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Abstract

Recent advances in single-cell RNA sequencing (scRNA-seq) enable charac-
terization of transcriptomic profiles with single-cell resolution and circumvent
averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq)
data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq
that leverages cell-type specific gene expression profiles from multiple scRNA-
seq reference datasets. SCDC adopts an ENSEMBLE method to integrate
deconvolution results from different scRNA-seq datasets that are produced in
different laboratories and at different times, implicitly addressing the problem
of batch-effect confounding. SCDC is benchmarked against existing meth-
ods using both in silico generated pseudo-bulk samples and experimentally

mixed cell lines, whose known cell-type compositions serve as ground truths.
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We show that SCDC outperforms existing methods with improved accuracy of
cell-type decomposition under both settings. To illustrate how the ENSEMBLE
framework performs in complex tissues under different scenarios, we further
apply our method to a human pancreatic islet dataset and a mouse mammary
gland dataset. SCDC returns results that are more consistent with experimen-
tal designs and that reproduce more significant associations between cell-type
proportions and measured phenotypes.

Keywords: single-cell RNA sequencing, bulk RNA sequencing, gene

expression deconvolution, ENSEMBLE, batch effect

Introduction

Bulk RNA sequencing (RNA-seq) has been the method of choice for profil-
ing transcriptomic variations under different conditions such as disease states
(Robinson et al., 2010, Love et al., 2014, Ritchie et al., 2015). However, in
complex tissues with multiple heterogeneous cell types, bulk RNA-seq mea-
sures the average gene expression levels by summing over the population of
cells in the tissue, and variability in cell-type compositions confounds with anal-
ysis such as detecting differential gene expression (Avila Cobos et al., 2018).
While multiple statistical and computational methods have been developed for
cell-type decomposition of bulk RNA-seq data (Shen-Orr et al., 2010, Gong
and Szustakowski, 2013, Newman et al., 2015), most of these have limitations.
Many require a priori knowledge, either of gene expression profiles of purified
cell types (Gong and Szustakowski, 2013, Newman et al., 2015) or of cell-type
compositions (Shen-Orr et al., 2010). Methods that do not take these informa-
tion as input instead require a list of pre-selected marker genes (Zhong et al.,
2013, Becht et al., 2016). Finally, completely unsupervised approaches based
on non-negative matrix factorization suffer from low deconvolution accuracy

and have identifiability and multicollinearity issues (Wang et al., 2014).

Recent advances in single-cell RNA sequencing (scRNA-seq) circumvent av-
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eraging artifacts associated with the traditional bulk RNA-seq data by enabling
characterization of transcriptomic profiles at the single-cell level (Saliba et al.,
2014). While scRNA-seq data has greatly increased resolution in the charac-
terization of transcriptomic heterogeneity, its relatively high cost and technical
challenges pose difficulties in generating scRNA-seq data across a large pop-
ulation of samples (Stegle et al., 2015, Ziegenhain et al., 2017). Association
testing performed on single-cell data from a small number of subjects has only
limited statistical power. Large collaborations, on the other hand, have suc-
cessfully sequenced an enormous number of bulk samples (Edgar et al., 2002,
National Cancer Institute, 2019), making cell-type decomposition on bulk RNA-

seq data aided by scRNA-seq an appealing analysis scheme.

Several methods exploiting single-cell expression reference datasets have been
developed for bulk gene expression deconvolution (Baron et al., 2016, Wang
et al.,, 2019, Newman et al., 2019, Jew et al., 2019). Specifically, Bseq-SC
(Baron et al., 2016) uses scRNA-seq data to build a cell-type specific gene
expression signature matrix for a set of pre-selected marker genes, then ap-
plies a support vector regression-based deconvolution framework adapted from
CIBERSORT (Newman et al., 2015). Similarly, Bisque (Jew et al., 2019) and
CIBERSORTx (Newman et al., 2019) take as input a list of pre-selected marker
genes and explicitly account for the technical variation in the generation of the
single-cell signature matrix and the observed bulk expression. MuSiC (Wang
et al., 2019) proposes a weighted non-negative least squares (W-NNLS) re-
gression framework to utilize all genes that are shared between the bulk and
the single-cell data. Genes are weighted by cross-subject and cross-cell vari-
ations and empirical evidence suggests that this leads to higher deconvolution

accuracy.

Despite this progress, to the best of our knowledge, all existing methods re-
construct the gene expression signature matrix using only one single-cell refer-
ence. These methods therefore cannot use additional scRNA-seq data of the

same tissue from the same model organism that may be available from other
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studies and laboratories (Table S1 and Figure S1). These methods also cannot
take advantage of the extensive transcriptomic reference maps at the cellular
level that have been generated by multiple large consortia, including the Hu-
man Cell Atlas (Human Cell Atlas, 2019) and the Mouse Cell Atlas (Mouse
Cell Atlas, 2019). Borrowing information from existing data could potentially
boost the performance of and increase the robustness of deconvolution. This
has been demonstrated by Vallania et al. (2018), who showed that leverag-
ing heterogeneity across multiple reference datasets could increase decon-
volution accuracy and reduce biological and technical biases for microarray
data. For scRNA-seq data, however, significant batch effect prevails across
data collected from different sources and as we demonstrate later, the naive
pooling of multiple scRNA-seq datasets to build a “mega” reference profile per-
forms poorly. One potential solution is to correct for the batch effect in the
data. However, existing batch correction methods for scRNA-seq data either
adopt a dimension reduction technique for visualization and clustering (Butler
et al., 2018) or change the scale of the original gene expression measurements
(Haghverdi et al., 2018), both of which make subsequent deconvolution difficult

— perhaps even infeasible.

Here, we introduce a new framework, SCDC, to leverage multiple Single-Cell
RNA-seq reference sets for bulk gene expression DeConvolution. Specifi-
cally, when multiple scRNA-seq reference sets are available, SCDC adopts
an ENSEMBLE method to integrate deconvolution results across datasets; it
implicitly addresses the problem of batch-effect confounding by giving higher
weights to the scRNA-seq data that are more closely related to the bulk RNA-
seq data. We benchmark our method against existing methods using pseudo-
bulk samples generated in silico, whose true underlying cell type identities are
known. We also evaluate the performance of SCDC on an RNA-seq dataset
of paired single cells and bulk samples, the latter of which have experimen-
tally controlled cell-type proportions as ground truths. SCDC is shown to out-

perform existing methods by integrating multiple scRNA-seq datasets; even
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with only one single-cell dataset, SCDC yields enhanced deconvolution ac-
curacy. To further demonstrate the ENSEMBLE method, SCDC is applied to
two real datasets, human pancreatic islets and mouse mammary glands, us-
ing multiple scRNA-seq inputs. We show that, compared to existing methods,
SCDC returns results that are more consistent with experimental designs and
that reproduce more significant associations between cell-type proportions and
measured phenotypes. SCDC is available as an open-source R package at

https://github.com/meichendong/SCDC.

Results

Overview of SCDC and Deconvolution via ENSEMBLE

Figure 1 gives an overview of SCDC. The same set of bulk RNA-seq samples
can be deconvoluted using different single-cell reference datasets. Empirically,
we show that this may return distinct cell-type proportion estimations, due to
both intrinsic biological variation and technical noise (Table S1) (Jiang et al.,
2017). ltis further shown that naively pooling all available single cells from dif-
ferent sources suffers from the prevalent batch effects and the biological het-
erogeneity that are present in the data (Table S1). To resolve this discrepancy
while making full use of all available scRNA-seq reference datasets, SCDC
adopts an ENSEMBLE method to combine the deconvolution results from in-
dividual datasets. The weights for each dataset are selected via optimization,
with higher weights assigned to single-cell reference datasets that better reca-

pitulate the true underlying gene expression profiles of the bulk samples.

