

1 **MCL-1 inhibition by selective BH3 mimetics disrupts**
2 **mitochondrial dynamics in iPSC-derived cardiomyocytes**

3

4

5

6 ^{1,2}Megan L. Rasmussen, ^{1,2}Nilay Taneja, ¹Abigail C. Neininger, ²Lili Wang, ¹Linzheng Shi, ²Bjorn C.
7 Knollmann, ^{1,3,5}Dylan T. Burnette and ^{1,3,4,5,6,*}Vivian Gama

8

9 ¹Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240

10 ²Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Center for

11 Arrhythmia Research and Therapeutics, Department of Medicine, Nashville, TN

12 ³Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN

13 ⁴Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN

14 ⁵Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN

15 ⁶Lead Contact

16

17 [#]These authors contributed equally

18

19 **Correspondence should be addressed to:*

20 vivian.gama@vanderbilt.edu

21

22

23

24

25

26

27 **Running Title:** MCL-1 inhibition disrupts mitochondrial dynamics in hPSC-CMs

28

29

30

31

32

33

34

35

36

37

38

39 **Summary**

40 MCL-1 is a well characterized inhibitor of cell death that has also been shown to be a
41 regulator of mitochondrial dynamics in human pluripotent stem cells (hPSCs). We used
42 cardiomyocytes derived from hPSCs (hPSC-CMs) to uncover whether MCL-1 is crucial for cardiac
43 function and survival. Inhibition of MCL-1 by BH3 mimetics, resulted in the disruption of
44 mitochondrial morphology and dynamics as well as disorganization of the actin cytoskeleton.
45 Interfering with MCL-1 function affects the homeostatic proximity of DRP-1 and MCL-1 at the outer
46 mitochondrial membrane, resulting in decreased functionality of hPSC-CMs. BH3 mimetics
47 targeting MCL-1 are promising anti-tumor therapeutics. Cardiomyocytes display abnormal
48 functional cardiac performance even after caspase inhibition, supporting a non-apoptotic activity
49 of MCL-1 in hPSC-CMs. Progression towards using BCL-2 family inhibitors, especially targeting
50 MCL-1, depends on understanding not only its canonical function in preventing apoptosis, but
51 also in the maintenance of mitochondrial dynamics and function.

52

53

54

55

56

57

58

59

60

61

62 **Keywords:** Apoptosis, MCL-1, pluripotent stem cells, cardiomyocytes, mitochondria, DRP-1,
63 OPA1, BH3, cancer, mitochondrial dynamics

64

65 **Introduction**

66 Myeloid cell leukemia-1 (MCL-1) was originally identified as an early-induced gene in human
67 myeloid leukemia cell differentiation (Kozopas et al., 1993; Reynolds et al., 1996; Yang et al.,
68 1996). MCL-1 is structurally similar to other anti-apoptotic BCL-2 (B cell lymphoma-2) family
69 proteins (i.e. BCL-2, BCL-XL (B cell lymphoma extra-large)) (Chipuk et al., 2010). However, its
70 larger, unstructured N-terminal domain and shorter half-life likely indicated that MCL-1 was not
71 completely functionally redundant with other anti-apoptotic proteins (Perciavalle and Opferman,
72 2013). Supporting this idea, MCL-1 has been shown to be essential for embryonic development
73 and for the survival of various cell types, including cardiomyocytes, neurons, and hematopoietic
74 stem cells (Rinkenberger et al., 2000; Thomas et al., 2010; Wang et al., 2013; Opferman, 2016).

75 MCL-1 is one of the most amplified genes in human cancers and is frequently associated
76 with resistance to chemotherapy (Beroukhim et al., 2010; Perciavalle and Opferman, 2013).
77 Earlier work demonstrated that *MCL-1* genetic deletion is peri-implantation lethal in
78 embryogenesis, not due to defects in apoptosis, but rather due to a combination of an embryonic
79 developmental delay and an implantation defect (Rinkenberger et al., 2000). However, the non-
80 apoptotic mechanism by which MCL-1 functions in normal and cancerous cells is still unclear. We
81 previously reported that MCL-1 regulates mitochondrial dynamics in human pluripotent stem cells
82 (hPSCs, which refers to both human embryonic stem cells (hESCs) and induced pluripotent stem
83 cells (hiPSCs)) (Rasmussen et al., 2018). We found that MCL-1 maintains mitochondrial network
84 homeostasis in hPSCs through interactions with Dynamin related protein-1 (DRP-1) and Optic
85 atrophy type 1 (OPA1). In this study, we investigated whether this non-apoptotic role of MCL-1
86 remains as stem cells differentiate, using cardiomyocytes derived from human induced pluripotent
87 stem cells (hiPSC-CMs).

88 Mitochondrial fusion promotes elongation of the mitochondrial network, which is key for
89 mitochondrial DNA (mtDNA) homogenization and efficient assembly of the electron transport
90 chain (ETC) (Westermann, 2010; Friedman and Nunnari, 2014). Loss of mitochondrial fusion has

91 been implicated as a mechanism for the onset of dilated cardiomyopathy (Dorn, 2013).
92 Mitochondria also regulate cardiomyocyte differentiation and embryonic cardiac development
93 (Kasahara et al., 2013; Kasahara and Scorrano, 2014; Cho et al., 2014). However, there is limited
94 information about the mechanisms used by cardiomyocytes to minimize the risks for apoptosis,
95 especially in cells derived from highly sensitive stem cells (Imahashi et al., 2004; Murriel et al.,
96 2004; Gama and Deshmukh, 2012; Dumitru et al., 2012; Walensky, 2012).

97 Ultrastructural changes have long been observed in response to alterations in oxidative
98 metabolism (Hackenbrock, 1966; Khacho et al., 2016). It has become increasingly clear that
99 individual mitochondrial shape changes can also have dramatic effects on cellular metabolism.
100 Mitochondrial morphology and cristae structure are influenced by fission and fusion events;
101 subsequently, ETC complexes that reside on the inner mitochondrial membrane are disrupted
102 upon aberrant fission (Chan, 2007). Several human diseases, such as MELAS (Muscle atrophy,
103 Encephalopathy, Lactic Acidosis, Stroke-like episodes) and Dominant Optic Atrophy (DOA), are
104 associated with mutations in the mitochondrial dynamics and mitochondrial metabolism
105 machineries (Chan, 2007; Hsu et al., 2016). Likewise, many neurological conditions, including
106 Parkinson's disease, Huntington's disease, and Charcot-Marie Tooth Type 2 syndrome, can
107 originate from alterations in mitochondrial dynamics and metabolic regulation (Itoh et al., 2013;
108 Burté et al., 2015). Besides neurological conditions, several studies in the heart suggest that
109 alterations in mitochondrial dynamics causes abnormal mitochondrial quality control, resulting in
110 the buildup of defective mitochondria and reactive oxygen species (ROS) (Galloway and Yoon,
111 2015; Song et al., 2017). Interestingly, it has been shown that modulating the production of ROS
112 can favor or prevent differentiation into cardiomyocytes (Buggisch et al., 2007; Murray et al.,
113 2014). Thus, specific metabolic profiles controlled by mitochondrial dynamics are likely critical for
114 hiPSC-CMs, since they can influence cell cycle, biomass, metabolite levels, and redox state
115 (Zhang et al., 2012).

116 It is not completely understood how dynamic changes in metabolism affect cardiomyocyte
117 function. Deletion of MCL-1 in murine heart muscle resulted in lethal cardiomyopathy, reduction
118 of mitochondrial DNA (mtDNA), and mitochondrial dysfunction (Wang et al., 2013). Inhibiting
119 apoptosis via concurrent BAK/BAX knockout allowed for the survival of the mice; conversely, the
120 mitochondrial ultrastructure abnormalities and respiratory deficiencies were not rescued. These
121 results indicate that MCL-1 also has a crucial function in maintaining cell viability and metabolic
122 profile in cardiomyocytes. Despite these efforts, the non-apoptotic mechanism by which MCL-1
123 specifically functions in cardiomyocytes is still unknown. Furthermore, a role for MCL-1 in the
124 regulation of mitochondrial dynamics in cardiac cells has not yet been defined. Here we describe
125 findings that MCL-1 is essential for the survival of hiPSC-CMs by maintaining mitochondrial
126 morphology and function.

127

128 **Results and Discussion**

129

130 **MCL-1 inhibition causes severe defects in hiPSC-CM mitochondrial network.**

131 Recently published small molecule inhibitors of MCL-1 have been anticipated as potent anti-
132 tumor agents against MCL-1-dependent cancers with limited cardiotoxicity in mouse models
133 (Cohen et al., 2012; Kotschy et al., 2016; Letai, 2016). Thus, we chose to use hiPSC-CMs (Figure
134 1A) to examine the effects of MCL-1 inhibition on mitochondrial morphology, using the small
135 molecule inhibitor S63845 (Kotschy et al., 2016), combined with structured illumination
136 microscopy (SIM) to observe mitochondria at high-resolution (Figure 1B). Cardiomyocytes were
137 imaged after 4 days of treatment with vehicle (DMSO) or MCL-1 inhibitor (MCL-1*i*/S63845) and
138 the caspase inhibitor Q-VD-OPh (QVD) (Figure 1B). We found that MCL-1 inhibition had
139 significant effects on iPSC-CM mitochondrial morphology. Mitochondrial networks in S63845-
140 treated cells were severely disrupted, with individual mitochondria becoming more fragmented
141 and globular, as opposed to elongated and interconnected networks in control cells (Figure 1C).

142 In a previous report, MCL-1 inhibition using RNAi also resulted in mitochondria morphology
143 defects including severe cristae disruption and remarkable vacuolation in the mitochondrial matrix
144 (Guo et al., 2018). Recent reports have determined that MCL-1 functions not only as an apoptosis
145 regulator but also as a modulator of mitochondrial morphology and dynamics (Perciavalle et al.,
146 2012; Morciano et al., 2016; Rasmussen et al., 2018). Thus, we hypothesized that inhibiting MCL-
147 1 with BH3 mimetics would affect the functionality of human cardiomyocytes, due to the disruption
148 of crucial MCL-1 interactions with the mitochondrial dynamics machinery, which ultimately will
149 lead to cell death.

