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ABSTRACT

Cellular senescence, a permanent state of replicative arrest in otherwise proliferating cells, is a
hallmark of ageing and has been linked to ageing-related diseases like cancer. Senescent cells have
been shown to accumulate in tissues of aged organisms which in turn can lead to chronic
inflammation. Many genes have been associated with cell senescence, yet a comprehensive
understanding of cell senescence pathways is still lacking. To this end, we created CellAge

(http://genomics.senescence.info/cells), a manually curated database of 279 human genes

associated with cellular senescence, and performed various integrative and functional analyses. We
observed that genes promoting cell senescence tend to be overexpressed with age in human tissues
and are also significantly overrepresented in anti-longevity and tumour-suppressor gene databases.
By contrast, genes inhibiting cell senescence overlapped with pro-longevity genes and oncogenes.

Furthermore, an evolutionary analysis revealed a strong conservation of senescence-associated
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genes in mammals, but not in invertebrates. Using the CellAge genes as seed nodes, we also built
protein-protein interaction and co-expression networks. Clusters in the networks were enriched for
cell cycle and immunological processes. Network topological parameters also revealed novel
potential senescence-associated regulators. We then used siRNAs and observed that of 26
candidates tested, 19 induced markers of senescence. Overall, our work provides a new resource for
researchers to study cell senescence and our systems biology analyses provide new insights and

novel genes regarding cell senescence.

INTRODUCTION

In the 1960s, Leonard Hayflick and Paul Moorhead demonstrated that human fibroblasts reached a
stable proliferative growth arrest between their fortieth and sixtieth divisions (Hayflick and
Moorhead, 1961). Such cells would enter an altered state of “replicative senescence,” subsisting in a
non-proliferating, metabolically-active phase with a distinct vacuolated morphology (Kuilman et al.,
2010). This intrinsic form of senescence is driven by gradual replicative telomere erosion, eventually
exposing an uncapped free double-stranded chromosome end and triggering a permanent DNA
damage response (DDR) (d'Adda di Fagagna et al., 2003; Herbig et al., 2004). Additionally, acute
premature senescence can occur as an antagonistic consequence of genomic, epigenomic, or
proteomic damage, driven by oncogenic factors, oxidative stress, or radiation (de Magalhaes and
Passos, 2018). Initially assumed to be mainly an evolutionary response to reduce mutation accrual
and subsequent tumorigenesis, the pleiotropic nature of senescence has since also been positively
implicated in embryogenesis (Munoz-Espin et al., 2013; Storer et al., 2013), wound healing (Demaria
et al., 2014) and immune clearance (Burton and Stolzing, 2018; Kang et al., 2011). By contrast, the
gradual accumulation and chronic persistence of senescent cells with time promotes deleterious
effects that are considered to accelerate deterioration and hyperplasia in ageing (Campisi, 2013).
Senescent cells secrete a cocktail of inflammatory and stromal regulators — denoted as the

senescence-associated secretory phenotype, or SASP — which adversely impact neighbouring cells,
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the surrounding extracellular matrix, and other structural components, resulting in chronic
inflammation, the induction of senescence in healthy cells, and vulnerable tissue (Acosta et al., 2013;
van Deursen, 2014). Transgenic mice expressing transgene INK-ATTAC, which induces apoptosis of
senescence cells, also increases lifespan and improves healthspan (Baker et al.,, 2016). It is,
therefore, no surprise that in recent years gerontology has heavily focused on the prevention or
removal of senescent cells as a means to slow or stop ageing and related pathologies (Baar et al.,

2017; Baker et al., 2011; Yosef et al., 2016).

Research has sought to ascertain the genetic programme and prodrome underlying the development
and phenotype of senescent cells (Vaziri and Benchimol, 1998). Expedited by recent advances in
genomic and transcriptomic sequencing, alongside high throughput genetic screens, a wealth of
publicly available data now exists which has furthered the understanding of senescence regulation
(Hernandez-Segura et al., 2017; Lafferty-Whyte et al., 2010). Unfortunately, despite our increasing
knowledge of CS, determining whether a cell has senesced is not clear-cut. Common senescence
markers used to identify CS in vitro and in vivo include senescence-associated B-galactosidase (SA-B-
gal) and cyclin-dependent kinase inhibitor 2A (p16™***) (Chandler and Peters, 2013; Dimri et al.,
1995; Sharpless and Sherr, 2015). However, B-galactosidase activity has been detected in other cell
types too such as macrophages, osteoclasts, and cells undergoing autophagy (Bursuker et al., 1982;

Kopp et al., 2007; Young and Narita, 2010). Furthermore, some forms of senescence are not

INK4A INK4A

associated with p16 expression, whilst there can also be p16 in non-senescent cells (Herbig
et al., 2004; Witkiewicz et al., 2011). As such, there are now over two hundred genes implicated in
cellular senescence in humans alone. Therefore, it is necessary to conglomerate this data into a

purposefully designed database.

Gene databases are highly useful for genomic computational analyses, as exemplified by the Human

Ageing Genomic Resources (HAGR) (Tacutu et al., 2018). HAGR provides a portal where users can
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study ageing from various perspectives using structured data such as longevity-modulating genetic
interventions, age-related molecular changes, longevity-associated gene variants, organism data,
and drugs that increase lifespan. CellAge builds on these HAGR facilities to provide a means of
studying cell senescence in the context of ageing or as a standalone resource; the expectation is that
CellAge will now provide the basis for processing the discrete complexities of cellular senescence on

a systematic scale.

Our recent understanding of biological networks has led to new fields, like network medicine
(Barabasi et al., 2011). Biological networks can be built using protein interaction and gene co-
expression data. A previous paper used protein-protein interactions to build genetic networks
identifying potential longevity genes along with links between genes and ageing-related diseases
(Budovsky et al., 2007). Here, we present the network of proteins and genes co-expressed with the
CellAge senescence genes. Assaying the networks, we find links between senescence and immune
system functions, and find genes highly connected to CellAge genes under the assumption that a

guilt-by-association approach will reveal genes with similar functions (Vidal et al., 2011).

In this study, we look at the broad context of Cellular Senescence (CS) genes — their association with
ageing and ageing-related diseases, functional enrichment, evolutionary conservation, and
topological parameters within biological networks — to further our understanding of the impact of CS
in ageing and diseases. Using our networks, we generate a list of 30 potential novel CS regulators

and experimentally validate 26 genes using siRNAs, identifying 19 potential senescence inhibitors.

RESULTS

The CellAge Database

The CellAge website can be accessed at http://genomics.senescence.info/cells/. Figure 1A presents

the main CellAge data browser, which allows users to surf through the available data. The browser
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includes several columns with information that can be searched and filtered efficiently. Users can
search for a comma-separated gene list or for individual genes. Once selected, a gene entry page

with more detailed description of the experimental context will open.

CellAge was compiled following a scientific literature search of gene manipulation experiments in
primary, immortalized, or cancer human cell lines that caused cells to promote or inhibit CS. The first
CellAge build comprises 279 distinct CS genes, of which 232 genes affect replicative CS, 34 genes are
associated with stress-induced CS, and 28 genes are associated with oncogene-induced CS. Of the
279 total genes, 153 genes promote CS, 121 inhibit it and five genes have unclear effects, both
promoting and inhibiting CS depending on experimental conditions (Figure 1B). The genes in the
dataset are also classified according to the experimental context used to determine these
associations. We have also performed a meta-analysis to identify the genetic signatures of
replicative CS, and found 526 overexpressed and 734 underexpressed genes (Chatsirisupachai et al.,
2019). These gene signatures are also available on the CellAge website. Of the 279 CellAge genes, 44
genes were present in the signatures of CS (15.8%). This overlap was significant (P-value = 1.62e-08;
Fisher’s exact test). While 13 of the CellAge promoters of CS significantly overlapped with the
overexpressed signatures of CS (8.5%, P=2.06e-06, Fisher’s exact test), only 7 overlapped with the
underexpressed signatures (4.6%, P=5.13e-01, Fisher’s exact test). The CellAge inhibitors of CS
significantly overlapped with both the overexpressed signatures of CS (n=7, 5.8%, P=4.08e-02,

Fisher’s exact test) and underexpressed signatures of CS (n=17, 14%, P=2.06e-06, Fisher’s exact test).
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Figure 1. (A) The CellAge Database of CS genes. The main data browser provides functionality to
filter by multiple parameters like cell line and senescence type and select genes to view details and
links with other ageing-related genes on the HAGR website (B) Breakdown of the effects all 279
CellAge genes have on CS. Genes marked as ‘unclear’ both promote and inhibit senescence

depending on biological context.

CellAge Gene Functions

High quality curated datasets enable systematic computational analyses (Barardo et al., 2017;

Fernandes et al., 2016). Since we are interested in learning more about the underlying processes and
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functionality shared by human CS genes, we started by exploring the functional enrichment within

the CellAge dataset.

