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Abstract

Pattern recognition predictive models have become an important tool for analysis of neuroimaging
data and answering important questions from clinical and cognitive neuroscience. Regardless of the
application, the most commonly used method to quantify model performance is to calculate
prediction accuracy, i.e. the proportion of correctly classified samples. While simple and intuitive,
other performance measures are often more appropriate with respect to many common goals of
neuroi maging pattern recognition studies. In this paper, we will review alternative performance
measures and focus on their interpretation and practical aspects of model evaluation. Specifically,
we will focus on 4 families of performance measures: 1) categorical performance measures such as
accuracy, 2) rank based performance measures such as the area under the curve, 3) probabilistic
performance measures based on quadratic error such as Brier score, and 4) probabilistic
performance measures based on information criteria such as logarithmic score. We will examine
their statistical properties in various settings using simulated data and real neuroimaging data
derived from public datasets. Results showed that accuracy had the worst performance with respect
to statistical power, detecting model improvement, selecting informative features and reliability of
results. Therefore in most cases, it should not be used to make statistical inference about model
performance. Accuracy should also be avoided for evaluating utility of clinical models, because it
does not take into account clinically relevant information, such as relative cost of false-positive and
false-negative misclassification or calibration of probabilistic predictions. We recommend
aternative evaluation criteria with respect to the goals of a specific machine learning model.

| ntroduction

Machine |learning predictive models have become an integral method for many areas of clinical and
cognitive neuroscience, including classification of patients with brain disorders from healthy
controls, treatment response prediction or, in a cognitive neuroscience setting, identifying brain
areas contai ning information about experimental conditions. They allow making potentially
clinically important predictions and testing hypotheses about brain function that would not be
possible using traditional mass univariate methods (i.e., effects distributed across multiple
variables). Regardless of the application, it isimportant to evaluate the quality of predictions on
new, previously unseen data.

A common method to estimate the quality of model predictions isto use cross-validation and
calculate the average prediction performance across test samples (Varoquaux et al., 2017) or
balanced variants that account for different class frequencies (Brodersen et al., 2010) Selection of
appropriate performance measures is awidely studied topic in other areas of science, such as
weather forecasting (Mason, 2008), medicine (Steyerberg et al., 2010) or finance ((Hamerle et al.,
2003). However, in the neuroimaging field, this has received surprisingly little attention. For
example, many introductory review and tutorial articles focused on machine learning in
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neuroimaging (Haynes and Rees, 2006; Pereira et a., 2009; Varoquaux et a., 2017) do not discuss
performance measures other than accuracy (i.e., ssmple proportion of correctly classified samples).
Accuracy is aso the most frequently reported performance measure in neuroimaging studies
employing machine learning, even though in many cases alternative performance measures may be
more appropriate for the specific problem at hand. However, no performance mesasure is perfect and
suitable for all situations and different performance measures capture different aspects of model
predictions. Thus, athoughtful choice needs to be made in order to evaluate the model predictions
based on what is important in each specific situation. Different performance measures also have
different statistical properties which need to be taken into account. For example, how reliable or
reproducible are the results, or what is the power of detecting a statistically significant effect?

In this paper, we provide a didactic overview of various performance measures focusing on their
interpretation and practical aspects of their usage. We divide the measures into four families based
on what aspects of a model prediction they evaluate; (1) measures evaluating categorical
predictions, (2) ranks of predictions, (3) probabilistic predictions with respect to a squared error,
and (4) probabilistic predictions with respect to information criteria. This includes accuracy, the
area under the receiver operating characteristic curve, the Brier score, and the logarithmic score
respectively, as most prominent members of each family. Next, we perform an extensive empirical
evaluation of statistical properties of these measures, focusing on power to detect a statistically
significant effect, power to detect a model improvement, evaluation of stability of the feature
selection process, and evaluation of the reliability of results. We show that accuracy performs the
worst with respect to all examined statistical properties. Last, we discuss appropriate evaluation
criteriawith respect to various goals of the specific machine learning model.
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Tutorial on performance measures

This section isadidactic overview of 4 main types of performance measures.
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Figure 1: Definition of categorical predictions and their relationship to a confusion matrix. Note
that the predicted score (e.g. predicted probability froma logistic regression, here depicted by the
position of the predictions on the y-axis) needs to be dichotomized into categorical predictions, thus
the magnitude of a miss-classification is not taken into account. Balanced accuracy equals
accuracy when the class frequencies are equal, otherwise misclassification of the minority classis
weighted higher, therefore, the chance leve stays at 0.5. PPV: positive predictive value. NPV:
Negative predictive value.