In the following, we begin by giving a review of the existing regression-based
deconvolution framework (Baron et al., 2016, Wang et al., 2019, Newman et al.,
2019, Jew et al., 2019). We then describe the model for SCDC, leaving algo-

rithmic details to the Methods section and Supplemental Information. Consider
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an observed bulk gene expression matrix Y € RV*M for N genes across M
samples, each containing K different cell types. The goal of deconvolution is

to find two non-negative matrices B € RV*X and P € RX*M such that
Y ~ BP,

where each column of P represents the mixing proportions of the K cell types
of one sample, and each column of the “basis” matrix B represents the aver-
age gene expression levels in each type of cells. As described earlier, differ-
ent methods have been developed to integrate both bulk-tissue and single-cell
gene expression measurements for deconvolution (Baron et al., 2016, Wang
et al.,, 2019, Newman et al., 2019, Jew et al., 2019). These methods ob-
tain:

A N

Y = BP,

where each matrix is estimated as the final output.

In the presence of multiple scRNA-seq datasets, one can adopt the afore-
mentioned deconvolution strategies and apply them to each single-cell dataset
r € {1,..., R} separately to obtain the predicted gene expression level Y,, the
estimated basis matrix B,, and the estimated cell-type proportion matrix P,.
Here, {B1, B>, ..., Bg} are assumed to come from the same distribution, but
with variation that arises from both the technical batch effect and from biological
heterogeneity. Empirical evidence suggests that, depending on the scRNA-seq
data adopted, P, (1 < r < R) from the R reference datasets can differ drasti-
cally and that naively pooling all the single-cell data to estimate B could lead
to the worst performance overall (Table S1). To make full use of all available
single-cell data and to give higher weights to the reference that more closely
recapitulates the true underlying cell-specific gene expression profiles, SCDC

adopts an ENSEMBLE method to integrate all deconvolution results with differ-
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ent weights w, (1 < r < R), which are optimized via:

(Wl,WQ,...,WR) = argmin ’P—Wlﬁl—WQﬁQ—...—WRﬁR” (1)
(W1,W2 ..... WR) 1

= argmin HY — Wl?l — Wz?z — .= WR?RH . (2)
(W1,W2 ..... WR) 1

In an ideal situation, one where we know the actual cell-type proportions P, we
would minimize the difference between the linearly weighted cell-type propor-
tion estimates P = wyP; + w,P, + ... + wgPg and the actual proportions P.
However, in real dataset analysis, we do not have the luxury of a priori knowl-
edge on the underlying P. Therefore, SCDC adopts a “surrogate” metric on the
observed Y to substitute on the unknown P. That is, we minimize the differ-
ence between the predicted gene expressions Y = my Y1 + wo¥s + ... + wg¥r
and the observed gene expressions Y. Empirically, we show that the estima-
tion errors on P are positively correlated with those on Y (Figure S1). That
is, a reference set that leads to higher deconvolution accuracy also has lower
residuals of Y from the regression. We also show that the L1 norm of the dif-
ference in equation (1) can be replaced by other dissimilarity measurements
such as L2 norm of the difference or correlation (Figure S1). For optimization
of weights (w1, ..., wg), SCDC, by default, adopts a numerical method based on

grid search.

Performance on Simulated Data

To assess the performance of SCDC, we carried out extensive simulation stud-
ies,which also illustrate the ENSEMBLE method by SCDC in more details. In
these simulations, pseudo-bulk samples were generated in silico by aggregat-
ing well-characterized single cells from existing sScRNA-seq studies. The known
cell-type proportions of these samples were used as ground truths, and the
deconvolution accuracy was assessed by Pearson correlation, mean absolute

deviation (mAD), and root mean square deviation (RMSD) between the actual
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and the deconvoluted cell-type proportions. Figure 2A gives an outline of the
simulation setup. We started with a scenario where bulk RNA-seq data was
paired with scRNA-seq data generated from the same study on the same sub-
jects (Figure 2B). We then moved onto a more difficult case where the bulk
RNA-seq data was generated from a different source than the scRNA-seq data
(Figure 2C).

In Figure 2B, pseudo-bulk samples were constructed by aggregating well char-
acterized single cells of four cell types (human pancreatic alpha, beta, delta,
and gamma cells) from Xin et al. (2016). 100 simulations were run. Within
each run, 100 pseudo-bulk samples were generated by sampling single cells
without replacement from a randomly selected subject. For deconvolution, we
further adopted three scRNA-seq datasets of human pancreatic islets: Baron
et al. (2016), Asa Segerstolpe et al. (2016), Xin et al. (2016), the last of which
is from the same source as the pseudo-bulk samples. In Figure 2B, we demon-
strate how different weights for the three scRNA-seq reference sets (only two
weights are shown since the three sum up to one) lead to different deconvo-
lution results/accuracies, as measured by the mAD of P — P (top panel) and
the mAD of Y — Y (bottom panel), respectively. We show that the two metrics,
given varying weights for the three single-cell reference datasets, are highly
correlated, indicating that the measurement error of Y serves as a good proxy
to that of P. This signifies the feasibility of the ENSEMBLE framework by SCDC
when the true underlying P remains unknown. Indeed, our findings further re-
veal that SCDC was able to derive a set of optimal weights with the highest
one being close to one, which corresponds to the single-cell data from the
same source as the bulk samples. The same pattern is observed when we

switch the source of the pseudo-bulk samples (Figure S2).

Figure 2C shows results from another set of simulations. These simulations
are similar to the previously described set, but there was no scRNA-seq refer-

ence set from the same source as the pseudo-bulk samples. For pseudo-bulk
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samples generated from Baron et al. (2016) and Xin et al. (2016), the scRNA-
seq dataset from Asa Segerstolpe et al. (2016) is weighted most heavily by
SCDC (Figure 2C, Figure S2C), potentially due to the high sequencing depth
and full-transcript coverage by the Smart-seq2 protocol (Picelli et al., 2014) that
was adopted. Interestingly, for the pseudo-bulk samples generated from Asa
Segerstolpe et al. (2016), SCDC recommends using weighted results from the
two reference datasets (Figure S2F), highlighting the utility of the ENSEMBLE

method.

Performance on Real Dataset #1: Mixtures of Three Cell Lines with Known

Proportions

While we have successfully demonstrated that SCDC allows accurate decon-
volution of pseudo-bulk samples, the in silico reconstruction procedure is over
simplified and does not mimic how real bulk RNA-seq samples are collected
and sequenced. Therefore, we carried out a set of well controlled experiments,
where cell lines were mixed at a fixed ratio, followed by both bulk and single-
cell RNA-seq. These known cell-type proportions served as ground truths to
benchmark SCDC against existing methods without bias. Specifically, human
breast cancer cell lines MDA-MB-468, MCF-7, and human fibroblast cells were
independently cultured and then mixed at a fixed ratio of 6 : 3 : 1. This was
followed by traditional bulk RNA-seq as well as scRNA-seq by 10X Genomics.
More experimental details are available in the Methods section. Single-cell
clustering was performed using the Seurat pipeline (Butler et al., 2018) with
t-SNE visualization shown in Figure 3A (see details in Supplemental Infor-
mation). The cell-type ratio by scRNA-seq is 0.661 : 0.225 : 0.114, close to
but slightly different from the experimental setup due to either the inaccuracy
of counting cells when making the mixture or the sampling bias of scRNA-

seq.