Using the database for annotation, visualisation and integrated discovery — DAVID Version 6.8
(Huang da et al., 2009a, b), we found that genes in CellAge are enriched with several clusters
associated with Protein Kinase Activity, Transcription Regulation, DNA-binding, DNA damage repair
and Cell cycle regulation in cancer. In particular, genes that promote senescence were more
associated with promoting transcription, while genes that inhibit senescence were more associated
with repressing transcription. Furthermore, we found that promoters of senescence were
significantly associated with VEGF and TNF signalling pathways (p<0.01, Fisher’s exact test with

Benjamini-Hochberg correction) (SI Table 1; Sl Table 2).

Evolutionary Conservation of CellAge Genes in Model Organisms

Next, we looked at the conservation of CellAge genes across a number of mammalian and non-
mammalian model organisms with orthologues to human CellAge genes using Ensembl BioMart
(Version 96) (Smedley et al., 2015) in order to understand the genetic conservation of CS processes.
There was a significantly higher number of human orthologues for CellAge genes than for other
protein-coding genes in mouse, rat, and monkey, while non-mammalian species did not show
significant conservation of CellAge genes (two-tailed z-test with BH correction) (SI Figure 1A; Sl Table
3). Interestingly, previous studies have found that longevity-associated genes (LAGs) are
substantially overrepresented from bacteria to mammals, and that the effect of LAG overexpression
in different model organisms was mostly the same (Yanai et al., 2017). It remains unclear what the
evolutionary origin of most of the CellAge genes is or why they are not present in more
evolutionarily distant organisms. Unique evolutionary pressures could have played an important role
in the evolution of CellAge genes in mammals. However, somatic cells in C. elegans and Drosophila

are post mitotic and lack an equivalent CS process, which could explain why the CellAge genes are
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not conserved. We further compared the conservation of CellAge promoters and inhibitors of CS and
found that while the promoters were significantly conserved in the mammal model organisms, the

inhibitors were not (Sl Figure 1B).

We also report the number of orthologous CellAge genes present in 24 mammal species using the
OMA standalone software v. 2.3.1 algorithm (Altenhoff et al., 2015) (SI Figure 1C). From 279 CellAge
genes, we report 271 orthogroups (OG) (SI Cellage_Orthologous-Groups). 22 OGs were conserved in
the 24 mammals, including the following genes: DEK, BRD7, NEK4, POT1, SGK1, TLR3, CHEK1, CIP2A,
EWSR1, HDAC1, HMGB1, KDM4A, KDM5B, LATS1, MORC3, NR2E1, PTTG1, RAD21, NFE2L2, PDCD10,
PIK3C2A, and SLC16A7 (Sl Table 4). Within the long-lived mammal genomes we analysed (human,
elephant, naked mole rat, bowhead whale, and little brown bat), we found 128 OG CellAge genes (S|
CellAge_Orthologous-Groups; genomes available in Sl Table 5). However, finding OGs is dependent

on genome quality and annotations, and higher quality genomes would likely yield more OGs.

CellAge vs Human Orthologues of Longevity-Associated Model Organism Genes

To understand how senescence is linked to genetics of ageing processes, we looked at the
intersection of CellAge genes and the 869 genes in the human orthologues of model organisms’
longevity-associated genes (LAGs) dataset, collected based on quantitative changes in lifespan
(Fernandes et al.,, 2016). Like CellAge, where genes are classified based on whether their
upregulation promotes, inhibits, or has an unknown impact on CS, the longevity orthologues dataset
also provides information on the effect of upregulation of its genes, namely whether it promotes

(pro, 421) or inhibits (anti, 448) longevity (S| Table 6; Sl Figure 2).

The CS promoters statistically overlapped with the anti-longevity genes and not with the pro-
longevity genes (anti: n=9, ~6%, P=7.30e-03; pro: n=6, ~4%, P=1.02e-01, hypergeometric distribution

with Bonferroni correction). We noted an inverse result with the inhibitors of CS, where there was a
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much greater overlap between the CellAge inhibitors and the pro-longevity genes, resulting in the
smallest p-value of all the overlaps (n=18, ~15%, P=6.95e-11, hypergeometric distribution with
Bonferroni correction). However, there was also a significant overrepresentation of genes inhibiting
the CS process within the anti-longevity genes (n=7, ~6%, P= 1.84e-02, hypergeometric distribution
with Bonferroni correction). It is possible that some of the pathways the CS inhibitors are associated
with increase longevity, whereas other pathways have anti-longevity effects. Overall, these results
highlight a statistically significant association between CS and the ageing process and suggest a
potential inverse relationship between CS and longevity, at least for some pathways. Gene overlaps

are available in Sl Table 7.

CellAge Genes Differentially Expressed with Age

In another work we performed a meta-analysis to find molecular signatures of ageing derived from
humans, rats, and mice (Palmer et al., in preparation). To investigate how the expression of CellAge
genes changes with age, we looked for CellAge genes which either promote (153) or inhibit (121)
senescence within the list of ageing signatures. The genes overexpressed with age (449) had a
significant overlap with the CellAge genes (CS promoters: n = 17, ~11%, P=1.95e-07; CS inhibitors:
n=9, ~7%, P=3.29e-03, Fisher’s exact test with BH correction) while the genes underexpressed with
age (162) did not (CS promoters: n=0, P=6.39e-01; CS inhibitors: n=3, ~3%, P=1.13e-01). The
overexpressed genetic signatures of replicative CS (526) also significantly overlapped with the
overexpressed signatures of ageing (n=60, ~11%, P=6.25e-25), but not the underexpressed
signatures of ageing (n=3, ~1%, P=8.03e-1). Finally, the underexpressed signatures of replicative CS
(734) did not significantly overlap with the overexpressed (n=18, ~¥3%, P=8.03e-1) or underexpressed

(n=9, ~1%, P=4.06e-1) signatures of ageing.

Using all protein-coding genes as a background list, we further examined the CS promoters
overexpressed with age for functional enrichment using WebGestalt to determine if specific
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pathways were enriched (Wang et al., 2017). In parallel, we performed this analysis using the genes
which overlapped between CellAge inhibitors and genes overexpressed with age. Seventy-three GO
terms were significantly enriched for the overlap between CellAge senescence promoters and age
upregulated genes (p<0.05 Fisher’s exact test with BH correction) (S| Table 8). After clustering GO
terms with REVIGO, we found groups enriched for regulation of apoptotic processes, response to
lipid, epithelium development, rhythmic process, circadian rhythm, cytokine metabolism, and cell-
substrate adhesion (SI Figure 3A) (Supek et al., 2011). Seventy-one enriched GO terms for the
overexpressed signatures of CS overexpressed with age were clustered using REVIGO, resulting in
enriched terms relating to leukocyte activation, aging, response to beta-amyloid, and cell
proliferation (Sl Table 9; Sl Figure 3B). No GO terms were significantly enriched for the promoters of
CS underexpressed with age, the inhibitors of CS differentially expressed with age, the
underexpressed signatures of CS differentially expressed with age, or the overexpressed signatures

of CS underexpressed with age.

Tissue-Specific CS Gene Expression and Differential Expression of CS Genes in Human Tissue with

Age

The Genotype-Tissue Expression (GTEx) project (v7, January 2015 release) contains expression data
from 53 different tissue sites collected from 714 donors ranging from 20 to 79 years of age which
can be grouped into 26 tissue classes (Consortium, 2013). We asked if CellAge genes and
differentially expressed signatures of CS were expressed in a tissue-specific manner (Palmer et al.,
manuscript in preparation), and determined how CS gene expression changes across different

tissues with age (Chatsirisupachai et al., 2019).

We first examined tissue-specific CS expression, and found that CellAge genes were either expressed
in a tissue-specific manner less than expected by chance, or in line with expectations; in other

words, the majority of CellAge genes tended to be expressed across multiple tissues (Sl Figure 4A; Sl
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Table 10). Testis was the only tissue with significant differences between the actual and expected
number of tissue-specific CellAge genes expressed (less tissue-specific genes than expected by
chance, p<0.05, Fisher’s exact test with BH correction). The underexpressed signatures of CS were
significantly less tissue-specific in the testis and liver, while the overexpressed signatures of CS were
significantly less tissue-specific in the brain, liver, pituitary, and skin, and more tissue-specific in
blood. We also compared the ratio of tissue-specific to non-tissue-specific genes in the CS datasets
to all protein-coding genes. While ~25% of all protein-coding genes are expressed in a tissue-specific
manner, only ~10% of CellAge genes and ~11% of signatures of CS are expressed in a tissue-specific
manner (SI Figure 4B), significantly less than expected by chance (p=2.52e-12 and 3.93e-48

respectively, Fisher’s exact test with BH correction).