150

151 **MCL-1 inhibition affects contractility of iPSC-CMs and myofibril assembly in a caspase-
152 independent manner.**

153 MCL-1 inhibition by S63845 was shown to have minimal effects on murine ejection fraction
154 (Kotschy et al., 2016) and on overall cardiac function in human cardiomyocytes (Guo et al., 2018).
155 These results are intriguing considering previous studies reporting that MCL-1 deletion from
156 murine cardiomyocytes has severe effects on mitochondrial morphology and cardiac function,
157 which were not rescued by co-deletion of BAK and BAX (Wang et al., 2013). We treated human
158 iPSC-CMs with S63845, while inhibiting caspase activity, and measured spontaneous beating
159 using phase-contrast live-cell imaging. We observed lower numbers of beating cells when treated
160 with 1-2 μ M MCL-1*i* (S63845), and the cells that were beating appeared to beat more slowly
161 (Figure S1A-C). To assess these defects more rigorously, we plated cells on a multi-electrode
162 array (MEA) plate and examined cardiac function using the Axion Biosystems analyzer (Clements
163 and Thomas, 2014) (Figure 2A). We observed that MCL-1 inhibition caused severe defects in
164 cardiomyocyte functionality after just 18 hours of the first treatment (Figure 2B-D). In particular,
165 beat period irregularity was significantly increased (Figure 2B), while spike amplitude and spike
166 slope means were decreased (Figure 2C-D). The differences between beat period mean and
167 conduction velocity mean at this time point were not significant (Figure S1D-E); however, at just

168 two days of treatment with MCL-1 inhibitor, cardiomyocytes became quiescent and stopped
169 beating altogether (Figure S1F-J). These results implicate tachycardia and arrhythmia
170 phenotypes in cardiomyocytes exposed to S63845. To probe whether these cells are also
171 sensitive to BCL-2 inhibition, we also treated hiPSC-CMs with the BCL-2 inhibitor Venetoclax
172 (ABT-199) (Souers et al., 2013). In the same treatment paradigm, ABT-199 had no effect on
173 hiPSC-CM functionality compared to control cells (Figure S1C-G). These results suggest that
174 hiPSC-CMs are highly dependent on MCL-1, but not BCL-2, for function and survival. Intriguingly,
175 we also observed significant changes in the structure and integrity of the actin network and
176 subsequent myofibril organization in cells treated with MCL-1 inhibitor (Figure 2E). hiPSC-CMs
177 displayed poor Z-line organization, lower density of F-actin, and increased presence of stress
178 fibers (Figure 2E). Blinded quantification of F-actin organization revealed that MCL-1 inhibitor-
179 treated cells had significantly less organized myofibril structure (Figure 2F).

180

181 **MCL-1 co-localizes with mitochondrial dynamics proteins in hiPSC-CMs, and S63845**
182 **disrupts MCL-1:DRP-1 co-localization.**

183 Since MCL-1 inhibition disrupted mitochondrial network integrity in hiPSC-CMs and MCL-1
184 depletion affects mitochondrial dynamics proteins (Rasmussen et al., 2018), we next examined
185 the effects of MCL-1 inhibition on the expression levels of key mitochondrial proteins. MCL-1
186 inhibitor-treated cells had a significant increase in the expression levels of DRP-1 (Figure 3A-B)
187 and MCL-1 (Figure 2C-D). Previous studies using S63845 (Kotschy et al., 2016) also reported
188 the induction of MCL-1 expression. There were no significant changes in the expression levels of
189 phospho-DRP-1 (pDRP-1 S616), OPA1 or TOM20 (Figure 2C-D and Figure S3A). We then
190 assessed whether MCL-1 interacts with these GTPases responsible for maintaining mitochondrial
191 morphology and dynamics using *in situ* proximity ligation assay (PLA). Our data shows that MCL-
192 1 is in close proximity to both DRP-1 and OPA1 (Figure 3E-H). PLA puncta were quantified and
193 normalized to the number of puncta in the control sample (Figure S2B). The co-localization of

194 MCL-1 with DRP-1, but not OPA1, was disrupted upon inhibition of MCL-1 with S63845 (Figure
195 3E-F), suggesting that MCL-1 interacts with DRP-1 through its BH3 binding groove. Since the
196 interaction with OPA1 was not disturbed (Figure 3G-H), it is possible that MCL-1 interacts with
197 OPA1 either through a different domain, or with a different isoform of OPA1 in hiPSC-CMs than
198 in hPSCs (Rasmussen et al., 2018). Another possibility is that, upon differentiation, the small
199 molecule can no longer penetrate the inner mitochondrial membrane.

200 DRP-1 is shuttled to the outer mitochondrial membrane upon activation. In our previous
201 study, we showed that MCL-1 depletion decreases the activity of DRP-1 and promotes
202 mitochondrial elongation (Rasmussen et al., 2018). Since MCL-1 inhibition with S63845 appeared
203 to cause mitochondrial fragmentation in cardiomyocytes, we hypothesized that more DRP-1
204 would be activated and brought to the mitochondria to initiate fission. However, levels of active
205 DRP-1 (pDRP-1 S616) that co-localized with mitochondria decreased in S63845-treated hiPSC-
206 CMs (Figure S3A-B). To further assess the disruption of the mitochondrial network caused by
207 MCL-1 inhibition, we employed an assay using a photo-convertible plasmid (mito-tdEos) to assess
208 connectivity and fusion/motility of mitochondria. After photo-conversion, we saw that both the
209 initial converted area and the spread of the converted signal after 20 minutes were significantly
210 decreased (Figure 4A-D). This fragmentation caused by MCL-1 inhibition was also DRP-1
211 dependent, since knockdown of DRP-1 rescued the increased fragmentation in S63845-treated
212 cells (Figure 4E-F and Figure S3C). The recruitment of DRP-1 to the mitochondria has been
213 proposed to be a critical inducer of mitophagy (Lee et al., 2011; Kageyama et al., 2014; Burman
214 et al., 2017). Thus, an interesting possibility is that inhibition of MCL-1 is decreasing clearing of
215 damaged mitochondria in cardiomyocytes due to the decrease in recruitment of active DRP-1.

216

217 **MCL-1 inhibition results in iPSC-CM death**

218 To examine whether iPSC-CMs treated with MCL-1 inhibitor were still sensitive to caspase-
219 mediated cell death, we treated the cells with increasing doses of S63845 and examined the

220 activation of caspase-3 and caspase-7 in the absence of QVD. Cells responded to S63845 in a
221 dose-dependent manner after 48 hours, with 1-2 μ M MCL-1*i* inducing the most caspase activity
222 (Figure 5A). To examine the possibility that cardiomyocytes were dying independently of caspase-
223 3 activation, we used the Incucyte live cell imaging system and indeed found similar levels of cell
224 death with and without caspase inhibition (Figure S4A-B). These results indicate that iPSC-CMs
225 are committing to a caspase-independent cell death in response to MCL-1 inhibition. Previous
226 reports have established that iPSC-derived cardiomyocytes are more similar to immature
227 progenitor cells. To test the possibility that the effects were caused by this immature state, we
228 used a previously published hormone-based method for cardiomyocyte maturation (Figure 5B-C)
229 (Parikh et al., 2017). We tested for caspase-3/7 activation after 24 hours of treatment with
230 increasing doses of S63845 and detected similar effects of MCL-1 inhibition in hormone-matured
231 hiPSC-CMs and vehicle-treated hiPSC-CMs. (Figure 5D-E). These results together with previous
232 work from other groups (Thomas et al., 2013; Wang et al., 2013) highlight the importance of
233 extended and rigorous testing of safety and potential off-target effects of MCL-1 inhibitors on
234 human cardiomyocytes.

235

236 **Long-term MCL-1 inhibition, but not BCL-2 inhibition, causes defects in cardiomyocyte
237 functionality**

238 MCL-1 inhibition has significant effects on hiPSC-CM contractility and functionality when
239 used at higher doses (Figure 2B-D and Figure S1C-G). To test if MCL-1 inhibition still depletes
240 cardiac functionality at lower doses, we treated hiPSC-CMs for two weeks (with treatments every
241 two days) with 100 nM S63845. We also treated the cells with the BCL-2 inhibitor ABT-199 (100
242 nM) and a combination of S63845 + ABT-199 (100 nM each). While there were no significant
243 differences between treatments in the spike slope mean (Figure 6B) and beat period mean (Figure
244 S5A), either MCL-1 inhibition alone or the combination treatment significantly disrupted hiPSC-
245 CM spike amplitude mean (Figure 6A), conduction velocity mean (Figure 6C), max delay mean

246 (Figure 6D), propagation consistency (Figure 6E), and field potential duration (Figure S5B). Cells
247 treated with ABT-199 appeared healthy and were functionally similar to control cells throughout
248 the experiment (Figure 6A-E and Figure S5A-B). Cells displayed mitochondrial network and actin
249 disruption in the S63845-treated condition, and even more severe phenotypes were observed in
250 cells treated with both inhibitors when compared to control cells (Figure 6F-I and Figure S5C-F).
251 BCL-2 inhibition had little effect on mitochondrial network organization and virtually no effect on
252 myofibril organization (Figure 6H and Figure S5E). These results further support the idea that
253 MCL-1 plays an important role in the mitochondrial homeostasis of cardiomyocytes. It would be
254 of interest to determine whether MCL-1 function in mitochondrial dynamics affects the maturation
255 of iPSC-CMs or heart development *in vivo* (Kasahara et al., 2013; Feaster et al., 2015; Parikh et
256 al., 2017). We speculate that other determinants of mitochondrial homeostasis, including
257 mitochondrial biogenesis and mitophagy, may be affected by MCL-1 deficiency in these cells as
258 they mature.

259 Whether the function of MCL-1 in mitochondrial dynamics is critical for maintaining the
260 metabolic profile of iPSC-CMs is not known. Studies from our laboratory show that inhibition of
261 MCL-1 induces the differentiation of iPSCs (Rasmussen et al., 2018), which is likely associated
262 with changes in metabolism to support cell-type specific processes (Folmes et al., 2016). Since
263 mitochondrial morphology is tightly coupled to cellular respiration via integrity of the ETC, future
264 studies will aim to investigate the metabolic changes that occur when MCL-1 is deleted in iPSC-
265 CMs. Cardiac contractions depend on energy from these metabolic pathways, and thus cardiac
266 mitochondria are forced to work constantly and likely require strict quality control mechanisms to
267 maintain a functioning state (Dorn et al., 2015). This quality control process could depend in part
268 on MCL-1. In support of this idea, our studies indicate that MCL-1 activity is essential for iPSC-
269 CM viability and maturation, which could be linked to MCL-1's non-apoptotic function at the
270 mitochondrial matrix. Our results emphasize the need for a more complete molecular
271 understanding of MCL-1's mechanism of action in human cardiomyocytes as it may reveal new

272 approaches to prevent potential cardiac toxicities associated with chemotherapeutic inhibition of
273 MCL-1.