Categorical measures

The most commonly used performance measures are based on an evaluation of categorical
predictions. These can be derived from a confusion matrix where predicted labels are displayed in
rows and observed labels are displayed in columns (Figure 1). The most commonly used measureis
accuracy, which isasimple proportion of all samples classified correctly. This can be misleading in
imbalanced classes, since for example if the disease prevalenceis 1% it istrivial to obtain an
accuracy of 99% just by always reporting no disease. For this reason, balanced accuracy is often
used instead (Brodersen et al., 2010). Balanced accuracy is simply the arithmetic mean of
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sensitivity and specificity, thusit is equal to accuracy when the class frequencies are the same
(Figure 1), otherwise, because sensitivity and specificity are contributing equally, it weighs false
positive and false negative miss classifications according to class frequencies.

Sensitivity (true positive rate, recall) is the proportion of positive samples classified as positive, or
in other words, it is the probability that a sample from a positive class will be classified as positive.
Specificity (true negative rate) is the counterpart to sensitivity measuring the proportion of negative
samples correctly classified as negative. Sensitivity and specificity do not take class frequencies
(and class imbalances) or disease prevalence into account and they do not capture what is important
in many practical applications. For example, in aclinical setting, we don’'t know if the patient has a
disease or not (otherwise, there would be no need for testing).Instead, what is known are the results
of the test (positive or negative) and we would like to know, given the result of the test, what is the
probability that the patient will have a disease or not. Thisis measured by positive predictive value
(PPV) and negative predictive value (NPV) for positive and negative test results, respectively. It is
easy to misinterpret sensitivity as PPV, the difference is subtle but crucial. Toillustrate, say we
have the following confusion matrix:

Condition

Positive Negative
Predicted Positive 10 90
Condition  \egative 0 900

This gives us 100% sensitivity (10/10, 91% specificity (900/990), 91% accuracy ((10+900)/1000)
and 96% balanced accuracy ((10/10 + 900/990)/2). According to these measures, the model
performs well. However, in this example the disease prevalence is 1% (10/1000), so only 10% of
patients with a positive test result are truly positive, the remaining 90% are misclassified (i.e., cell
with positive predicted condition but negative actual condition in confusion matrix). Therefore, the
test may actually be useless in practice. Another measure used in cases with imbalanced classesis
the F1 score, which is the harmonic mean of PPV and sensitivity (so if one of the elementsis close
to O, the whole score will be close to 0) (Figure 1). Since the harmonic and not the arithmetic mean
is used, both sensitivity and PPV need to be high in order for the score to be high. Thus, this score
emphasizes the balance between sensitivity and PPV and it assumes that both are equally important.

All categorical measures suffer from two main problems: first, they depend on an arbitrarily
selected classification threshold. Each data point counts either as a correct or incorrect
classification, without taking the magnitude of the error into account. If the decision threshold is set
to 50%, then if a model predicts that a disease probability in a healthy subject is 49% percent and
thus classifies this subject as healthy, this is indistinguishable from a disease probability of 1% in
another healthy subject (also classified as healthy). Imagine two models, one predicts that a healthy
subjects has a disease with a probability of 99% and other with a probability of 51%. The latter
model is obviously better since the error is smaller, but if these predictions are thresholded at
traditional 50% percent, the accuracy will not be able to detect the improvement. Due to this
insensitivity, compared to measures that do not require dichotomization of predictions, using
accuracy necessarily leads to asignificant loss of statistical power. Second, false positive and false
negative misclassification are weighted as being equally bad or according to class frequencies
(balanced accuracy), which is often inappropriate. Rather, misclassification costs are asymmetric
and depend on consequences of such misclassification. For example, in aclinical context,
misclassifying a healthy subject as diseased is worse when this misclassification will lead to an
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unnecessary open brain surgery, than when it will lead to a prescription of medications with no side
effects.

One way to combat unequal misclassification cost is to select the decision threshold according to
cost-benefit analysis, such that the action is made when the expected benefit of the action outweighs
the expected harm. This is then evaluated by cost-weighted accuracy, where true positives and false
positives are weighted according to their relative cost. Although this allows to evaluate categorical
predictions according to their utility and not arbitrarily, the dichotomization still creates problems
for many practical applications. For example, in aclinical setting, the categorized predictions hide
potentially useful clinical information from decision-makers (be it clinician, patient, an insurance
company, etc.). If aprediction is only the presence versus the absence of a disease, a decision maker
cannot take into account if a probability of the disease is 1%, 15% or 40%. This effectively moves
the decision from stakeholders to a data analyst assuming that the chosen decision threshold is
appropriate and constant for every situation and every patient, thus not allowing to take clinicians
opinions or patients’ preferences into account.

Rank based measures

Another important family of performance measures are those based on ranks of predictions. Here,
predictions are not categorical, but all predictions are ranked from lowest to highest with respect to
the probability of an outcome.