Then, we examined the differential expression of CS genes with age in different tissues. Using a
previously generated gene set of differentially expressed genes (DEGs) with age in 26 tissues on
GTEx (Chatsirisupachai et al.,, 2019; Consortium, 2013), we found overlaps with 268 CellAge
promoters and inhibitors of CS present in the gene expression data (Figure 2A). The process of
finding DEGs with age filters out lowly expressed genes, which explains the 11 missing CellAge CS
regulators. Overall, senescence promoters were overexpressed across different tissues with age,
although none of the overlaps were significant after FDR correction (Fisher’s exact test with BH
correction, p<0.05) (Sl Table 11). There was the opposite trend in the inhibitors of CS, where there
was noticeably less overexpression of CS inhibitors with age, although these overlaps were also not
significant after FDR correction. 1,240 differentially expressed signatures of CS were also overlapped
with the GTEx ageing DEGs in 26 human tissues, including 9 tissues previously analysed (Figure 2B)
(Chatsirisupachai et al., 2019). The overexpressed signatures of CS were significantly overexpressed
across multiple tissues with age, and only significantly underexpressed with age in the brain and
uterus (p<0.05, Fisher’'s exact test with BH correction) (SI Table 12). Furthermore, the

underexpressed signatures of CS trended towards overexpressing less than expected by chance
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across multiple tissues with age, although these overlaps were only significant after FDR adjustment
in the colon and nerve, while the underexpressed signatures of CS were significantly overexpressed
more than expected in the uterus. Finally, the underexpressed signatures of CS were
underexpressed with age more than expected by chance in the colon, lung and ovary, and
underexpressed with age less than expected by chance in the brain. We also compared the ratio of
differentially expressed to non-differentially expressed CS genes in at least one tissue with age to the
equivalent ratio in all protein-coding genes (S| Figure 5A) (see Overlap Analysis in materials and
methods). We found that ~64% of all protein-coding genes did not significantly change expression
with age in any human tissues, while ~19% were overexpressed, and ~17% were underexpressed
(~7% were both overexpressed and underexpressed across multiple tissues) (S| Figure 5; Sl Table 13
and 14). For the CellAge genes, the number of promoters of CS significantly overexpressed with age
in at least one tissue was significantly higher than the genome average (n=50, ~30%, p=1.5e-3,
Fisher’s exact test with BH correction). The promoters of CS underexpressed with age and the
inhibitors of CS differentially expressed with age were not significantly different than the protein-
coding average. We also compared the number of signatures of CS differentially expressed with age
in at least one tissue to the protein-coding genome average. The overexpressed signatures of CS
were significantly differentially expressed with age compared to all protein-coding genes, whereas
the number of underexpressed signatures of CS were underexpressed with age more than expected

by chance.
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Figure 2. Differential expression of (A) CellAge Promoters and Inhibitors of CS and (B) differentially

expressed signatures of CS in human tissue with age. Red values represent the absolute log2(p
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value) and indicate that there were more genes differentially expressed with age than expected by
chance. Blue values indicate that there were less genes differentially expressed with age than
expected by chance (negative absolute log2(p value)). Numbers indicate p-values (Fisher’s exact test),

while bold p-values are significant after FDR correction (BH) (Sl Table 11; Sl Table 12).

The overall fold change (FC) with age of the CS genes was also compared to the FC with age of all
protein-coding genes for each tissue in GTEx (Figure 3A; Sl Table 15). The median log,FC with age of
the CellAge CS promoters and the overexpressed signatures of CS was greater than the genome
median for the majority of tissues on GTEx, although the difference in log,FC distribution with age
between the promoters of CS and all protein-coding genes was only significant in seven tissues
(Wilcoxon rank sum test with BH correction, p<0.05). The median log,FC with age of the CellAge
inhibitors of CS and the underexpressed signatures of ageing was smaller than the genome median
in the majority of tissues, showcasing the opposite trend to the promoters of CS and overexpressed
signatures of CS. However, the only tissues with significantly different distributions of log,FC with
age for the inhibitors of CS were the skin and oesophagus, where the median log,FC distribution was
significantly less than the genome average, and the salivary gland, where the median log,FC
distribution was significantly more than the genome average. We also found that the distribution of
log,FC with age of the differentially expressed signatures of CS significantly changed in opposite
directions with age in 14 tissues. Interestingly, this trend was present even in the adrenal gland and
uterus, where the signatures of CS changed with age in the opposite direction to the majority of

other tissues.

The expression of the majority of CS genes does not change with age (SI Figure 5), yet a significant
number of CS genes trend towards differential expression with age across multiple tissues in humans
(Figure 2). We ran 10,000 simulations on the GTEx RNA-seq data to determine the likelihood of a CS

gene differentially expressing with age in more than one tissue by chance (see simulation of CS gene
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expression in human ageing in materials and methods). The likelihood of a CellAge gene
overexpressing with age in more than three tissues and underexpressing with age in more than two
tissues by chance was less than 0.05 (p<0.05, CS gene expression simulations with BH correction) (S|
Table 16; Figure 3B). CS promoters overexpressed in significantly more tissues with age than
expected by chance included CDKN2A, NOX4, CPEB1, IGFBP3. ABI3, CDKN1A, CYR61, DDB2, MATK,
PIK3R5, VENTX, HK3, SIK1, and SOX2, while PTTG1, DHCR24, IL8, and PIM1 were underexpressed in
significantly more tissues (Sl Table 17). ZMAT3 and EPHA3 were the two CS inhibitors overexpressed
in significantly more tissues with age than expected by chance, while CDK1, AURKA, BMI1, BRCAI,
EZH2, FOXM1, HJURP, MAD2L1, SNAI1, and VEGFA were underexpressed in significantly more
tissues. We also performed simulations to determine the likelihood of a signature of CS differentially
expressing with age in multiple human tissues by chance (S| Table 18). Less than 5% of the signatures
of CS overexpressed with age in more than three tissues or underexpressed with age in more than
two tissues. A total of 46 CS signatures (29 overexpressed signatures of CS, 17 underexpressed
signatures of CS) were overexpressed with age in significantly more tissues than expected by chance,
and 139 CS signatures were underexpressed in more tissues than expected by chance (26

overexpressed signatures of CS, 113 underexpressed signatures of CS) (Sl Table 19).
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Figure 3. (A) Comparison of the median log,FC and distribution of log,FC with age between the CS
genes and all protein coding genes in human tissue. Red tiles indicate that the median log,FC of the
CS genes is higher than the median log,FC of all protein-coding genes for that tissue, while blue tiles
indicate that the median log,FC of the CS genes is lower than the median genome log,FC. Labels
indicate significant differences between the log,FC distribution with age of CS genes and the log,FC
distribution with age of all protein-coding genes for that tissue (* - p<0.05, Wilcoxon rank sum test
with BH correction) (S| Table 15). (B) CellAge genes differentially expressed in multiple tissues with
age. Numbers indicate p-values while black bars above the red line indicate the CellAge gene was
differentially expressed with age in more tissues than expected by chance (p<0.05, gene expression

tissue overlap simulations with BH correction) (S| Table 16 — 19).

Do CS and Longevity Genes Associate with Ageing-Related Disease Genes?

A previous paper (Fernandes et al., 2016) grouped 769 ageing-related diseases (ARDs) into 6 NIH
Medical Subject Headings (MeSH) classes (Dhammi and Kumar, 2014) based on data from the
Genetic Association Database (Becker et al., 2004): cardiovascular diseases (CVD), immune system
diseases (ISD), musculoskeletal diseases (MSD), nutritional and metabolic diseases (NMD), neoplastic
diseases (NPD), and nervous system diseases (NSD). The same approach was used to build the HAGR
ageing-related disease genes selection tool

(http://genomics.senescence.info/diseases/gene set.php), which we used to obtain the ARD genes

for each disease class and overlap with the CellAge genes.

There were links between the CellAge genes and NPD genes, which is expected given the anti-
tumour role senescence has (S| Table 20). Without accounting for publication bias, all ARD classes
are significantly associated with CellAge genes, with lower commonalities with diseases affecting
mostly non-proliferating tissue such as NSD. NPD genes are even more overrepresented in the

GenAge human dataset, which could suggest commonality between ageing and senescence through
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cancer-related pathways. Both the strong association of NPD genes with GenAge and senescence,
and the strong link between GenAge and all ARD classes is interesting. Indeed, longevity-associated
genes have been linked to cancer-associated genes in previous papers (Budovsky et al., 2009).
Considering ageing is the leading risk factor for ARD (Kennedy et al., 2014; Niccoli and Partridge,
2012), the results from GenAge support the previously tested conjecture that there are (i) at least a
few genes shared by all or most ARD classes; and (ii) those genes are also related to ageing in
general (Fernandes et al., 2016). We also looked for genes that are shared across multiple disease
classes and also recorded as CS genes. CellAge genes shared across multiple ARD classes included
VZGFA and IFNG (5 ARD classes), SERPINE1, MMP9, and AR (4 ARD classes), and CDKN2A (3 ARD

classes). Results are summarised in Sl Figure 6.

Are CS Genes Associated with Cancer Genes?