274

275 **Materials and Methods**

276

277 **Cell Culture**

278 Human induced pluripotent stem cell-derived cardiomyocytes (iCell Cardiomyocytes²) were
279 obtained from Cellular Dynamics International (#CMC-100-012-000.5). Cells were thawed
280 according the manufacturer protocol in iCell Plating medium. Briefly, cells were thawed and plated
281 on 0.1% gelatin at 50,000 cells/well in 96-well plates. Cells were maintained at 37°C and 5% CO₂
282 and fed every other day with iCell Cardiomyocyte Maintenance medium (Cellular Dynamics
283 International #M1003). For knockdown experiments, wells were coated with 5 µg/mL fibronectin
284 (Corning #354008) 1 hour prior to plating. For functional experiments using the Axion bioanalyzer,
285 cells were plated on 50 µg/mL fibronectin in a 48-well CytoView MEA plate (Axion Biosystems
286 #M768-tMEA-48B). For imaging experiments, cells were re-plated on glass-bottom 35 mm dishes
287 (Cellvis #D35C4-20-1.5-N) coated with 10 µg/mL fibronectin. For live-cell imaging, cells were
288 maintained at 37°C with 5% CO₂ in a stage top incubator (Tokai Hit).

289

290 **Cell Treatments**

291 All treatments were added directly to cells in iCell Cardiomyocyte Maintenance media. The pan-
292 caspase inhibitor Q-VD-OPh (SM Biochemicals #SMPH001) was added to cells at a concentration
293 of 25 µM. The small molecule MCL-1 inhibitor derivative (S63845) was a gift from Joseph
294 Opferman (St. Jude's Children Hospital). ABT-199 was purchased from Active Biochemicals (#A-
295 1231). All stock solutions were prepared in DMSO.

296

297

298 **RNAi and Plasmid Transfection**

299 Commercially available siRNA targeting DRP-1 (Thermo Fisher Scientific # AM51331) was used
300 to generate transient knockdowns in hiPSC-CMs. Cells were seeded at 50,000 cells per well in a
301 96-well plate coated with 5 μ g/mL fibronectin. Cells were transfected as per the manufacturer
302 protocol using TransIT-TKO Transfection Reagent (Mirus Bio #MIR2154) in iCell maintenance
303 media containing 25uM Q-VD-OPh. To increase knockdown efficiency, the transfection was
304 repeated 48 hours later. Cells were left to recover for an additional 24 hours in fresh media
305 containing 25uM Q-VD-OPh. Cells were lysed for Western blot or re-plated on glass-bottom 35
306 mm dishes and fixed for analysis by immunofluorescence. Silencer Select Negative Control No.
307 1 (Thermo Fisher Scientific # 4390843) was used as a control.

308 Plasmid encoding mito-tdEos (Addgene #57644) was transfected using ViaFect (Promega
309 #E4981) as described in the manufacturer protocol. Cells were maintained until optimal
310 transfection efficiency was reached before cells were imaged.

311

312 **Immunofluorescence**

313 For immunofluorescence, cells were fixed with 4% paraformaldehyde for 20 min and
314 permeabilized in 1% Triton-X-100 for 10 min at room temperature. After blocking in 10% BSA,
315 cells were treated with primary and secondary antibodies using standard methods. Cells were
316 mounted in Vectashield (Vector Laboratories #H-1000) prior to imaging. Primary antibodies used
317 include Alexa Fluor-488 Phalloidin (Thermo Fisher Scientific #A12379), mouse anti-mtCO2
318 (Abcam #ab110258), rabbit anti-pDRP-1 S616 (Cell Signaling Technologies #3455S). For
319 Incucyte experiments, nuclei were visualized using NucLight Rapid Red Reagent (Essen
320 Bioscience #4717). Alexa Fluor-488 (Thermo Fisher Scientific #A11008) and Alexa Fluor-568
321 (Thermo Fisher Scientific #A11011) were used as secondary antibodies. MitoTracker Red
322 CMXRos (Thermo Fisher Scientific #M7512) added at 100 nM was used to visualize mitochondria
323 in PLA experiments.

324

325 **Western blot**

326 Gel samples were prepared by mixing cell lysates with LDS sample buffer (Life Technologies,
327 #NP0007) and 2-Mercaptoethanol (BioRad #1610710) and boiled at 95°C for 5 minutes. Samples
328 were resolved on 4-20% Mini-PROTEAN TGX precast gels (BioRad #4561096) and transferred
329 onto PVDF membrane (BioRad #1620177). Antibodies used for Western blotting are as follows:
330 DRP-1 (Cell Signaling Technologies #8570S), pDRP-1 S616 (Cell Signaling Technologies
331 #4494), OPA1 (Cell Signaling Technologies #67589S), MCL-1 (Cell Signaling Technologies
332 #94296S), TOM20 (Cell Signaling Technologies # 42406S), and α -Tubulin (Sigma # 05-829).

333

334 **Impedance assays**

335 The Axion Biosystems analyzer was used to measure contractility and impedance in iPSC-CMs.
336 Cells were plated on 48-well CytoView MEA plates and maintained for 10 days before treatment
337 and recordings. Recordings were taken for 5 minutes approximately two hours after media
338 change. Cells were assayed using the standard cardiac analog mode setting with 12.5 kHz
339 sampling frequency to measure spontaneous cardiac beating. The Axion instrument was
340 controlled using Maestro Pro firmware version 1.5.3.4. Cardiac beat detector settings are as
341 follows:

Beat Detection Threshold	300 μ V
Min. Beat Period	250 ms
Max. Beat Period	5 s
Synchronized Beat Maximum Propagation Delay	30 ms
Minimum Active Channels Ratio	50.00%
Running Average Beat Count	10

342

343 **Proximity Ligation Assay (PLA)**

344 Cells were seeded onto fibronectin-coated 8-chamber MatTek glass slides (#CCS-8) at 10,000
345 cells/chamber. After treatments, cells were fixed in 4% PFA for 20 min and permeabilized in 1%
346 Triton-100-X for 10 min at room temperature. Following fixation, the DuoLink proximity ligation
347 assay (Sigma #DUO92014) was performed as per manufacturer protocol. The primary antibodies
348 were incubated overnight at 4°C and are as follows: mouse anti-MCL-1 (Proteintech # 66026-1-
349 Ig), rabbit anti-DRP-1 (Cell Signaling Technologies #8570S), rabbit anti-OPA1 (Cell Signaling
350 Technologies #67589S), and control containing no primary antibody.

351

352 **Photoconversion experiments**

353 Mitochondrial network connectivity and fusion was assayed using photo-conversion of
354 mitochondria tagged with Mito-tdEos. Photo-conversion was performed on a Nikon Eclipse Ti
355 inverted widefield microscope equipped with a 1.45 NA 100X Oil objective. Briefly, a stimulation
356 region was closing down the field diaphragm and using the filter to shine 405 nm light for 6
357 seconds. Images for the converted (TxRed) and unconverted (FITC) were acquired before and
358 after stimulation. The TxRed image before stimulation was used to subtract background from the
359 post-stimulation images, followed by thresholding and automated measurement in Fiji (Schindelin
360 et al., 2012). The initial converted area immediately after stimulation was used as a measure of
361 connectivity, while the spread of the converted signal after 20 minutes was used as a measure of
362 fusion/motility. The initial converted area (TxRed channel) was normalized to the total
363 unconverted area (FITC channel) to account for any initial variation in the total mitochondrial area.

364

365 **Image acquisition**

366 Super-resolution images for Figures 1 and 2 were acquired using a GE DeltaVision OMX
367 microscope equipped with a 1.42 NA 60X Oil objective and a sCMOS camera. Super-resolution
368 images for Figure 6 were acquired using a Nikon SIM microscope equipped with a 1.49 NA 100x

369 Oil objective an Andor DU-897 EMCCD camera. Images for Figures S3, 4, and S5 were acquired
370 on a Nikon Eclipse Ti inverted widefield microscope equipped with a 1.45 NA 100X Oil or 1.40
371 NA 60X Oil objective. Image processing and quantification was performed using Fiji.
372 Measurement of cell number to assay cell death was performed on a Incucyte S3 live cell imaging
373 system (Essen Bioscience) equipped with a 10X objective. Images for the PLA experiments were
374 acquired on a Nikon spinning disk confocal microscope equipped with a 1.40 NA 60X Oil objective.
375

376 **Statistical Analysis**

377 All experiments were performed with a minimum of 3 biological replicates. Statistical significance
378 was determined by unpaired, two-tailed Student's t-test or by one- or two-way ANOVA as
379 appropriate for each experiment. GraphPad Prism v8.1.2 was used for all statistical analysis and
380 data visualization.

381 Error bars in all bar graphs represent standard error of the mean or standard deviation as
382 described for each figure, while Tukey plots were represented with boxes (with median, Q1, Q3
383 percentiles), whiskers (minimum and maximum values within 1.5 times interquartile range) and
384 solid circles (outliers). No outliers were removed from the analyses.

385 For MEA experiments, means from triplicate biological replicates (each with three technical
386 replicate wells) for each measurement were plotted and significance was determined by two-way
387 ANOVA.

388 For PLA experiments, images were quantified using Fiji. Briefly, background noise levels were
389 subtracted, and number of puncta per ROI was normalized to mitochondrial area. ROIs in at least
390 5 cells per condition were quantified in three independent experiments.

391 Quantification of actin organization was performed in a blinded fashion and percentages of each
392 category are displayed. Cell viability measured using the Incucyte live cell imaging system was
393 performed by automatic segmentation of nuclei in Fiji, followed by subtraction of dead cells as
394 indicated by fragmented nuclei and rounded phenotype.

395 **Acknowledgements**

396 We would like to thank Dr. Kevin Ess for providing access to the Axion Biosystems MEA analyzer,
397 John Snow for providing critical technical support with the Axion analyzer, Bryan Millis for
398 providing expertise with high resolution microscopy, and Stellan Riffle for technical support. This
399 work was supported by 1R35 GM128915-01 NIGMS (to VG), 4R00CA178190 NCI (to VG),
400 1R21CA227483-01A1 NCI (to VG), 19PRE34380515 AHA (to MLR), 18PRE33960551 (to NT),
401 and R35 GM125028-01 (to DTB). The Vanderbilt Cell Imaging Shared Resource is supported by
402 NIH grants 1S10OD012324-01 and 1S10OD021630-01.