To deconvolute the bulk RNA-seq sample, we adopted the scRNA-seq dataset
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that was generated from the same mixture, which was the only available refer-
ence set. As such, this reduced to a one-subject and one-reference deconvo-
lution problem (see Supplemental Information for details), and the ENSEMBLE
step was therefore not needed. In this case, we carried out direct comparisons
of SCDC without ENSEMBLE against existing methods. Given one single-cell
reference dataset, SCDC largely follows the W-NNLS framework proposed by
MuSiC but also differs in several ways. First, SCDC starts by scaling the raw
single-cell read-count matrix by a gene- and subject-specific maximal variance
weight so that residuals from genes with larger weights have smaller impact
on cell-type composition estimation. Second, SCDC does not take cell-type
memberships as granted; instead it removes potentially misclassified cells and
doublets using a first-pass SCDC run to improve robustness. Third, it allows
single-subject scRNA-seq input, in which cross-subject variance cannot be di-
rectly estimated. (Refer to STAR Methods for more details.) However, since
MDA-MB-468 and MCF-7 are both human breast cancer cell lines with rela-
tively similar transcriptomic profiles, deconvolution of the bulk mixture by SCDC
in a single run fails to estimate the correct relative proportions. To solve this
issue, we applied the tree-guided deconvolution procedure proposed by Mu-
SiC (Wang et al., 2019) to separate the closely related cell types. Refer to

Supplemental Information for details.

The estimated cell-type proportions by SCDC with the tree-guided approach
are 0.64 : 0.26 : 0.11, close to the ratio of 6 : 3 : 1 with a Pearson correlation
of 0.991 (Figure 3B). We also benchmarked SCDC against Bseg-SC (Baron
et al., 2016), CIBERSORTx (Newman et al., 2019), Bisque (Jew et al., 2019),
and MuSiC (Wang et al., 2019), and showed that, even without ENSEMBLE,
SCDC achieved the highest correlation coefficient. This is consistent with the
simulations results shown in Table S1: overall, SCDC achieved the most accu-
racte deconvolution results when only one single-cell reference set was avail-

able.
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Performance on Real Dataset #2: Human Pancreatic Islets

To demonstrate the proposed ENSEMBLE framework when multiple reference
datasets are available, we used SCDC to deconvolute 77 bulk RNA-seq sam-
ples of human pancreatic islets, of which 51 are from healthy individuals and 26
are from diabetic individuals (Fadista et al., 2014). Two scRNA-seq reference
datasets were adopted, each harvesting six cell types of interest: alpha, beta,
delta, gamma, acinar, and ductal cells (Baron et al., 2016, Asa Segerstolpe
et al., 2016). To allow the basis matrix B to reflect the potentially different gene
expression patterns between the cases and controls, we performed the EN-
SEMBLE weight selection procedures separately for the samples from the two
classes. The final ENSEMBLE weights for the two reference datasets were
derived using both least absolute deviation (LAD) regression and grid search.
Table 1 shows the final weights for the single-cell reference from Baron et al.
(2016), which vary from 0.42 to 0.45 for the healthy samples and 0.49 to 0.52
for the diabetic samples. Figure 4A shows the cell-type proportions estimated
with ENSEMBLE compared to the cell-type proportions estimated using single
reference sets without ENSEMBLE. SCDC recovered to much higher levels the
grossly underestimated fractions for beta cells by Baron et al. (2016), in con-
cordance with the previous report by Cabrera et al. (2006). In addition, our re-
sults suggested that the beta cell proportions were slightly larger in the healthy
donors than in the diabetic donors, although the difference was insignificant
with a p-value of 0.1007.

To evaluate the performance of SCDC and to compare against other existing
methods, we sought to replicate previous findings on the negative correlation
between the levels of hemoglobin A1c (HbA1c, an important biomarker for type
2 diabetes) and the beta cell functions (Kanat et al., 2011, Hou et al., 2016).
We constructed a linear model using the estimated cell-type proportions as the
response variable and the other covariates (age, gender, BMI, and HbA1c) as
predictors. Overall, the ENSEMBLE method used with SCDC led to a p-value of

11
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0.0019 for the negative relationship between the HbA1c levels and the beta cell
proportions, more significant than the p-values of 0.031 and 0.038 from decon-
volutions by SCDC without ENSEMBLE (Table S2, Figure 4B). Other existing
methods — Bisque (Jew et al., 2019), CIBERSORTx (Newman et al., 2019) and
BseqSC (Baron et al., 2016) — failed to recover the expected negative correla-
tions, no matter which scRNA-seq reference dataset was adopted, and MuSiC
(Wang et al., 2019) returned insignificant associations for the scRNA-seq ref-
erence dataset from Baron et al. (2016) (Figure 4B). In sum, the cell-type pro-
portion estimates via ENSEMBLE more accurately reproduced the previously

reported association between two orthogonal measurements.

Performance on Real Dataset #3: Mouse Mammary Gland

We further illustrate the performance of SCDC on a dataset of mouse mam-
mary gland. Figure 5A gives an overview of the experimental design. For this
experiment, mouse mammary glands were harvested from two 12-week-old
FVB/NJ mice, FVB3 and FVB4. Bulk RNA-seq was performed on the fresh
frozen tissues. Meanwhile, single-cell suspension was prepared for the two
samples; both scRNA-seq by 10X Genomics and bulk RNA-seq were per-
formed on the pooled cell suspensions. (Refer to STAR Methods for details
on experimental setup including animal model, cell suspension preparation,
library preparation, and sequencing.) To illustrate the ENSEMBLE method
for deconvolution, we adopted another single-cell reference dataset of mouse
mammary glands from Tabula Muris (Consortium et al., 2018), generated by
the microfluidic droplet-based method (see Key Resources Table). For clarity,
the scRNA-seq data generated at the Perou Lab will be denoted as “Perou”
and the scRNA-seq data from Tabula Muris will be denoted as “T. Muris”; the
bulk RNA-seq data generated from the fresh frozen tissue will be denoted as
“fresh frozen” and the bulk RNA-seq data from the pooled suspended cells will
be denoted as “10X bulk.” We aimed to use SCDC to deconvolute each of the

two bulk RNA-seq samples using the two scRNA-seq reference sets.
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Following bioinformatic pre-processing (refer to STAR Methods for details), we
first adopted Seurat (Butler et al., 2018) to perform single-cell clustering for
the two scRNA-seq datasets, Perou and T. Muris, and then applied additional
quality control (QC) procedures (outlined in the Methods section). The final
cell types of interest consisted of immune, endothelial, fibroblast, luminal cells,
and basal cells; t-SNE visualization is shown in Figure S3. As with the ex-
ample of the three-cell-line mixture, we observed cell types with transcriptomic
profiles that were highly similar (Figure S4A); we therefore adopted a tree-
guided approach for deconvolution (Wang et al., 2019) in order to distinguish
the closely related cell types (Figure S4B-C). This two-step deconvolution ap-
proach was applied using the Perou and T. Muris scRNA-seq references, re-
spectively. Through ENSEMBLE, SCDC chose dataset-specific weights, which
are shown in Table 2. As expected, a higher weight was assigned to the Perou

reference dataset, which was from the same source as the bulk samples.

Figure 5B shows the final deconvolution results, both with and without EN-
SEMBLE, of the two bulk samples. The figure also includes Pearson corre-
lations between the cell-type proportions estimated by scRNA-seq and those
estimated by deconvolution. We found that the ENSEMBLE method produced
higher correlation coefficients than approaches that use only one scRNA-seq
dataset as reference (Figure 5B). This finding demonstrates the advantage of
integrating data through SCDC. We also found that, compared to the fresh
frozen bulk samples, the deconvoluted cell-type proportions from the 10X bulk
samples were more highly correlated with the scRNA-seq fractions (Figure 5B).
While the decrease of correlation coefficient from 0.99 to 0.92 is reassuring
due to the order of the experiments, it also strikingly indicates a potential cell
type-specific bias introduced by the 10X Genomics protocol, for it has been
previously reported that adipocyte cells tend to get lost during the single-cell
library preparation step (Kessenbrock et al., 2018). As such, cell-type propor-
tions from the single cell experiment do not necessarily reflect those in the bulk

tissues due to the sampling bias and the technical artifacts that are associated
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with the library preparation and sequencing step of scRNA-seq (Hwang et al.,
2018). This makes in silico deconvolution a compelling approach to unbiased

recovery of true underlying cell-type composition.