Cellular senescence is widely thought to be an anti-cancer mechanism (de Magalhaes, 2013).
Therefore, the CellAge senescence promoters and inhibitors of senescence were overlapped with
oncogenes from the tumour suppressor gene (TSG) database (TSGene 2.0) (n=1,018) (Zhao et al.,
2013) and the ONGene database (n=698) (Liu et al., 2017) (S| Table 21 and 22 respectively). The
number of significant genes overlapping are shown in Figure 4A, while the significant p-values from

the overlap analysis are shown in Figure 4B (p<0.05, Fisher’s exact test with BH correction).

The significant overlap between CellAge genes and cancer indicates a close relationship between
both processes. Specifically, the overlap between CellAge inhibitors and oncogenes, and the overlap
between CellAge promoters and TSGs were more significant, with lower p-values and larger odds

ratios (Figure 4) (Oliveros, 2015).
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Figure 4. (A) Overlap between CellAge promoters and inhibitors, and oncogenes and tumour-
suppressing genes. (B) Adjusted p-value and odds ratio of the overlap analysis. The number of
overlapping genes in each category was significant (p<0.05, Fisher’s exact test with BH correction). P-

values are shown in grey writing for each comparison. Data available in S| Table 23 — 26.

Gene ontology (GO) enrichment analyses was performed using WebGestalt to identify the function
of the overlapping genes (Wang et al., 2017). Overlapping genes between CellAge senescence
promoters and TSGs were enriched in GO terms related to p53 signalling and cell cycle phase
transition (SI Figure 7A). The enriched functions of overlapping genes between CellAge senescence
promoters and oncogenes were mainly related to immune system processes and response to stress
(SI Figure 7B). Overlapping genes between CellAge senescence inhibitors and TSGs were enriched in
only 5 terms, which are cellular response to oxygen-containing compound, positive regulation of
chromatin organization, and terms relating to female sex differentiation (SI Figure 7C). Finally,
overlapping genes between CellAge senescence inhibitors and oncogenes were related in processes
such as negative regulation of nucleic acid-templated transcription, cellular response to stress, and
cell proliferation (Sl Figure 7D). All of the functional enrichment data can be found in SI Table 27 -

30.

19


https://doi.org/10.1101/743781
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/743781; this version posted August 23, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

NETWORK ANALYSIS

The CellAge genes form both protein-protein and gene co-expression networks. The formation of a
PPI network is significant in itself given that only ~4% of the genes in a randomly chosen gene
dataset of similar size are interconnected (Tacutu et al., 2011). In order to have a more holistic view
of CS, we were interested in the topological parameters of the networks that CS genes form. For this,
several types of networks were constructed using the CellAge genes as seeds: the CS protein-protein
interaction (PPI) network, along with two CS gene co-expression networks built using RNA-seq and
microarray data. Biological networks generally have a scale-free topology in which the majority of
genes (nodes) have few interactions (edges), while some have many more interactions, resulting in a
power law distribution of the node degree (the number of interactions per node) (Vidal et al., 2011,
Wolfson et al., 2009). As expected, the node-degree distribution of the above networks does confirm
the scale-free structure (Sl Figure 8). SI Table 31 presents the network summary statistics for the

resulting networks.

The network parameters we looked at were Degree, Betweenness Centrality (BC), Closeness
Centrality (CC), and Increased Connectivity (IC). The degree is the number of interactions per node
and nodes with high degree scores are termed network hubs. BC is a measure of the proportion of
shortest paths between all node pairs in the network that cross the node in question. The nodes
with high BC are network bottlenecks and may connect large portions of the network which would
not otherwise communicate effectively or may monitor information flow from disparate regions in
the network (Vidal et al., 2011). CC is a measure of how close a certain node is to all other nodes and
is calculated with the inverse of the sum of shortest paths to all other nodes. Lower CC scores
indicate that nodes are more central to the network, while high CC scores indicate the node may be
on the periphery of the network and thus less central. The IC for each node measures the statistical
significance for any over-representation of interactions between a given node and a specific subset

of nodes (in our case CellAge proteins) when compared to what is expected by chance. Taken
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together, genes that score highly for degree, BC, CC, and IC within the senescence networks are

likely important regulators of CS even if up until now they have not been identified as CS genes.

Looking at the topology of CS networks, the PPl network, microarray-based co-expression network,
and RNA-seq co-expression network possess comparable scale-free structures. However, gene co-
expression data is less influenced by publication bias. This is particularly important considering
published literature often reports positive protein-protein interactions over protein interactions that
do not exist (Gillis et al., 2014). The lack of negative results for protein interaction publications
complicates the interpretation of PPl networks even more, as the absence of edges in networks does
not necessarily mean they do not exist. On the other hand, RNA-seq and microarray co-expression
data, while not influenced by publication bias, does not give indications of actual experimentally
demonstrated interactions (physical or genetic). Furthermore, RNA read counts do not directly
correlate to protein numbers, with previous studies reporting that only 40% of the variation in
protein concentration can be attributed to mRNA levels, an important aspect to keep in mind when
interpreting RNA-seq data (Vogel and Marcotte, 2012). Finally, the microarray network was
constructed using the COXPRESdb (V6), which contains 73,083 human samples and offered another
degree of validation (Okamura et al.,, 2015). Although RNA-seq reportedly detects more DEGs
including ncRNAs (Rao et al.,, 2018), GeneFriends (van Dam et al., 2015) contains 4,133 human

samples, far less than the microarray database from COXPRESdb.

The Protein-Protein Interaction Network Associated with CS

We only used interactions from human proteins to build the CellAge PPI network. The network was
built by taking the CS-associated genes, their first order partners and the interactions between them
from the BioGrid database. Interestingly, a very large portion of CS genes and their partners formed
a single large network with 1,661 nodes (further analysed here) and several smaller islands (in total

the group of networks amounted for 2,643 nodes).
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The genes with the highest degree scores are TP53, HDAC1, BRCA1, EP300 and MDM?2. Expectedly,
several of these genes also possessed the highest BC: TP53, HDAC1, BRCA1 and MDM_2 (with BAG3, a
gene with a slightly smaller degree also within the top 5). On the other hand, focusing more on
specificity, the 5 genes with significant IC with existing CellAge genes were: CCND2, SMAD3, EGR1,
CCND1 and CDKN2A. Of note among these nodes, EP300, MDM_2, CCND2, SMAD3 and EGR1 were
not already present in CellAge. S| Figure 9 summarises the gene intersection across the computed
network parameters, whilst SI Table 32 identifies potential senescence regulators not already
present in CellAge from the PPI network. We found that from the top 12 PPl candidates, 11 have
been recently shown to regulate senescence in human cell lines and will be added to CellAge build 2

(SI Table 32).

Using DAVID, we found that the following terms were enriched across the 1,661 genes in the PPI
network: Transcription, DNA damage & repair, Proteasome & ubiquitin, cell cycle, and ATP pathway
(Huang da et al., 2009a, b) (SI Table 33). These results are all in line with previously described

hallmarks of cellular senescence (Hernandez-Segura et al., 2018).

It is prudent to note that centrality measures in PPl networks must be interpreted with caution due
to publication bias that can be an inherent part of the network (Safari-Alighiarloo et al., 2016; Sanz-
Pamplona et al.,, 2012). The top network genes identified from the PPl network are likely to be
heavily influenced by publication bias (Reguly et al., 2006). Looking at the average PubMed hits of
the gene symbol in the title or abstract revealed a mean result count of approximately 3,073 per

gene, far higher than the genome average (136) or existing CellAge genes (712) (SI Figure 10).
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Unweighted RNA-Seq Co-expression Network

We used CellAge genes that promote and inhibit CS and their co-expressing partners to build a
cellular senescence co-expression network. The network consists of a main connected network with
3,198 nodes, and a number of smaller ‘islands’ that are not connected to the main network (Figure

5).