403

404 The authors declare no competing financial interests.

405

406 **Author contributions**

407 V. Gama, M. Rasmussen and N. Taneja conceived the study, designed experiments, interpreted
408 data, and wrote the manuscript. M. Rasmussen and N. Taneja designed and carried out all the
409 cell biology experiments, with input from D. Burnette, A. Neininger, L. Wang, and L. Shi. V. Gama
410 designed and supervised the project. The manuscript was prepared by M. Rasmussen and V.
411 Gama, and revised by N. Taneja and D. Burnette. D. Burnette and B. Knollmann provided vital
412 reagents and critical expertise.

413

414 The authors declare no competing interests.

415

416

417

418

419

420

421 **Figure Legends**

422

423 **Figure 1:** MCL-1 inhibition causes mitochondrial fragmentation. (A) Maximum intensity projection
424 showing mitochondria (mt-CO2) and myofibril (F-actin) organization in an untreated hiPSC-CM.
425 Rainbow LUT shown to denote Z-depth. Scale: 10 μ m. (B) Schematic of cell treatment paradigm
426 used throughout this study. Structured Illumination Microscopy (SIM) was used for acquisition of
427 all super-resolution images. (C) hiPSC-CMs were treated with vehicle (DMSO) or 2 μ M S63845
428 and Q-VD-Oph (QVD). Vehicle-treated cells have elongated mitochondria assembled in networks;
429 MCL-1 inhibition causes mitochondria to become fragmented and disorganized. Insets show
430 magnification of individual mitochondria morphology. Scale: 10 μ m. Representative images are
431 shown for all panels.

432

433 **Figure 2:** MCL-1 inhibition causes disruption of myofibrils and functional defects. (A) Schematic
434 of Axion Biosystems MEA paradigm for recording cardiac performance in live cells. hiPSC-CMs
435 were plated on a CytoView MEA plate (Axion Biosystems) and treated with either vehicle (DMSO)
436 or .5 μ M MCL-1*i* (S63845) and QVD. Live-cell activity was recorded at 18 hours-post-treatment
437 for 5 minutes; (B) beat period irregularity was increased in MCL-1*i*-treated cells, while spike
438 amplitude mean and spike slope mean were decreased (C-D). (E) Vehicle-treated hiPSC-CMs
439 have organized myofibril structure as shown by maximum intensity projections. hiPSC-CMs
440 treated with 2 μ M MCL-1*i* (S63845) and QVD have myofibrils that are unorganized and poorly
441 defined Z-lines. Scale: 10 μ m. Representative images are shown for all panels. (F) Quantification
442 of myofibril structure phenotypes represented in Figure 2E (n=~80 cells from 3 separate
443 experiments).

444

445 **Figure 3:** MCL-1 interacts with mitochondrial dynamics proteins. (A) Western blot showing DRP-
446 1 activity in hiPSC-CMs treated with S63845 + QVD. (B) Quantification of DRP-1 and pDRP-1

447 S616 band density relative to α -tubulin. (C) Western blot showing OPA1, MCL-1, and TOM20
448 levels in hiPSC-CMs treated with S63845 + QVD. (D) Quantification of OPA1 and MCL-1 band
449 density relative to α -tubulin. Images from PLA showing representative ROIs showing MCL-1:DRP-
450 1 (E) or MCL-1:OPA1 (G) puncta in vehicle- or S63845-treated hiPSC-CMs (Scale: 5 μ m).
451 Quantification of PLA puncta from MCL-1:DRP-1 (F) or MCL-1:OPA1 (H) interactions (n = 10-15
452 images per condition from 3 independent experiments). All error bars indicate \pm SD.

453

454 **Figure 4:** MCL-1 inhibition results in mitochondrial fragmentation through a DRP-1 dependent
455 manner. (A) Vehicle- and (B) S63845-treated hiPSC-CMs were transfected with Mito-tdEos and
456 a small area was photo-converted (see methods). Cells were imaged for 20 minutes-post-
457 conversion to assess mitochondrial network connectivity. Quantification of (C) initial converted
458 area normalized to total unconverted area and (D) fold change in converted area after 20 minutes
459 from Figure 4A-B. (E) Quantification of initial converted area normalized to total unconverted area
460 in hiPSC-CMs treated with si-Control (si-Cont) \pm MCL-1*i* (2 μ M) and si-DRP-1 \pm MCL-1*i* (2 μ M). (F)
461 Quantification of fold change in converted area after 20 minutes in same treatments from Figure
462 4E. Boxplots show Tukey whiskers.

463

464 **Figure 5:** hiPSC-CMs commit to intrinsic apoptosis after MCL-1 inhibition. (A) iCell hiPSC-CMs
465 were treated with increasing doses of S63845 for 48 hours before caspase activity was measured
466 by CaspaseGlo 3/7 assay (Promega). (B) Schematic of maturation protocol for hiPSC-CMs shown
467 in Figure 1C. (C) hiPSC-CMs treated with Dex (dexamethasone) and T3 (triiodothyronine) display
468 more mature phenotype compared to vehicle-treated control cells. (D) Vehicle- or (E) Dex+T3-
469 treated hiPSC-CMs were exposed to S63845 at increasing doses for 24 hours. Caspase activity
470 was measured as in Figure 1A.

471

472 **Figure 6:** Chronic inhibition of MCL-1, but not BCL-2, results in cardiac activity defects. hiPSC-
473 CMs were treated every 2 days with DMSO (blue), 100 nM S63845 (orange), 100 nM ABT-199
474 (green), or both inhibitors (magenta) for 14 days. MEA plate was recorded 2 hours-post-treatment
475 for 5 minutes and results were normalized to baseline recording for each respective well. Results
476 of recordings for spike amplitude mean (A), spike slope mean (B), conduction velocity mean (C),
477 max delay mean (D), and propagation consistency (E) are shown. P-values show significance as
478 follows: * = DMSO vs. S63845, † = DMSO vs. Combination, # = S63845 vs. ABT-199, ‡ = S63845
479 vs. Combination, • = ABT-199 vs. Combination. One symbol indicates $p = <0.05$, two symbols
480 indicate $p = <0.01$. Error bars indicate \pm SEM. (F-I) Mitochondria and F-actin were imaged at the
481 end of the treatment paradigm in Figure 6A-E. Representative images are shown of cells treated
482 with DMSO (F), 100 nM MCL-1*i* (S63845) (G), 100 nM BCL-2*i* (ABT-199) (H), and 100 nM MCL-
483 1*i* + 100 nM BCL-2*i* (Combination) (I). Scale: 10 μ m.

484 **References**

485 Beroukhim, R., Mermel, C.H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina, J.,
486 Boehm, J.S., Dobson, J., Urashima, M., Mc Henry, K.T., Pinchback, R.M., Ligon, A.H., Cho,
487 Y.-J., Haery, L., Greulich, H., Reich, M., Winckler, W., Lawrence, M.S., Weir, B.A., Tanaka,
488 K.E., Chiang, D.Y., Bass, A.J., Loo, A., Hoffman, C., Prensner, J., Liefeld, T., Gao, Q., Yecies,
489 D., Signoretti, S., Maher, E., Kaye, F.J., Sasaki, H., Tepper, J.E., Fletcher, J.A., Tabernero,
490 J., Baselga, J., Tsao, M.-S., Demichelis, F., Rubin, M.A., Janne, P.A., Daly, M.J., Nucera, C.,
491 Levine, R.L., Ebert, B.L., Gabriel, S., Rustgi, A.K., Antonescu, C.R., Ladanyi, M., Letai, A.,
492 Garraway, L.A., Loda, M., Beer, D.G., True, L.D., Okamoto, A., Pomeroy, S.L., Singer, S.,
493 Golub, T.R., Lander, E.S., Getz, G., Sellers, W.R., Meyerson, M., 2010. The landscape of
494 somatic copy-number alteration across human cancers. *Nature* 463, 899–905.
495 <https://doi.org/10.1038/nature08822>

496 Buggisch, M., Ateghang, B., Ruhe, C., Strobel, C., Lange, S., Wartenberg, M., Sauer, H., 2007.
497 Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by
498 reactive oxygen species and NADPH oxidase. *J. Cell Sci.* 120, 885–894.
499 <https://doi.org/10.1242/jcs.03386>

500 Burman, J.L., Pickles, S., Wang, C., Sekine, S., Vargas, J.N.S., Zhang, Z., Youle, A.M., Nezich,
501 C.L., Wu, X., Hammer, J.A., Youle, R.J., 2017. Mitochondrial fission facilitates the selective
502 mitophagy of protein aggregates. *J. Cell Biol.* 216, 3231–3247.
503 <https://doi.org/10.1083/jcb.201612106>

504 Burté, F., Carelli, V., Chinnery, P.F., Yu-Wai-Man, P., 2015. Disturbed mitochondrial dynamics
505 and neurodegenerative disorders. *Nat. Rev. Neurol.* 11, 11–24.
506 <https://doi.org/10.1038/nrneurol.2014.228>

507 Chan, D.C., 2007. Mitochondrial Dynamics in Disease. *N. Engl. J. Med.* 356, 1707–1709.
508 <https://doi.org/10.1056/NEJMp078040>

509 Chipuk, J.E., Moldoveanu, T., Llambi, F., Parsons, M.J., Green, D.R., 2010. The BCL-2 Family
510 Reunion. *Mol. Cell* 37, 299–310. <https://doi.org/10.1016/j.molcel.2010.01.025>

511 Cho, S.W., Park, J., Heo, H.J., Park, S., Song, S., Kim, I., Han, Y., Yamashita, J.K., Youm, J.B.,
512 Han, J., Koh, G.Y., 2014. Dual Modulation of the Mitochondrial Permeability Transition Pore
513 and Redox Signaling Synergistically Promotes Cardiomyocyte Differentiation From
514 Pluripotent Stem Cells. *J. Am. Heart Assoc.* 3. <https://doi.org/10.1161/JAHA.113.000693>

515 Clements, M., Thomas, N., 2014. High-Throughput Multi-Parameter Profiling of
516 Electrophysiological Drug Effects in Human Embryonic Stem Cell Derived Cardiomyocytes
517 Using Multi-Electrode Arrays. *Toxicol. Sci.* 140, 445–461.
518 <https://doi.org/10.1093/toxsci/kfu084>