Discussion

Here, we propose a method for deconvoluting bulk RNA-seq data accurately
by exploiting multiple scRNA-seq reference datasets through ENSEMBLE. We
show that such data integration leads to higher deconvolution accuracy via
both extensive simulations and experimental validations. Existing batch cor-
rection methods for scRNA-seq data either do not return a gene expression
matrix that is adjusted for batch effect (Butler et al., 2018) or return one with
a drastically different range of measurements (Haghverdi et al., 2018). These
drawbacks make them insufficient and infeasible for joint deconvolution analy-
sis. SCDC does not directly address this nontrivial issue to correct for batch
effect; rather, it opts to integrate results from all scRNA-seq datasets with dif-
ferent weights, so as to reflect the degree of similarity between the bulk data
and the reference data. The ultimate goal is to return a deconvolution result
as close to the truth as possible. Similarly, for bulk RNA-seq data, which can
also potentially harbor batch effects, SCDC can select an optimal combination
of scRNA-seq reference sets for each sample separately to achieve more ac-
curate cell-type decomposition. In addition, while some methods may require
paired bulk-tissue and single-cell RNA-seq data from the same individuals (Jew
et al., 2019), SCDC has no such requirement due to its robustness to technical

variability.

While in this paper we have focused on integrating results from multiple scRNA-
seq data sets, the same framework can be applied to integrate results from
different deconvolution methods. In Table S1, we showed that no one method

universally performed better than the others across all simulation setups. To
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address this instability issue, SCDC’s weighting principle can be applied sim-
ilarly, where different weights are assigned to different deconvolution meth-

ods.

Identifying cell-type composition of disease-relevant tissues allows identifica-
tion of cellular targets for treatment and offers a better understanding of dis-
ease mechanism. For downstream analysis following deconvolution, hypoth-
esis testing on differential gene expression in a case-control setting needs to
account for the variability of cell-type composition. As Shen-Orr et al. (2010)
have described, differential gene expression analysis in the presence of cellu-
lar heterogeneity can be performed through the following testing schemes: (i)
whole tissue differences (i.e., testing on Y); (ii) differences in cell-type compo-
sitions (i.e., testing on P); (iii) differences in cell type-specific gene expression
patterns (i.e., testing on B., for each cell type k); (iv) differences in cell type-
specific gene expression patterns while accounting for cell-type proportions
(i.e., testing on B.,P,. for each cell type k); and (v) an omnibus test across all
cell types (i.e., testing on B across all cell types simultaneously). All of these
testing schemes (except for the testing on Y by traditional methods developed
for bulk RNA-seq data) must be adapted when scRNA-seq data is used to aid
deconvolution: neither B nor P is pre-known, and one must take into consid-
eration their estimation uncertainties through deconvolution.The questions of
how to jointly perform differential testing when multiple scRNA-seq datasets
are available and how to jointly model both bulk and single-cell RNA-seq data
(Zhu et al., 2018) with high computational efficiency require further investiga-

tion.
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Figure Titles and Legends

Figure 1. Overview of deconvolution via ENSEMBLE by SCDC. When mul-
tiple single-cell reference datasets are available, batch effect confounding is
avoided by performing deconvolution on each scRNA-seq reference set sepa-
rately. SCDC then integrates the deconvolution results with dataset-specific op-

timized weights, which are used to derive the final cell-type proportions.
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Figure 2. Prediction errors of Y serve as a surrogate for the estimation errors
of P. A: Outline of simulation setup, where single cells of human pancreatic
islets are aggregated to generate pseudo-bulk samples, whose cell-type pro-
portions are known. We examine the results of deconvolution via ENSEMBLE,
both with and without paired single-cell reference dataset. B: mAD(P — P) and
mAD(Y — Y) with three varying dataset-specific weights for deconvolution of
bulk samples with paired scRNA-seq. The two metrics agreed on the assign-
ment of the optimal weights, which were around (v, wo, w3) = (0,0,1). C:
mAD(P — P) and mAD(Y — Y) with two varying dataset-specific weights for
deconvolution of bulk samples without paired scRNA-seq. The two metrics are
highly correlated with varying weights for reference dataset from Baron et al.
(2016).

Figure 3. Performance assessment on bulk and single-cell RNA-seq of cell
line mixtures with experimentally controlled proportions. A: Visualization by
t-SNE after single-cell clustering. The cells are clustered into three groups,
MDA-MB-468, MCF-7, and normal fibroblast cells, in a ratio close to 6:3:1. B:
Benchmark of deconvolution results for the bulk RNA-seq sample, produced
by different methods. Among all benchmarked methods, the proportions esti-
mated by SCDC using the tree-guided approach has the highest Pearson cor-
relation (0.99) with the ground truth.

Figure 4. Gene expression deconvolution of human pancreatic islet samples.
A: Estimated pancreatic islet cell-type composition in healthy and type 2 dia-
betic (T2D) human samples. The boxplot shows discrepancies in the deconvo-
luted proportions across different reference datasets. The ENSEMBLE method
recovered the grossly underestimated beta cell proportions by deconvolution
using only scRNA-seq data from Baron et al. (2016). B: Association of beta cell
proportions and HbA1c levels by a linear model: beta cell proportion ~ HbA1c
+ age + BMI + sex. Each benchmarked method was applied using reference
datasets from Baron et al. (2016) and Asa Segerstolpe et al. (2016) separately.
The ENSEMBLE method by SCDC is additionally appiled using both reference
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datasets simultaneously. Bisque, CIBERSORTX, and BseqSC fail to recover
the previously reported negative correlations; SCDC with ENSEMBLE returns

the most significant p-value.

Figure 5. Gene expression deconvolution of mouse mammary gland samples.
A: Flowchart of experimental design. Mouse mammary glands from two repli-
cates, FVB3 and FVB4, were processed in two ways to generate both fresh-
frozen bulk samples and single-cell suspensions. The single-cell suspensions
were further divided into two parts, one for scRNA-seq by 10X Genomics, and
the other for pooled bulk RNA-seq. To deconvolute the bulk samples through
ENSEMBLE, another scRNA-seq dataset of mouse mammary gland from the
Tabula Muris Consortium was adopted. B: Bulk gene expression deconvolution
with and without ENSEMBLE. Pearson correlation of the cell-type proportions
estimated by deconvolution and by scRNA-seq are shown. The ENSEMBLE
method results in higher correlations for both bulk samples of the two repli-

cates.

Tables

Table 1. ENSEMBLE weight selection results for the human pancreatic islet
bulk samples. The weights are presented separately for 51 healthy donors
and 26 diabetic donors. SCDC selects weights that maximize the Spearman
correlation of Y and or minimize the mAD of Y, via grid search or least absolute

deviation (LAD) regression.

Table 2. ENSEMBLE weight selection results for the mouse mammary gland
bulk samples. The single-cell reference dataset from the same source as the
bulk samples is more heavily weighted.
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Supplemental Figure Titles and Legends

Figure S1. Empirical results via simulations show that the metrics on gene
expression levels Y are good proxies for the metrics on cell-type proportions P.
A-C: Prediction errors ||Y — Y||; against Pearson correlation between cell-type
proportions P and P for pseudo-bulk samples constructed using single cells
from Asa Segerstolpe et al. (2016), Baron et al. (2016), and Xin et al. (2016),
respectively. D-F: Prediction errors ||Y — Y|, against ||P — P|; for pseudo-bulk
samples constructed from Asa Segerstolpe et al. (2016), Baron et al. (2016),

and Xin et al. (2016), respectively.