The main inter-connected network included 130 CellAge genes. Among these, we also found that
14% of them are also human ageing-related genes, reported in GenAge - Human dataset, whereas
the remainder of the smaller networks only comprised of 1.6% longevity genes (de Magalhaes et al.,
2009). Next, we looked at a number of centrality parameters to see how CellAge genes are
characterized compared to the entire network. CellAge genes had a mean BC of 0.00363, whereas
the remainder of the genes had a BC of 0.00178, revealing that if CellAge genes are removed,
modules within the network may become disconnected more easily. While nodes scoring highly for
BC in PPI networks are likely bottleneck regulators of gene expression, this is not necessarily true for
co-expression networks. In this case, nodes can also have high BC scores if they are co-activated via
various signalling pathways. Although BC alone is not enough to determine which genes are
regulating CS, taking BC into account with other network topological parameters can be a good
indicator of gene function. Aside from high BC, CellAge genes also had a lower local clustering
coefficient of 0.58, compared to a mean of 0.76 across non-CellAge genes, indicating that locally,
CellAge genes connect to other genes less than the average for the network. This can also be seen at
the degree level, where CellAge genes averaged only 53 connections, compared to an average of 103
connections in non-CellAge genes. Finally, the mean CC score was not significantly different between
CellAge nodes and other genes in the network (0.148 in CellAge vs 0.158). CellAge genes were
therefore more likely to be bottlenecks in signalling across different modules and occupy localised
areas with lower network redundancy, suggesting that perturbations in their expression might have

a greater impact on linking different underlying cellular processes.
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Figure 5. Cluster analysis of the RNA-Seq Unweighted Co-expression Network. The 171 seed nodes
obtained from CellAge and their first order interactors. The colours represent the breakdown of the
network into clusters. The algorithm revealed 52 distinct clusters, of which we colour and order the
19 clusters with the best rankings for modularity, or in the case of module 17-19, size. The CellAge
nodes are coloured in dark purple, appearing throughout the network. Larger nodes have higher
betweenness centrality. In order of decreasing modularity, the main function clusters of the modules
were related to; Spermatogenesis (Module 1), Synapse (Module 2), Cardiac muscle contraction
(Module 3), Cell Cycle (Module 4), Secreted (Module 5), Tudor domain (Module 6), ATP-binding
(Module 7), Symport (Sodium ion transport) (Module 8), DNA damage and repair (Module 9), transit

peptide:Mitochondrion (Module 10), Steroid metabolism (Module 11), Transcription regulation
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(Module 12), Protein transport (Module 13), Mitochondrion (Module 14), Heme biosynthesis (Module
15), Innate immunity (Module 16), Signal peptide (Module 17), Keratinocyte (Module 18),

Transcription repression (Module 19) (Enrichment results in S| Table 34, genes in Sl Table 35).

The topological analysis of the main network component as a whole revealed a more modular
topology than the PPl network, resulting in genes tending not to appear in multiple measures of
centrality. There were 23 nodes with significant IC with senescence-related genes, including PTPN6,
LAPTMS5, CORO1A, CCNB2 and HPF1. No node from the top 5 IC was present in the top 5 genes with
high BC, CC, or Degree. Overall, the primary candidates of interest included KDM4C, which had a
significant IC and was at the top 1% of CC and top 5% of BC, along with PTPN6, SASH3 and
ARHGAP30, which all had significant IC values and were at the top 5% of BC. We found that KDM4C
and PTPN6 have been shown to regulate CS in human cell lines, and will be added to build 2 of

CellAge (Sun et al., 2015; Yu et al., 2018).

Previous studies have advocated that measures of centrality are generally important to identify key
network components, with BC being one of the most common measures. However, it has also been
postulated mathematically that intra-modular BC is more important than inter-modular BC
(Langfelder et al., 2013). Therefore, by isolating network clusters of interest and identifying genes
with high BC or centrality within submodules, we propose to identify new senescence regulators

from the co-expression network.

Using the CytoCluster app (see Networks in Materials and Methods section) (Li et al., 2017), we
found 54 clusters in the network, of which we represent the top clusters coloured according to
modularity (Module 1-16) or size (Module 17-19) (Figure 5). Reactome pathway enrichment for all
main clusters highlighted cell cycle and immune system terms in the two largest clusters (Huang da

et al., 2009a, b). The largest cluster of 460 nodes (17 CellAge nodes, Module 4), possessed a high
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modularity score and was strongly associated with cell cycle genes, including the following general
terms: Cell Cycle; Cell Cycle, Mitotic; Mitotic Prometaphase; Resolution of Sister Chromatid
Cohesion; and DNA Repair. The second largest cluster (Module 16), however, had weak modularity
(ranking 26); it comprised of 450 nodes (19 CellAge nodes) and was enriched for immune-related
pathways including: Adaptive Immune System; Innate Immune System; Immunoregulatory
interactions between a Lymphoid and a non-Lymphoid cell; Neutrophil degranulation; and Cytokine
Signaling in Immune system. Cluster 4 and Cluster 5 were not enriched for Reactome Pathways. A
visual inspection showed a number of bottleneck genes between Module 1 and Module 16,
consistent with the role of the immune system in clearance and surveillance of senescence cells and

the secretion of immunomodulators by senescent cells (Hoenicke and Zender, 2012) (Sl Table 34).

We were also interested in visualising areas in the network with a high local clustering coefficient, as
this parameter represents areas with many neighbourhood interactions and, therefore, more robust
areas in the network. It was found that the two clusters of interest, enriched for cell cycle terms and
immune system terms, overlapped with regions of lower clustering coefficient, potentially implying
parts of the biological system with less redundancy in the underlying process. Figure 6 depicts
regions of high local clustering coefficient in the network (orange) and regions less well connected

locally (green).
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Figure 6. RNA-Seq Unweighted Co-expression Network, local clustering. Red/Orange represents
nodes with high clustering coefficient, whereas pale green represents nodes with lower clustering
coefficient. Degree is also weighted using node size. CellAge nodes are coloured purple, and GenAge

Human nodes are also shown and highlighted in bright green.

Unweighted Microarray Co-expression Network

We also made an unweighted microarray co-expression network built from the COXPRESdb database
of microarray gene co-expression (V6) (Okamura et al., 2015) (SI Figure 11). Compared with the RNA-
seq co-expression network, the microarray network is significantly smaller, and only included 34% of
the CellAge genes (Sl Table 31). However, we found that SMC4 was an important bottleneck in the
microarray network, being in the top 5% CC and IC (Sl Figure 11D; 11E). SMC4 was not independently
associated with senescence despite being part of the condensing Il complex, which is related to cell
senescence (Yokoyama et al., 2015). Furthermore, SMC4 is associated with cell cycle progression and

DNA repair, two key antagonist mechanisms of cell senescence development (d'Adda di Fagagna,
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2008; Zhang et al., 2016). SMC4 has been linked to cell cycle progression, proliferation regulation,
and DNA damage repair, in accordance to the most significantly highlighted functional clusters in the
module 2 and in the whole Microarray network (S| Figure 12; SI Table 38 and 39) (Dai et al., 2016;
Muramatsu et al., 2016). There was limited overlap between the microarray co-expression network
and the RNA-seq co-expression network, although this is not surprising considering the higher
specificity and sensitivity, and ability to detect low-abundance transcripts in RNA-seq (Wang et al.,

2009).

Experimental Validation of Senescence Candidates

We set out to test if candidate genes from our network analyses are indeed senescence inhibitors
using an siRNA-based approach, whereby knockdowns enable the p16 and/or the p21 senescence
pathway to be induced, leading to senescence (Stein et al., 1999). In total, we tested a total of 26
potential senescence inhibitor candidates. Of these 26 candidates, 20 were chosen using the HAGR
tool GeneFriends, a guilt-by-association database to find co-expressed genes (van Dam et al., 2015).
For this, we used the CellAge CS inhibitors as seed genes, with the assumption that genes co-
expressed with senescence inhibitors would also inhibit senescence, and generated a list of the top
co-expressed genes with CS inhibitors based on RNA-seq data (S| Table 40). Furthermore, CellAge
has multiple ways of partitioning genes including the type of senescence the genes are involved in
(replicative, oncogenic, and stress-induced). We decided to look for genes co-expressed with stress-
induced premature senescence (SIPS) inhibitors as well. We generated a list of genes that are co-
expressed with the CellAge SIPS (SI Table 41). A previous paper published a set of gene signatures
that are overexpressed and underexpressed in replicative cell senescence (RS) (Chatsirisupachai et
al., 2019). We chose to validate five additional genes that were both co-expressed with the CellAge
SIPS and are present as underexpressed in our gene signatures in RS. Finally, we chose SMC4 from
the microarray network due to its interaction with other senescence genes within the network, its

association with cell cycle progression, and the fact that it is underexpressed in senescent cells,
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indicating it may be inhibiting senescence in replicating cells. The genes chosen, along with
experimental validation results are shown in Figure 7, while the justification for our validation and Z-

scores are shown in Sl Table 42 and 43 respectively.