519 Cohen, N.A., Stewart, M.L., Gavathiotis, E., Tepper, J.L., Bruekner, S.R., Koss, B., Opferman,
520 J.T., Walensky, L.D., 2012. A Competitive Stapled Peptide Screen Identifies a Selective Small
521 Molecule that Overcomes MCL-1-Dependent Leukemia Cell Survival. *Chem. Biol.* 19, 1175–
522 1186. <https://doi.org/10.1016/j.chembiol.2012.07.018>

523 Dorn, G.W., 2013. Mitochondrial dynamics in heart disease. *Biochim. Biophys. Acta BBA - Mol.*
524 *Cell Res.* 1833, 233–241. <https://doi.org/10.1016/j.bbamcr.2012.03.008>

525 Dorn, G.W., Vega, R.B., Kelly, D.P., 2015. Mitochondrial biogenesis and dynamics in the
526 developing and diseased heart. *Genes Dev.* 29, 1981–1991.
527 <https://doi.org/10.1101/gad.269894.115>

528 Dumitru, R., Gama, V., Fagan, B.M., Bower, J.J., Swahari, V., Pevny, L.H., Deshmukh, M., 2012.
529 Human Embryonic Stem Cells Have Constitutively Active Bax at the Golgi and Are Primed to
530 Undergo Rapid Apoptosis. *Mol. Cell* 46, 573–583.
531 <https://doi.org/10.1016/j.molcel.2012.04.002>

532 Feaster, T.K., Cadar, A.G., Wang, L., Williams, C.H., Chun, Y.W., Hempel, J.E., Bloodworth, N.,
533 Merryman, W.D., Lim, C.C., Wu, J.C., Knollmann, B.C., Hong, C.C., 2015. Matrigel Mattress:
534 A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell–

535 Derived Cardiomyocytes. Circ. Res. 117, 995–1000.
536 <https://doi.org/10.1161/CIRCRESAHA.115.307580>

537 Folmes, C.D., Ma, H., Mitalipov, S., Terzic, A., 2016. Mitochondria in pluripotent stem cells:
538 stemness regulators and disease targets. *Curr. Opin. Genet. Dev.* 38, 1–7.
539 <https://doi.org/10.1016/j.gde.2016.02.001>

540 Friedman, J.R., Nunnari, J., 2014. Mitochondrial form and function. *Nature* 505, 335–343.
541 <https://doi.org/10.1038/nature12985>

542 Galloway, C.A., Yoon, Y., 2015. Mitochondrial Dynamics in Diabetic Cardiomyopathy. *Antioxid.
543 Redox Signal.* 22, 1545–1562. <https://doi.org/10.1089/ars.2015.6293>

544 Gama, V., Deshmukh, M., 2012. Human embryonic stem cells: living on the edge. *Cell Cycle
545 Georget. Tex* 11, 3905–3906. <https://doi.org/10.4161/cc.22233>

546 Guo, L., Eldridge, S., Furniss, M., Mussio, J., Davis, M., 2018. Role of Mcl-1 in regulation of cell
547 death in human induced pluripotent stem cell-derived cardiomyocytes in vitro. *Toxicol. Appl.
548 Pharmacol.* 360, 88–98. <https://doi.org/10.1016/j.taap.2018.09.041>

549 Hsu, Y.-H.R., Yogasundaram, H., Parajuli, N., Valtuille, L., Sergi, C., Oudit, G.Y., 2016. MELAS
550 syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.
551 *Heart Fail. Rev.* 21, 103–116. <https://doi.org/10.1007/s10741-015-9524-5>

552 Imahashi, K., Schneider, M.D., Steenbergen, C., Murphy, E., 2004. Transgenic Expression of Bcl-
553 2 Modulates Energy Metabolism, Prevents Cytosolic Acidification During Ischemia, and
554 Reduces Ischemia/Reperfusion Injury. Circ. Res. 95, 734–741.
555 <https://doi.org/10.1161/01.RES.0000143898.67182.4c>

556 Itoh, K., Nakamura, K., Iijima, M., Sesaki, H., 2013. Mitochondrial dynamics in neurodegeneration.
557 *Trends Cell Biol.* 23, 64–71. <https://doi.org/10.1016/j.tcb.2012.10.006>

558 Kageyama, Y., Hoshijima, M., Seo, K., Bedja, D., Sysa-Shah, P., Andrabi, S.A., Chen, W., Höke,
559 A., Dawson, V.L., Dawson, T.M., Gabrielson, K.L., Kass, D.A., Iijima, M., Sesaki, H., 2014.

560 Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart
561 and brain. *EMBO J.* 33, 2798–2813. <https://doi.org/10.15252/embj.201488658>

562 Kasahara, A., Cipolat, S., Chen, Y., Dorn, G.W., Scorrano, L., 2013. Mitochondrial Fusion Directs
563 Cardiomyocyte Differentiation via Calcineurin and Notch Signaling. *Science* 342, 734–737.
564 <https://doi.org/10.1126/science.1241359>

565 Kasahara, A., Scorrano, L., 2014. Mitochondria: from cell death executioners to regulators of cell
566 differentiation. *Trends Cell Biol.* 24, 761–770. <https://doi.org/10.1016/j.tcb.2014.08.005>

567 Kotschy, A., Szlavik, Z., Murray, J., Davidson, J., Maragno, A.L., Le Toumelin-Braizat, G.,
568 Chanrion, M., Kelly, G.L., Gong, J.-N., Moujalled, D.M., Bruno, A., Csekei, M., Paczal, A.,
569 Szabo, Z.B., Sipos, S., Radics, G., Proszenyak, A., Balint, B., Ondi, L., Blasko, G., Robertson,
570 A., Surgenor, A., Dokurno, P., Chen, I., Matassova, N., Smith, J., Pedder, C., Graham, C.,
571 Studeny, A., Lysiak-Auvity, G., Girard, A.-M., Gravé, F., Segal, D., Riffkin, C.D., Pomilio, G.,
572 Galbraith, L.C.A., Aubrey, B.J., Brennan, M.S., Herold, M.J., Chang, C., Guasconi, G.,
573 Cauquil, N., Melchiore, F., Guigal-Stephan, N., Lockhart, B., Colland, F., Hickman, J.A.,
574 Roberts, A.W., Huang, D.C.S., Wei, A.H., Strasser, A., Lessene, G., Geneste, O., 2016. The
575 MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. *Nature* 538, 477–
576 482. <https://doi.org/10.1038/nature19830>

577 Kozopas, K.M., Yang, T., Buchan, H.L., Zhou, P., Craig, R.W., 1993. MCLI, a gene expressed in
578 programmed myeloid cell differentiation, has sequence similarity to BCL2. *Proc Natl Acad Sci
579 USA* 5.

580 Lee, Y., Lee, H.-Y., Hanna, R.A., Gustafsson, Å.B., 2011. Mitochondrial autophagy by Bnip3
581 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes.
582 *Am. J. Physiol. - Heart Circ. Physiol.* 301, H1924–H1931.
583 <https://doi.org/10.1152/ajpheart.00368.2011>

584 Letai, A., 2016. S63845, an MCL-1 Selective BH3 Mimetic: Another Arrow in Our Quiver. *Cancer
585 Cell* 30, 834–835. <https://doi.org/10.1016/j.ccr.2016.11.016>

586 Morciano, G., Giorgi, C., Balestra, D., Marchi, S., Perrone, D., Pinotti, M., Pinton, P., 2016. Mcl-1
587 involvement in mitochondrial dynamics is associated with apoptotic cell death. *Mol. Biol. Cell*
588 27, 20–34. <https://doi.org/10.1091/mbc.E15-01-0028>

589 Murray, T.V.A., Ahmad, A., Brewer, A.C., 2014. Reactive oxygen at the heart of metabolism.
590 *Trends Cardiovasc. Med.* 24, 113–120. <https://doi.org/10.1016/j.tcm.2013.09.003>

591 Murriel, C.L., Churchill, E., Inagaki, K., Szweda, L.I., Mochly-Rosen, D., 2004. Protein Kinase C δ
592 Activation Induces Apoptosis in Response to Cardiac Ischemia and Reperfusion Damage A
593 MECHANISM INVOLVING BAD AND THE MITOCHONDRIA. *J. Biol. Chem.* 279, 47985–
594 47991. <https://doi.org/10.1074/jbc.M405071200>

595 Opferman, J.T., 2016. Attacking Cancer's Achilles Heel: Antagonism of Anti-Apoptotic BCL-2
596 Family Members. *FEBS J.* 283, 2661–2675. <https://doi.org/10.1111/febs.13472>

597 Parikh, S.S., Blackwell, D.J., Gomez-Hurtado, N., Frisk, M., Wang, L., Kim, K., Dahl, C.P., Fiane,
598 A., Tønnessen, T., Kryshtal, D.O., Louch, W.E., Knollmann, B.C., 2017. Thyroid and
599 Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced
600 Pluripotent Stem Cell-Derived Cardiomyocytes. *Circ. Res.* 121, 1323–1330.
601 <https://doi.org/10.1161/CIRCRESAHA.117.311920>

602 Perciavalle, R.M., Opferman, J.T., 2013. Delving Deeper: MCL-1's Contributions to Normal and
603 Cancer Biology. *Trends Cell Biol.* 23, 22–29. <https://doi.org/10.1016/j.tcb.2012.08.011>

604 Perciavalle, R.M., Stewart, D.P., Koss, B., Lynch, J., Milasta, S., Bathina, M., Temirov, J., Cleland,
605 M.M., Pelletier, S., Schuetz, J.D., Youle, R.J., Green, D.R., Opferman, J.T., 2012. Anti-
606 apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to
607 respiration. *Nat. Cell Biol.* 14, 575–583. <https://doi.org/10.1038/ncb2488>

608 Rasmussen, M.L., Kline, L.A., Park, K.P., Ortolano, N.A., Romero-Morales, A.I., Anthony, C.C.,
609 Beckermann, K.E., Gama, V., 2018. A Non-apoptotic Function of MCL-1 in Promoting
610 Pluripotency and Modulating Mitochondrial Dynamics in Stem Cells. *Stem Cell Rep.* 10, 684–
611 692. <https://doi.org/10.1016/j.stemcr.2018.01.005>

612 Reynolds, J.E., Li, J., Craig, R.W., Eastman, A., 1996. BCL-2 and MCL-1 Expression in Chinese
613 Hamster Ovary Cells Inhibits Intracellular Acidification and Apoptosis Induced by
614 Staurosporine. *Exp. Cell Res.* 225, 430–436. <https://doi.org/10.1006/excr.1996.0194>

615 Rinkenberger, J.L., Horning, S., Klocke, B., Roth, K., Korsmeyer, S.J., 2000. Mcl-1 deficiency
616 results in peri-implantation embryonic lethality. *Genes Dev.* 6.