Figure S2. Prediction errors of Y serve as a surrogate for the estimation errors
of P. The simulation setups differ from those in Figure 2. A: Outline of sim-
ulation setup, where single cells of human pancreatic islets from Baron et al.
(2016) are aggregated to generate pseudo-bulk samples, whose cell-type pro-
portions are known. We examine the results of deconvolution via ENSEMBLE
under two settings, both with and without paired single-cell reference datasets.
B: mAD(P —P) and mAD(Y —Y) with three varying dataset-specific weights for
deconvolution of bulk samples with paired scRNA-seq. The two metrics agreed
on the assignment of the optimal weights: around (i,, s, Ww3) = (1,0,0). C:
mAD(P — P) and mAD(Y — Y) with two varying dataset-specific weights for
deconvolution of bulk samples without paired scRNA-seq. The two metrics
are highly correlated with varying weights for the reference dataset from Asa
Segerstolpe et al. (2016). D: Outline of simulation setup, where single cells
of human pancreatic islets from Asa Segerstolpe et al. (2016) are aggregated
to generate pseudo-bulk samples, whose cell-type proportions are known. E:
mAD(P — P) and mAD(Y — Y) with three varying dataset-specific weights for
deconvolution of bulk samples with paired scRNA-seq. The two metrics agreed
on the assignment of the optimal weights to be around (v, W, W3) = (0, 1,0).
F: mAD(P — P) and mAD(Y — Y) with two varying dataset-specific weights for

deconvolution of bulk samples without paired scRNA-seq. While the two met-
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rics do not share the same trend with the varying weights, the weight selected

by mAD(Y —Y) would achieve a mAD(P — P) close to its smallest value.

Figure S3. Single-cell clustering visualization by t-SNE. A-B: scRNA-seq data
from the Perou Lab. C-D: scRNA-seq data from the Tabula Muris Consor-

tium.

Figure S4. Deconvolution results without the tree-guided approach hardly sep-
arate closely related cell types. A: Pairwise correlation of cell-type-specific
gene expression profiles estimated by scRNA-seq. B: Estimated cell-type pro-
portions of mouse mammary gland 10X bulk samples without tree-guided ap-
proach. C: Estimated cell-type proportions of mouse mammary gland fresh-

frozen bulk samples without tree-guided approach.

Figure S5. A first-pass SCDC run on the single-cell reference dataset removes
potentially mislabeled cells and doublets. Each single cell is treated as a “bulk”
sample and used as input for SCDC. The highly binary cell-type proportions in-
dicate good data quality and reliable cell type clustering. Cells whose estimated
cell-type proportions have a maximum less than a user-defined threshold (0.7
by default) are filtered out. These cells are potentially doublets, mis-classified,
poorly sequenced, or from cell types not of interest. A: A first-pass SCDC run

using cells as “bulk” samples. B: Unique cell identities after QC.

Figure S6. Number and percentage of single cells grouped by cell type clus-
ters using scRNA-seq data of human pancreatic islets and mouse mammary
glands. A: Baron et al. (2016). B: Asa Segerstolpe et al. (2016). C: Xin et al.
(2016). D: Perou Lab. E: Tabula Muris.

STAR Methods

Key Resources Table
Separately attached.
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Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents
should be directed to and will be fulfilled by Charles M. Perou
(chuck_perou@med.unc.edu), Fei Zou (fzou@bios,unc.edu), and Yuchao

Jiang (yuchaoj@email.unc.edu)

Experimental Model and Subject Details

Cell-line mixture

MCF-7 and MDA-MB-468 cells were purchased from ATCC. Human dermal
fibroblasts were isolated from skin. All cell lines were maintained independently
in culture medium DMEM (Gibco) supplemented with 10% FBS (Millipore) and
1% penicillin-streptomycin (Gibco) and grown in incubators maintained at 37 °C
with 5% CO,. Cells were mixed together so that MCF-7 cells comprised 60%
of the mixture, MDA-MB-468 cells comprised 30% of the mixture, and dermal

fibroblasts comprised 10% of the mixture.

Animal model

All animal studies were performed with approval and in accordance with the
guidelines of the Institutional Animal Care and Use Committee (IACUC) at the
University of North Carolina at Chapel Hill. Female FVB/NJ mice were ob-
tained in collaboration with the UNC Lineberger Comprehensive Cancer Cen-
ter (LCCC) Mouse Phase | Unit (MP1U). Animals were cared for according to
the recommendations of the Panel on Euthanasia of the American Veterinary
Medical Association. Mice were housed in a climate controlled Department
of Laboratory Animal Medicine facility with a 12 h light:dark cycle and ad libi-
tum access to food and water (Qin et al., 2016). The mammary glands were

harvested at 12 weeks for FVB/NJ mice.
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Method Details

Cell suspension preparation

The FVB/NJ mammary glands were placed in 10 ml of a digestion medium con-
taining EpiCult™-B Mouse Medium Kit (#05610, StemCell Technologies), Col-
lagenase/Hyaluronidase (#07912, StemCell Technologies), and 1% penicillin-
streptomycin (Gibco). The mammary gland was digested overnight in a ther-
mocycler maintained at 37 °C with continuous rotation. The cell pellets retrieved
from these suspensions were treated with a 1:4 solution of hanks balanced salt
solution (HBSS) and ammonium chloride to remove the RBCs. After RBC re-
moval, the cell suspensions were trypsinized with 0.05% Trypsin and a mix
of Dispase and DNAse. A portion of this cell suspension was stained with
trypan blue and counted using the Countess Automated Cell Counter (Invitro-
gen). Based on the counting, the cells were diluted to the appropriate cell stock
concentration for running on the 10X Chromium machine. Based on the 10X
Genomics pre-defined cell stock concentrations, each experiment was run to
retrieve ~5000 cells after the single-cell experiment. The remaining cell stock

solution was used for making bulk mRNA seq libraries.

Single-cell library construction, sequencing, and bioinformatics pipeline

The cell suspensions were loaded on a 10X Genomics Chromium instrument
to generate single-cell gel beads in emulsion (GEMs) for targeted retrieval of
approximately 5000 cells. scRNA-Seq libraries were prepared following the
Single Cell 3' Reagent Kits v2 User Guide (Manual Part # CG00052 Rev A)
using the following Single Cell 3’ Reagent Kits v2: Chromium™Single Cell 3
Library & Gel Bead Kit v2 PN-120237, Single Cell 3’ Chip Kit v2 PN-120236,
and i7 Multiplex Kit PN-120262” (10X Genomics). Libraries were run on an
lllumina HiSeq 4000 as 2 x 150 paired-end reads. The Cell Ranger Single
Cell Software Suite (version 1.3) was used to perform sample de-multiplexing,

barcode and unique molecular identifiers (UMI) processing, and single-cell 3’
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gene counting. All scRNAseq data by 10X Genomics are available at GEO
database (GSE136148).

Bulk mRNA-seq pre-processing

RNA was isolated using the RNeasy Mini Kit (#74104, Qiagen) according to
manufacturer protocol. mRNA quality was assessed using the Agilent Bioan-
alyzer and libraries for mRNA-seq were made using total RNA and the lllu-
mina TruSeq mRNA sample preparation kit. Paired end (2x50bp) sequencing
was performed on the lllumina HiSeq 2000/2500 sequencer at the UNC High
Throughput Sequencing Facility (HTSF). Resulting fastq files were aligned to
the mouse mm10 reference genome using the STAR aligner algorithm (Dobin
et al., 2013). Resulting BAM files were sorted and indexed using Samtools (Li
et al., 2009) and QC was performed using Picard (Picard, 2019). Transcript
read counts were determined using Salmon (Patro et al., 2015). Genes with
zero read counts across all samples were removed. All bulk mRNAseq data is
available at GEO database (GSE136148).

Clustering quality control of scRNA-seq data

To construct the basis matrix B from the single-cell reference dataset, SCDC
takes as input gene expression measurements and cluster memberships of all
cells that are sequenced by scRNA-seq. While much efforts have been de-
voted to cell type clustering by scRNA-seq, it has been shown that different
approaches can potentially generate varying single-cell cluster assignments
(Huh et al., 2019). To make SCDC robust to single-cell clustering, a quality
control procedure is performed as a first step to remove cells with question-
able cell-type assignments, as well as cells with low library preparation and
sequencing quality. Specifically, each single cell is treated as a “bulk” sam-
ple and its cell-type composition can be derived by a first-pass run of SCDC.