Senescent cells, including fibroblasts, can be characterised by a panel of senescence markers.
Markers include a decrease in cell number along with morphological measures such as an increase in
cell and nuclear area, and nuclear elongation. Furthermore, the senescence phenotype involves an
increase in pl6 expression, which is a tumour suppressor protein, along with an increase in p21
expression, a regulator of the cell cycle (Stein et al., 1999). We silenced CBX7, a potent senescence
inhibitor, as a positive control for senescence induction (Gil et al., 2004). We performed a transient
siRNA transfection for 26 candidates and identified those siRNAs which generated the induction of a
senescence phenotype compared to the siGLO negative control using multiparameter analysis
(Kuilman et al., 2010). Of the 26 genes tested, over 70% (n=19) induced a decrease in cell number
greater than 1 Z score, and of these, only one gene did not induce at least one phenotypic change
towards senescent morphology (i.e. direction of change similar to the CBX7 siRNA positive control,
Figure 7; Sl Table 43). 23% of the candidates (n=6) were top hits, activating both the p16 and p21
pathways, decreasing cell number, and altering at least one phenotype towards a senescent
morphology. 46% of the siRNAs (n=12) altered at least one phenotype towards senescent
morphology and increased mean p21 intensity but did not increase mean p16 intensity. Finally, one
of the siRNAs increased pl6 intensity, although there was no increase in p21 intensity or any

phenotypic changes towards senescence morphology.
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Figure 7. Experimental validation of 26 senescence candidates. (A) Fibroblasts stained with DAPI
(blue), p16 (green) and p21 (red) following transfection with negative control siRNA (siGLO),
positive control siRNA (CBX7), or CAPRIN1, HAUS4, CDC25A and SMC4 siRNA. Size bar, 100um. (B)
Fibroblasts stained with DAPI (blue) and Cell Mask (red) following transfection with negative

control siRNA (siGLO), positive control siRNA (CBX7), or GTF3C4, C9orf40, HAUS4, and MCM7
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SiRNA. Size bar, 100um. (C) Multi-parameter analysis of cellular and nuclear senescence-associated
morphological measures, cellular p16 intensity and nuclear p21 intensity. Colour coding using to
illustrate the number of Z-scores of the experimental siRNA from the siGLO negative control mean.
Red values indicate Z-scores closer to the CBX7 positive senescence control. One independent

experiment with six technical replicates. All Z-scores available in S| Table 43.

Six of the 26 genes tested had no significant effect on cell number, although five of the genes had
one or more phenotypic changes towards senescent morphology. VRK1 siRNA was the only case
which increased cell number and decreased nuclear area greater than 1 Z score (i.e. towards a more
proliferative morphology). In general, we have shown the power of networks in predicting gene
function, with 18 genes inducing phenotypes towards senescence (69%) and six top hits which
decreased cell number, altered at least one phenotype towards senescent morphology, increased
mean cellular p16 intensity (p16), and increased mean nuclear p21 intensity (p21) (CAPRINI,

CDC25A, HAUS4, SMC4, SPAG5, MYBL2) (23%).

DISCUSSION

CellAge aims to be the benchmark database of genes associated with cellular senescence and we
expect it to be an important new resource for the scientific community. The development of CellAge
has also provided us with the means to perform systematic analyses of CS. While showcasing the
functionality of CellAge in this manuscript, we have also explored the links between CS and ageing,
ARDs, and cancer. At the same time, we have aimed to expand the knowledge on both the evolution
and function of senescence genes, and on how CS genes interact and form genetic networks. We
showed that the use of CellAge may help in identifying new senescence-related genes and we have
validated several such genes experimentally. As the body of knowledge around senescence grows, it

is our aim to maintain a quality resource to allow integrative analyses and guide future experiments.
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We began our CellAge analysis by gaining further insight into the function of CellAge genes.
Unsurprisingly, promoters of CS were enriched for both VEGF and TNF signalling (SI Figure 3; Sl Table
8 and 9). Secretion of VEGF is a component of the senescence phenotype and has been shown to
contribute towards cancer progression (Coppe et al., 2006). Interestingly, the CellAge genes are
more strongly conserved in mammals compared to protein-coding genes, an effect not seen in
worms, yeast, or flies (Sl Figure 1; Sl Table 3). Given the role that many of the senescence genes in
CellAge play in regulating the cell cycle, it makes sense that they are evolutionarily conserved; it is
not entirely surprising that there is a greater evolutionary pressure towards conserving cell cycle
tumour suppressor genes than there is towards conserving other genes. Notably, the pattern of
evolutionary conservation of CS genes was found to be almost identical to that of cancer-associated
genes, apparently reflecting the co-evolution between these two phenomena (Tacutu et al., 2011).
Nonetheless, evolutionary genomics in a comparative context allows us to have a more
comprehensive understanding of the genetic bases in important phenotypic traits, like longevity
(Doherty and de Magalhaes, 2016). During their evolutionary history, it is possible that long-lived
species found ways to more efficiently solve problems related to the ageing process (de Magalhaes
et al., 2007; Gorbunova et al., 2014). Lineages where naturally important gene regulators (e.g. TP53)
have alternative molecular variants or have been lost from their genomes (Belyi et al., 2010;
Wichmann et al., 2016) can be investigated as natural knockouts (Albertson et al., 2009), since they
have found a different way to solve ageing-related diseases like cancer (Hanahan and Weinberg,

2011; Stearns et al., 2010).

The relationship between CS and longevity was highlighted across various sections of this
manuscript. The promoters of senescence were significantly overrepresented in the anti-longevity
human orthologues, while the inhibitors of senescence were even more overrepresented in the pro-
longevity human orthologues (S| Table 6) (Fernandes et al., 2016). Furthermore, both the CellAge

regulators of CS and the overexpressed signatures of CS were significantly overrepresented in the
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overexpressed ageing signatures from the human, rat, and mouse ageing signature meta-analysis
(Palmer et al., manuscript in preparation). Interestingly, we found that the overexpressed signatures
of CS overexpressed with age were significantly enriched for leukocyte activation, cell proliferation,
and ageing (S| Figure 3B; Sl Table 9). The SASP is a known inducer of chronic inflammation in aged
tissue (Acosta et al., 2013; van Deursen, 2014), and the enrichment of terms relating to leukocyte
activation highlights the role CS plays in activating the immune system via inflammatory factors with
age. One tissue that consistently showed different CS expression patterns with age was the uterus.
This observations was already noted in a previous study which also observed that DEGs
downregulated in cancer were upregulated with age and DEGs upregulated in cancer were

downregulated with age in six tissues, but not in the uterus (Chatsirisupachai et al., 2019).

CS genes are not expressed in a tissue-specific manner (S| Figure 4; Sl Table 10) and less than half of
the CS genes undergo a significant change in expression with age (Figure 2; Sl Figure 5), suggesting
that the pathways triggering differential expression of CS genes with age are shared between cells
across tissues and are under similar genetic controls. Indeed, we found that CDKN2A was
overexpressed in 19 human tissues with age, albeit only significantly so in 10 of the tissues (S| Table
17) (Chatsirisupachai et al., 2019). Nonetheless, across 10,000 simulated gene expression overlaps,
CS genes significantly overexpressing across multiple tissues with age by chance never exceeded
seven tissues, highlighting the significant methodical upregulation of CellAge genes and
overexpressed signatures of CS like CDKN2A, SPATA18, and GDF15, which all exceeded the maximum
number of overlaps in the simulations (SI Table 16, SI Table 18). These genes are potentially

contributing towards the upregulation of other CS genes in aged human tissue.

It is prudent to note that ~60% of the CellAge database was compiled using experiments in human
fibroblast cell lines. Of the 20 studies used to compile the signatures of CS, 10 also performed gene

manipulation experiments on fibroblasts (Chatsirisupachai et al., 2019). Fibroblasts are present in
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connective tissues found between other tissue types across the human body, and the tissue samples
analysed to compile GTEx likely contained fibroblast gene expression. This may partially explain the
lack of tissue-specific CellAge genes. It is further unclear whether the trends in differential
expression of the CellAge genes we see across aged human tissue samples is a result of fibroblast
senescence, or if heterogenous gene populations are undergoing CS. Single cell RNA-seq has
previously been used to elucidate DEGs in heterogenous cell populations of diseased and healthy
spleen samples (Jaitin et al., 2014), and applying similar approaches to young and old tissue samples
could clarify both which cells are undergoing CS in ageing and whether the CS process varies across

different cell types.

We found a strong association between senescence and neoplastic diseases (S| Table 20). This is not
surprising given the known role of senescence in tumour suppression. Some CS genes were also
shared between many of the ARD classes. These results are in line with a previous analysis
investigating the relationship between CS and ARD genes carried out using different datasets (Tacutu
et al., 2011). Tacutu et al reported significant overlaps (i.e. 138 genes — 53% — in common between
CS and cancer vs 21 — 8% — between CellAge and neoplasms); many more than we did. The study
found that many genes shared between CS and several non-cancer ARDs are also involved in cancer.
While removing cancer genes from our ARD dataset did not result in such a striking effect, it
nonetheless substantially cut the number of overlaps to a statistically insignificant level, adding
weight to the hypothesis that cancer genes have a bridging role between CS and ARDs. Furthermore,
we found a significant overlap between both the CellAge inhibitors and promoters of senescence,
and oncogenes and TSG (Figure 4). Genes that promote senescence, however, tended to be tumour
suppressors, while genes that inhibit senescence tended to be oncogenes, a finding that is consistent

with the classical view of cellular senescence as a tumour suppressor mechanism.
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We next explored what information could be obtained by applying a network analysis to CellAge.
From the list of CellAge genes, three networks of CS were generated: a PPl network and two co-
expression networks, with the aim of identifying new senescence regulators based primarily on

network centrality of the genes.