617 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
618 Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K.,
619 Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-image analysis.
620 *Nat. Methods* 9, 676–682. <https://doi.org/10.1038/nmeth.2019>

621 Song, M., Franco, A., Fleischer, J.A., Zhang, L., Dorn, G.W., 2017. Abrogating Mitochondrial
622 Dynamics in Mouse Hearts Accelerates Mitochondrial Senescence. *Cell Metab.* 26, 872–
623 883.e5. <https://doi.org/10.1016/j.cmet.2017.09.023>

624 Souers, A.J., Leverson, J.D., Boghaert, E.R., Ackler, S.L., Catron, N.D., Chen, J., Dayton, B.D.,
625 Ding, H., Enschede, S.H., Fairbrother, W.J., Huang, D.C.S., Hymowitz, S.G., Jin, S., Khaw,
626 S.L., Kovar, P.J., Lam, L.T., Lee, J., Maecker, H.L., Marsh, K.C., Mason, K.D., Mitten, M.J.,
627 Nimmer, P.M., Oleksijew, A., Park, C.H., Park, C.-M., Phillips, D.C., Roberts, A.W., Sampath,
628 D., Seymour, J.F., Smith, M.L., Sullivan, G.M., Tahir, S.K., Tse, C., Wendt, M.D., Xiao, Y.,
629 Xue, J.C., Zhang, H., Humerickhouse, R.A., Rosenberg, S.H., Elmore, S.W., 2013. ABT-199,
630 a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. *Nat.*
631 *Med.* 19, 202–208. <https://doi.org/10.1038/nm.3048>

632 Thomas, L.W., Lam, C., Edwards, S.W., 2010. Mcl-1; the molecular regulation of protein function.
633 *FEBS Lett.* 584, 2981–2989. <https://doi.org/10.1016/j.febslet.2010.05.061>

634 Thomas, R.L., Roberts, D.J., Kubli, D.A., Lee, Y., Quinsay, M.N., Owens, J.B., Fischer, K.M.,
635 Sussman, M.A., Miyamoto, S., Gustafsson, Å.B., 2013. Loss of MCL-1 leads to impaired
636 autophagy and rapid development of heart failure. *Genes Dev.* 27, 1365–1377.
637 <https://doi.org/10.1101/gad.215871.113>

638 Walensky, L.D., 2012. Stemming Danger with Golgiified BAX. *Mol. Cell* 46, 554–556.

639 <https://doi.org/10.1016/j.molcel.2012.05.034>

640 Wang, X., Bathina, M., Lynch, J., Koss, B., Calabrese, C., Frase, S., Schuetz, J.D., Rehg, J.E.,

641 Opferman, J.T., 2013. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial

642 dysfunction. *Genes Dev.* 27, 1351–1364. <https://doi.org/10.1101/gad.215855.113>

643 Westermann, B., 2010. Mitochondrial fusion and fission in cell life and death. *Nat. Rev. Mol. Cell*

644 *Biol.* 11, 872–884. <https://doi.org/10.1038/nrm3013>

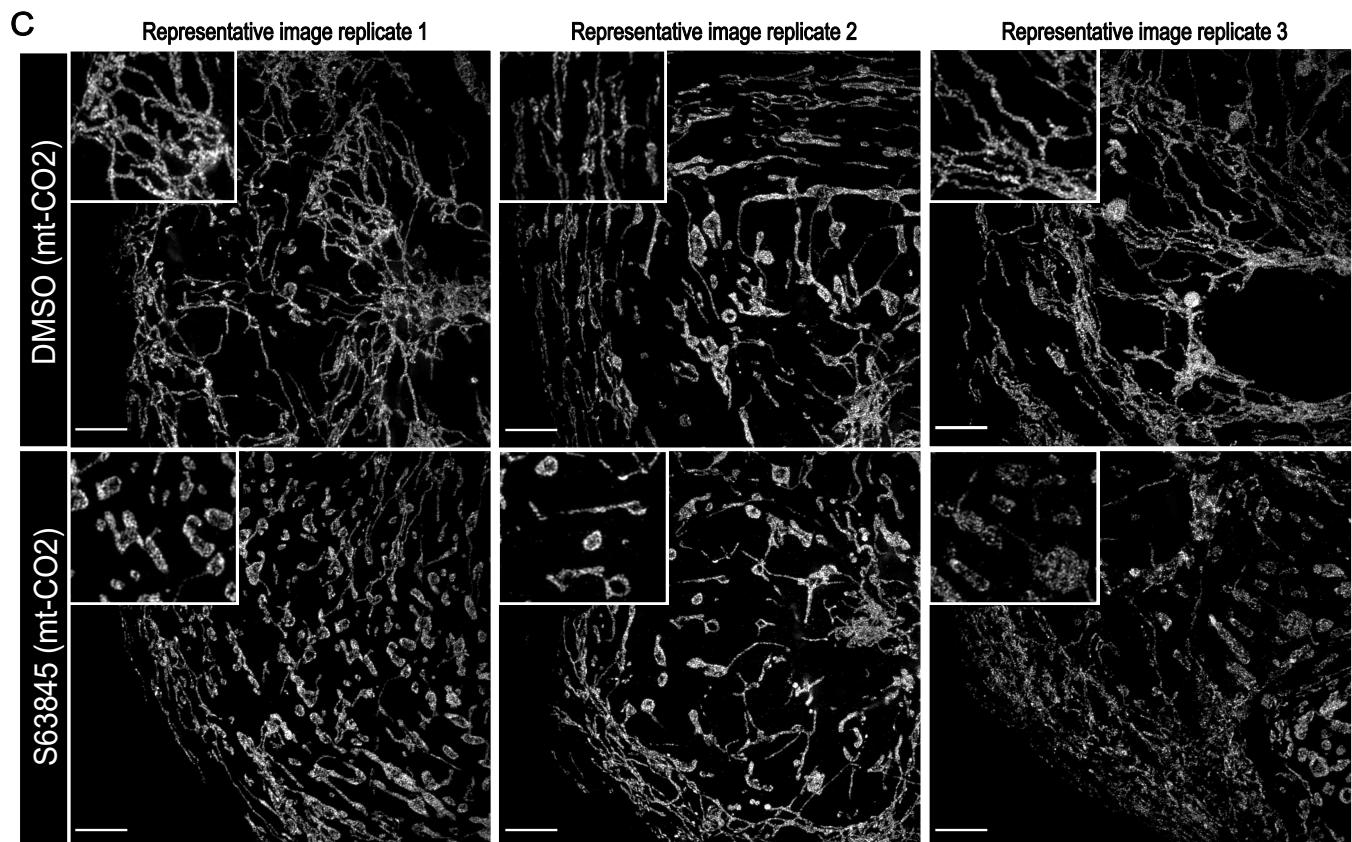
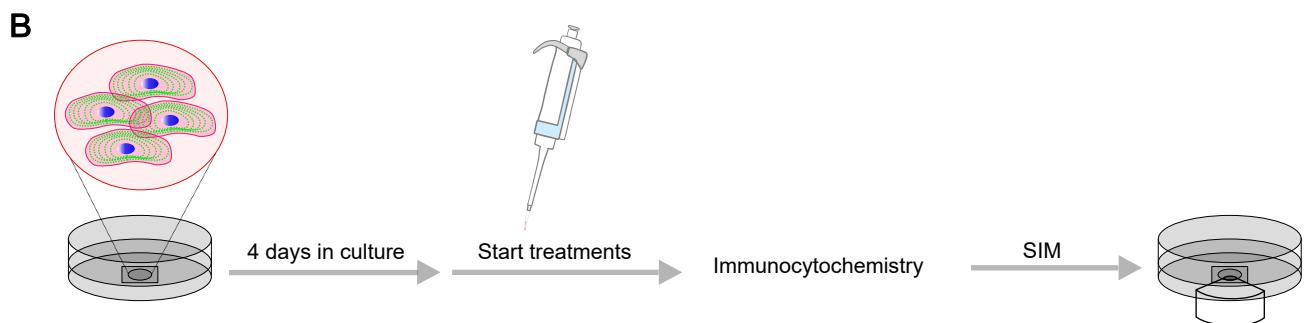
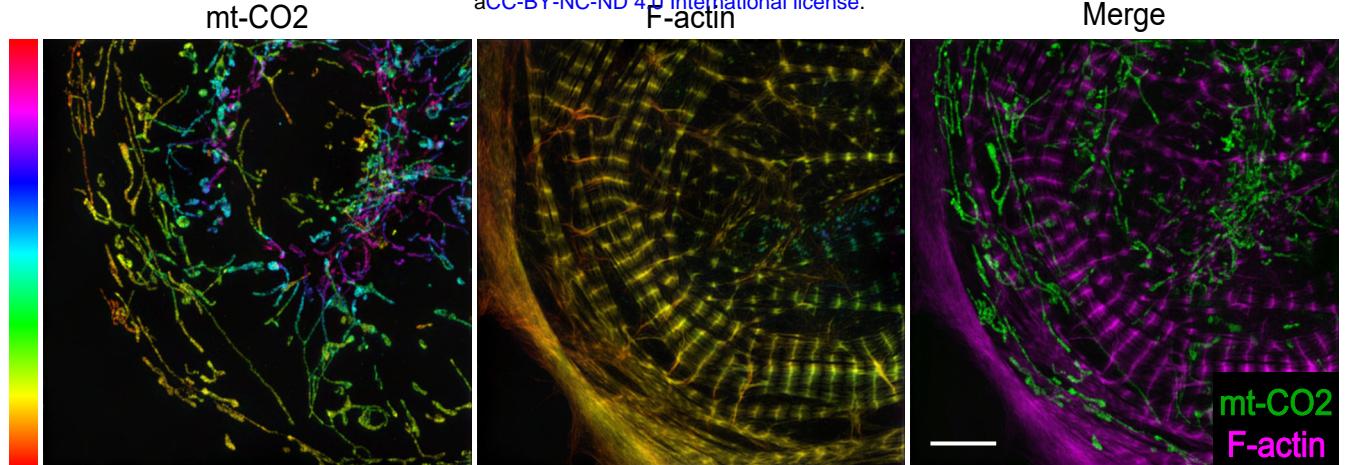
645 Yang, T., Buchan, H.L., Townsend, K.J., Craig, R.W., 1996. MCL-1, a member of the BCL-2

646 family, is induced rapidly in response to signals for cell differentiation or death, but not to

647 signals for cell proliferation. *J. Cell. Physiol.* 166, 523–536.