For well classified cells with good quality, the estimated proportions should be
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sparse and contain a single non-zero estimate close to one; for questionable
cells such as doublets, the estimated proportions would not result in a unique
cluster assignment (Figure S5A). Therefore, we remove cells whose estimated
cell-type proportions have a maximum less than a user-defined threshold (Fig-
ure S5B). After this initial QC step of the single-cell input, the Pearson corre-
lation of the actual and the deconvoluted cell-type proportions is improved for
simulation runs, especially when pseudo-bulk samples and reference datasets

are from different sources (Table S1).

Construction of basis matrix differs from MuSiC

For deconvolution using each single-cell reference dataset, SCDC estimates
cell-type proportions following the W-NNLS framework proposed by MuSiC
(Wang et al., 2019), but differs in the way of calculating the basis matrix. The
contribution of each subject to the construction of a basis matrix may vary
according to the data quality (Figure S6). Hence, maximal variance weight
(MVW) per gene is calculated to reflect the data quality (Wilson et al., 2018).
In detail, using scRNA-seq data, SCDC first estimates 47, which captures the
cross-cell variation for gene g of cell type k within individual d. Within-subject
variance for subject d is then calculated as 073 = mgx{&ékd} and the maximal
variance weight A,y is given by:
0_*2

Agd = W' (3)
SCDC proceeds to scale the raw single-cell read count matrix by /A,q. Under
this construction, genes with larger variance will have larger variance weights.
Larger variance weights ensure that residuals from such genes will have
smaller impact on estimation of cell-type composition (Wilson et al., 2018). To
control for excessively large or small variance weights, we set the bottom 15%
of variance weights to be the 15th percentile variance weight, and similarly,

the top 15% of variance weights are replaced by the 85th percentile variance
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weight. The rest of the estimation procedure largely follows MuSiC. The per-
formances of SCDC and MuSiC were compared via simulations by Pearson
correlation, RMSD and mAD between P and P shown in Table S1.

ENSEMBLE: a linear combination of deconvolution results

Assume R single-cell reference datasets are available for the tissue of interest.
For each reference dataset r € {1, ..., R}, SCDC deconvolutes the bulk gene
expression data as a matrix decomposition problem. Let P, and B, denote the
cell-type proportion matrix and the basis matrix using the rth reference dataset,
respectively. The bulk gene expression Y can be deconvoluted into the form of
Y = B, P, + €, with a reference-specific error term €,. The predicted gene ex-
pression levels from the r/ reference datasetis Y, = B,P,. In the ENSEMBLE
step, SCDC aims to solve for equation (2). As we stated in the Result session,
we make the assumption that the solutions for equation (1) and (2) are ap-
proximately equivalent based on the concordance between the metrics on the
cell-type proportions (Pearson correlation and mAD between P = 25:1 w,P,
and P) and the metrics on the gene expression levels (Spearman correlation,
RMSD, and mAD between ¥ = -7 . w,Y¥, and Y) via simulations (Figure 2,
Figure S2). See Supplemental Information for equation details. In practice,
SCDC, by default, chooses the L1 norm of (Y — Y) as the criteria for ENSEM-
BLE weight selection.

For optimization, we can redirect the problem to least absolute deviations (LAD)
regression with constraints on the weights (wi, ..., wg):

R
, subject toz w,=1w,>0re{l,...R}. (4)
1 r=1

|n|m|zeN

R
Y — Z W,é,ls,
r=1

LAD regression does not have an analytical solving method (Vanderbei, 2001),
hence we applied the method adopted by Osorio et al. (2017). While solving for
w,’s, an LAD regression with no constraint is first fit. Any negative W, is set to

zero, and the estimates are finally scaled to satisfy the constraint. Since the re-
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scaling step can be problematic, SCDC additionally adopts another numerical
method via grid search to determine the optimal ENSEMBLE weights. How-
ever, the grid search method might be computationally inefficient if more than
three reference datasets are used and the search step size is set too small.
Regardless, the optimal weights selected by LAD and by grid search gener-
ally agree with each other, as we showed in real data analysis (Table 1, Table
2).

Data and Software Availability

SCDC is compiled as an open-source R package available at https://github.
com/meichendong/SCDC, together with vignettes and toy examples for demon-

stration.

Supplemental Information

Evaluation Measurement

The metrics we used for method evaluation include root-mean-square deviation
(RMSD), mean absolute deviation (mAD), Pearson correlation, and Spearman

correlation. Given a parameter z and its estimator 2, these metrics can be

defined as:
RMSD = y/mean{||z— 2|3}
mAD = mean{|z — 2|}
Pearson/Spearman R = corr(z, 2)

Quality Control and Clustering of scRNA-seq Data

For single cells from the three cell-line experiment, cells with a high percentage

of mitochondrial gene expressions were filtered out. Genes with lengths greater
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than 200kb, ribosomal genes, and genes with undetectable expressions were
filtered out. Seurat was applied for single cell clustering: genes detected in at
least three cells were kept; cells with less than 200 genes detected were filtered
out; the number of genes detected and the number of UMIs were regressed
out in the scaling procedure; ‘FindClusters’ was applied using the first twenty
principal components, with resolution parameter set from 0.6 to 1. Finally, cell

types were annotated according to previously reported marker genes.

For the mouse mammary gland data, single cell clustering was performed
within each subject separately. In addition to the Seurat clustering procedures
described above, the percentage of cell-cycle gene expressions was also re-
gressed out when scaling the gene expression matrix. Epithelial cells were
first identified as a major cluster and were further subgrouped into luminal and
basal cells. ‘FindMarkers’ function was applied to each pair of cell types, and
the number of marker genes from each pair was used to determine whether or

not to combine the two clusters.

Two-Level Deconvolution

Similar to MuSiC (Wang et al., 2019), for cases where closely related cell types
are present in the data, SCDC adopts a two-step approach, which first sepa-
rates remotely connected cell types and, in the second step, dissociates cell
types that share high similarities. However, there is no consensus on how
to determine the order of deconvolution, especially when multiple scRNA-seq
datasets are available. To solve this, we employ MNN (Haghverdi et al., 2018)
to correct for batch effect and to calculate a basis matrix from the adjusted data.
Hierarchical clustering is applied to determine the relationship between the cell
types of interest. The hierarchical structure is further used to guide the two-
step approach for deconvolution. For the mouse mammary gland dataset, the
first-round deconvolution separates cluster 1 = {immune cells} from cluster 2
={endothelial, fibroblast, basal, luminal cells} and the second-round deconvolu-

tion further separates the cell types in cluster 2 (Figure S4A). Within each level
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of deconvolution, differentially expressed genes are first identified by Wilcoxon

rank-sum test with multiple testing correction and then used as input.

