follow-up of 8.1 [6.8-9.4] 

years), 3333 CHD and 2347 stroke events were recorded. Associations of PRS or biochemistry 

markers with CVD outcomes were approximately log-linear (eFigures 4-5). Figure 2 shows the 

baseline characteristics of participants, as well as HRs for CVD adjusted for conventional risk 

predictors. HRs for CHD and stroke outcomes separately and for the composite secondary 

outcome (including CHD, stroke, CABG and PTCA) are presented in eFigure 6. 

 

Incremental value in risk prediction  

The C-index was 0.710 (95% CI, 0.703-0.717) for a CVD prediction model containing 

conventional risk predictors alone. Addition of information on PRS or nine selected clinical 

biochemistry markers increased the C-index by 0.011 (0.009-0.014) and 0.014 (0.011-0.017), 

respectively (Figure 3). When both PRS and biochemistry markers were added to the model, 

the C-index increased by 0.022 (0.019-0.026). Incremental risk prediction afforded by PRS 

and/or biochemistry markers was greater than that afforded by assessment of each individual 

biomarker including C-reactive protein (eFigure 7). Among cases and controls, cNRIs for CVD 

were 10.1% (7.2%-13.1%) and 12.2% (11.8%-12.6%) for PRS; 7.1% (4.1%-10.1%) and 

17.1% (16.7%-17.5%) for biochemistry markers; and 12.2% (9.2%-15.3%) and 18.7% 

(18.3%-19.0%) for both sets of markers (Figure 4, and eFigure 8). The predictive value of 

PRS and/or biochemistry markers was greater for CHD than for stroke outcomes (Figures 3-4). 

 

The effects of adding information on PRS and biochemistry markers were similar in analyses that 

included: measures of body-mass index or family history of CVD or both of the preceding factors 

in the prediction model (eFigure 9); participants receiving lipid-lowering treatment at baseline 

(eFigure 10); broader definitions of CVD outcomes (i.e., CHD, stroke, PTCA and CABG; 

eFigure 11). The C-index changes with PRS were somewhat greater in men than women, but 

similar across age groups (eTable 5). 
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Estimate of the potential for disease prevention 

We modelled targeted assessment of PRS and biochemistry markers in a hypothetical population 

of 100,000 adults aged 40-75 years, assuming the current UK population age and sex structure 

and CVD incidence rates observed in UK primary care. Under this scenario, we estimated that, 

using conventional risk predictors alone, there would be 25,562 individuals classified as 

intermediate 10-year risk (i.e., 5%-10%) who were not already taking or eligible for statin 

treatment (i.e., people without a history of diabetes or CVD and with LDL-cholesterol <5.0 

mmol/L; Figure 5). Additional assessment of PRS and clinical biochemistry markers in these 

individuals would reclassify 4013 individuals as high-risk (i.e., ≥10%), of whom approximately 

548 would be expected to have a CVD event within 10 years. This would correspond to about 

10.7% of the CVD events already classified at high risk using conventional risk predictors alone.  

 

Assuming statin allocation per current guidelines (i.e., those with 10-year CVD risk ≥10%) and 

statin treatment conferring a 20% relative risk reduction, such targeted assessment would help 

prevent 110 (i.e., 548 × 0.2) events over the next 10-year period. In other words, targeted 

assessment of PRS and biochemistry markers in individuals at intermediate-risk for a CVD event 

could help prevent one additional event over 10 years for every 233 people so screened. For 

comparison, the corresponding number needed to screen with targeted assessment of PRS, nine 

selected clinical biochemistry markers, or C-reactive protein alone would be 287, 305 or 503, 

respectively (Figure 5 and eTable 6). Similar results were observed when analysis involved 

cut-offs for clinical risk categories defined by the other guidelines (eFigure 12 and eTable 7).   