The examination of the PPl network to identify possible regulators based on centrality and
connectivity to existing CS genes revealed 12 central genes in the network (S| Table 32). A further 10
genes were identified by the same criteria, but these were already recorded in the CellAge database.
We looked at the RNA-Seq co-expression network in detail, using the main connected component of
3,198 genes to find highly central genes to the network as a whole, and those occupying
subnetworks of interest. The RNA-Seq was a highly modular network, separated into some
subnetworks of distinct functions (Figure 5). The two largest and more central networks contained a
number of known senescence genes. We expanded the analysis of these networks in particular,
identifying a number of bottleneck nodes. Cluster 1 was enriched for cell cycle processes, which is
not overly surprising given that senescence involves changes in cell cycle progression. However,
cluster 2 comprised of enriched terms relating to immune system function. One of the aims in
biogerontology is to understand and reverse the effects of ageing on the immune system. Sl Table 37
highlights the genes in both clusters that are potential CS bottlenecks within the network and may

warrant further study.

Using siRNAs, we were able to test the potential role of 26 gene candidates in inhibiting senescence
(Figure 7). The list of candidates was primarily compiled using CellAge inhibitors as seeds to generate
co-expressed genes in GeneFriends, a collection of RNA-seq co-expression data (van Dam et al.,
2015) (Sl Table 42). Of the 26 genes, 6 were top hits, causing cells to undergo morphological changes
towards senescent phenotypes, decreasing overall cell number, and activating both the p16 and p21

pathways. A further 13 siRNAs also induced a decrease in cell number, altered at least one
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phenotype towards senescent morphology, and increased mean p21 or p16 intensity, but not both.
SI Table 44 highlights the four CS candidates we found that have not yet been associated with
senescence. We have showcased how co-expression networks can be used to accurately infer

senescence gene candidates, which can then be experimentally verified.

Cellular senescence is one of the hallmarks of ageing (Lopez-Otin et al., 2013) and the accumulation
of senescent cells in human tissue with age is implicated as a driver of ageing-related diseases.
Indeed, pharmacological approaches targeting senescent cells, like senolytics, are a major and timely
area of research that could result in human clinical applications (de Magalhaes and Passos, 2018; de
Magalhaes et al.,, 2017). It is imperative that we fully understand and deconstruct cellular
senescence in order to target ageing-related diseases. We hope that CellAge will help researchers
understand the role that CS plays in ageing and ageing-related diseases and contributes to the

development of drugs and strategies to ameliorate the detrimental effects of senescent cells.

MATERIALS AND METHODS

CellAge Compilation

CellAge was compiled following a scientific literature search, manual curation, and annotation, with
genes being appended to the database if they met the following criteria:

e Only gene manipulation experiments (gene knockout, gene knockdown, partial or full loss-
of-function mutations, over-expression or drug-modulation) were used to identify the role of
the genes in cellular senescence. The search focussed on genes from genetic manipulation
experiments to ensure objectivity in the selection process.

e The genetic manipulation caused cells to promote or inhibit the CS process in the lab.
Cellular senescence was detected by growth arrest, increased SA-B-galactosidase activity,
SA-heterochromatin foci, a decrease in BrdU incorporation, changes in morphology, and/or

specific gene expression signatures.

36


https://doi.org/10.1101/743781
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/743781; this version posted August 23, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

e The experiments were performed in primary, immortalized, or cancer human cell lines.

Over half of the experiments were conducted in lung and foreskin fibroblasts. The data was
compiled from 230 references. The curated database comprises cell senescence genes together with
a number of additional annotations useful in understanding the context of each identified CS gene

(Sl Table 45).

We categorised genes according to three types of senescence: replicative, oncogene-induced or
stress-induced. We also recorded whether a gene promotes or inhibits CS. For example, a gene
whose overexpression is associated with increased senescence is classified with the ‘promotes’ tag,
whereas if the overexpression of a gene inhibits senescence, then it is classified with the ‘inhibits’
tag. Similarly, if the knockout or knockdown of a gene promotes senescence, then it is recorded with
the ‘inhibits’ tag. Together with the annotations identified in Sl Table 45, we also incorporated a
number of secondary annotations into the database such as various gene identifiers, the gene
description, gene interaction(s), and quick links to each senescence gene. The CellAge database also
provides crosslinks to genes in other HAGR resources i.e. GenAge, GenDR and LongevityMap, which

we hope will enable inferences to be made regarding the link between human ageing and CS.

CellAge Data Sources

Build 1 of CellAge resulted in a total of 279 curated cell senescence genes which we have
incorporated into the HAGR suite of ageing resources. The HAGR platform comprises a suite of
ageing databases and analysis scripts. The CellAge interface has been designed with the help of
JavaScript libraries to enable more efficient retrieval and combinatorial searches of genes. As with
the other HAGR databases, we have used PHP to serve the data via an Apache web server. The raw
data can be downloaded via the main HAGR downloads page in CSV format or filtered and

downloaded from the main search page.
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The first part of our work consisted in finding which CS-associated genes are also associated with
ARDs or with longevity, using the following data sources:

e Human genes associated with CS: CellAge build 1.

e Human genes associated with human ageing: GenAge human build 19.

e Human orthologues of model organisms’ genes associated with longevity:

proOrthologuesPub.tsv and antiOrthologuesPub.tsv file (https://github.com/maglab/genage-

analysis/blob/master/Dataset 4 aging genes.zip) (Fernandes et al., 2016).

e Human oncogenes: Oncogene database (http://ongene.bioinfo-minzhao.org/index.html)

e Human tumour suppressor gene database: TSGene 2.0

(https://bioinfo.uth.edu/TSGene/index.html)

e Human genes associated with ARDs (https://github.com/maglab/genage-

analysis/blob/master/Dataset 5 disease genes.zip) (Fernandes et al., 2016). This data concerns

the 21 diseases with the highest number of gene associations, plus asthma, a non-ageing-related

respiratory system disease used as a control.

CellAge Data Analysis

Statistical significance was determined by comparing the p-value of overlapping CellAge gene
symbols with the different data sources, computed via a hypergeometric distribution and Fisher’s
exact test. We used PubMed to understand the relative research focus across the protein coding
genome and incorporate this into the analysis to account for publication bias. We used BioMart to
obtain approximately 19,310 protein coding genes, then using an R script we queried NCBI for the
publication results based on the gene symbol using the following query (Kinsella et al., 2011; R Core
Team, 2018):

(“GENE_SYMBOL”[Title/Abstract] AND Homo[ORGN]) NOT Review[PTYP]

The GENE_SYMBOL was replaced in the above query by each of the genes in turn. Certain genes

were removed as they matched common words and, therefore, skewed the results: SET, SHE, PIP,
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KIT, CAMP, NODAL, GC, SDS, CA2, COPE, TH, CS, TG, ACE, CAD, REST, HR, and MET. The result was a
dataframe in R comprising variables for the ‘gene’ and the ‘hits’. We used the R package called

‘rentrez’ to query PubMed for the result count (Winter, 2018).

Evolution of CellAge Genes

The percentage of CellAge genes with orthologues in Rhesus macaque, Rattus norvegicus, Mus
musculus, Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster were
found using Biomart version 88 (Kinsella et al., 2011). We also found the total number of human
genes with orthologues in the above species using Biomart. Significance was assessed using a two-

tailed z-test with BH correction.

The phylogenetic arrangement included twenty-four species representative of major mammalian
groups. The genomes were downloaded in CDS FASTA format from Ensembl
(http://www.ensembl.org/) and NCBI (https://www.ncbi.nlm.nih.gov/) (Sl Table 5).

To remove low quality sequences we used the clustering algorithm of CD-HITest version 4.6 (Fu et
al., 2012) with a sequence identity threshold of 90% and an alignment coverage control of 80%. The
longest transcript per gene was kept using TransDecoder.LongOrfs and TransDecoder.Predict
(https://transdecoder.github.io) with default criteria (Haas and Papanicolaou). In order to identify
the orthologs of the 279 CellAge human genes in the other 23 mammalian species, the orthology
identification analysis was done using OMA standalone software v. 2.3.1 (Altenhoff et al., 2015). This
analysis makes strict pairwise sequence comparisons ‘all-against-all, minimizing the error in
orthology assignment. The orthologous pairs (homologous genes related by speciation events) are
clustered into OrthoGroups (OG) (Altenhoff and Dessimoz, 2009); this was done at the Centre for
Genomic Research computing cluster (Linux-based) at the University of Liverpool. The time
calibrated tree was obtained from TimeTree (http://www.timetree.org/) and the images were

downloaded from PhyloPic (http://phylopic.org/).
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Overlap Analysis

We conducted overlap analysis using R to understand how the CellAge genes and signatures of CS
were differentially expressed with GenAge, ARD, and cancer genes. We also examined the overlap
between CS genes and differentially expressed signatures of ageing (Palmer et al., manuscript in
preparation), and genes differentially expressed in various human tissues with age. Fisher’s exact
test was used on the contingency tables and significance was assessed by p-values adjusted via
Benjamini-Hochberg (BH) correction. For the comparison of genes differentially expressed in at least
one tissue with age between the CS genes and the genome, some genes were differentially
expressed in opposite directions across numerous tissues (S| Figure 5A). Genes differentially
expressed in both directions were added to the overexpressed and underexpressed DEGs in each CS
gene list, and to the total number of genes in the genome to compensate for the duplicate gene
count (SI Table 13 and 14). Fisher’s exact test was also used to test for significance of tissue-specific
CellAge gene expression. Significance of overlap analysis between CellAge and LAGs was computed
using a hypergeometric distribution and FDR was corrected using Bonferroni correction. The
GeneOverlap package in R was used to test for overlaps between the CellAge promoters and
inhibitors of senescence, and the oncogenes and TSGs (Shen and Sinai, 2013). Results for all overlap

analyses were plotted using the ggplot2 library (R Core Team, 2018; Wickham, 2016).