The most common measure from this family is the area under the receiver operating characteristic
curve (AUC). It measures a separation between two distributions, with a maximum score of 1
meaning perfect separation or no overlap between distributions and 0.5 being chance level when the
distributions cannot be separated. In the case of model evaluation, the two distributions are
distributions of predicted values (e.g. probability of a disease) for each target group. AUC is
identical or closely related to multiple more or less known concepts, some of which we will review
below.

The most common way of interpreting the AUC is through the receiver operating characteristic
curve (ROC) (Figure 2A). Thisis a plot showing how a proportion of false positive and false
negative misclassifications (i.e. sensitivity and specificity) changes as a function of the decision
threshold. AUC is then the area under this curve. The curveitself is useful because it visualizes
sengitivity and specificity across all thresholds not only for one threshold as in the case with the
confusion matrix. Thusit alows choosing a decision threshold with an appropriate balance between
sengitivity and specificity. We can seethat if amodel has no predictive power, then regardless of
the threshold, the proportion of false positives and false negatives will always sum to 1, therefore
the ROC curve will be a straight line across the diagonal and thus the area under this curve will be
0.5.

AUC can also be seen as quantifying to which extent two distributions overlap. We can rearrange
the ROC plat, in such away that the threshold value is on the x-axis and two curves are shown, one
for the false-negative rate (1-sensitivity) and one for the true negative rate, both on the y-axis. The
area between the diagonal and the ROC curve in the ROC plot (Figure 2A) is nhow the area between
these two curves. These two curves are cumulative distributions of subjects from each class. The
area between these curves represents the non-overlapping areas of two distributions (Figure 2B).

AUC isidentical to C-index or a concordance probability in the case of a binary outcome (Hanley
and McNeil, 1982). This is the probability that a randomly chosen data point forms a positive class
is ranked higher than a randomly chosen example forms the negative class. E.g. if we have two
patients, one with disease and one without, AUC is the probability that the model will correctly rank
patients with a disease to have a higher risk of the disease than patients without the disease. This
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can also be interpreted as a proportion of all pairs of subjects in the dataset, where a subject with the
disease is ranked higher than a subject without the disease (Figure 3B).

AUC isalso arescaling of several rank-based correlation measures, including Sommers dyy
(Newson, 2002) . It is also a normalized Mann-Whitney U statistic (Mason and Graham, 2002),
which is used in the Mann-Whitney U test or Wilcoxon rank-sum test, a popular nonparametric
alternative for at-test. The latter connection is especially important because it means that by testing
the statistical significance of a difference between two groups using the Mann-Whitney U test, one
is also testing the statistical significance of AUC and vice versa (Figure 3A).
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Figure 2. A: ROC curve for the same data as in Figure 3. The points on the curve represent
threshold values that divide continuous prediction into two classes (represented as orange and blue
colors). B: AUC as an overlap between two distributions. Two distributions (top) are transformed
into cumulative distribution (bottom). The non-overlapping area of these two distributionsis the
area between two cumulative distribution curves, which equals to the area between the diagonal to
the ROC curve or AUC - 0.5.
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Figure 3. Interpretation and construction of AUC fromthe figure 2A as an A) sum of ranks, i.e.
Mann-Whitney U statistics. Predictions areranked from lowest to highest, and the sum of ranks R1
for the positive classis computed (or R2 for negative class). From the sum of ranks, Mann-Whitney

U statistic is computed by subtracting the sum of ranks of one group from the sum of ranks of all
predictions. AUC is the normalized version of the Mann-Whitney U, by dividing U statistics by the

maxi mum possi ble val ue of the U statistics and B) concordance measure. AUC can be interpreted
as a proportion of pairs of subjects where a subject from the positive classis ranked higher than a
subject from the negative class, or where a randomly sel ected subject from the positive classis
ranked higher than a randomly selected subject from the negative class.

Quadratic error-based measures

Performance measures based on the quadratic error (together with information-based measures)
quantify the performance of probabilistic predictions directly, without any intermediate
transformation of predictions to categorical predictions or ranks. This makes them the most
sensitive measures to capture signal in the data or model improvement, although it requires that the
model predictions are in the form of probabilities.

Brier score (Brier, 1950)is the most prominent example from this category. It is a mean squared
error between predicted values and observed values, where predictions are coded as 0 and 1, for the
case of the binary classifier. The Brier score can be straightforwardly generalised to multi-class
classification using ‘one-hot’ dummy coding.


https://doi.org/10.1101/743138
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/743138; this version posted August 22, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

. 1
Brier = o i —p)?