 

In contrast with a targeted approach, we also modelled a “blanket” strategy of assessing PRS 

and biochemistry markers in all adults aged 40-75 years. In this scenario, 4250 individuals would 

be reclassified from low- or intermediate-risk (i.e., <10%) to high-risk (i.e., ≥10%), and 5173 

individuals would be reclassified from high-risk to low- or intermediate-risk, of whom 

approximately 561 and 443 would be expected to have a CVD event within 10 years, respectively 

(eFigure 13 and eTable 8), suggesting the need to screen 893 people with additional 

assessment of PRS and biochemistry markers to help prevent one additional event over 10 years.  
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DISCUSSION  

Our study has yielded several findings of potential relevance to CVD risk prediction. First, our 

results indicate that assessment of either PRS or nine molecular markers moderately enhanced 

CVD prediction accuracy, affording similar gains to each other when added to conventional risk 

predictors. Furthermore, when information on both PRS and biochemistry markers was used in 

combination, the gain in predictive accuracy was largely additive, suggesting that these different 

sets of markers synergistically capture non-overlapping information about pathways that are 

uncorrelated (or weakly correlated) with conventional risk factors.  

 

Second, our results argue in favour of targeted use of additional information on PRS and clinical 

biochemistry markers, rather than their “blanket” use, in screening approaches. We modelled a 

scenario in which PRS and biochemistry markers were assessed in a primary care setting only 

among individuals considered at “intermediate” risk (i.e., predicted 10-year CVD risk of 5-10%) 

after initial screening with conventional risk predictors alone. In a hypothetical population of 

100,000 adults, we found that such targeted assessment of additional risk factors could reclassify 

approximately 16% (i.e., 4013/25,562) of people screened to a high-risk category (i.e., ≥10% 

predicted CVD risk), of whom 14% would be expected to have a CVD event within 10 years. If 

such an approach were to be coupled with initiation of statin therapy in accordance with 

guidelines, our data suggest one extra CVD outcome could be prevented over a period of 10 

years for approximately every 230 people in whom both PRS and biochemistry markers are 

assessed. By contrast, a blanket approach in which PRS and biochemistry markers were to be 

assessed among all individuals relevant to a primary prevention setting would require the 

screening of 890 people to prevent one additional CVD outcome, i.e., a strategy that would be 

almost four-fold less efficient.	

 

Third, a head-to-head comparison in our study has suggested that assessment of either PRS or 

a panel of biochemistry markers affords about two-fold greater predictive gains than assessment 

of C-reactive protein alone. This comparison might help contextualise the potential clinical gains 

afforded by assessing PRS and a biochemistry panel because C-reactive protein assessment 

alone has been recommended by some guidelines as an adjunct to CVD risk prediction.37  
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Fourth, we found that assessment of PRS and biochemistry markers could improve prediction of 

CHD outcomes much more than they improve prediction of stroke outcomes. Reasons for such 

differential gains may relate to both the greater phenotypic heterogeneity of stroke outcomes,38-

40 and the relatively lower statistical power of previous GWAS studies of stroke,29 compared with 

CHD.28,40 Nevertheless, to reflect current guidelines and practice in CVD prevention, the primary 

outcome of our study was any first cardiovascular event (defined as fatal or nonfatal CHD or 

stroke). 

 

Our study involved major strengths. We considered concomitant information on conventional 

CVD risk factors, PRS, and a panel of clinical biochemistry markers on more than 300,000 

participants without a history of CVD at baseline. The validity of our findings was supported by 

the broadly concordant results we observed when using complementary measures of risk 

reclassification and discrimination, and by improvements in risk reclassification across the 

absolute risk thresholds used in different clinical guidelines. To ensure that our public health 

modelling was relevant to a general population, we adapted (i.e., recalibrated) the predicted risk 

distributions obtained from UKB to be representative of those in a primary care population.23  

 

The potential limitations of this study also merit consideration. Although we used a conventional 

10-year timeframe and standard clinical risk categories, we acknowledge that reclassification 

analyses are intrinsically sensitive to choice of follow-up interval and clinical risk categories. 