Deconvolution Using Single Cells from One Subject

To accommodate experimental designs using single cells from only one sub-
ject, we adapt the W-NNLS framework to calculate the gene-specific weights
by within-subject variation only. Denote the cell-type proportion vector for bulk
sample d as Py = (P14, Pa2g, ..., Pkg) | and the normalized bulk gene expression
as Yqg = (Y1d, Yad, .... Yeq)|. The gene-specific expression can be formalized
as

Yag — BgPy = €gg ~ F (11, 63) .
where By is the g row in the basis matrix B; the residual term e, follows a
certain distribution F with mean ., and variance 6§. Adjusting for the variance
of residuals, we derive:

Yog _ BePo _ o (ka4
5g 65 5g 65' -

We can iteratively estimate the proportion vector P4 and derive the residual
vector in the meantime. If two consecutive estimated proportion vectors Py
and f’; are equal, then we derive a consistent estimation result. That is, if
Py — P, < a— 0+ and Py ~ P, then

N A/
1 1 Py P, (11
TY — € 7TY — € =B ~ — A~ ~B,P ~ — =~ | -
5g( dg dg) 52{( dg d) g<5g 62,) g d<5g %)

Hence, as the proportion estimates converge, we derive a final deconvolution
result:

ng — €dg ~ BgPd.
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KEY RESOURCES TABLE

REAGENT or RESOURCE

| SOURCE

| IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

EpiCult™-B Mouse Medium Kit

StemCell Technologies

EpiCult™-B Mouse Medium Kit #05610

Dispase (5 U/mL)

StemCell Technologies

Dispase (5 U/mL) #07913

Ammonium Chloride Solution

StemCell Technologies

Ammonium Chloride Solution #07850

Gentle Collagenase/Hyaluronidase

StemCell Technologies

Gentle Collagenase/Hyaluronidase # 07919

DNase | Solution (1 mg/mL)

StemCell Technologies

DNase | Solution (1 mg/mL) # 07900

Critical Commercial Assays

TruSeq Stranded mRNA

lllumina

TruSeg® Stranded mRNA Library Prep (48
Samples)
20020594

Chromium Single Cell 3' Reagent Kits

10x Genomics

Chromium Single Cell 3' GEM, Library & Gel
Bead Kit v3, 4 rxns PN-1000092

Chromium Single Cell B Chip Kit, 48 rxns PN-
1000073

Chromium i7 Multiplex Kit, 96 rxns PN-120262

MACS Tumor Dissociation Kit, mouse

Miltenyi Biotech

Tumor dissociation kit # 130-096-730

Deposited Data

ScRNA-seq of human pancreatic islet Baron et al., 2016 GEO: GSE84133

ScRNA-seq of human pancreatic islet Xin et al., 2016 GEO: GSE81608

ScRNA-seq of human pancreatic islet Segerstolpe et al., 2016 | GEO: E-MTAB-5061

Bulk RNA-seq of human pancreatic islet | Fadista et al., 2014 GEO: GSE50244

ScRNA-seq of mouse mammary gland Tabula Muris, 2018 GEO: GSE106273

ScRNA-seq of mouse mammary gland This paper GEO: GSE136148

Bulk RNA-seq of mouse mammary gland | This paper GEO: GSE136148

ScRNA-seq of three-cell-line mixture This paper GEO: GSE136148

Bulk RNA-seq of three-cell-line mixture This paper GEO: GSE136148

Experimental Models: Cell Lines

MCF7 ATCC MCF7 (ATCC® HTB-22™)
https://www.atcc.org/products/all/HTB-22.aspx

MDA-MB-468 ATCC MDA-MB-468 (ATCC® HTB-132™)
https://www.atcc.org/products/all/HTB-132.aspx

Human dermal Fibroblasts Perou Lab N/A

Experimental Models: Organisms/Strains

Mouse: FVB/NJ The Jackson JAX: 001800
Laboratory

Mouse: FVB-Tg(C3-1-TAg)cJeg/Jegd The Jackson JAX: 013591
Laboratory

Software and Algorithms

Seurat Satija et al., 2015 https://github.com/satijalab/seurat
Butler et al., 2018

MuSiC Wang et al., 2019 https://github.com/xuranw/MuSiC

Bseq-SC Baron et al., 2016 https://github.com/shenorrLab/bseqsc

Bisque Jew et al., 2019 https://github.com/cozygene/bisque

CIBERSORTX Newman et al., 2019 https://cibersortx.stanford.edu

SCDC This paper https://github.com/meichendong/SCDC
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Table 1. ENSEMBLE weight selection results for the human pancreatic islet bulk samples. The weights are
presented for 51 healthy donors and 26 diabetic donors separately. SCDC selects weights that maximize the
Spearman correlation of Y and or minimize the mAD of ¥, via grid search or least absolute deviation (LAD)

regression.

Metr'ics_ to be o \év:rlg:teior ‘g:ae‘c;g:]sttmrpe Spearman | RMSD mAD
maximized /minimized al. ot al. R (Y) (Y) (Y)

51 Spearman R (Y, Y) 0.42 0.58 0.78 3.43E-04 | 4.71E-05
healthy | mAD (Y — ¥) by grid search | 0.44 0.56 0.78 3.40E-04 | 4.71E-05
samples | mAD (Y — 17) by LAD 0.45 0.55 0.78 3.39E-04 | 4.71E-05

26 Spearman R (Y,Y) 0.50 0.50 0.80 2.80E-04 | 4.48E-05
diabetic | mAD (Y — ¥) by grid search | 0.49 0.51 0.80 2.81E-04 | 4.48E-05
samples | mAD (Y — 7) by LAD 0.52 0.48 0.80 2.77E-04 | 4.48E-05

Table 2. ENSEMBLE weight selection results for the mouse mammary gland bulk samples. Single-cell reference
dataset from the same source as the bulk samples gains more weight.

Bulk Metrics to be maximized Weight for | Weight Spearman mAD
A Tabula for RMSD (Y)
samples /minimized Muris Perou R (Y) (Y)
‘Pooled [ Spearman R (¥, 7) 0.19 0.81 0.78 4.13E-04 | 7.66E-05
S'nglff-ft‘ cells | mAD (v — 7) by grid search | 0.30 0.70 0.78 3.96E-04 | 7.65E-05
arter —~

suspension | MAD (¥ — 7) by LAD 0.38 0.62 0.78 3.87E-04 | 7.66E-05
Spearman R (Y, 7) 0.32 0.68 0.68 5.91E-04 | 8.37E-05
fFrgezsehn' mAD (Y — 7) by grid search | 0.46 0.54 0.68 5.79E-04 | 8.36E-05
mAD (Y — ¥) by LAD 0.42 0.58 0.68 5.82E-04 | 8.36E-05
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Table S1. Benchmark of deconvolution results using simulated pseudo bulk samples of human pancreatic islets.
The pseudo bulk samples were constructed by summing up raw read counts across all single cells from (A)
Baron et al., (B) Segerstolpe et al., and (C) Xin et al.. The performance of deconvolution was assessed using
measurements on the deconvolved and true cell-type proportions. SCDC outperforms Bseq-SC, and performs
similar to MuSiC, when using only one reference set without ENSEMBLE, while naively pooled single cells
without batch correction generally resulted in bad performance. With ENSEMBLE, SCDC performs similar to
CIBERSORTXx in two out of the three simulation setups, yet significantly better in the third, highlighting its
performance stability. Clustering quality control (CQC) procedure resulted in improved deconvolution accuracy
except for the cases involving Xin et al., which has a limited number of single cells per subject.

(A)
Pseudo Single-cell reference mAD | mAD | Pearson | Pearson A
Bulk (number of cell Methods Before | After | R Before | R After | Pearson
types used) CcQC | cQC cQc cQc R

MuSIC 0.027 |0026| 097 | 0966 | 0.00

Bseq-SC | 0.056 |0.057 | 0878 | 0879 | 0.00

Bfg‘i;‘p‘zts‘;" Bisque 0021 | 0.021| 0982 | 098 0.00

CIBERSORTx | 0.041 | 0.041| 0966 | 0958 | -0.01

scDC 0.029 | 0.03 | 0.961 0.96 0.00

MuSIC 0.056 | 0.049 | 0.892 0.9 0.01

Bseq-SC | 0.073 | 008 | 0808 | 0789 | -0.02

Sege(’gstto";es)et al. Bisque 0.087 | 0.092| 0.671 065 | -002

P CIBERSORTx | 0.084 | 0.076 | 0852 | 0.87 0.02

SCDC 0.05 |0045| 0912 | 0924 | 0.01

Baron MUSIC 0147 |0417 | 0541 | 0717 | 0.18

etal. , Bseq-SC | 0.144 | 0154 | 0434 | 0435 | 0.00

zillrlyepteaslj Bisque* | 0.099 | 0101| 0813 | 0814 | 000

CIBERSORTx | 0190 | 0.198 | 0324 | 0230 | -0.09

SCDC 0.06 |0085| 0964 | 0973 | 0.01

MuSIC 0127 |0123| 0391 | 0418 | 0.03

, Bseq-SC | 0.108 | 0108 | 0694 | 0698 | 0.00

P°°"°Zg f"”g'se) cells Bisque* 0.06 |0061| 0849 | 0841 | -001

P CIBERSORTx | 0.036 | 0.038| 0968 | 0963 | -0.01

scDC 0.117 | 0108 | 0.493 | 0607 | 0.11

ENSEMBLE scDC 0.029 | 0.03 | 0.961 0.96 0.00

(6 types)