For example, if amodel predicts that a patient with a disease has a disease with a probability of 0.8,
the squared error will be (1-0.8)*2=0.04 and the Brier score is the average of error of al predictions
across al subjects. Brier score has values between 0 and 1 (smaller the better), with 0.25 for a
chance level predictionsin a case where there is an equal number of subjectsin both groups
(because 0.5"2=0.25). Compared to AUC, it takes into account specifically predicted probabilities
of an outcome, not only their ranks. The score is improved when the predictions are well calibrated,
so when the predicted probabilities correspond to observed frequencies of misclassification (e.g. in
subjects with the predicted probability of a disease of 0.8 , 80% of these subjects will have the
disease).

One of the difficulties with employing the Brier score in practice is that — unlike accuracy and AUC
— it lacks asimpleintuitive interpretation. In order to make it more intuitive, it can be rescaled to
form a pseudo R? measure anal ogous to variance explained used in evaluate regression models.

The Scaled Brier score is defined as

Brier

Briersaed = 1 —

Brietmax

where the Briermax is the maximum score that can be obtained with a non-informative model
. 1 1
Brierm= - it (pi) X (1 - ;Z?ﬂ(pi))

Thus a non-informative model will have a score of 0 and a perfect model score of 1, regardless of
class frequencies.

One intuitively interpretable measure is a discrimination slope, also known as Tjur's pseudo R?
(Tjur, 2009).

Tjur’s pseudo RZ = niaZ?fl(pai) - nin?L(Pm)

Thisissimply the difference between the mean of predicted probabilities of two classes, which can
also be easily visualized (Figure 4).
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Figure4: Tjur’s pseudo RP. Interpretation of Tjur’s pseudo R is the difference between mean
predicted probability of the positive group and the negative group.

Information criteria
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Information theory provides a natural framework to evaluate the quality of model predictions
according to how much information about the outcome is contained in the probabilistic predictions.
The most important information-theoretical measure is the logarithmic score, defined as

Logarithmic score = In(p.arget)

where p_target is the predicted probability of the observed target. If the target is coded as 0 and 1,
and the score is averaged across al predictions, this becomes

Logarithmic score = 1—11 yxin(p)+ A -y)xin(1-p)

For example, amodel predicts that a patient with a disease has a disease with a probability of 0.8,
the logarithmic score will be In(0.8) =-0.22. It has many interpretations and strong connections to
other important mathematical concepts. It is alog-likelihood of observed outcomes given model
predictions, it also equals to Kullback—Leibler or relative entropy between observed target values
and predicted probabilities. It quantifies an average information loss (in bits) about the target given
that we have only imperfect, probabilistic predictions. It also quantifies how surprising the observed
targets are given the probabilistic predictions. In a certain sense, the logarithmic score is an optimal
score. It has been shown that in betting or investing, the expected long term gains are directly
proportional to the amount of information the gambler has about the outcome. For example, if two
gamblers are betting against each other repeatedly on an outcome of football games, the gambler
whose predictions are better according to the logarithmic score, will on average multiply her wealth,
even if her predictions might be worse according to Brier score or AUC (Kelly, 1956; Roulston and
Smith, 2000).

In practice, the logarithmic score and Brier score usually produce similar results and the difference
is evident only with severe misclassification. The logarithmic score can grow to infinity when the
predicted probability of an outcomeis close to zero.

This might be considered undesirable since a single extreme wrong prediction can severely affect
the summary score of an otherwise well-performing model. On the other hand, it can be argued that
thisis a desirable property of a score and predictions close to 0 and 1 should be discouraged.
Intuitively, the logarithmic score measures surprise, if an event that is supposed to be absolutely
impossible (p=0) happens, we rightly ought to be infinitely surprised. Similarly, if we know that an
event is absolutely certain (p=1), then the right approach (mathematically) would be to bet all our
money on this event, thusit is desirable that the wrong prediction is maximally penalized.

Similarly to the Brier score, the logarithmic score can be scaled to make it more intuitively
interpretable. One popular way is to use Nagelkerke pseudo R? (Nagelkerke, 1991) which is defined
as

1— (L(Pnull))Z/N

- L(P)

RzNagel kerke — W

Where L(P) is alogarithmic score of model and L(Pnui) is alogarithmic score of chance level
predictions (i.e. predicting only class frequencies).

Empirical evaluation
Here we perform several empirical evaluations of statistical properties of the selected performance

measures, one from each family described above, namely, accuracy, AUC, Brier score and
logarithmic score. We examine: (i) the statistical power of detecting a statistically significant result,
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(i) the power to detect a statistically significant improvement in model performance, (iii) the
feature selection stability, and (iv) the reliability of cross-validation results. We employ real and
simulated datasets.