Furthermore, since 10 years of follow up was not available for all UKB recruitment centres, 9-

year risk estimates were used in reclassification analyses. However, this limitation had minimal 

impact on our findings because our recalibration approach allowed reliable translation of 9-year 

risk estimates to 10-year risk estimates. Somewhat greater clinical impact than suggested by 

our analysis would be estimated if we had used less conservative modelling assumptions (e.g., 

use of more effective statin regimens and longer time horizons) or alternative disease outcomes 

(such as an exclusive focus on CHD rather than on CHD plus stroke). Conversely, our clinical 

models could have overestimated potential benefits of assessing PRS and  clinical biochemistry 
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markers because not all people eligible for statins will receive them or be willing, adherent, or 

able to take them.  

 

A formal health economic evaluation was beyond the scope of this analysis, although we 

acknowledge the importance of such detailed evaluations as part of future considerations. For 

example, genome-wide array genotyping has a 1-time cost (approximately £40 at current prices) 

and can be used to calculate PRS for CVD, as well as many other chronic diseases. Future 

prospective studies are needed to evaluate strategies for incorporation of PRS into CVD 

screening, such as a “genome-first” approach that invert current “conventional risk factors first” 

approach to CVDs.  

 

In summary, adding information on both PRS and selected biochemistry markers moderately 

enhanced CVD predictive accuracy and could improve primary prevention of CVD. However, our 

modelling suggested that targeted assessment of molecular markers among individuals at 

intermediate-risk would be more efficient than blanket approaches.  
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Figure 1: Study design         
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Figure 2: Baseline characteristics of the 306,654 participants in UK Biobank and hazard 
ratios for CVD adjusted for conventional risk predictors  

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Hazard ratios (HRs) were estimated using Cox regression, stratified by study centre and sex, and adjusted for age at baseline, smoking 
status, history of diabetes, systolic blood pressure, total cholesterol and HDL-cholesterol levels, where appropriate. For continuous 
variables, HRs are shown for each SD higher of each predictor to facilitate comparison. For categorical variables, HRs are shown for men 
vs. women, for patients with diabetes vs. without, for current smokers vs. others.  
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Figure 3: Incremental predictive ability of polygenic risk score and clinical biochemistry markers for CVD outcomes, above conventional 
risk predictors 

 

 

 

 

 

 

 

 

	

	

	

	

	

	

CVD, cardiovascular disease; CHD, coronary heart disease; PRS, polygenic risk score; *Reference model included information on information on age at baseline, sex, smoking status, history of diabetes, 
systolic blood pressure, total cholesterol and HDL-cholesterol levels. PRSs for CVD included PRS for CHD and PRS for stroke as two variables. Clinical biochemistry markers were Cystatin C, C-reactive 
protein, Lipoprotein (a), Sex hormone-binding globulin, Hemoglobin A1c, Creatinine, Albumin, Gamma-glutamyltransferase, Alanine transaminase (Figures S2 and Table S3).  
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Figure 4: Continuous net reclassification improvement in risk prediction for CVD outcomes, with addition of information on polygenic risk 
score, clinical biochemistry markers, and both, to conventional risk predictors 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

 
 
 
CVD, cardiovascular disease; CHD, coronary heart disease; PRS, polygenic risk score; Conventional risk predictors included information on age at baseline, sex, smoking, systolic blood pressure, history of 
diabetes, total cholesterol and HDL-cholesterol levels. Clinical biochemistry markers included Cystatin C, C-reactive protein, Lipoprotein (a), Sex hormone-binding globulin, Hemoglobin A1c, Creatinine, 
Albumin, Gamma-glutamyltransferase, Alanine transaminase (Figures S2 and Table S3).  
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Figure 5: Estimated public health impact with targeted assessment of polygenic risk score, 
and clinical biochemistry markers among 100,000 UK adults in primary care setting 
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