648 [https://doi.org/10.1002/\(SICI\)1097-4652\(199603\)166:3<523::AID-JCP7>3.0.CO;2-R](https://doi.org/10.1002/(SICI)1097-4652(199603)166:3<523::AID-JCP7>3.0.CO;2-R)

649 Zhang, J., Nuebel, E., Daley, G.Q., Koehler, C.M., Teitell, M.A., 2012. Metabolic Regulation in




650 Pluripotent Stem Cells during Reprogramming and Self-Renewal. *Cell Stem Cell* 11, 589–

651 595. <https://doi.org/10.1016/j.stem.2012.10.005>

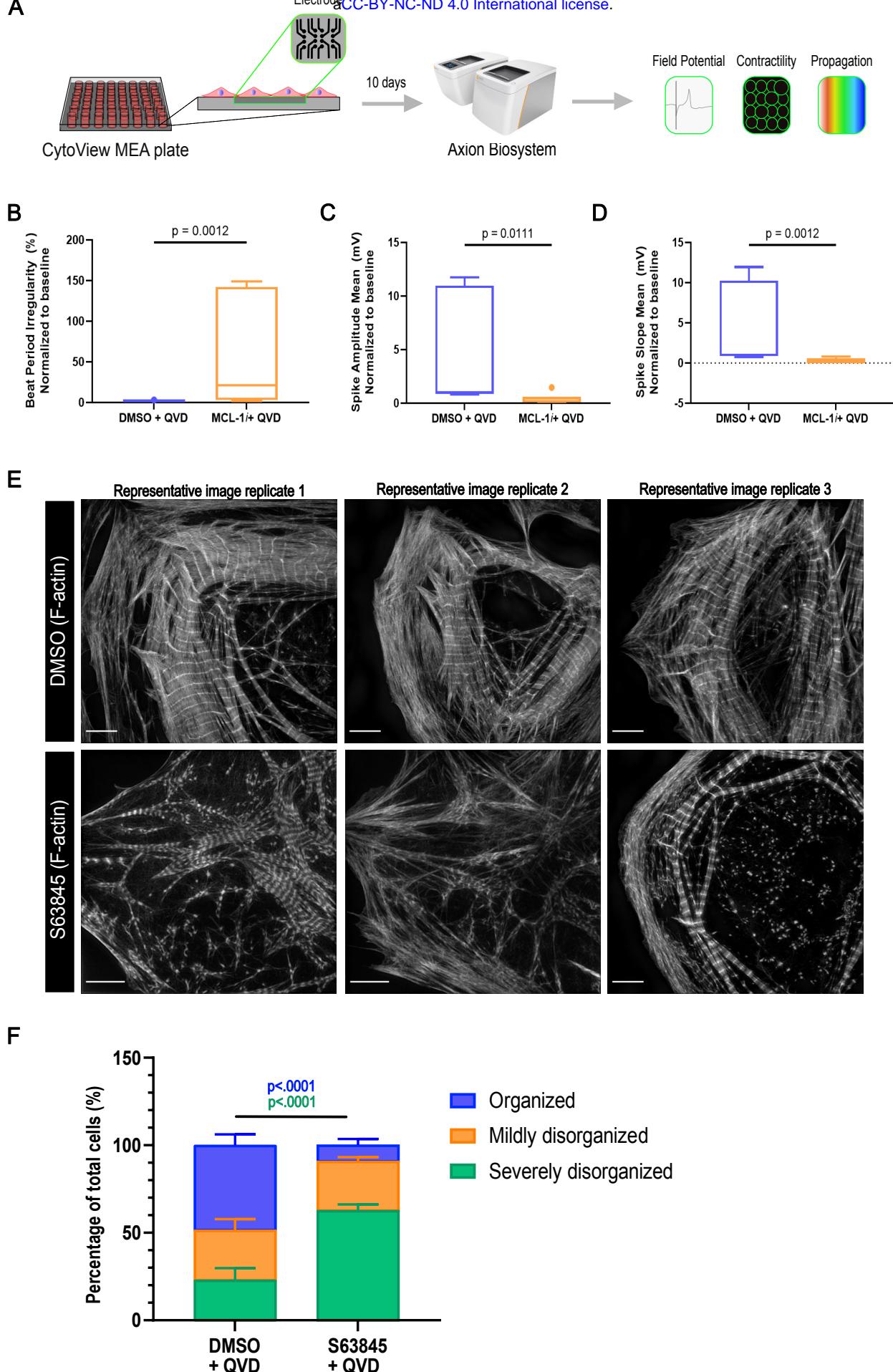

652

Figure 1

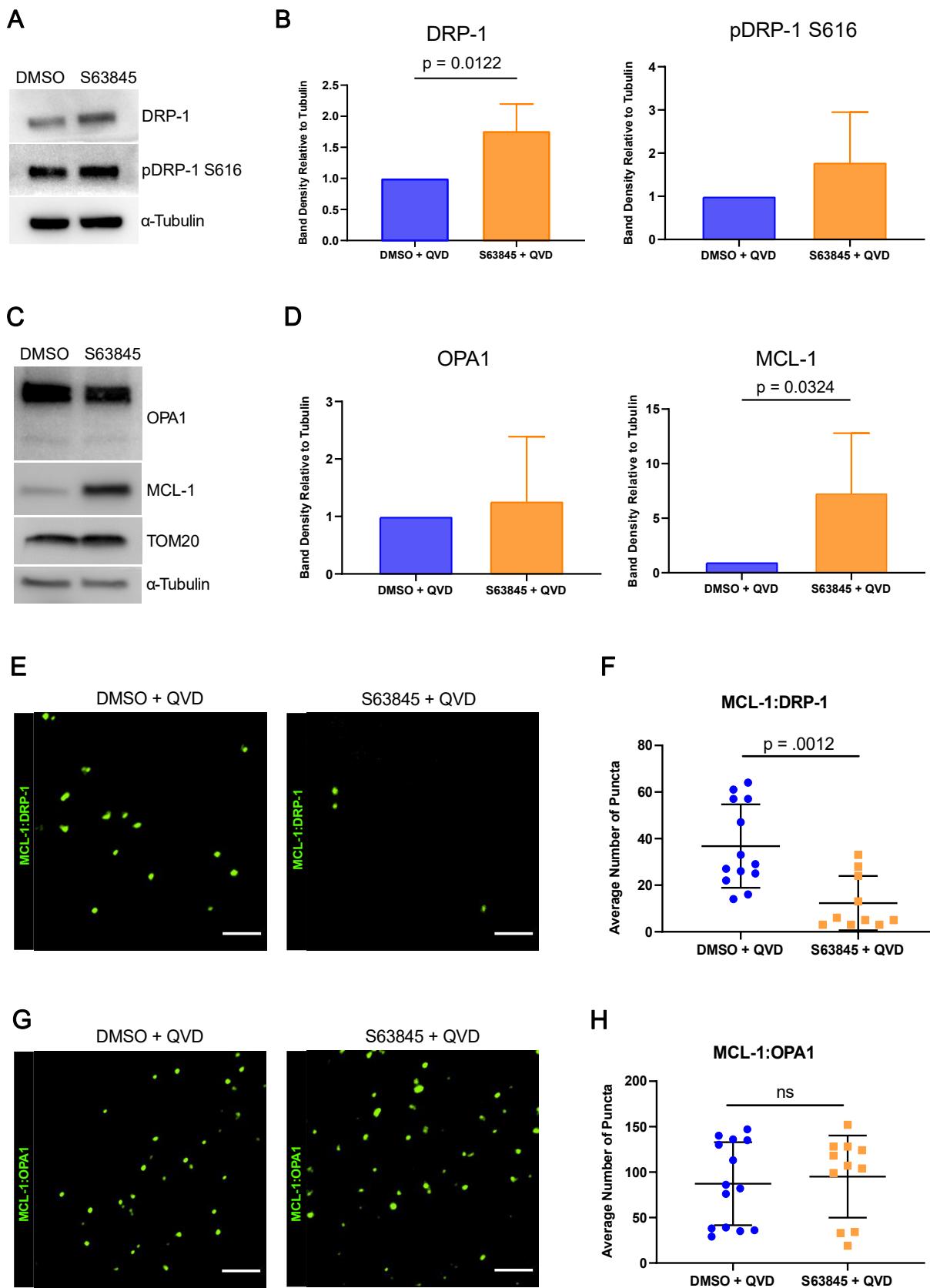
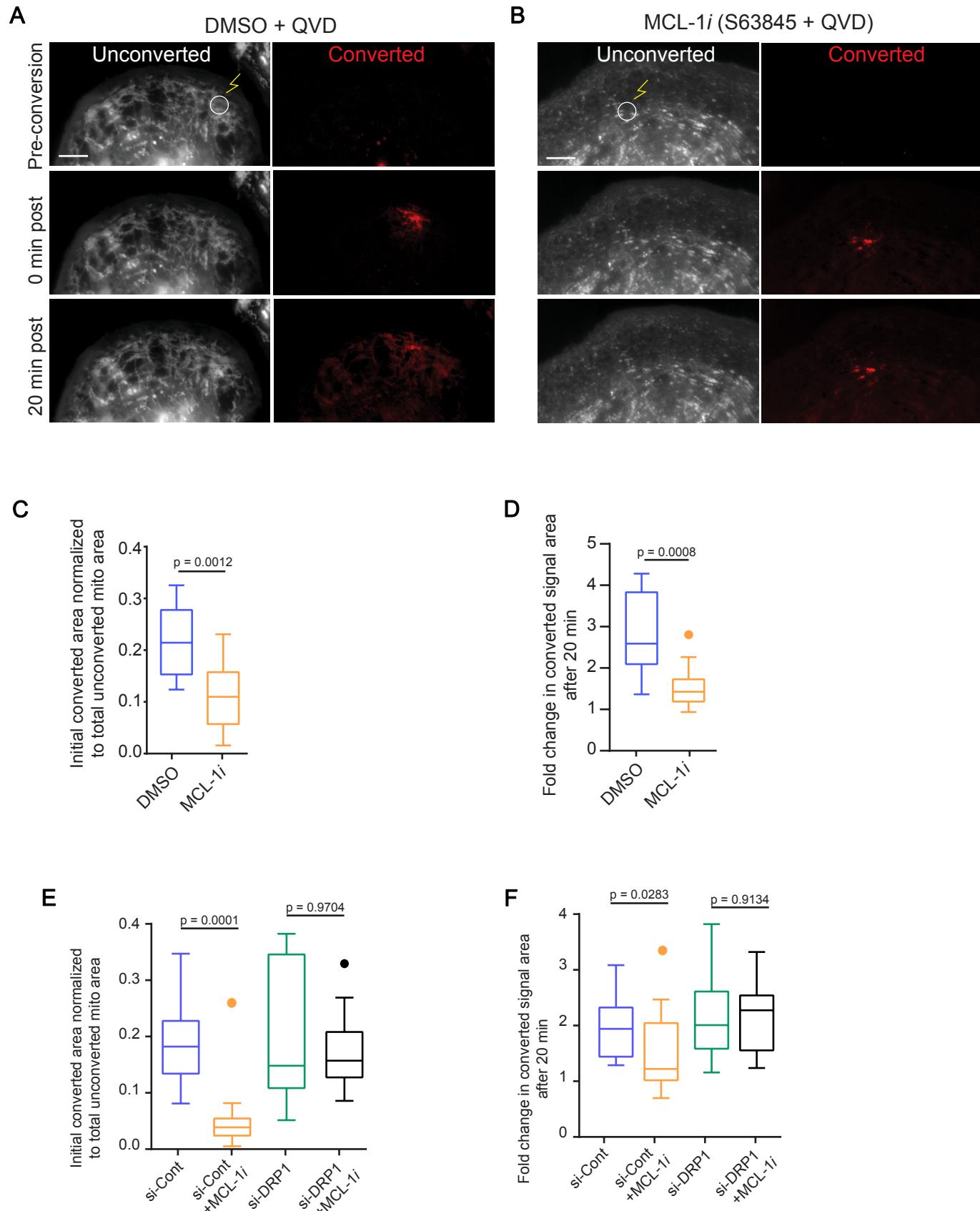
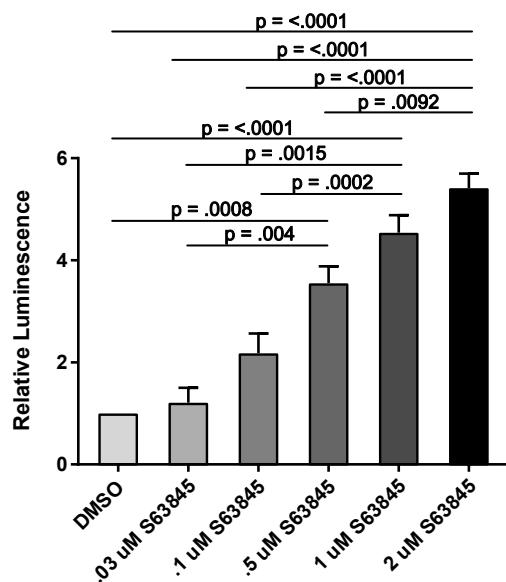
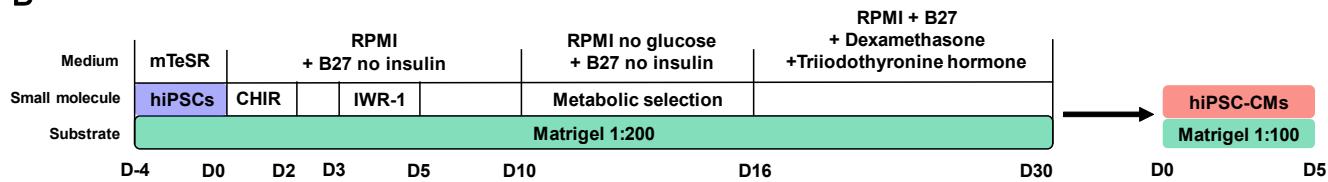