Satistical power of detecting a statistically significant result

Statistical tests: In this section, we evaluate how often a given method is likely to detect a
statistically significant effect (i.e., aclassifier that exceeds chance levels at a given significance
level, nominally p < 0.05). In this case, the focusis on statistical significance, but not on the
absolute level of performance. We used the same datasets using the different performance measures
described above. We tested the power of amodel to make a statistically significant prediction on an
independent test set. Statistical significance of the accuracy measure was obtained using a binomial
test. To obtain statistical significance of AUC, we performed Mann-Whitney U test. Snce AUC is
equivalent to Wilcoxon-Mann-Whitney U statistics, performing Mann-Whitney-U test on model
predictions equals to performing a statistical significance test of AUC. P-values for Brier score and
log score were obtained using a permutation test, where the real 1abels were shuffled for a
maximum of 10,000 times and the specific scores were computed for each shuffle, thus obtaining an
empirical null distribution of scores where the specific p-value corresponds to a percentile of the
observed test statistic in this distribution. For permutation tests, we employed early stopping criteria
according to (Gandy, 2009), that stopped the permutation when the chance of making wrong
decision to reject the null hypothesis was lower than 0.001. Performing the permutation test for
accuracy and AUC is not necessary, because their distributions are known and can be computed
exactly. These tests are only valid because we are testing the statistical significancein an
independent test set. However, they would produce overly optimistic results in a cross-validation
setting. Thisis because data points between folds are no longer completely independent and a
permutation test where a model is refitted in each permutation should be used instead (Noirhomme
et a., 2014; Varoquaux et a., 2017).

Experiments:

First, we examined statistical power on simulated distributions of model predictions, without any
machine learning modeling. Similar to the first experiment, we repeatedly sampled from two one-
dimensional Gaussian distributions 1 SD apart representing the distribution of model predictions of
two classes. These predictions were transformed into 0-1 range using a logistic function and into
categorical predictions by thresholding at 0.5 threshold. We performed 1000 simulations for sample
sizes 20, 80, 140, 200, and recorded proportion of times each statistical test obtained a statistically
significant result (p < 0.05).

Second, we examined statistical power of a support vector machine (SVM) to discriminate between
two groups in the simulated dataset. The simulated dataset consisted of 6 independent variables, 3
signal variables and 3 noise variables. Signal variables were each randomly sampled from a
Gaussian distribution with SD=1 and mean=0 for group 0 and mean=0.3 for group 1. Three noise
variables were each randomly sampled from a Gaussian distribution with mean=0 and SD=1. We
repeatedly sampled training and test set from this dataset of size 40, 80, 120, 140, and fit a support
vector machine classifier in the training set and evaluated the statistical significance of the
predictionsin the test set. We used C-SVM implementation of an SYM with alinear kernel from a
package kernlab (Karatzoglou et al., 2004), with a C parameter fixed at 1. SVM predictions were
transformed into probabilities using Platt scaling (Platt, 1999), as implemented in kernlab.

Third, we examined statistical power on real neuroimaging datasets, including OASIS cross-
sectional (Marcus et al., 2010) and ABIDE datasets (Craddock et al., 2009). We used already
preprocessed OASIS VBM data as provided by the OASIS project using nilearn dataset fetching
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functionality (Abraham et al., 2014) The preprocessing consisted of brain extraction, segmentation
of white matter and gray matter, and normalization to standard space using DARTEL. Details of the
preprocessing can be found elsewhere (Marcus et al., 2010). Here we used gray matter and white
matter data separately in order to predict biological sex and diagnostic status (presence or absence
of dementia). To reduce the computational load, we reduced the dimensionaity of the WM and GM
datasets to 100 principal components each. Furthermore, we used already preprocessed ABIDE
dataset as provided by the preprocessed-connectome-project (Craddock et al., 2009)to predict
biological sex. These consisted of ROl average cortical thickness data obtained using ANTs
pipeline (Das et al., 2009), defined using sulcus landmarks according to the Des kan-Killiany-
Tourville (DKT) protocol (Klein and Tourville, 2012).

Additionally, we included common non-imaging machine learning benchmark datasets obtained
from using mlbench and kernlab libraries originaly from UCI machine learning repository (Dua and
Graff, 2017). These included Pima Indians diabetes, sonar, musk, and spam.

Finally, in order to compare statistical power to detect statistically significant above chance
prediction according to specific performance measures, it isimportant to show that the higher
power is due to higher sengitivity of the performance measure and not because the used statistical
test is overly optimistic. To do this, we repeated all experiments including simulated and real
datasets, but with permuting true labels before each simulation to destroy any relationship between
the data and target outcome.