Simulation of CS Gene Expression in Human Ageing

The RNA-seq gene expression data on GTEx was scrambled in such a way that all protein-coding
genes in each tissue were assigned a random paired p and log,FC value from the original gene
expression data of each respective tissue. The randomly sorted gene expression data was then
filtered for significance (p<0.05, moderated t-test with BH correction, absolute log,FC>log,(1.5))
(Chatsirisupachai et al., 2019; Ritchie et al., 2015) , and the CellAge accessions were extracted and

overlapped across all the simulated expression data in 26 tissues from GTEx. The probability of a CS
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gene being overexpressed or underexpressed across multiple tissues by chance was calculated

across 10,000 simulations.

Functional Enrichment

The analysis of CellAge included gene functional enrichment of the database. We used DAVID

functional clustering (https://david.ncifcrf.gov/) to identify functional categories associated with

CellAge (Huang da et al., 20093, b).

The Overrepresentation Enrichment Analysis (ORA) of biological processes (Gene Ontology
database) was done via the WEB-based Gene SeT Analysis Toolkit (WebGestalt) (Wang et al., 2017)
for the analysis of CellAge senescence regulators and overexpressed signatures of CS overexpressed
in the meta-analysis of ageing signatures, and for the CellAge genes overlapping with tumour
suppressor and oncogenes. A p-value cutoff of 0.05 was used, and p-values were adjusted using BH
correction. Redundant GO terms were removed and the remaining GO terms were grouped into
categories based on their function using Reduce + Visualize Gene Ontology (REVIGO) (Supek et al.,
2011). Results were then visualised using and the R package treemap (Tennekes, 2017) (SI Figure 7A

— D). Venn diagrams to represent gene overlaps were created using Venny (Oliveros, 2015).

Networks

We used Cytoscape version 3.6.1 to generate networks and R version 3.3.1 to perform aspects of the
statistical analysis (R Core Team, 2018; Shannon et al., 2003). The networks were built starting from
a list of seed nodes — all genes included in build 1 of CellAge, part of the Human Ageing Genomic
Resources (Tacutu et al., 2018). Network propagation was measured using the Cytoscape plugin

Diffusion (Carlin et al., 2017).
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The analysis of the fit to the scale-free structure was calculated by the Network Analyzer tool of
Cytoscape 3.2.1 (Shannon et al.,, 2003). Network analyzer is a Cytoscape plugin which performs
topological analysis on the network and reports the pillar nodes on the network structure based on a
series of mathematical parameters (Degree, BC and CC) (SI Figure 8). Network analyzer also
calculates the fit of the distribution of the number of edges per node to the power-law distribution.
A significant fit to the power law indicates the presence of a scale free structure in the network
(Albert et al., 2000; Safari-Alighiarloo et al., 2016). The analysis was applied to the PPl network, the
RNAseq Unweighted Co-expression network, and the Microarray Unweighted Co-expression
network of cellular senescence. The Network Analyzer tool was also used to calculate BC, CC, and IC

in the networks.

Protein-Protein Interaction Network

The protein-protein interaction network was built from the BioGrid database of physical multi-
validated protein interactions (Biology General Repository for Interaction Datasets) version 3.4.160,
using CellAge proteins as seed nodes and extracting the proteins encoded by CellAge genes as well
as the first order interactors of CellAge proteins (Chatr-Aryamontri et al., 2017). After removing
duplicated edges and self-loops, the network consisted of 2,643 nodes and 16,930 edges. The
network was constructed and visualised in Cytoscape version 3.6.1. The “CytoCluster” App in
Cytoscape was used to identify modules in the network with the following parameters: HC-PIN

algorithm; Weak, Threshold = 2.0; ComplexSize Threshold = 1% (Li et al., 2017).
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Unweighted RNA-Seq Co-Expression Network

The RNA-seq co-expression network was built using CellAge data and RNA-Seq co-expression data

taken from Genefriends (http://genefriends.org/RNAseq) (van Dam et al., 2015).

The unweighted co-expression network was built applying the method of correlation threshold
selection described by Aoki to the GeneFriends database of RNA-Seq co-expression version 3.1 (Aoki
et al., 2007). Aoki initially designed this methodology for plant co-expression network analysis, but it
has been successfully applied to build human networks (Bartel et al., 2015). The Pearson Correlation
Coefficient (PCC) threshold which generated the database of edges with the lowest network density
was selected. The network density is the proportion of existing edges out of all possible edges
between all nodes. The lower the network density is the more nodes and fewer edges are included
in the network. The lower the number of edges, the higher the minimum correlation in expression
between each pair of genes represented by the edges. The higher the number of nodes, the higher
the portion of nodes from CellAge included, and, therefore, the more representative the network is
of the CellAge database. The PCC threshold of 0.65 generated the database of interactions of RNA-
Seq co-expression with the lowest network density, 0.01482 (Sl Figure 13A). The unweighted RNA-

Seq network was generated and visualised in Cytoscape 3.6.1.

Microarray Co-Expression Network

The microarray co-expression network was generated using the CellAge genes as seed nodes and
their direct interactions and edges, derived using the COXPRESdb database of Microarray co-
expression (version Hsa-m2.c2-0) (Okamura et al.,, 2015). PCC threshold of 0.53 created the
Microarray database with the lowest network density, 1.006*107 (SI Figure 13B). The adjustment of
the node-degree distribution to the power law distribution had a correlation of 0.900 and an R-
squared of 0.456 (S| Figure 8C). The fit to the power law distribution confirmed the scale-free
structure of the network.
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Cell Culture and Reagents

Normal human mammary fibroblasts (HMFs) were obtained from reduction mammoplasty tissue of
a 16-year old individual, donor 48 (Stampfer et al., 1981). The cells were seeded at 7,500 cells/cm’
and maintained in Dulbecco’s Modified Eagles Medium (DMEM) (Life Technologies, UK)
supplemented with 10% foetal bovine serum (FBS) (Labtech.com, UK), 2mM L-glutamine (Life
Technologies, UK) and 10ug/mL insulin from bovine pancreas (Sigma). All cells were maintained at

37°C/5% CO,. All cells were routinely tested for mycoplasma and shown to be negative.

siRNA Knockdown Experiments

For high-content analysis (HCA), cells were forward transfected with 30nM siRNA pools at a 1:1:1
ratio (Ambion) using Dharmafect 1 (Dharmacon) in 384-well format. Control siRNA targeting
cyclophilin B (siGLO, Dharmacon) or Chromobox homolog 7 (CBX7, Ambion) were also included as
indicated. Cells were incubated at 37°C/5% CO, and medium changed after 24hr. Cells were then
fixed/stained 96hr later and imaged as described below. The siRNA sequences are provided in S|

Table 46.

Z Score Generation

For each of the parameters analysed, significance was defined as one Z score from the negative

control mean. Z scores were generated according to the formula below:

Z score = (mean value of one independent experiment for target siRNA with three technical
replicates — mean value of one independent experiment for siGLO with six technical
replicates)/standard deviation (SD) for siGLO of one independent experiment with six technical

replicates.
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Immunofluorescence Microscopy and High Content Analysis

Cells were fixed with 3.7% paraformaldehyde, permeabilised for 15min using 0.1% Triton X and
blocked in 0.25% BSA before primary antibody incubations. Primary antibodies used are listed in Sl
Table 47. Cells were incubated for 2hr at room temperature with the appropriate AlexaFluor-488 or
AlexaFluor-546 conjugated antibody (1:500, Invitrogen), DAPI and CellMask Deep Red (Invitrogen).
Images were acquired using the IN Cell 2200 automated microscope (GE) and HCA was performed

using the IN Cell Developer software (GE).

SUPPLEMENTARY MATERIAL

Supplementary figures and citations, tables, and FASTA files are available on the Integrative
Genomics of Ageing Group CellAge_supplementary GitHub repository

(https://github.com/maglab/CellAge supplementary).
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