bioRxiv preprint doi: <https://doi.org/10.1101/743922>; this version posted August 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

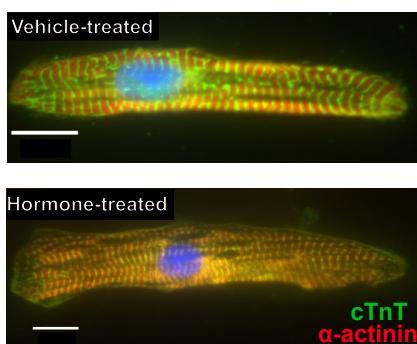
Figure 2

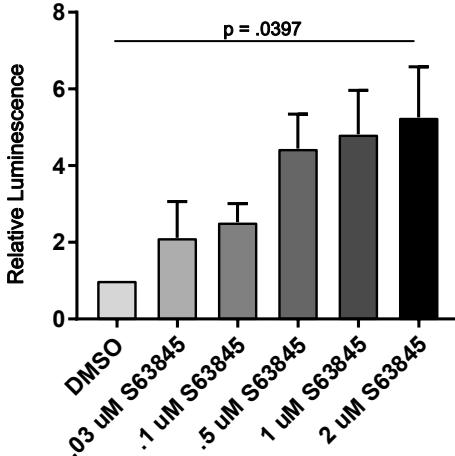
Figure 3

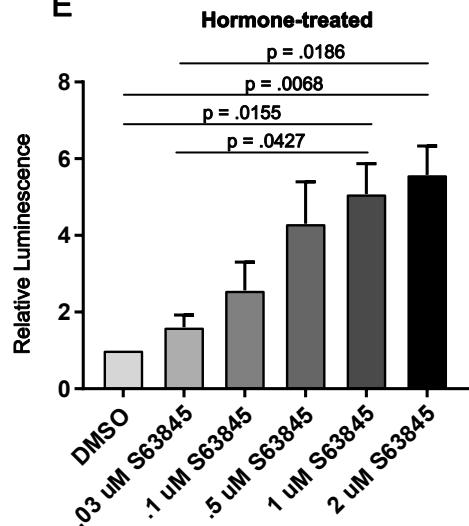




Figure 5

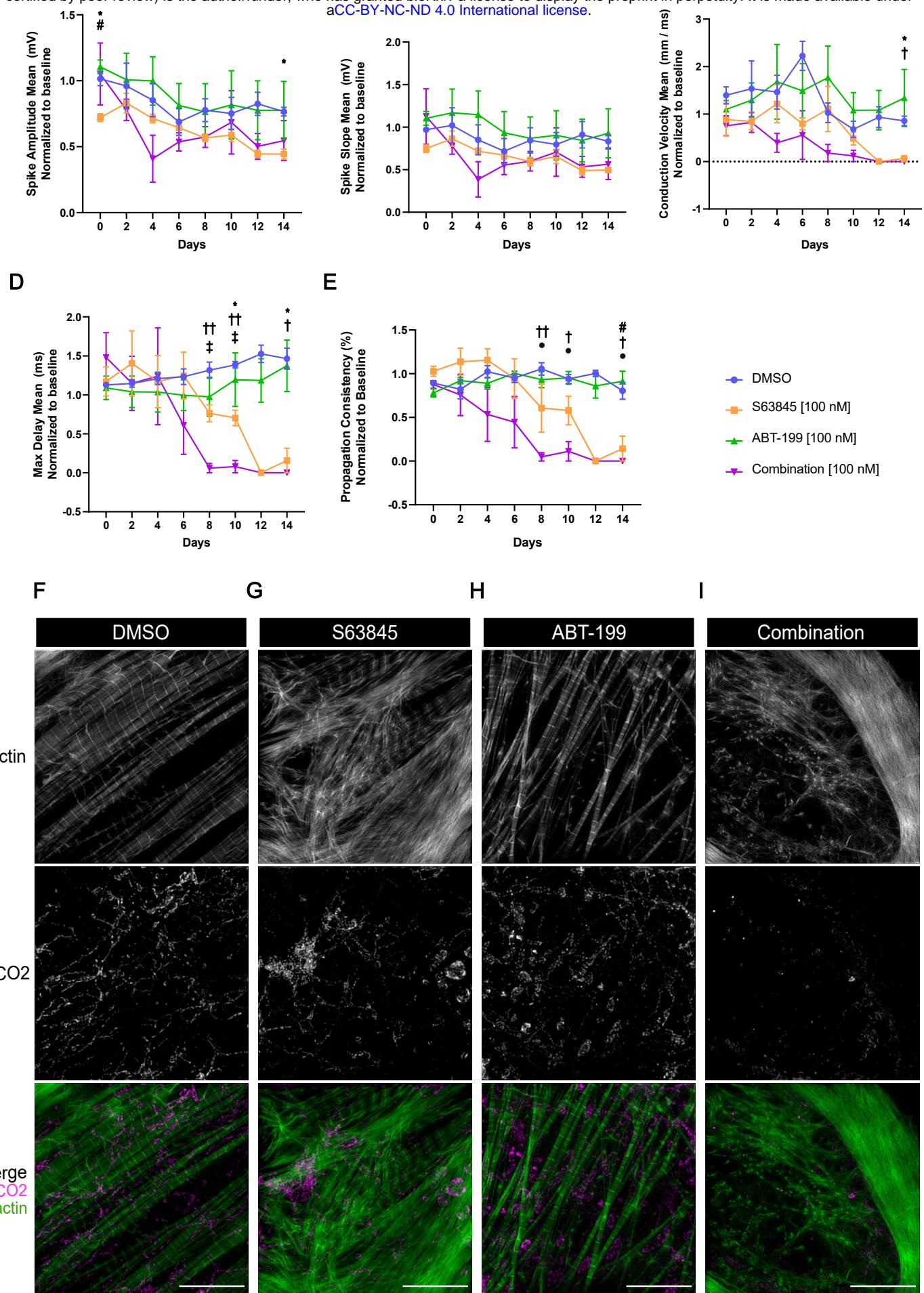
bioRxiv preprint doi: <https://doi.org/10.1101/743922>; this version posted August 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


A


B


C

D



E

Figure 6

bioRxiv preprint doi: <https://doi.org/10.1101/743922>; this version posted August 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