Results: In al smulated and real datasets, when the null hypothesis was true (i.e. performing
experiments on data with shuffled labels), statistical significance p < 0.05 was obtained
approximately 5% of times for significance tests of AUC, Brier score and logarithmic score, as
expected (supplementary figure 1). The binomial test was often overly conservative, i.e., p < 0.05
was obtained less than 5% of times. Thisis a known behavior of binomial test in small samples
caused by alimited number of valuesin the null distribution (Fig 4 shows the example of n=20
sample). This conservativeness is worse in small samples and it disappears when the sample sizeis
sufficiently large (i.e. N=5000). Thisbehavior is not limited to abinomial test, it also happens if the
p-value of accuracy is calculated using permutation test, which is just a random approximation of
the exact binomial test, and the low resolution of the null distribution of accuracy results is present
even when this distribution is obtained using permutations.

For all experiments and all sample sizes, tests using accuracy had the lowest power. Brier score,
logarithmic score, and AUC performed approximately the same. At the sample size where AUC,
Brier score, the logarithmic score obtained the common goal of 80% power, accuracy obtained only
60% power in all datasets (see figure 5). Results for all datasets separately are in supplementary

figure 2
c 0.15
£ 0.10 p = 0.058
3005 II II p=0.021
£ 0.
0.00 _-. .-_

012345678 91011121314151617181920
number of correct predictions

Fig 5: Null distribution of correct predictions for n=20 illustrating why significance test for
categorical predictions is conservative in small samples at specific significance levels. Snce the
predictions are categorical, the null distributions consist only of a limited number of values. Itis
not possible to obtain p=0.05, in order to obtain p<0.05 it is necessary to get at least 14 correct
predictions, corresponding to p=0.021. Although this makes the test conservative at the p = 0.05
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level, it isnot conservative at p = 0.058 or p=0.021 levels obtained by getting 13 or 14 correct
predictions respectively.

AUC Brier Logarithmic

0.8

0.6

0.4

0.2

Statistical power using
alternative performance measures

00 .* ] .
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0
Statistical power using accuracy

Figure 6. Comparison of statistical power of accuracy and alter native performance measures. We
calculated statistical power to find significant above-chance performance in the test set (p < 0.05)
across multiple simulated and real datasets with varying sample sizes. Each dot represents a
proportion of statistically significant results across 1000 draws from a specific dataset and sample
size. This figure shows that all alternative measures show greater power than accuracy for
detecting a significant effect.
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Power to detect a statistically significant improvement in model performance

In the previous section, we evaluated power to detect an effect that is significantly different from
zero (i.e. exceeding ‘chance’ level), however, in many cases, it isimportant to detect a difference
between two different classification models, potentially trained using different algorithms or
different features. For example, we might want to know if a whole brain-machine learning model
predicts remission of a depressive episode better than ssimple clinical data. Or we might want to
compare the performance of two different methods e.g. support vector machines and deep learning.
In both of these cases, it isimportant to evaluate the difference statistically, otherwise the apparent
superiority of one model might be due to chance and translate to better predictions in a population.

Statistical tests: We obtained statistical significance of a difference in accuracy between two
models using McNemar test using an exact binomial distribution. To test differences between two
models using Brier score and logarithmic score, we used a permutation sign flip test testing the
hypothesis that the difference in errors between two models is centered at O. If the predictions were
categorical, the sign-flip test would approximate the results of the exact McNemar test. Thereisno
equivalent test for AUC because errors depend on ranks and thus cannot be computed for individual
data points. Instead, we have used Del_ong’'s non-parametric test of differences between two AUC
(DeLong et al., 1988).

Experiments. We compared the performance of two models on the same ssmulated and real
datasets as in the previous section. Each time, we compared the performance of a model that was
trained on the whole training set, with a model trained using only a subsample of the training set of
size between 10-90% of the full training set. The model trained with fewer data points should
eventually perform worse than amodel using all available data. For each sample size of the
restricted model, we have calculated the proportion of times a statistical test found a statistically
significant difference in the performance of these two models.

Results: The difference between the power of different performance measures was higher than in
the testing against the null hypothesis of no effect in the previous section. Accuracy had the lowest
power, followed by AUC and Brier and logarithmic score performed approximately the same.
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Figure 7 Satistical power of comparing 2 competing models. One model was trained using the
whole training set and the second model was trained on fewer subjects, using only a proportion of
the training set. Y-axis shows the proportion of statistically significant results obtain by comparing

the performance of two models, from 1000 random draws from each dataset. A: simulated
predictions, the performance of the two models was fixed, but we manipulated the sample size. B:
SVM fitted on simulated data, C: OAS S gray matter gender prediction, OAS Swhite matter gender
predictions, E: OASSgray matter diagnosis prediction, F: OAS Swhite matter diagnosis
prediction, G: ABIDE cortical thickness gender prediction, H: Pima Indians diabetes benchmark
dataset, I: Sonar benchmark dataset, J: Musk benchmark dataset K: Spam benchmark dataset.