*Bisque only used part of the subjects due to the encountered error when including subjects with a missing

cell-type.
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Pseudo Single-cell reference mAD | mAD | Pearson | Pearson A
Bulk (number of cell Methods Before | After | R Before | R After | Pearson

types used) cQC | cQcC cQc cQcC R
MuSIC 0.083 |0.082| 0915 | 0918 | 0.00
Bseq-SC | 0.089 | 0.085| 0895 | 0899 | 0.00
Bfg‘i;‘p‘zts?" Bisque 0.094 | 0.096| 0642 | 0627 | -002
CIBERSORTx | 0.085 | 0.081| 0955 | 0955 | 0.00
SCDC 0.078 | 0.078 | 0922 | 0924 | 0.00
MuSIC 0.029 |0.027| 0968 | 0975 | 001
Bseq-SC | 0.064 | 0.06 | 0875 | 0898 | 0.2
Sege(’gstto";‘z)et al. Bisque 0.035 | 0.035| 0963 | 0962 | 0.00
yp CIBERSORTx | 0.06 | 0.061| 0949 | 0951 | 0.00
scDC 0.032 | 0.031| 0961 | 0969 | 0.01
Segerstolpe MuSiC 0.096 | 0.091 0.933 0.94 0.01
etal. , Bseq-SC | 0.075 | 0076 | 092 | 0927 | 0.01
éllrlyepteaslj Bisque* | 0.063 | 0.064| 0944 | 0943 | 0.00
CIBERSORTx | 0.083 | 0.084 | 0910 | 0901 | -0.01
SCDC 0.113 | 0133 | 097 | 0965 | -0.01
MuSIC 0.058 | 0.056| 0887 | 0897 | 001
, Bseq-SC | 0.085 | 0.083 | 0692 | 0694 | 0.00
P°°"°Zg f‘”g'se) cells Bisque* | 0.059 | 0.059| 0878 | 0.876 | 0.00
P CIBERSORTx | 0.071 | 0.069| 0967 | 0968 | 0.00
SCDC 0.056 | 0.061| 0916 | 0928 | 0.01
ENSEMBLE scDC 0.032 [0.031| 0961 | 0969 | 0.01

(6 types)

*Bisque only used part of the subjects due to the encountered error when including subjects with a missing

cell-type.
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(C)
Pseudo Single-cell reference mAD | mAD | Pearson | Pearson A
Bulk (number of cell Methods Before | After | R Before | R After | Pearson

types used) cQC | cQcC cQc cQcC R
MuSIC 0189 |0.188 | 0.71 0711 | 0.00
Bseq-SC | 0.185 |0182| 072 | 0723 | 0.00
Bf;‘i;‘p‘zts?" Bisque 0.091 | 0.098| 0874 | 0855 | -0.02
CIBERSORTx | 0.180 | 0.177 | 0733 | 0.736 | 0.00
SCDC 0.188 | 0.187 | 0.71 0.711 | 0.00
MuSIC 0071 |0075| 092 | 0915 | -001
Bseq-SC | 0.154 | 0153 | 0757 | 0758 | 0.00
Sege(’ftto";es)et al. Bisque 0.078 | 0076 | 0902 | 0897 | -001
yp CIBERSORTx | 0.161 | 0.163 | 0.756 | 0.751 | -0.01
scDC 0.067 | 0.072| 0929 | 0925 | 0.00
Xin MuSIC 0.035 | 0.035| 0976 | 0976 | 0.00
etal. , Bseq-SC | 0.066 |0.062| 0894 | 0906 | 0.01
éllrlyepteaslj Bisque* | 0.066 | 0.066| 0924 | 0925 | 0.00
CIBERSORTx | 0.050 | 0.051| 0959 | 0957 | 0.00
SCDC 0.072 | 0.081| 0938 | 0925 | -0.01
MuSIC 0.061 | 0.068| 0919 | 0906 | -001
, Bseq-SC | 0.117 | 0117 | 0827 | 0828 | 0.00
P°°"°22 f‘”g'e) cells Bisque* | 0.062 | 0.063| 0942 | 0938 | 0.00
ypes CIBERSORTx | 0174 | 0173 | 0.739 | 0.740 | 0.0
SCDC 0.064 | 0.086 | 0916 | 0901 | -0.02
ENSEMBLE scDC 0.072 | 0.081| 0938 | 0925 | -0.01

(4 types)

*Bisque only used part of the subjects due to the encountered error when including subjects with a missing

cell-type.
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Table S2. Associating cell-type proportions with HbA1c levels in human pancreatic islet samples. A linear
regression model (deconvolved cell-type proportion ~ HbA1c + age + BMI + sex) is adopted for each cell type
separately. SCDC through ENSEMBLE derived a p-value of 0.0019 for the association between the HbA1c levels
and the beta cell proportions, more significant than those from deconvolution without ENSEMBLE.

Cell type Estimate Std. P-value p-value p-value
(% As Error using using using
Outcome) ENSEMBLE | Baron et al. | Segerstolpe
et al.
(Intercept) 0.8079 0.2152 4.00E-04 1.00E-04 0.0398
HbA1c -0.0087 0.0287 0.7627 0.4346 0.6449
alpha | age -0.001 0.002 0.6248 0.7861 0.9251
BMI -0.0107 0.0082 0.1972 0.2033 0.7888
sexFemale 0.0457 0.0444 0.3069 0.4485 0.1597
(Intercept) 0.4082 0.1051 2.00E-04 0.0316 0
HbA1c -0.0452 0.014 0.0019 0.038 0.031
beta age 0.002 0.001 0.0484 0.2291 0.2332
BMI -0.0041 0.004 0.3115 0.6331 0.059
sexFemale -0.0628 0.0217 0.005 0.1952 0.004
(Intercept) 0.053 0.0098 0 0 0
HbA1c -0.001 0.0013 0.4242 0.4243 0.4527
delta age -1.00E-04 1.00E-04 0.1188 0.1344 0.1256
BMI -0.0011 4.00E-04 0.0053 0.0058 0.0059
sexFemale 0 0.002 0.9983 0.8213 0.8473
(Intercept) 0.0112 0.0125 0.3719 0.3556 0.3827
HbA1c 0.0012 0.0017 0.483 0.5547 0.4622
gamma | age 1.00E-04 1.00E-04 0.336 0.2919 0.3508
BMI -7.00E-04 5.00E-04 0.137 0.1281 0.1467
sexFemale -0.0019 0.0026 0.4631 0.4248 0.4588
(Intercept) -0.0056 0.0777 0.9431 0.8045 0.4762
HbA1c 0.0202 0.0104 0.0549 0.0283 0.0517
acinar | age -0.0014 7.00E-04 0.0491 0.166 0.0476
BMI 0.0014 0.003 0.6332 0.7244 0.2173
sexFemale 0.0294 0.016 0.0706 0.0516 0.0574
(Intercept) -0.2747 0.1767 0.1244 0.249 0.1091
HbA1c 0.0335 0.0236 0.1597 0.2929 0.1213
ductal | age 5.00E-04 0.0016 0.7626 0.8249 0.5345
BMI 0.0152 0.0068 0.0278 0.0567 0.0513
sexFemale -0.0104 0.0365 0.7761 0.4099 0.9686
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