Evaluation of stability of the feature selection process

Feature selection is an important part of machine learning with the goal of selecting a subset of
features that are important for prediction. It is usually done in order to make models more
interpretable and improve their performance. Different feature selection criterialead to a different
set of selected features. Here we evaluated which specific performance measure (accuracy, AUC,
brier score, logarithmic score), leads to better feature selection results when itsimprovement is used
as acriterion for feature selection. We performed a greedy forward stepwise feature selection,
starting with 0 features and subsequently adding additional features into the model that improve the
model performance the maost according to a specific performance measure. Thisis anoisy feature
selection process but preferably we would want informative features to be selected on average more
often than non-informative features. We constructed stability paths according to Meinshausen
Buhlman (Meinshausen and Buhlmann, 2010), the feature selection procedure was performed
repeatedly on a random subsample of a dataset and the probability of selecting a specific feature
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was computed for any number of selected features in the final model. Thiswas performed on 2
benchmark machine learning datasets 1, Pima Indians diabetes dataset and 2, spam prediction
datasets. To each dataset, we added non-informative features by randomly permuting some of the
origina features, thus destroying any information they can have about the outcome. We compared
how often original informative features are selected compared to non-informative features.

Results: Signal features (i.e. features that had not been permuted) were selected most often if the
feature selection was performed according to logarithmic score and Brier score, followed by AUC
and accuracy. For example for spam data, only one signal feature was stably selected using
accuracy.

Diabetes data
Accuracy

Logscore
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o
2
o

Selection probability
(=]
(%]
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0.25

Spam data
Accuracy
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Figure 8: stability of feature selections. We can see stability paths of individual features if they are
selected according to specific performance measures in a greedy forward stepwise featur e selection
procedure. Sgnal features (red) were selected sooner using logarithmic score and brier score
compared to accuracy and AUC.

Reliability of the cross-validation measure

Previously (Varoquaux et al., 2017) showed that cross-validation estimates of accuracy have high
variance and high error with respect to the accuracy obtained on alarge hold-out validation set,
especially when the sample size islow. Here we compared the relationship between cross-validation
performance and hold-out performance for accuracy, AUC, Brier score and logarithmic score. We
performed a procedure similar to Varoquaux 2017. We selected 6 large sample datasets from UCI
machine learning repaository in order to have at least 1000 samples in the hold-out set. Further, we
mani pulated datasets by randomly flipping labels to 0-20% data points, thus creating many datasets
with different true performance. In each of these datasets, we estimated model performance using
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10-fold cross-validation and compared it to out of sample performance on the validation sample of
size 1000. We repesated this procedure for different sizes of the training set 50, 100, 150, 200, and
250.

Results: In amost all comparisons, reliability of the cross-validation results (as measured by
Spearman correlation between cross-validation performance and hold-out performance) was higher
for logarithmic score and Brier score, compared to accuracy and AUC. This was true when the
results for different datasets were combined together (Figure 7A) or separated (Figure 7B).
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Figure 7: Comparison between performance in the cross-validation and on the holdout set. A:
comparison across 6 datasets for a training set of size 50. B comparing Spear man correlation
between cross-validation performance and hold-out performance for each sample size and dataset
separately.

Data and code availability

All data and code necessary to reproduce the experimentsis at https://github.com/dinga92/beyond-
acc

Discussion and recommendations

The choice of a performance measure should be motivated by the goals of the specific prediction
model. In this report, we reviewed exemplars of 4 families of performance measures evaluating
different aspects of model predictions. Namely, categorical predictions, ranks of predictions and
probabilistic predictions according to quadratic error and information content.
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Often, such asin brain decoding and encoding, the primary goal of machine learning models is not
to make predictions but to learn something about how information is represented in the brain. Two
common goals of encoding or decoding studies are to establish if aregion contains any information
at all about the stimulus or behavior, and to compare the relative amount of information about
stimulus between multiple ROIs (Naselaris et al., 2011).

In this case, the performance measure should be chosen to maximize the statistical power of atest
and reliability of results. Accuracy, although the most commonly used performance measure,
performed the worst in all statistical aspects we have examined in this study compared to alternative
measures (i.e. AUC, Brier score, logarithmic score). It has the lowest statistical power to find
significant results and to detect a model improvement, it leads to unstable feature selection and the
results are least likely to replicate across samples from the same population. For these reasons, the
accuracy should not be used to make a statistical inference, although if needed it can be reported as
an additional descriptive statistic.

The loss of power when using accuracy is significant. Compared to alternative measures, the power
to detect statistically significant results dropped from 80% to 60% or from 60% to 40% on average
across simulated and real datasets. The reason for thisistwofold. First, accuracy does not take the
magnitude of an error into account, thusit is a very crude and insensitive measure of model
performance. The model improvement can only be detected at the decision threshold, thus leading
to severely suboptimal inference. Second, since accuracy evaluates only categorical predictions, it
can only take alimited number of values, thus anull distribution is tabulated which leads to
conservative p-values (Fig 4). The smaller the sample size, the worse this effect is.

The loss of power is even more prominent when the goal isto find statisticaly significant
improvement on an already well-performing model. In this situation, both accuracy and AUC
perform significantly worse than probabilistic measures (log score, Brier score). This effect is
especially prominent when comparing aready well performing models. When the discrimination
between classes is already large, thereis only asmall chance that a model improvement would
result in changing of ranks of predictions (for the changein AUC) or predictions crossing the
decision threshold (for the change in accuracy). Even potentially important model improvements
can be missed if the model is assessed based on accuracy. Situations are easily constructed where
model performance improves significantly, but without ever changing the proportion of correctly
classified samples. Or in other words, statistical power to detect an improvement in model
performance according to accuracy can be effectively zero.

The crudeness of accuracy leads to another important problem, and that is aloss of reliability and
reproducibility of the results, as shown in our comparison of cross-validation results. If we replicate
the same analysis on a different sample from the same population, the results using accuracy will be
less similar to each other than results using alternative measures. This, together with a significant
loss of power, leadsto less replicable results. It isimportant to note that there is no upside to these
problems in the form of for example higher confidence in conservative statistically significant
results using accuracy. Asit was pointed out before (Button et al., 2013; loannidis, 2005; Loken and
Gelman, 2017) low power necessary leads to overestimation of the found effect, low reproducibility
of the results, and higher chance that the observed statistically significant effect size does not reflect
the true effect size. (Varoquaux et al., 2017) pointed out that the error bars for accuracy under cross-
validation are large, and that the results are much more variable than is usually appreciated. From
our results, it is clear that alarge portion of this variability is attributable to using accuracy as a
performance measure, and that unfavorable statistical properties of cross-validation can be
improved simply by using alternative performance measures.

In many situations, the statistical properties of a specific performance measure are not an important
aspect of model evaluation. In aclinical context, the utility of model predictions for a patient or a


https://doi.org/10.1101/743138
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/743138; this version posted August 22, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

clinician is far more important than statistical power. Model evaluation based on categorical
predictionsisin this situation inappropriate because categorical predictions hide potentially
clinically important information from decision-makers, and they assume that the optimal decision
threshold is known and identical regardless of patient or situation. In clinical settings, it is generally
recommended (Moons et al., 2015) to evaluate models based on their discrimination, usually
measured by AUC and calibration which measures how well the predicted probabilities matches
observed frequencies. In situations where the optimal threshold is fixed and known or when the
decisions need to be made fully automatically, without any additional human intervention, it is
appropriate to evaluate model performance with respect to its categorical predictions. However,
misclassification should be weighted according to relative the cost of false positive and false
negative misclassification in order to properly evaluate the utility of the model. Accuracy weighs
false positive and fal se negative misclassification equally (or according to class frequencies with
balanced accuracy) which is almost never the case, thus it will lead to wrong decisions.

To present and visualize the model performance, multiple options exist. Good visualization should
beintuitive and informative. Confusion matrices, although common, do not show all available
information because they show only categorical predictions. This can be improved by plotting the
whole distribution of predicted probabilities per target class in the form of histograms, raincloud
plots, or dot plots asin figure 4. This directly shows how well the model separates target classes, it
might reveal outliers or situations where the performance is driven by only a small subset of
accurately classified data points. This can be accompanied by a calibration plot with predicted
probabilities on the x-axis and observed frequencies on the y-axis with fitted regression curve,
showing how reliable the predicted probabilities are. An additional commonly used visualization is
aROC curve. Thisisarguably less informative and less intuitive than plotting the predicted
probability distributions directly, however, it can be used in specific situations whereit is useful to
visualize the range of sensitivities and specificities across different decision thresholds.

Conclusion

We extensively compared classification performance metrics from four families using simulated
and real data. In all statistical properties we evaluated, accuracy performed the worst, thusit should
not be used as a metric to statistically evaluate model predictions. Summary measures based on
probability predictions (i.e. logarithmic score or Brier score) performed the best and thus, we
recommend the use of these measures instead of accuracy. For model interpretation and
presentation, various measures can be reported at the same time, together with a graphical
representation of model predictions. If the model is supposed to be used in practicesuch asin a
clinical setting, summary measures are not enough. Rather, we recommend that the model be
evaluated with respect to its discrimination power, calibration, and clinical utility. Accuracy should
be avoided because it weighs false positive and fal se negative misclassification equally, or
according to class frequencies but not according to consequences for a patient.
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